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Abstract
Federated Distillation (FedKD) relies on
lightweight knowledge carriers like logits for
efficient client-server communication. Although
logit-based methods have demonstrated promise
in addressing statistical and architectural het-
erogeneity in federated learning (FL), current
approaches remain constrained by suboptimal
temperature calibration during knowledge
fusion. To address these limitations, we propose
ReT-FHD, a framework featuring: 1) Multi-level
Elastic Temperature, which dynamically adjusts
distillation intensities across model layers,
achieving optimized knowledge transfer between
heterogeneous local models; 2) Category-Aware
Global Temperature Scaling that implements
class-specific temperature calibration based
on confidence distributions in global logits,
enabling personalized distillation policies; 3)
Z-Score Guard, a blockchain-verified validation
mechanism mitigating 44% of label-flipping and
model poisoning attacks. Evaluations across
diverse benchmarks with varying model/data
heterogeneity demonstrate that the ReT-FHD
achieves significant accuracy improvements
over baseline methods while substantially
reducing communication costs compared to
existing approaches. Our work establishes
that properly calibrated logits can serve as
self-sufficient carriers for building scalable and
secure heterogeneous FL systems.

1 Introduction
In cross-device Federated Learning (FL), critical challenges
arise from model heterogeneity (e.g., diverse architectures
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across devices), statistical heterogeneity (non-IID data dis-
tributions across clients), prohibitive communication costs,
and privacy risks due to exposure of sensitive visual data.
Integrating knowledge distillation (KD) into FL frameworks
addresses these issues by enabling architecture-agnostic
knowledge transfer from heterogeneous local models to a
lightweight global model, minimizing direct data transmis-
sion, and preserving data privacy through indirect gradient-
free knowledge aggregation.

Early federated knowledge distillation frameworks, for ex-
ample, the FedKD (Jeong et al., 2018) transmit mean logit
vectors from clients to a server. These vectors are averaged
into global consensus outputs and redistributed to clients,
where they serve as teacher signals for distillation regular-
ization during local training. Addressing the model hetero-
geneity, FedMD (Li & Wang, 2019) proposes the clients
communicate based on their output class scores on samples
from the public dataset. Later, additional knowledge carri-
ers are transferred for resolving model heterogeneity, such
as features (He et al., 2020; Wang et al., 2024) and proxy
models (Lee et al., 2024). However, transferring additional
information, whether as proxy models (Wang et al., 2025)
or synthetic data (Huang et al., 2024; Liang et al., 2024),
introduces both security risks and significant computational
and communication overhead.

In this paper, we investigate whether the minimal carrier
of knowledge—logits—can effectively address model het-
erogeneity in FL without public datasets and additional
information. Recently, multi-level distillation, i.e., apply-
ing knowledge distillation at intermediate layers, has been
demonstrated to enhance both the comprehensiveness and
coherence of knowledge transfer (Khan et al., 2024; Hao
et al., 2024; Huang et al., 2025b). However, the temperature,
which is a critical hyperparameter in distillation, is typically
simplified to static or monotonically decreasing (Hao et al.,
2024; Huang et al., 2025b). This temperature strategy fails
to adequately address the intricacies of data and model het-
erogeneity in FL, significantly limiting the efficiency and
flexibility of distillation across heterogeneous models.

Therefore, we rethink the temperature for distillation and
propose ReT-FHD framework in federated heterogeneous
learning from theoretically and empirically: 1) Model Het-
erogeneity: We incorporate the elastic temperature that as-
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signs flexible temperatures to multi-level distillation. Theo-
retically, temperature scheduling balances staged logit en-
tropy, enhancing distillation precision and inter-stage knowl-
edge transfer. 2) Data Heterogeneity: We present global
temperature scaling, which assigns category-specific temper-
atures, aligning with gradient disparity dynamics to mitigate
class-wise update imbalances. Analysis shows this stabi-
lizes convergence by harmonizing gradient variations. 3)
Security: Integrated with blockchain-empowered FL (BC-
FL), our framework employs Z-score verification to validate
logit distributions against dynamic boundaries, enabling au-
tomated reward/punishment protocols that deter malicious
behaviors. 4) Experiments across four benchmarks demon-
strate ReT-FHD’s superiority over centralized and decentral-
ized (DeL) baselines.

2 Preliminaries

2.1 Federated Distillation

Federated Distillation (FD) research addresses three core
challenges: 1) Data Heterogeneity: Orthogonal efforts fo-
cus on refining knowledge carriers for non-IID data. Itahara
et al. (2021) mitigate statistical heterogeneity via entropy
reduction aggregation, while Zhang et al. (2022) synthe-
size hard samples to amplify KD effectiveness in data-free
FL. 2) Model Heterogeneity: Foundational works include
FedMD (Li & Wang, 2019), which aligns logits from public
datasets for consensus, and FedDF(Lin et al., 2020), which
ensembles soft labels from unlabeled data. FedGKT (He
et al., 2020) further bridges model capacity gaps by distill-
ing compact client features into a large server model. 3)
Security: Chang et al. (2019) minimizes leakage via robust
mean estimation on public predictions, Gong et al. (2022)
employs quantized noise to perturb shared logits.

To defend model poisoning attacks, Khan et al. (2024) pro-
pose HYDRA-FL by offloading some of the KD loss to a
shallow layer via an auxiliary classifier for local-to-local dis-
tillation. In contrast, our framework transfers logits instead
of model parameters, introducing additional challenges due
to compounded heterogeneity in both data distributions and
model architectures.

2.2 Model-Heterogeneous Federated Learning

For generalized scenarios of heterogeneous models, two
mainstream methods are Prototype-based methods and
Proxy model methods. The prototype-based framework
primarily facilitates knowledge transfer through client col-
laboration in constructing a unified class prototype. Tan
et al. (2022) propose FedProto, a prototype-based method
that addresses heterogeneity challenges in FL. Clients com-
municate local abstract class prototypes, which the server
aggregates into a global prototype, eliminating model param-

eter communication. Zhang et al. (2024a) propose FedTGP,
a framework using Adaptive Boundary Contrastive Learn-
ing (ACL) to learn trainable global prototypes (TGP) on
the server, improving prototype separability while main-
taining semantic meaning. On the other hand, the proxy
model method focuses on training a compact model at each
participant as a "proxy" for the primary model. Shen et al.
(2020) propose FML, a federated learning framework en-
abling joint training of a universal model and personalized
models, allowing custom designs for diverse applications
beyond standard FL limitations.Wu et al. (2022) propose
FedKD, a federated learning framework enabling mutual
learning of client student-teacher models and student model
sharing for knowledge transfer, alongside a dynamic gradi-
ent approximation method to reduce communication costs.
Moreover, Wang et al. (2025) propose FedType, a bidirec-
tional knowledge distillation strategy to optimize private
and proxy models jointly, along with an uncertainty-based
behavioral imitation method to improve proxy model guid-
ance.

While the aforementioned methods address the challenges
of Heterogeneous Federated Learning, the resulting increase
in communication and computational demands poses sig-
nificant limitations to the practical deployment of federated
systems.

2.3 Dynamic Temperature Knowledge Distillation

Dynamic temperature strategies in knowledge distillation
(KD) can be broadly divided into two categories: Global
scheduling methods and Local adaptive methods. Global
scheduling methods adjust a single temperature to control
overall distillation difficulty. Liu et al. (2022) propose to
learn the temperature by performing meta-learning on the
extra validation set. Li et al. (2022b) dynamically adjust a
shared temperature via curriculum learning to progressively
increase distillation difficulty from easy to hard. Local
adaptive methods assign temperatures at finer granularity.
Guo et al. (2023) adjust sample-wise temperatures based
on teacher confidence, while Wei & Bai (2024) minimize
sharpness differences between teacher and student logits to
derive separate temperatures for each.

Although these methods emphasize the effect of temper-
ature on the distillation process, they are not suitable for
knowledge distillation of heterogeneous models in FL by
multi-client non-iid data.

3 Proposed Method

3.1 Background

Multi-level Knowledge Distillation: Compared to the orig-
inal Federated Distillation approach (Li & Wang, 2019), Hy-
brid Knowledge Distillation (Khan et al., 2024; Hao et al.,
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2024) has been shown to significantly enhance robustness
and accuracy in Federated Learning. This improvement is
achieved by integrating an auxiliary knowledge distillation
constraint within a shallow layer of the local model.The hy-
brid loss function for FL clients is formulated as following:

L = LCE (yc, y) +

L∑
l=1

L(l)
KL

(
σ
(
z
(l)
t , τ

)
, σ
(
z(l)
s , τ

))
(1)

Here, σ denotes the softmax function, z(l)
s denotes the logits

of the student model in layer l, z(l)
t denotes the logits of the

teacher model in layer l. τ is called temperature and serve
as the offsets of the softmax function, α and τ effectively
adjusts the sharpness or softness of the probability distri-
bution derived from the teacher’s logits. The loss function
contains two main elements:

• LCE (Cross-Entropy Loss) is used to optimize the clas-
sification ability of the client model for good task per-
formance.

•
∑L
l=1 L

(l)
KL (Multi-level Distillation Loss) is used to

calculate the KL divergence between the teacher logits
and the student logits at each level l to ensure that
knowledge at different levels is adequately transferred.

Z-Score Distillation: Sun et al. (2024) propose a logit Z-
Score standardization as a pre-process to enable student to
focus on essential logit relations from teacher rather than
requiring a magnitude match. To bridge the capacity gap
of heterogeneous clients, we rewrite softmax based on the
mean z̄ and variance Var (·) as follows:

σ (z; z,Var (z))
(c)

=
exp

(
Z (z; τ)

(c)
)

∑N
n=1 exp

(
Z (z; τ)

(n)
) , (2)

s.t. Z (z; τ)
(c)

=
z(c) − z̄

Var (z) τ

where z(c) represents the c-th term of z, which is the c-th
class specific logits value, and Z is the Z-score function.

3.2 Rethink the Temperature in Heterogenous
Federated Distillation

Despite the effectiveness against poisoning attacks (Kundu
et al., 2021; Khan et al., 2024), the temperatures τ in Eq.1
are fixed, which neglects the inherent data and model hetero-
geneity present in the distillation process. Typically, higher
τ makes the distribution sharper (more confident), while
lower τ makes it softer (less confident), thus influencing
the gradient and the learning process of the student model.
However, in heterogeneous federated distillation, both data

and model heterogeneity necessitate finer temperature reg-
ulation to enhance the utilization effectiveness of global
logits.

Multi-level Elastic Temperature : To address model het-
erogeneity, we dynamically adjust the temperature during
knowledge distillation based on the hierarchical charac-
teristics of the models, effectively bridging representation
discrepancies across architectures at different levels. Our
multi-level distillation framework employs stage-adaptive
temperature scaling: each level’s output features feed into
the subsequent level, enabling dynamic temperature calibra-
tion based on the statistical divergence between successive
stages. Specifically, if the Z-score difference between the
logits of the next stage and the logits of the teacher’s model
is large, the temperature of the current stage should be in-
creased to reduce the amount of knowledge in the logits
of the current stage, and thus promote learning more infor-
mation from the logits of the teacher’s model. Conversely,
when the difference in logits is small, lower the temperature
so that the model focuses more on learning in other phases.

We rewrite τl in level l as τl = Gl(∆Z),∆Zl =
∥ZT − Zl+1∥. ZT is the Z(·) distribution of the global
logits. ∆Zl represents the difference in Z-Scores between
the global logits and the local logits, which is crucial for
adjusting the temperature of the distillation process. The
modulation of the effect of ∆Z is achieved through the
function G, defined as a logarithmic function, as follows:

Gl(·) = ξ +
γ log(1 + ∆Zl)

log (1 + ∆Zmax)
, (3)

where γ is a scaling factor that determines the sensitivity
of the function, ξ is the lower bound of the temperature ad-
justment represented by the initial value of the temperature,
and ∆Zmax is used as a normalisation factor to determine
the sensitivity of the function.

Category-Aware Global Temperature Scaling: To ad-
dress data heterogeneity, we calculate distinct temperatures
for each category in the global logits, enabling flexible adap-
tation to diverse client data characteristics, enhancing robust-
ness and inter-category fairness while mitigating challenges
from heterogeneous data distributions. Here, we give the
formula for adjusting the temperature of the c-th category
of global logits:

τ̃c = τ̃c − β ·
LCE(f(x̃c))− 1

C

∑C
i=1 LCE(f(x̃i))

max
(∣∣∣LCE(f(x̃c))− 1

C

∑C
i=1 LCE(f(x̃i))

∣∣∣)
(4)

where β controls the weight of the temperature update,
max(|.|) represents the absolute maximum value taken to
control the stability of the update. Since cross entropy di-
rectly reflects the robustness of the category, it is chosen to
regulate the temperature update.
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Algorithm 1 Algorithm of our ReT-FHD
Input: Dataset{D1, D2, . . . , DK}, T ▷T : Maximum communication rounds
1: Initialization:W ←Worker, V ← Validator,M←Miner, Global logits zg ,

Blacklist B, Client neighbors setN , Honest server S, Client reward setR
2: for t = 1→ T do
3: each k ∈ K ← Randomly{W,V,M} , each k ∈ K ← {W}
4: for each w ∈ [W] do
5: w downloads zgt−1 from blockchain→ do local update with Eq.6

6: →sends zwt to v ∈ V

7: w downloads zgt−1 from S and do local update with Eq.5→ sends zwt to S

8: w gathers znt−1 from n ∈ Nw

9: end for
10: for each v ∈ V or w ∈ W or S do

11: v evaluates w ∈ W with zgt−1 by Eq.7

12: → Auto set r for each w ∈ W by Eq.8

13: v votes w ∈ W → sends tom ∈ M

14: S evaluates w ∈ W by Eq.7

15: → set rk for each w by Eq.8→ gather zt+1 by rk ∈ R

16: w evaluates znt−1 by Eq.7→ set rw for each n ∈ Nw by Eq.8

17: → gather zwt by rwi ∈ R
w

18: → do local update with Eq.6→ sends zwt to n ∈ Nw

19: end for
20: m ∈ M aggregates zt according to the weight of R, makes B by

∑v
i=1 V

o

21: → mines a block→ uploads B ,R , zgt to blockchain

22: end for

At the beginning of each training round, the client receives
the global logits and then first adjusts the global logits ac-
cording to the temperature τ̃ calculated at the end of the
previous round.

Local update: Ultimately, the FL optimization function can
be expressed as:

min
w

K∑
i=1

|Di|
|D|

E

[
LCE +

L∑
l=1

C∑
c=1

L(l)
KL

(
σt (·) , σs (·)

)]
s.t. σt(·) ∼ σ (zt; z̄t,Var (zt) , G(∆Z), τ̃c) ,

σs(·) ∼ σ (zs; z̄s,Var (zs) , G(∆Z), ·)
(5)

where τ̃c is the isolated temperature for category c in the
global logits.

The DeL optimization function can be expressed as:

θt+1
i = θ

t+ 1
2

i −
∑

j∈N (i)

L∑
l=1

L(l)
KL

(
σt (·) , σs (·)

)
s.t. σt(·) ∼ σ (zt; z̄t,Var (zt) , G(∆Z), τ̃) ,

σs(·) ∼ σ (zs; z̄s,Var (zs) , G(∆Z), ·)

(6)

3.3 Different FL Modes of Our ReT-FHD

The ReT-FHD framework supports distributed training
through multilevel elastic distillation and statistical logit
analysis, enabling intrinsic security and scalable FL deploy-
ment.

FL and DeL mode: In the Algorithm 1, the situation will
not be so complicated for federated or decentralized learn-
ing. Each node belongs to the w ∈ W . For FL mode, each
client computes a multilayer distillation loss function with
the server-side global logits, highlighted in yellow. For DeL
mode, multilayer distillation training is performed after veri-
fying the legitimacy of neighboring node logits, highlighted
in pink.

BC-FL mode: Following the blockchain FL(Chen et al.,
2021; Ying et al., 2024), we apply the POS voting-based
consensus mechanism, highlighted in purple of Algorithm 1.
In each round t, each k ∈ K is randomly assigned a role,
includingw ∈ W ,v ∈ V ,m ∈ M, where |W|+|V|+|M| =
|K|. w is responsible for performing computations related
to fwi . Each w download global logtis zi from the latest
block and train with private local data Di. At this point the
w node performs the E round local update and broadcasts
the logits zwi , corresponding to the number of dimensions
of the dataset categories, to the v ∈ V in the network. See
the Appendix for more details.

Z-Score Guard: Standardized Finding of Malicious Logits:
Z(·, ·) plays a crucial role in evaluating logits for hetero-
geneous client models. This property likewise suggests
that Z(·, ·) can also play an important role in blockchain
authentication sessions. In the verification process,
validators V (verifiers) train locally and upload logits, while
examinees E(validators) evaluate V’s logits. Under data
heterogeneity, label sets across nodes may partially overlap
or diverge. We define the labeling relationship among nodes
as: |V ∩ H| = η, |E ∩ H| = ϕ, and |V ∩ E| = ψ. Here,
H represents the complete set of labels for a distributed
classification task.

The importance of ψ, η and ϕ arises particularly if E acts
as a lazy node by re-uploading Z(zg, ·), which impedes the
verification process by V . To facilitate this verification, we
suggest plotting both Z(zg, τ)

(ψ) and Z(zV , τ)
(ψ) within a

coordinate system:

DE =

H∑
i=1

[
exp

((
∆ZiE,V

)ψ)
+ exp

((
∆ZiE,g

)ϕ)]
H∑
i=1

exp
((

∆ZiV,g

)η)
> 2

H∑
i=1

exp

(
Z
(
ziE , τ

)(ψ) − Z
(
zig, τ

)(ψ)
+ Z

(
ziV , τ

)(ψ)
2

)
s.t. ∆Zia,b = Z

(
zia, τ

)
−Z

(
zib, τ

)
(7)
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Here τ is a fixed temperature. This approach allows us to
quantify the criteria necessary for a verified individual to
be considered valid or to be subject to voting, based on
their positional relationship within the coordinate system.
When Z(zE , ·) equilibrium between Z(zV , ·) and Z(zg, ·)
is reached, v will evaluates highest scores and vote bad.

Logits-based Secure Validation: Logits, as a crucial
medium for information transmission, can also indicate the
confidence level of a sample, in particular, the confidence
level can demonstrate the knowledge of the model and
also reveal information about the security of the model,
which can be solved by looking at the logits relationship
in the distributed system. We dynamically assign rewards
based on this confidence. Where Rb is the base reward,
∥Di∥ represents the number of samples per client, λ is the
preset confidence range, we provide a base algorithm for
measuring reward values as follows:

R =

{
Rb · ∥Di∥ ·max{P (y = i | x)}, if max{P (·)} > λ

Rb · ∥Di∥ · (1−max{P (y = i | x)}), otherwise
(8)

4 Theoretical Analysis
In this section, we systematically demonstrate the effective-
ness of the proposed Multi-level Elastic Temperature and
Global Temperature Scaling mechanism from the perspec-
tives of information entropy and gradient updating.

Referring to Zhao et al. (2024), we introduce the knowledge
scale to quantify the level of knowledge of the predictive
distribution, which can measure the scale of knowledge
learnt from the probability distribution by the model with
randomly initialized weights:

KT = KL(I(x), T (x)) = logC −H(PT ) (9)

where KL(·) stands for Kullback–Leibler divergence,
which calculates the cost of information required to travel
from one distribution to another, C is the total number of
categories and is a constant for the same dataset, and H(·)
is the information entropy.

From the definition of knowledge scale, it can be found
that the information entropy can be directly used to mea-
sure the knowledge level of teachers. Therefore, we obtain
the following theorem by studying the partial derivative of
information entropy with respect to temperature.

Theorem 4.1. Temperature τ is positively correlated with
the information entropy of the predictive distribution of
logits.

The proof of Theorem 4.1 can be found in Appendix A.1.
Therefore, combining Theorem 4.1 and the definition of
knowledge scale, the larger the temperature, the smaller the

knowledge scale, and the more local logits can learn from
the global logits that can be learned.

In order to alleviate the problem of uneven distribution of
category information due to data heterogeneity, we further
introduce Global Logits Scaling, but before that, we need to
discuss the effect of the previous Multi-level Elastic Tem-
perature on categories.

Corollary 4.2. For a model f with random distribution I
in the initial state, for a deep neural network (DNN) model f
with random distribution I in the initial state, the model has
no preference for any sample. Thus for the model’s predic-
tive distribution f(x; θI) = {pI1, pI2, ..., pIc}, the following
relationship exists:

E(pI(x)) = E(pI1(x)) = E(pI2(x)) = ... = E(pIc(x))
(10)

We assume that the model is optimised under the guidance
of a soft label distribution with smoothing degree λ1 , which
is satisfied:

pλ1
1 (x1) = pλ1

2 (x2) = · · · = pλ1
c (xc) >

1

C
>

pλ1
1 (xc ̸=1) = pλ1

2 (xc ̸=2) = · · · = pλ1
c (xc̸=c) (11)

The following relationship exists for the partial derivatives
of the knowledge scale for different classes of logits:

∂KL(f(x; θI), Pλ1
)

∂z1(x)
= · · · = ∂KL(f(x; θI), Pλ1

)

∂zc(x)
(12)

Corollary 4.2 shows that the overall change in knowledge
scale has a balanced impact on different categories. The
proof of Corollary 4.2 can be found in Appendix A.2.

Now we can discuss the theory of Global Logits Scaling.
Here, we give Theorem 4.3 about the relationship between
the category temperature of global logits and the category
gradient update of local models.

Theorem 4.3. Following the setup in Corollary 4.2, the
temperature τ̃c of category c is positively correlated with
the gradient update ∇c

f∼λ of the local model category c.

The proof of Theorem 4.3 can be found in Appendix A.3.
Theorem 4.3 states that different temperatures affect the
gradient update. Increasing the temperature of category
c will cause the gradient update ∇c

f∼λ of that category
to increase, and vice versa will cause the gradient update
∇c
f∼λ of the category to decrease, and by regulating the

temperature of different categories, it will cause the gradient
update of different categories to be more balanced.
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Table 1. Testing accuracy (%) in FL model heterogeneous (a.) and homogeneous (b.) settings. Dir-set: Dirichlet distribution; Pat-set:
Pathological distribution.

Tiny ImageNet Flower102 Cifar-100 Cifar-10Methods
Dir-set Pat-set Dir-set Pat-set Dir-set Pat-set Dir-set Pat-set

(a.)

Proto-based FedProto 14.68 ±2.61 24.91±1.38 21.68±1.65 55.12±1.73 21.71±3.03 32.00±2.48 60.48±1.32 75.89±2.29

FedTGP 14.94±0.51 40.56±1.42 27.15±1.46 68.76±1.42 26.24±0.72 62.08±1.37 68.08±1.06 89.00±1.26

RethinkFL 15.21±1.65 38.47±0.80 30.36±1.19 65.24±1.42 28.37±0.39 63.11±2.44 68.21±2.16 88.96±3.24

Proxy-models
FML 14.59±0.54 35.74±1.13 21.63±1.07 52.27±1.31 21.20±0.48 49.55±1.12 61.57±1.07 82.41±0.56

FedKD 14.57±0.65 32.07±1.01 20.76±1.27 52.71±1.43 19.48±0.58 51.58±1.13 63.32±1.06 83.73±0.51

FedType 16.05±0.64 38.84±0.92 23.53±0.86 60.89±1.24 24.21±0.31 52.51±1.34 66.43±1.23 84.28±0.52

HYDRA-FL 14.56±1.62 30.87±1.09 22.27±2.69 55.18±2.24 20.82±1.94 48.50±0.92 61.74±2.71 79.37±1.75

Logits-based
FedDistill 15.20±0.62 37.67±1.28 20.47±1.31 62.27±1.58 21.04±0.57 53.72±1.17 63.51±1.03 83.08±0.64

FCCL 15.49±0.27 38.01±0.46 25.20±0.43 65.61±1.17 22.72±0.56 58.62±0.70 64.29±1.37 86.58±0.83

ReT-FHD(Ours, FL) 17.24±0.53 42.35±0.98 33.16±1.46 72.91±0.97 30.77±0.47 68.56±0.66 72.76±0.77 91.23±0.65

(b.)

Proto-based FedProto 31.48±1.64 37.12±0.78 53.14±1.02 66.35±1.24 48.01±0.49 63.49±0.58 86.32±1.26 85.04±0.46

FedTGP 34.08±1.69 39.92±0.77 58.27±0.90 72.66±1.12 49.32±0.83 64.46±0.66 88.38±1.21 89.10±0.51

RethinkFL 35.04±2.72 37.50±1.11 60.39±0.94 67.95±1.52 48.34±0.26 63.90±1.47 89.33±1.06 88.35±1.94

Proxy-models
FML 34.13±1.49 37.50±0.79 53.58±1.04 66.21±1.04 45.61±0.56 60.68±0.49 87.56±1.14 87.26±0.50

FedKD 33.99±1.56 37.97±0.77 53.82±1.05 66.06±1.05 48.62±0.42 63.98±0.46 88.38±1.10 89.05±0.53

FedType 34.29±0.69 40.74±1.06 60.12±1.15 75.27±2.03 47.38±0.48 64.73±0.93 89.77±1.82 88.91±0.76

HYDRA-FL 34.45±0.88 44.62±0.73 58.27±1.59 70.63±1.11 51.18±0.90 59.71±1.52 87.04±0.85 85.92±1.06

Logits-based
FedDistill 33.71±1.58 37.73±0.80 55.67±0.95 65.37±1.05 49.39±0.76 63.51±0.48 88.56±1.13 88.19±0.50

FCCL 33.95±0.94 38.36±1.83 56.77±0.49 69.75±1.15 51.52±0.78 64.42±0.57 88.29±1.45 87.98±0.16

ReT-FHD(Ours, FL) 35.43±1.52 50.99±0.48 61.56±0.98 89.66±1.01 51.97±0.72 68.49±0.46 90.54±1.03 89.85±0.57

Table 2. Compared to decentralized methods in four datasets.
Method Cif-10 Cif-100 Flow. Tiny.

Local SGD 87.50±1.37 55.47±2.08 62.43±1.13 35.26±2.60

DPSGD 83.01±1.31 40.56±1.24 50.11±1.58 23.57±1.95

CGA 65.65±2.37 30.81±3.82 35.62±2.86 18.85±3.88

Coll-FL 87.14±5.28 50.65±3.52 64.21±4.66 37.45±3.59

L2C 90.14±0.34 59.00±0.42 65.92±0.71 37.95±0.58

DeSA 84.14±0.51 60.12±0.89 66.68±1.64 38.05±0.37

ReT-FHD(Ours, Del) 88.80±5.07 64.11±5.51 67.46±5.16 38.21±5.04

5 Experiment

5.1 Experimental Setup

Datasets and Heterogeneity Setting
Datasets: Cifar10 (Krizhevsky & Hinton, 2009),
Cifar100 (Krizhevsky & Hinton, 2009), Tiny-
ImageNet (Chrabaszcz et al., 2017), and Flower102 (Nils-
back & Zisserman, 2008). All datasets are taken as 75%
as training set and 25% as test set. Data Heterogeneity:
For each dataset, we apply two main types of Non-IID
setting (Zhang et al., 2024b): 1) Dirichlet distribution, we
set α = {0.1, 0.5}, it’s worth noting that α is the concentra-
tion parameter and smaller α corresponds to stronger data
heterogeneity; 2) Pathological Setting, each client contains
a fixed number of sample categories, but each client
has a different sample category. Model Heterogeneity:
We adopt the heterogeneous model setup from (Zhang
et al., 2021), including AlexNet (Krizhevsky et al., 2017),
ShuffleNetV2 (Ma et al., 2018), ResNet18 (He et al., 2016)
and GoogleNet (Szegedy et al., 2015), which are randomly
and evenly assigned to clients. For the DeL experimental
setup, we use only 2-layer CNNs and apply two-stage
elastic distillation for homogeneous models (Li et al.,
2022a).

Baselines and Implementation

FL setting: We select eight baselines, excluding Fed-
Proto (Tan et al., 2022), FedTGP (Zhang et al., 2024a),
RethinkFL (Huang et al., 2023), FML (Shen et al., 2020),
FedKD (Wu et al., 2022), FedType (Wang et al., 2025),
FedDistill (Jeong et al., 2023), HYDRA-FL (Khan et al.,
2024) and FCCL (Huang et al., 2022). DeL setting: We
add DPSGD (Lian et al., 2017), CGA (Esfandiari et al.,
2021), Coll-FL (Zhu et al., 2023), L2C (Li et al., 2022a)
and DeSA (Huang et al., 2025a) in a DL experiment. We
evaluate the superiority of the algorithm by evaluating the av-
erage of all client accuracy and standard deviations through-
out the training process. All experiments are implemented
in Pytorch (i.e. Intel(R) Xeon(R) Platinum 8176 CPU @
2.10GHz with NVIDIA GeForce RTX 3090 GPU).

Security Settings
To test the reliability of validation in a blockchain-based FL
setting, we simulate malicious nodes through three methods:
label reversal attacks, model noising to emulate malicious
models (Qin et al., 2024), and logits attacks (Khan et al.,
2024), evaluating robustness under these adversarial condi-
tions.

5.2 Comparison with State-of-the-Art Methods

Heterogeneous model. We conduct experiments across
four datasets and two data partitioning schemes, with re-
sults detailed in Tab.1(a.). Our method consistently outper-
forms others by at least 2% across all experimental settings,
with a 6.01% accuracy gain over FedTGP on Flower102
(Dirichlet 0.5). This highlights our temperature strategy’s
effectiveness in optimizing client gradient descent and en-
hancing knowledge transfer across heterogeneous models.
Moreover, as shown in Fig.1a, our method achieves optimal
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(a) Accuracy curves for Dir (0.1) distribution tested on Tiny-
ImageNet (left), Flower102 (right).

(b) Accuracy curves for PAT distribution tested on Tiny-ImageNet
(right), Flower102 (left).

Figure 1. Accuracy curves for PAT distribution tested on Tiny-ImageNet, Flower102.

Table 3. The testing accuracy (%) of heterogeneous model combination on Cifar-10. A. for AlexNet, R. for ResNet18, G. for googleNet,
S. for ShuffleNetv2

A. R. G. S. A. + R. G.+ R. S. + R. A. + R. + G. A. + R. + S. U(All).
Accuracy 89.28% 89.04% 89.38% 86.69% 88.94% 89.16% 87.84% 88.64% 87.49% 88.79%

Table 4. Ablation studies of our method on four datasets.
Method Cifar10 Cifar100 Flower102 Tiny.

Single-level & Fixed τ 66.85 27.52 26.97 13.20
Multi-level & Fixed τ 69.93 29.12 30.26 14.56
Multi-level & Elastic τ 70.82 29.45 32.05 15.14
ReT-FHD(Ours, FL) 72.76 30.77 33.16 17.24

results with fewer communication rounds, reaching near-
peak performance on Tiny-ImageNet in under 80 rounds. In
Fig.1b, while our method exhibits slower initial growth on
Flower102, it ultimately surpasses other baselines in later
rounds.

Homogeneous model. Tab.1(b) shows our method out-
performs leading FL baselines across four ResNet-based
datasets, achieving a 19.03% accuracy gain over HYDRA-
FL on Flower102 under PAT’s high-variability data. This
highlights our framework’s strength in handling feature am-
biguity via elastic temperature scaling.

DeL Experiments. Our method employs blockchain for de-
centralized federated training, eliminating the need for a cen-
tral server. We compare it with state-of-the-art decentralized
methods in Tab.2. On CIFAR-10, our method and DeSA
fall short of L2C due to its efficient convergence on sim-
pler datasets. However, on the more complex CIFAR-100,
our method achieves the highest accuracy, demonstrating
its strength in extracting meaningful patterns. Addition-
ally, blockchain integration enhances privacy protection in
distributed communication.

5.3 In-depth Analysis

Ablation studies. We design a series of ablation experi-
ments to verify the effects of Multi-level distillation, Elastic
Temperature τ and Global Logits Scaling on model per-

formance. The experiment removes these key components
sequentially and observes their impact on the final perfor-
mance. Specifically, we start from the full model (Ours:
Multi-level + Elastic Temperature τ + Global Logits Scal-
ing) and sequentially remove Global Logits Scaling, Elastic
Temperature τ , and ultimately simplify it to a single-level
fixed temperature (Single-level + Fixed τ ) of the simplest
version. As shown in Tab.4 and Fig.2(left), the full model
performs the best out of all the setups, achieving a perfor-
mance of 72.75%. At the same time, it shows that Multi-
level Distillation can initially improve the quality of dis-
tillation, while Elastic Temperature τ and Gloabl Logits
Scaling can provide more knowledge in distributed learning
compared with Fixed τ .

Evaluation of Distillation Layers Number L. To in-
vestigate the impact of the number of distillation layers
on model performance, we conduct experiment using the
ResNet-18 architecture, varying the number of layers L
from 1 to 5. Fig.2(right) shows that increasing distillation
layers from 1 to 4 enhances accuracy: CIFAR-10 boosts
from 67.21% to 72.75% (+5.54), CIFAR-100 from 28.01%
to 30.77% (+2.76), and Tiny-ImageNet from 14.21% to
17.24% (+3.03). These findings reflect diminishing returns
with excessive layers, highlighting the need to match distil-
lation layers to model complexity for optimal performance.

Effect of different heterogeneous models on accuracy.
Tab. 3 shows the performance with heterogeneous model
combinations on CIFAR-10. Multi-branch distillation
achieves optimal accuracy (89.16%) using complemen-
tary architectures like GoogleNet (G) + ResNet18 (R). In
contrast, combining all models (U) degrades performance
(88.79%), underperforming standalone G. Results empha-
size strategic model complementarity over quantity for ef-
fective FL.
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Figure 2. Ablation study (left) and Evaluation of Distillation Lay-
ers Number L (right) on Cifar-10.

Figure 3. Security testing in a blockchain framework

Analysis of Complexity and Communication Volume. As
shown in Tab.5, we analyze the communication upload and
download data volumes, as well as the training complexity
of all baseline methods. The experiments are conducted on
the CIFAR-10 dataset, encompassing four different modali-
ties in a heterogeneous setting (with the proxy model being
ResNet-18). Overall, methods based on proxy models gen-
erate the highest communication volume due to the need to
transmit model parameters. In contrast, our logits distilla-
tion method results in the least communication overhead.
Regarding computational complexity, proxy model methods
incur a significant computational burden during the local
knowledge transfer between the teacher and student. In
comparison, the prototype-based and logits distillation se-
tups exhibit relatively lower computational demands during
local training. In summary, our method outperforms other
approaches in terms of both communication volume and
computational complexity.

5.4 Security and Robustness Performance

To establish a reliable global logits benchmark, we configure
20 clients, each responsible for independent training on the
CIFAR-10 dataset. We aggregate all logits of the same
class using a weighted average to obtain the Z-scores for
each category. These Z-scores are then visualized, with
diagonal lines indicating predictions for the correct classes,
demonstrating that the Z-scores for correct predictions are
generally the highest.

Malicious Model. The experimental results in Tab.6 ana-
lyze the behavior of a malicious node in a simulated dis-
tributed network. By injecting noise into a ResNet model’s

Table 5. Comparison of the mean communication cost and amount
of computation per round for each approach. “MB” are short for
megabyte.

Methods Comm.(MB) Computation(Gflops)Up. Down.

FedProto 0.00256 0.00256 11340
FedTGP 0.00256 0.00256 11680

FML 10.45 10.45 23310
FedKD 10.45 10.45 4620

FedType 10.45 10.45 5160
FedDistill 0.003 0.003 11760

DeSA 0.6 0.6 24680

ReT-FHD(Ours) 0.0003 0.0004 3780

Table 6. Security Evaluation of Logits and Z-scores under Mali-
cious Node and Label Reversal Attacks on CIFAR-10. This table
presents the logits and their corresponding Z-scores under two ad-
versarial attack scenarios: (1) malicious nodes injecting anomalous
data for the "Airplane" and "Bird" classes, and (2) label reversal
attacks flipping the labels between "Deer" and "Dog" classes.

Malicious model Label reversal attack
Air Auto Bird Cat Deer Dog

L/C Airplane 681.74 248.60 1805.4 Deer 1.7862 0.9026 3.4350
Bird 0.0477 -1.0924 0.0016 Dog 1.7653 3.3860 0.9474

Zm

Airplane 0.7710 0.1043 2.5008 Deer 1.1481 0.5623 2.2411
Bird 0.5957 -0.1628 2.6090 Dog 1.1441 2.2295 0.5963
∆Zgm 4.8235 3.6608 22.485 ∆Zgm 2.8462 10.203 18.7153

ZV

Airplane 0.7203 -0.6765 -0.6595 Deer 0.7833 1.6304 1.0069
Bird 0.3182 -0.7181 -0.7223 Dog 0.7682 0.8572 1.8016
∆ZmV 2.3946 4.0729 61.4704 ∆ZmV 2.8765 7.6342 7.5652
∆ZgV 4.4746 3.0139 5.6661 ∆ZgV 2.0812 2.9867 5.2146

Table 7. Testing accuracy(%) under attack and no attack.

Methods no attack attack
Flow. Cif-100 Cif-10 Flow. Cif-100 Cif-10

FedDistill 20.47 21.04 63.51 10.31 9.28 20.75
FCCL 25.20 22.72 64.29 12.88 9.06 31.18
DeSA 30.18 26.84 65.68 12.89 9.82 29.14
HYDRA-FL 22.27 20.82 61.74 9.65 11.04 36.94
ReT-FHD(Ours, FL) 33.16 30.77 72.76 20.11 19.28 38.75

weights, we examine its impact on logits and Z-scores for
randomly selected clients. For the first three CIFAR-10 cat-
egories, the malicious node’s logits show irregular values,
such as abnormally high scores for "Airplane." Similarly,
its Z-scores Zm exhibit unusual patterns. To quantify devia-
tions, we use ∆Zgm and ∆ZmV (calculated via Eq.7), measur-
ing differences between global, verification, and malicious
Z-scores. While verification and global Z-scores remain nor-
mal, the malicious node’s scores are significantly elevated,
with ∆Zgm and ∆ZmV confirming its aberrant behavior.

Label Reversal Attack. In Tab.6, we simulate label inver-
sion by flipping "Deer" and "Dog" labels on a CIFAR-10
client. The malicious node shows skewed logits, with ab-
normally high confidence for "Dog" on deer samples, while
the verification node’s Z-score deviation from the global
average remains minimal. This divergence in logit distribu-
tions and Z-score alignment confirms our system’s efficacy
in detecting label-flipping attacks.
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Logits Attack. Clients under anomalous attacks produce
logits conflicting with the optimization goal, disrupting fed-
erated learning distillation. Tab.7 analyzes test accuracy un-
der client anomaly attacks on state-of-the-art logits distilla-
tion methods across three datasets. Our method outperforms
others, with its multi-level distillation effectively mitigating
logits attacks, as supported by prior research (Huang et al.,
2025a). While HYDRA-FL also uses Multi-level distilla-
tion, it focuses on model homogeneity and underperforms
in heterogeneous settings. This confirms that our dynamic
temperature strategies enhance robustness and security in
federated distillation.

Accuracy and Poisoning Tolerance. Model accuracy de-
crease as the percentage of malicious participants increased,
with CIFAR-100 showing a sharper decline due to its com-
plexity. In Fig. 3.a (CIFAR-10), accuracy dropped from
0.35 to below 0.1 with 60% malicious participants, while
Fig. 3.b (CIFAR-100) shows a decline from 0.65 to under
0.2. These results demonstrate that server trust alone cannot
mitigate adversarial impacts in federated learning, necessi-
tating robust detection mechanisms and adaptive defenses
to preserve performance under attack.

6 Conclusion
In this paper, we propose a novel dynamic temperature con-
trol strategy for federated distillation (ReT-FHD) and imple-
ment it in all FL, Del and blockchain-driven FL frameworks.
Through comprehensive experiments, our approach demon-
strates substantial improvements across three critical dimen-
sions: model performance, communication efficiency, and
security robustness. While our method addresses data and
model heterogeneity, the current framework does not evalu-
ate compatibility with attention-based architectures such as
Vision Transformers (ViT) (Dosovitskiy et al., 2021). Future
efforts will extend validation to Transformer frameworks
given their prevalence in visual tasks.
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A Appendix

A.1 The proof of Theorem 4.1 in Sec.4

For a discrete random variable X with probability distribution P (x), the information entropy is defined as:

H(X) = −
∑
x∈X

P (x) logP (x) (15)

where P(x) is obtained from the softmax function.The softmax function is defined as follows:

softmax(pi) =
ezi/T∑n
j=1 e

zj/T
(16)

Firstly, we can calculate the derivative of the probability distribution pi with respect to the temperature T :

∂pi
∂T

=
∂

∂T

(
exp (zi/T )∑n
j=1 exp (zj/T )

)
(17)

By calculation, it is possible to obtain:

∂pi
∂T

=

 n∑
j=1

exp
(zj
T

)
exp

(zi
T

)(
− zi
T 2

)
− exp

(zi
T

)

·
n∑
j=1

exp
(zj
T

)(
− zj
T 2

) /
 n∑
j=1

exp(
zj
T
)

2 (18)

Simplifying and organizing gives:

∂pi
∂T

= pi

(∑n
j=1 pjzj − zi

T

)
(19)

Secondly,information entropy is a fundamental concept used to measure the uncertainty of a random variable. For a discrete
random variableXwith probability distribution P (x), the information entropy is defined as:

H(X) = −
∑
x∈X

P (x) logP (x) (20)

The information entropy is derived with respect to temperature as follows:

∂H

∂T
= −

n∑
i=1

(
∂pi
∂T

log pi + pi
∂

∂T
(log pi)

)
(21)

Simplifying and organizing gives:
∂H

∂T
= −

n∑
i=1

(
∂pi
∂T

log pi +
∂pi
∂T

)

= −
n∑
i=1

∂pi
∂T

(log pi + 1)

(22)

By substituting the expression for ∂pi∂T , we get:

∂H

∂T
= −

n∑
i=1

pi

(∑n
j=1 pjzj − zi

T

)
(log pi + 1) (23)
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Based on the above derivation, the equation for the derivative of the entropy H with respect to the temperature T is known.
Next, it is necessary to replace the conventional temperature T with our predefined elastic temperature τ in Eq. (6).To
accurately determine the relationship between entropy and the elastic temperature τ , it is necessary to understand how τ
varies with ∆Z, namely ∂τ

∂∆Z .

By the definition of G, we can derive:

∂τ

∂∆Z
=

∂

∂∆Z

(
ξ +

γ log(1 + ∆Z)

log(1 + ∆Zmax)

)
=

γ

log(1 + ∆Zmax)
· 1

1 + ∆Z

(24)

Ultimately, the derivative of the entropy H with respect to τ can be expressed as:

∂H

∂∆Z
=
∂H

∂τ
· ∂τ

∂∆Z

=

(
−

n∑
i=1

pi

(∑n
j=1 pjzj − zi

τ

)
(log pi + 1)

)

·
(

γ

log(1 + ∆Zmax)
· 1

1 + ∆Z

) (25)

The condition ∂H
∂τ > 0 implies that an increase in the elastic temperature τ leads to a decrease in the system’s entropy. This

reduction in entropy is reflected as an increase in information, known as information gain. Consequently, appropriately
increasing the elastic temperature can enhance information gain, allowing the model to learn more effectively from the
training data.

Then the Theorem 4.1 is proved.

A.2 The proof of Corollary 4.2 in Sec. 3

For a model f with random distribution I in the initial state, for a deep neural network (DNN) model f with random
distribution I in the initial state, the model has no preference for any sample. Thus for the model’s predictive distribution
f(x; θI) = {pI1, pI2, ..., pIc}, the following relationship exists:

E(pI(x)) = E(pI1(x)) = E(pI2(x)) = ... = E(pIc(x)) (9)

Assumption A.1. We assume that the model is optimised under the guidance of a soft label distribution with smoothing
degree λ1 is satisfied:

pλ1
1 (x1) = pλ1

2 (x2) = · · · = pλ1
c (xc) >

1

C
>

pλ1
1 (xc̸=1) = pλ1

2 (xc̸=2) = · · · = pλ1
c (xc ̸=c) (10)

For simplicity, we only consider a dataset that includes two categories, for which the categories are defined as follows.
Definition A.2. Let the cross-entropy loss of a sample be denoted as LCE, and the average cross-entropy loss over all
samples be L̄CE. The class ID is defined as:

class ID =

{
1, if LCE > L̄CE,

2, otherwise.

Referring to the study of (Zhao et al., 2024), we introduce the knowledge scale to quantify the level of knowledge of the
predictive distribution, which can measure the scale of knowledge learnt from the probability distribution by the model with
randomly initialised weights:

KT = KL(I(x), T (x)) = logC −H(PT ) (11)
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where KL(·) stands for Kullback–Leibler divergence, which calculates the cost of information required to travel from one
distribution to another, C is the total number of categories and is a constant for the same dataset, and H(·) is the information
entropy.

First we calculate the derivative of the knowledge scale with respect to logits zc(x):

∂KL(f(x; θI), Pλ1)

∂zc(x)

=

C∑
i=1

∂pi
∂zc(x)

· ∂KL(f(x; θI), Pλ1
)

∂pi

=

C∑
i=1

pλ1
i (x)pIc(x)− pλ1

c (x)

= pIc(x)− pλ1
c (x) (12)

For simplicity, we will subsequently develop the proof using C = 2 as an example. So we can easily obtain:

E
(
∂KL(f(x1; θI), Pλ1)

∂z1(x1)

)
= E

(
∂KL(f(x2; θI), Pλ1

)

∂z2(x2)

)
= E

(
pIc(xc)− pλ1

1 (x1)
)
= E

(
pIc(xc)− pλ1

2 (x2)
)

(13)

E
(
∂KL(f(x1; θI), Pλ1)

∂z2(x1)

)
= E

(
∂KL(f(x2; θI), Pλ1)

∂z1(x2)

)
= E

(
pIc(xc)− pλ1

2 (x1)
)
= E

(
pIc(xc)− pλ1

1 (x2)
)

(14)

Combined with the previous assumptions, we can obtain that the partial derivatives of knowledge scale changes are
symmetric for all categories, which suggests that the overall change in knowledge scale has a balanced impact on different
categories. Therefore, our elastic temperature focus on the adjustment of knowledge scale at different stages of the model
and treat different categories equally, which helps us to bridge the structural differences between heterogeneous models of
different clients.

Then the Corollary 4.2 is proved.

A.3 The proof of Theorem 4.3 in Sec.4

We explore the relationship between changes in the category gradient and temperature, using category 1 as an example.The
gradient for category 1 is:

∇1
f∼λ1

= E
[∣∣∣∣∂z1∂θ · ∂KL (fs(x1; θI), Pλ1

)

∂z1

∣∣∣∣+ ∣∣∣∣∂z2∂θ · ∂KL (fs(x1; θI), Pλ1
)

∂z2

∣∣∣∣] (2)

We increase the temperature of category 1 to τ̃1 +∆τ̃1 to obtain the global logits distribution Pλ2
.We can then obtain:

∇1
f∼λ2

−∇1
f∼λ1

=

E
[∣∣∣∣∂z1∂θ · ∂KL (fs(x1; θI), Pλ2

)

∂z1

∣∣∣∣+ ∣∣∣∣∂z2∂θ · ∂KL (fs(x1; θI), Pλ2
)

∂z2

∣∣∣∣]
− E

[∣∣∣∣∂z1∂θ · ∂KL (fs(x1; θI), Pλ1
)

∂z1

∣∣∣∣+ ∣∣∣∣∂z2∂θ · ∂KL (fs(x1; θI), Pλ1
)

∂z2

∣∣∣∣]
(3)

where ∂z
∂θ can be regarded as the impact of the class itself on model weight optimization, in a practical sense, this part

reflects the inner relationship between DNN and sample, more specifically, it can reflect the difficulty of the sample itself for
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the model and not relate to the optimization object. Therefore, the above equation can be simplified as:

∇1
f∼λ2

−∇1
f∼λ1

=

E
[
∂z1
∂θ

·
(
pλ1
1 (x1)− pλ2

1 (x1)
)
+
∂z2
∂θ

·
(
pλ1
2 (x1)− pλ2

2 (x1)
)] (4)

Based on the effect of temperature on the probability distribution: pλ1
1 (x1)− pλ2

1 (x1) > 0, pλ1
2 (x1)− pλ2

2 (x1) < 0. At the
same time, since category 1 is the main category, its gradient changes dominate. Therefore we can get:

∇1
f∼λ2

−∇1
f∼λ1

> 0 (5)

The same can be obtained when we reduce ∆τ̃1 for the category temperature to get the global logits distribution Pλ3
:

∇1
f∼λ3

−∇1
f∼λ1

< 0 (6)

Then the Theorem 4.3 is proved.

A.4 Blockchain-based FL Details

In the blockchain network, the role of the v node is exclusively dedicated to the voting processes. This node evaluates
transactions based on the established Equation x, which serves as a decision-making criterion. Depending on the results
derived from applying this equation, the verification node can make its decisions, opting either for P (Positive) or N
(Negative). This dichotomy allows the node to actively participate in the consensus mechanism by approving or rejecting
transactions, thereby ensuring the reliability and security of the blockchain.

Subsequently, the node v will take on the responsibility of broadcasting all the votes it has received for the node w to all
m nodes within the network. This dissemination ensures that every m node in our simulated network receives the set of
values z belonging to the set Z for each w. This comprehensive distribution of vote information across the network not only
enhances transparency but also enables each node to have a holistic view of the network’s consensus on each w, facilitating
more informed decision-making and maintaining the integrity of the overall system.

Each node m in the network meticulously processes all data extracted from the transactions sent by node v. Upon processing,
each m node synthesizes this information into a series of candidate blocks. A typical candidate block, denoted as blockmj ,
encapsulates not only the global logits zi but also includes the result R and data pertaining to the blacklist B. This blacklist
is dynamically generated based on the collective voting outcomes, reflecting the network’s consensus on disreputable nodes
or transactions.

Both types of nodes, v from set V and m from set M, receive rewards in alignment with their contributions to the network’s
security and integrity. The reward system is designed to incentivize activities that uphold the blockchain’s operational
standards and trustworthiness. Furthermore, the blockchain protocol is engineered to select the candidate block from the
most affluent m nodes—the ones with the highest accrued rewards—as the preferred choice for linkage to the blockchain.
This selection criterion ensures that the most reliable and trustworthy nodes, as determined by their wealth accumulation
through valid and honest contributions, have their candidate blocks prioritized in the blockchain extension process.

To effectively simulate a real blockchain-based Federated Learning (FL) environment, our methodology includes the
dissemination of pertinent information through the network. This is achieved by encapsulating the information within a
transaction, which is then securely signed using the private key of the designated role. This approach ensures the integrity
and authenticity of the data being broadcast across the network.

A.5 Additional Experimental Results

Effects of different E and K. In our experiments, we specifically assess the performance of our method across different
setups, involving 50 and 100 clients. The results, detailed in Table 8, indicate that while there is a slight decline in accuracy
as the number of clients increases, our method demonstrates relatively stable outcomes over multiple training cycles.
For instance, with 50 clients, our method achieve an accuracy of 42.46% at E = 20, and with 100 clients, it maintains
a respectable 37.57%, despite the increased complexity and potential for data discrepancies among a larger number of
clients. In contrast to the general trend observed with other models, our proposed High-Dimensional Federated Learning
(HDFL) approach managed to maintain performance across an extended number of client training cycles. This resilience
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Table 8. The test accuracy (%) on Cifar100 in the practical setting using the heterogeneous model group with a different number of client
training epochs (E) and different number of clients(K).

E = 5 E = 10 E = 20 K = 50 K = 100

FML 39.63± 0.83 39.81± 0.82 39.45± 0.83 36.65± 1.62 33.78± 1.66

FedProto 37.61± 0.91 37.34± 1.01 35.71± 1.31 33.24± 2.14 31.79± 1.89

FedDistill 40.20± 0.98 39.82± 0.97 39.89± 1.01 37.77± 1.60 35.36± 1.66

FedKD 37.01± 1.11 36.96± 1.12 37.77± 1.07 32.64± 1.85 32.34± 1.64

FedTGP 42.87± 1.67 41.69± 1.84 40.94± 1.80 39.84± 2.03 36.75± 1.84

Ours 47.98± 0.62 48.38± 0.64 48.51± 0.63 42.46± 1.62 37.57± 1.86
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Figure 4. Global Logits Z-Score Visualization for Cifar-10 with 20 Clients

can be attributed to our model’s ability to effectively manage and synchronize heterogeneous data and learning strategies
across diverse client environments. The capability to sustain high accuracy levels under varying client counts and training
conditions highlights the robustness of our approach, making it particularly suitable for practical applications where client
variability and training dynamics are challenging factors.

Global Logits Z-Score Visualization. Fig.4 visualizes the Z-Score of the global logits under the Cifar-10 dataset. It can be
found that the data distribution of logits is more concentrated through the z-score processing.

Supplement of Tab.6. Tab.9 and Tab.10 extends the results of Tab.7 by providing a comprehensive display of the
complete logits and Z-scores, offering deeper insights into the behavior of the models under the evaluated scenarios. These
supplementary results aim to enhance the understanding and robustness of the conclusions drawn from the main experiments.

Complete Experimental Data on Malicious Model. Tab.9 shows that the complete logits and Z-scores obtained by
injecting noise to the weights of the malicious node’s category airplane and category bird. The comprehensive analysis of
logits and Z-scores across all categories in the supplementary data reveals distinct behavioral patterns between malicious
and normal nodes. Specifically, the malicious node exhibits significant anomalies in the "Airplane" and "Bird" categories,
with logits and Z-scores deviating markedly from the normal range (e.g., specific values in Z-scores for category airplane
corresponding to category airplane and category bird: [0.7710, 2.5008] → [0.7203, -6595]). In contrast, other categories
such as "Car" and "Trucks" remain stable, with minimal deviations (e.g., [-0.6385, -0.8651] vs. [-0.7638, -0.7107], ∆
= [0.1253, -0.1544]). The differential measures ∆Zgm and ∆ZmV effectively quantify these deviations, with values for
anomalous categories (e.g., Bird: [22.485, 61.4704]) significantly exceeding those of normal categories. These findings
underscore the targeted nature of the attack and the robustness of the proposed detection metrics in identifying malicious
activities.

Complete Experimental Data on Label Reversal Attack. In Tab. 10, we simulate a label inversion attack by flipping
the labels of "Deer" and "Dog" on a selected CIFAR-10 client. The malicious node exhibits significant anomalies in its
logits, particularly displaying abnormally high confidence for the "Dog" class when the true label is "Deer." For instance,
the Z-Score for "Dog" on deer samples rise to 2.2411, compared to the normal range of [−0.6547, 1.1481]. In contrast, the
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Table 9. Supplement to Table 6.(Malicious model)
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Trucks

L/C Airplane 681.74 248.60 1805.43 -233.92 -289.58 -133.81 117.65 105.17 -111.56 -381.13
Bird 0.0477 -1.0924 0.00163 -0.03615 -0.6927 -0.0313 -0.78591 0.11322 0.17006 -0.0338

Zm

Airplane 0.7710 0.1043 2.5008 -0.6385 -0.7242 -0.4844 -0.0973 -0.1165 -0.4501 -0.8651
Bird 0.5957 -0.1628 2.6090 -0.7720 -0.2781 -0.6905 -0.2938 -0.1418 -0.1322 -0.7333
∆Zg

m 4.8235 3.6608 22.485 7.0336 14.503 5.1918 8.1249 4.8195 5.7027 3.1847

ZV

Airplane 0.7203 -0.6765 -0.6595 -0.7638 0.4510 1.0750 -0.6278 -0.8247 2.0166 -0.7107
Bird 0.3182 -0.7181 -0.7223 -0.5224 0.4126 1.6685 -0.6531 -0.8371 1.7418 -0.6880
∆Zm

V 2.3946 4.0729 61.4704 2.4421 5.5224 17.1949 3.2096 4.1907 20.675 2.2256
∆Zg

V 4.4746 3.0139 5.6661 7.3089 6.3297 6.99128 5.1713 2.40193 8.0513 3.3053

Table 10. Supplement to Table 6.(Label reversal attack)
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Trucks

L/C Deer -0.8718 -0.3399 -0.8518 1.7862 0.9026 3.4350 -0.9332 -0.9158 -0.7916 -0.8755
Dog -0.9006 -0.3496 -0.8857 1.7653 3.3860 0.9474 -0.9386 -0.9114 -0.7518 -0.7910

Zm

Deer -0.6140 -0.2614 -0.6008 1.1481 0.5623 2.2411 -0.6547 -0.6432 -0.5608 -0.6165
Dog -0.6413 -0.2723 -0.6313 1.1441 2.2295 0.5963 -0.6667 -0.6485 -0.5416 -0.5679
∆Zg

m 2.2690 2.1762 3.3980 2.8462 10.203 18.7151 3.2746 4.6532 2.4289 3.3192

ZV

Deer 0.3912 -0.7767 -0.6786 0.7833 1.6304 1.0069 -0.6776 -0.8615 0.3785 -0.6293
Dog 0.3617 -0.7883 -0.6498 0.7682 0.8572 1.8016 -0.7156 -0.8255 0.3113 -0.5843
∆Zm

V 5.6487 4.0295 2.4296 2.8765 7.6342 7.5652 2.4054 2.9043 5.02901 2.3278
∆Zg

V 6.4078 4.3835 3.3734 2.0812 2.9867 5.2146 2.7634 6.7946 4.140 3.8648

verification node’s Z-scores remain closely aligned with the global average, with smaller deviations (e.g., ∆ZgV values within
[2.7634, 6.4078]). This stark divergence in logit distributions and Z-score alignment between the malicious and verification
nodes highlights the effectiveness of our system in detecting label-flipping attacks. Furthermore, the differential measures
∆Zgm and ∆ZmV quantify the malicious node’s deviations, with values for the flipped categories (e.g., [7.6342, 7.5652])
significantly exceeding those of normal categories. These results demonstrate that our approach not only identifies the
presence of label-flipping attacks but also provides robust metrics for quantifying the extent of the adversarial manipulation.
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