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Figure 1. HOI-Diff can generate realistic motions for 3D human-object interactions given a text prompt and object geometry. Please
see the supplementary material for video results. Darker color indicates later frames in the sequence. Best viewed in color.

Abstract

We address the problem of generating realistic 3D human-001
object interactions (HOIs) driven by textual prompts. To002
this end, we take a modular design and decompose the com-003
plex task into simpler sub-tasks. We first develop a dual-004
branch diffusion model (DBDM) to generate both human005
and object motions conditioned on the input text, and encour-006
age coherent motions by a cross-attention communication007
module between the human and object motion generation008
branches. We also develop an affordance prediction diffu-009
sion model (APDM) to predict the contacting area between010
the human and object during the interactions driven by the011
textual prompt. The APDM is independent of the results by012
the DBDM and thus can correct potential errors by the latter.013
Moreover, it stochastically generates the contacting points014
to diversify the generated motions. Finally, we incorporate015
the estimated contacting points into the classifier-guidance016
to achieve accurate and close contact between humans and017
objects. To train and evaluate our approach, we annotate the018

BEHAVE dataset with text descriptions. Experimental results 019
on BEHAVE and OMOMO demonstrate that our approach 020
produces realistic HOIs with various interactions and differ- 021
ent types of objects. Our code and data annotations will be 022
publicly available. 023

1. Introduction 024

Text-driven synthesis of 3D human-object interactions 025
(HOIs) aims to generate motions for both the human and 026
object that form coherent and semantically meaningful inter- 027
actions. It enables virtual humans to naturally interact with 028
objects, which has a wide range of applications in AR/VR, 029
video games, and filmmaking, etc. 030

The generation of natural and physically plausible 3D 031
HOIs involves humans interacting with dynamic objects in 032
various ways according to the text prompts, thereby posing 033
several challenges. First, the variability of object shapes 034
makes it particularly challenging to generate semantically 035
meaningful contact between the human and object to avoid 036
floating objects. Second, the generated HOIs should be 037
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faithful to the input text prompts as there are many plausi-038
ble interactions between human and the same object (e.g,039
a person carries a chair, sits on a chair, pushes or pulls a040
chair). Text-driven 3D HOI synthesis with a diverse set of041
interactions is not yet fully addressed. Third, the develop-042
ment and evaluation of 3D HOI synthesis models requires a043
high-quality human motion dataset with various HOIs and044
textual descriptions, but existing datasets lack either diverse045
HOIs [13, 26, 37] or detailed textual descriptions with inter-046
acting body parts and action [4, 11]. It is important to note047
that CG-HOI [11] has not made their code or annotations048
publicly available. In contrast, we will release both our code049
and annotations.050

Current methods cannot fully handle all the challenges.051
On one hand, recent methods [14, 19, 25, 36, 47, 49, 59, 67]052
can synthesize realistic human motions for HOIs for static053
objects only. They usually synthesize the motion in the last054
mile of interaction, i.e, the motion between the given starting055
human pose and the final interaction pose, and overlook the056
movement of the objects when the human is interacting with057
them. On the other hand, existing methods for motion gen-058
eration with dynamic objects do not adequately reflect real-059
world complexity. For instance, they focus on grasping small060
objects [12], provide the object motion as conditioning [27],061
predict deterministic interactions between the human and the062
same object without the diversity [40, 61], consider only a063
small set of interactions (e.g., sit/lift [25], sit/lie down [14],064
sit [19, 36, 67], grasp [49, 59]), or investigate a single type065
of object (e.g., chair [19, 67]).066

In this paper, we introduce HOI-Diff for 3D HOIs syn-067
thesis involving humans interacting with different types of068
objects in diverse ways, which are both physically plausible069
and semantically faithful to the textual prompt, as shown070
in Figure 1. Our key insight is to decompose 3D HOIs071
synthesis into three modules to reduce the complexity of072
this challenging task. (a) coarse 3D HOIs generation that073
extends the human motion diffusion model [51] to a dual-074
branch diffusion model (DBDM) to generate both human075
and object motions conditioning on the input text prompt. To076
encourage coherent motions, we develop a cross-attention077
communication module, exchanging information between078
the human and object motion generation models; (b) affor-079
dance prediction diffusion model (APDM) that estimates080
the contacting points between the human and object during081
the interactions driven by the textual prompt. Our APDM082
does not rely on the results of the DBDM and thus can re-083
cover from its potential errors. Moreover, it stochastically084
generates the contacting points to diversity the generated085
motions; and (c) affordance-guided interaction correction086
that incorporates the estimated contacting information and087
employs the classifier-guidance to achieve accurate and close088
contact between humans and objects, significantly alleviat-089
ing the cases of floating objects. Compared with designing a090

monolithic model, HOI-Diff disentangles motion generation 091
for humans and objects and estimation of their contacting 092
points, which are later integrated to form coherent and di- 093
verse HOIs, reducing the complexity and burden for each of 094
the three modules. 095

For both training and evaluation purposes, we annotate 096
each video sequence in BEHAVE dataset [4] with text de- 097
scriptions, which mitigates the issue of severe data scarcity 098
for text-driven 3D HOIs generation. In addition, we evaluate 099
our approach on the OMOMO dataset [27], which focuses 100
on the manipulation of two hands. Extensive experiments 101
validate the effectiveness and design choices of our approach, 102
particularly for dynamic objects, thereby enabling a set of 103
new applications in human motion generation. 104

2. Related Work 105

Human Motion Generation with Diffusion Models. The 106
denoising diffusion models have been widely used 2D im- 107
age generations [39, 43, 44] and achieved impressive results. 108
Recent work [1, 3, 5–7, 20, 42, 45, 48, 51, 52, 58, 60, 64– 109
66, 68] apply the diffusion model in the task of human mo- 110
tion generation. While these methods have successfully 111
generated human motion, they usually generate isolated mo- 112
tions in the free space without considering the objects the 113
human is interacting with. Our method is primarily focused 114
on motion generation with human-object interactions. 115

Scene- and Object-Aware Human Motion Generation. 116
Recent works condition motion synthesis on scene geom- 117
etry [17, 55, 57, 69]. This facilitates the understanding of 118
human-scene interactions. However, the motion fidelity is 119
compromised due to the lack of paired full scene-motion 120
data. Other approaches p[14, 19, 25, 36, 47, 67] instead 121
focus on the interactions with the objects and can produce 122
realistic motions. However, they focus on interacting with 123
static objects with limited interactions. OMOMO [27] can 124
generate full-body motion from the object motion. The ob- 125
ject motion is needed as input in OMOMO, whereas our 126
method can jointly synthesize human motion and object mo- 127
tion. IMoS [12] synthesizes the full-body human along with 128
the 3D object motions from textual inputs, but it only focuses 129
on grasping small objects with hands. InterDiff [61] pre- 130
dicts whole-body interactions with dynamic objects. Note 131
that the interaction type is deterministic. Different from 132
this, we tackle the motion synthesis task, where the inter- 133
action with the same object can be controlled by the text 134
prompt. Recently, there has been a surge of interest in the 135
text-driven synthesis of 3D human-object interactions for 136
dynamic objects, resulting in the development of concurrent 137
works [11, 26, 46, 56, 62]. CG-HOI [11] and HOIAnima- 138
tor [46] uses SMPL parameters as the motion representation, 139
which may result in unsmooth motion due to the potential 140
difficulty in optimization. Instead, we use common skeletal 141
joints similar to most text-to-motion methods, harnessing 142
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the power of pre-trained human motion generation mod-143
els. Chois Li et al. [26] relies on the initial state and object144
waypoints to generate HOIs, which reduces motion diver-145
sity for both the human and the object. InterFusion [8] and146
F-HOI [63] generate static 3D HOIs from text description,147
lacking both human and object motions.148

Affordance Estimation. The affordance estimation on149
3D point cloud is studied in Deng et al. [9], Iriondo et al.150
[18], Kim and Sukhatme [22, 23], Kokic et al. [24], Mo et al.151
[31], Ngyen et al. [32]. Overall affordance learning is a152
very challenging task. Instead of predicting the point-wise153
contact labels, we simplify it by directly regressing the con-154
tact points for human-object interactions, making it more155
tractable without significantly compromising accuracy.156

3. Method157

The overview of our proposed approach are illustrated in Fig-158
ure 2. We introduce a dual-branch Human-Object Interaction159
Diffusion Model (DBDM), which can produce diverse yet160
consistent motions, capturing the intricate interplay and mu-161
tual interactions between humans and objects (Sec. 3.2). To162
ensure physically plausible contact between humans and163
objects, we propose a novel affordance prediction diffusion164
model (APDM) (Sec. 3.3), whose output will be used as165
classifier guidance (Sec. 3.4) to correct the interactions at166
each diffusion step of human/object motion generation.167

3.1. Background168

Motion Representations. We denote a 3D HOI sequence169
as x = {xh,xo}. It consists of human motion sequence170

xh ∈ RL×Dh

and object motion sequence xo ∈ RL×Do

,171
where L denotes the length of the sequence. For xh, we172
adopt the redundant representation widely used in human173
motion generation [13] with Dh = 263, which include174
pelvis velocity, local joint positions, velocities and rotations175
of other joints in the pelvis space, and binary foot-ground176
contact labels. For the object motion sequence xo, we as-177
sume the object geometry is given as an input, and thus we178
only need to estimate its 6DoF poses in the generation, i.e,179
Do = 6. We represent each object instance as a point cloud180
of 512 points p ∈ R512×3.181

Diffusion Model for 3D HOI Generation. Given a prompt182
c = (d,p), consisting of a textual description d and183
the object instance’s point cloud p, a diffusion model184
pθ(xt−1|xt, c)

1 learns the reverse diffusion process to gener-185
ate clean data from a Gaussian noise xT with T consecutive186
denoising steps187

pθ(xt−1|xt, c) := N (xt−1, µθ(xt, t, c), (1− αt)I), (1)188

where t is the denoising step. Following [51], our diffusion189

1We use superscripts h and o to denote human and object sequence, re-
spectively. Without a superscript, it means the 3D HOI sequence, containing
both xh and xo. Subscript is used for the diffusion denoising step.

model Mθ with parameters θ predicts the final clean motion 190
x0 = Mθ(xt, t, c). 191

We sample xt−1 ∼ N (µt,Σt) and compute the mean as 192
in [33] 193

µt =

√
αt−1βt

1− αt
x0 +

√
1− βt(1− αt−1)

1− αt
xt, (2) 194

where αt =
∏t

s=1(1− βs) and βt ∈ (0, 1) are the variance 195

schedule. Σt = 1−αt−1

1−αt
βt [16] is a variance scheduler of 196

choice. Similar to xt, µt consists of µh
t and µo

t , correspond- 197
ing to human and object motion, respectively. 198

Simply adopting the diffusion model described in Eq.(1) 199
would impose a huge burden on the model, which requires 200
joint generation of human and object motion and more criti- 201
cally, enforcement of their intricate interactions to follow the 202
input textual description. In this paper, we propose HOI-Diff 203
for 3D HOIs generation, disentangling motion generation for 204
humans and objects and estimation of their contacting points. 205
They are later integrated to form coherent and diverse HOIs, 206
which reduces the complexity and burden for each of the 207
three modules, leading to better generation performance as 208
evidenced by our experiments. 209

3.2. Coarse 3D HOIs Generation 210
First, we introduce a dual-branch diffusion model (DBDM) 211
to generate human and object motions that are roughly co- 212
herent. As shown in Figure 3, it consists of two Transformer 213
models [54], human motion diffusion model (MDM) Mh 214
and object MDM Mo, which work similar to [51]. Specifi- 215
cally, at the diffusion step t, they take the text description and 216
noisy motions xh

t and xo
t as input and predict clean human 217

and object motions xh
0 and xo

0, respectively. 218
To enhance the learning of interactions of the human and 219

object when generating their motion, we introduce a Com- 220
munication Module (CM ) designed for exchanging feature 221
representations between the human MDM Mh and the ob- 222
ject MDM Mo. CM is a Transformer block that receives 223
the intermediate feature fh,fo from both Mh and Mo. It 224
then processes these inputs to generate refined updates based 225
on the cross attention mechanism [54]. The updated feature 226
representations f̃h and f̃o of the human and object are then 227
conditioned on each other, which are then fed into the sub- 228
sequent layers of their respective branches to estimate clean 229
human and object motion xh

0 and xo
0, respectively. The CM 230

is inserted at the 4th transformer layer for human MDM and 231
the last layer for object MDM, which was empirically found 232
to work better. 233

Given the limited data availability for 3D HOI generation, 234
during training, the human motion model Mh finetunes a 235
pretrained human MDM [51]. This fine-tuning is critical 236
to ensure the smoothness of the generated human motions. 237
We ablate this design choice in Sec. 4.3. Object MDM is 238
trained from scratch. We modify the input and output linear 239
layers to take in the object motion which has a different 240
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Figure 2. Overview of HOI-Diff for 3D HOIs generation using diffusion models. Our key insight is to decompose the generation task
into three modules: (a) coarse 3D HOI generation using a dual-branch diffusion model (DBDM), (b) affordance prediction diffusion model
(APDM) to estimate the contacting points of humans and objects, and (c) affordance-guided interaction correction, which incorporates the
estimated contacting information and employs the classifier-guidance to achieve accurate and close contact between humans and objects to
form coherent HOIs.

dimension from the human motion. More details of DBDM241
are in Appendix A.1.242
3.3. Affordance Estimation243
Due to the complexity of the interactions between a human244
and object, DBDM alone usually fails to produce physically245
plausible results, leading to floating objects or penetrations.246
To improve the generation of intricate interactions, the prob-247
lem that needs to be solved is to identify where the contacting248
areas are between the human and object. InterDiff [61] de-249
fines the contacting area based on the distance measurement250
between the surface of human and object. This approach,251
however, heavily relies on the quality of the generated hu-252
man and object motions and cannot recover from errors in253
the coarse 3D HOI results. In addition, the contact area is254
diverse even with the same object and interaction type, e.g,255
“sit” can happen on either side of a table. To this end, we in-256
troduce an Affordance Prediction Diffusion Model (APDM)257
for affordance estimation. As illustrated in Figure 4, the258
input includes a text description d and the object point cloud259
p. Our APDM doesn’t rely on the results of the DBDM260
and thus can recover from the potential errors in DBDM. In261
addition, it stochastically generates the contacting points to262
ensure the diversity of the generated motions.263

Affordance estimation in 3D point clouds itself is a no-264
tably challenging problem [9, 18, 22–24, 31, 32], especially265
in the context of 3D HOI generation involving textual prompt.266
In this paper, we consider eight primary body joints – the267
pelvis, neck, feet, shoulders, and hands –268
as the interacting parts in HOI scenarios. It can effectively269
model common interactions such as grasping an object with270
both hands, sitting actions involving the pelvis and back, or271
lifting with a single hand. We use binary contact labels to272
determine which joints are in contact with the object. Subse-273
quently, we predict eight corresponding contact points on the274
object surface, identified as the points closest to the selected275
body joints. Note that the binary contact label estimation for276
different body joints are independent, allowing us to handle277
complex HOIs.278

Specifically, at each diffusion time step n of APDM2, the 279
noisy data consists of human contact labels representing the 280
contact status for the eight primary body joints, denoted as 281
yh
n ∈ {0, 1}8, and the eight corresponding contact points 282

on the object surface, denoted as yo
n ∈ R8×3. The model is 283

designed to predict both contact probabilities and contact po- 284
sitions. Subsequently, dynamic selection of contacting body 285
joints is performed by considering predicted probabilities 286
over a specific threshold τ (set to be 0.6). The corresponding 287
contact points on the object are then determined based on 288
the selected joints. APDM works similar to the diffusion 289
denoising process described in Eq.(1). Besides, we utilize 290
a large language model (ChatGPT) to determine whether 291
the object state ys

0 ∈ {0, 1} should be set to static (ys
0 = 1) 292

based on the textual description, which can help us better 293
process static objects when synthesizing 3D HOIs, as dis- 294
cussed in the following section. All the clean affordance 295
data is grouped as y0 = (yh

0 ,y
o
0,y

s
0). More implementation 296

details are in Appendix A.2. 297

3.4. Affordance-guided Interaction Correction 298

With the estimated affordance, we can better align human 299
and object motions to form coherent interactions. To this 300
end, we propose to use the classifier guidance [10] to achieve 301
accurate and close contact between humans and objects, 302
significantly alleviating the cases of floating objects. 303

Specifically, in a nutshell, we define an analytic func- 304
tion G(µh

t ,µ
o
t ,y0) that assesses how closely the generated 305

human joints and object’s 6DoF pose align with a desired 306
objective. In our case, it enforces the contact positions of hu- 307
man and object to be close to each other and their motions are 308
smooth temporally. Based on the gradient of G(µh

t ,µ
o
t ,y0), 309

we can perturb the generated human and object motion at 310

2We note that APDM and DBDM work independently. We thus use two
symbols to denote the different diffusion time steps to avoid confusion.

4



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Illustration of DBDM architecture for coarse 3D
HOIs generation. It has two branches designed for generating
human and object motions individually. A mutual cross-attention is
introduced to allow information exchange between two branches to
generate coherent motions. The human motion model Mh finetunes
a pretrained MDM [51].

Figure 4. Illustration of APDM architecture for affordance
estimation. Affordance information of human contact labels, object
contact positions, and binary object states are represented together
as a noise variable, which is fed into the Transformer encoder
to generate clean estimation. The object point cloud and textual
prompt are taken as conditional input.

each diffusion step t as in [21, 60],311

µh
t = µh

t − τ1Σt∇µh
t
G(µh

t ,µ
o
t ,y0), (3)312

µo
t = µo

t − τ2Σt∇µo
t
G(µh

t ,µ
o
t ,y0). (4)313

Here τ1 and τ2 are different strengths to control the guid-314
ance for human and object motion, respectively. Due to315
the sparseness of object motion features, we assign a larger316
value to τ2 compared to τ1. This applies greater strength to317
perturb object motion, facilitating feasible corrections for318
contacting joints. During the denoising stage, to eliminate319
diffusion models’ bias that can suppress the guidance signal,320
we iteratively perturb K times in the last denoising step. The321
details are illustrated in Algorithm 1 of Appendix.322

How can we define the objective function G(µh
t ,µ

o
t ,y0)?323

We consider three terms here. First, in the generated 3D324
HOIs, the human and object should be close to each other on325
the contacting points. We therefore minimize the distance326
between human contact joints and object contact points327

Gcon =
∑

i∈{1,2,...,8}

∥∥R(
µh

t (i)
)
− V

(
µo

t ,y
o
t (i)

)∥∥2 , (5)328

where µh
t (i) and yo

t (i) denote the i-th available contacting329
joint indexed by yh

0 and i-th object contact point, respec-330
tively. R(·) converts the human joint’s local positions to331
global absolute locations, and V (·) obtains the object’s con-332
tact point sequence from the predicted mean of object pose333
µo

t .334
Second, the generated motion of dynamic objects typi-335

cally follows human movement. However, we observe that336
when the human interacts with a static object, such as sitting337

on a chair, the object appears slightly moved. To address 338
this, we immobilize the object’s movement in the generated 339
samples if the state is static (ys

0 = 1), ensuring that proper 340
contact is established between the human and the static ob- 341
ject. The objective is defined as 342

Gsta = ys
0 ·

L∑
l=1

∥µo
t (l)− µ̄o

t∥2 , (6) 343

where µo
t (l) denotes the object’s 6DoF pose in the l-th frame. 344

µ̄o
t = 1

L

∑
l µ

o
t (l), which is the average of predicted means 345

of the object’s pose. 346
Third, we define a smoothness term Gsmo(µ) for the 347

object motion to mitigate motion jittering during contact. 348
Due to the space limit, we explain it in Appendix A.3. 349

Finally, we combine all these goal functions to as the final 350
objective 351

G = Gcon + αGsta + βGsmo, (7) 352

where α = 500 and β = 100 are weights for balance. 353

4. Experiments 354

4.1. Setup 355

Dataset. Since the data designed for studying text-driven 3D 356
HOIs generation is severely scarce, we manually label inter- 357
action types, interacting subjects, and contact body parts on 358
top of the BEHAVE dataset [4]. We then use GPT-3.5 [34] 359
to rephrase and generate three text descriptions for each HOI 360
sequence, increasing the diversity of the data. Specifically, 361
BEHAVE encompasses the interactions of 8 subjects with 362
20 different objects. It provides the human SMPL-H rep- 363
resentation [29], the object mesh, as well as its 6DoF pose 364
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information in each HOI sequence. To ensure consistency in365
our approach, we follow the processing method used in Hu-366
manML3D [13] to extract representations for 22 body joints.367
All the models are trained to generate L = 196 frames in368
our experiments. In the end, we have 1451 3D HOI se-369
quences along with textual descriptions to train and evaluate370
our proposed approach. We follow the official train/test split371
on BEHAVE. We provide more details of the dataset and372
annotation process in Appendix I.373

In addition, we evaluate our approach on OMOMO374
dataset [27]. OMOMO focuses on full-body manipulation375
with hands. It consists of human-object interaction motion376
for 15 objects in daily life, with a total duration of approx-377
imately 10 hours. It provides text descriptions for each378
interaction motion. We utilize their object split strategy for379
both training and evaluation, ensuring the objects between380
the training and testing sets are different. Additionally, we381
preprocess human and object motion, similar to our way for382
the BEHAVE dataset. More details are in Appendix J.383
Evaluation metrics. We first assess different models for384
human motion generation using standard metrics as intro-385
duced by [13], namely Fréchet Inception Distance (FID),386
R-Precision, and Diversity. FID quantifies the discrepancy387
between the distributions of actual and generated motions388
via a pretrained motion encoder. R-Precision gauges the rel-389
evance between generated motions and their corresponding390
text prompts. Diversity evaluates the range of variation in391
the generated motions. Additionally, we compute the Foot392
Skating Ratio to measure the proportion of frames exhibiting393
foot skid over a threshold (2.5 cm) during ground contact394
(foot height < 5 cm).395

To evaluate the effectiveness of HOIs generation, we396
report the Contact Distance metric, which quantitatively397
measures the proximity between the ground-truth human398
contact joints and the object contact points. Ideally, we399
should develop similar metrics, e.g, FID, to evaluate the400
stochastic HOI generation. However, due to the limited data401
available in BEHAVE [4], training a motion encoder would402
produce biased evaluation results. To mitigate this issue, we403
resort to user studies to quantify the effectiveness of different404
models. Details will be introduced later.405

4.2. Comparisons with Existing Methods406

Baselines. Our work introduces a novel 3D HOIs genera-407
tion task not addressed by existing text-to-motion methods,408
which focus exclusively on human motion generation with-409
out accounting for human-object interactions. To compare410
with existing works, we mainly focus on evaluating human411
motion generation. We then design different variants of our412
models for comparing 3D HOIs generation. Specifically, we413
adopt the prominent text-to-motion methods MDM [51] and414
PriorMDM* [45] with the following settings. (a) MDM†:415
In this setup, we finetune the original MDM model [51] on416
the BEHAVE dataset [4] without object motion. (b) MDM*:417

This variant involves adapting the input and output layers’ di- 418
mensions of the MDM model [51] to accommodate the input 419
of 3D HOI sequences. This adjustment allows for the simul- 420
taneous learning of both human and object motions within a 421
singular, integrated model. (c) PriorMDM* [45]: We adapt 422
the ComMDM architecture proposed in [45], originally de- 423
signed for two-person motion generation, to suit our needs 424
for HOIs synthesis by modifying one of its two branches for 425
object motion generation. (d) InterDiff [61]: While Inter- 426
Diff is not designed for text-driven synthesis of 3D HOI, we 427
added text conditioning to InterDiff as the baseline. More 428
details are in Appendix C. 429

Quantitative Results. Table 1-left reports the quantitative 430
results on BEHAVE dataset [4]. Compared with the base- 431
line methods, our full method achieves the best performance. 432
Specifically, it achieves state-of-the-art results in both FID, 433
R-precision, and Diversity, underscoring its ability to gener- 434
ate high-quality human motions in the context of coherently 435
interacting with objects. The best Contact Distance also 436
suggests that our approach can generate physically plausible 437
HOIs, capturing the intricate interplay interactions between 438
humans and objects. Table 1-right presents the quantitative 439
results on the OMOMO dataset. We used the train/test split 440
of the OMOMO dataset to evaluate the model’s inference 441
capacity on unseen objects, including the small table, white 442
chair, suitcase, and tripod. Our method consistently outper- 443
forms other baselines by a considerable margin across all 444
metrics. Notably, due to the distinctiveness of objects in the 445
training and testing sets, the results indicate the effectiveness 446
of our approach in generalizing to unseen objects, proving 447
superior performance compared to other models. We also 448
provide user study results, please refer to Appendix G for 449
details. 450
Qualitative Results. We showcase qualitative comparisons, 451
rendered with SMPL [29] shapes, between our approach and 452
the baseline methods in Figure 5. It is observed that the 453
generated HOI motion by other baselines lacks smoothness 454
and realism, where the object may float in the air (e.g, the 455
toolbox in Figure 5 (b)). Furthermore, these baseline meth- 456
ods struggle to accurately capture the spatial relationships 457
between humans and objects (e.g, the chair in Figure 5 (e)). 458
In stark contrast, our approach excels in creating visually 459
appealing and realistic HOIs. Notably, it adeptly reflects 460
the intricate details outlined in text descriptions, capturing 461
both the nature of the interactive actions and the specific 462
body parts involved (e.g, raising the trash bin with the right 463
hand in Figure 5 (a)). For the same object, our method can 464
generate diverse HOIs using different body parts and contact 465
points, as shown in Figure 14 in Appendix. 466

4.3. Ablation Studies 467

We conduct extensive ablation studies in Table 2 and Fig- 468
ure 10 in Appendix to validate the effectiveness of different 469
components. We summarize key findings below. 470
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BEHAVE OMOMO
Method FID

↓
R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Pene
↓

Foot Skate
Ratio ↓

FID
↓

R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Pene
↓

Foot Skate
Ratio ↓

Real 0.04 0.86 12.48 - - - 0.57 0.63 9.98 - - -
MDM† 6.77 0.34 10.81 - - - 12.28 0.23 5.56 - - -
MDM* 4.25 0.38 11.23 0.448 0.52 0.190 10.37 0.21 6.04 0.768 0.41 0.191
PriorMDM* 4.54 0.30 10.03 0.416 0.57 0.270 9.87 0.25 6.34 0.523 0.38 0.344
InterDiff 8.58 0.26 10.75 0.506 0.42 0.218 14.27 0.17 5.69 0.906 0.32 0.239
Ours 1.62 0.46 12.02 0.347 0.51 0.182 8.76 0.31 8.13 0.326 0.39 0.141

Table 1. Quantitative results on the BEHAVE and OMOMO dataset. We compare our method with baselines adapted from existing
models. MDM†: fine-tune the original MDM [51] on the BEHAVE dataset without object motion. MDM*: adapting the input and output
layers’ dimensions of the MDM to accommodate both human and object motions. PriorMDM*: We adapt the ComMDM architecture
proposed in Shafir et al. [45]. InterDiff: We add a CLIP encoder in Xu et al. [61] to support our task. The right arrow → means closer to real
data is better. Chois [26]: We remove object waypoints to make a fair comparison.

Figure 5. Qualitative comparisons of our approach and baselines on BEHAVE dataset. The bottom row, showcasing our method,
demonstrates the generation of realistic 3D HOIs with plausible contacts, particularly evident in columns 2 and 4. This contrasts with the
baselines, which fail to achieve a similar level of realism and contact plausibility in the interactions. As an additional visual aid, the mesh
color gradually darkens over time to represent progression. (Best viewed in color.)

Object MDM is helpful. In Table 2, we compare Ours w/o471
Mo & CM and ours (Full) to demonstrate the importance of472
the Object MDM. In Ours w/o Mo & CM, we exclusively473
finetune the human MDM, while randomly initializing the474
object motion. The Communication Module (CM) is also475
ignored due to the removed object MDM. Interaction correc-476
tion is then applied to optimize contact between the human477
and object. The interaction correction with random initial478
object motion produces worse results, demonstrating the479
importance of initial object motion from Object MDM.480

DBDM with Communication Module (CM ) is critical. In481
Table 2, we compare Ours w/o CM and ours to demonstrate482
the effectiveness of the Communication Module. When483
eliminating CM , the results drop substantially across all484

metrics, with a particularly significant decrease in Contact 485
Distance. The visual results (w/o CM ) in Figure 10 of 486
Appendix further validate this point. 487

Leveraging the pre-trained Human motion prior can gen- 488
erate better human motions. We aim to utilize the strong 489
motion prior from the pre-trained human motion model to 490
enhance the realism of the generated motion. Table 2 (Ours 491
w/o pretrain) reports the results of training human MDM 492
from scratch, without resuming the weights from the pre- 493
trained MDM [51]. Comparing Ours w/o pretrain and Ours 494
demonstrates the effectiveness of leveraging the pre-trained 495
MDM. 496

Interaction Correction makes better HOIs generation. In 497
Table 2, we compare our full method (Ours (full)) to a vari- 498
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BEHAVE OMOMO
Variants FID

↓
R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Foot Skate
Ratio ↓

FID
↓

R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Foot Skate
Ratio ↓

Real 0.04 0.86 12.48 - - 0.57 0.63 9.98 - -
w/o Interaction Correction

Ours w/o CM 3.11 0.36 10.54 0.524 0.265 11.57 0.27 7.92 0.588 0.231
Ours w/o pretrain 2.98 0.39 11.21 0.402 0.158 10.38 0.29 7.82 0.412 0.167
Oursglobal 15.37 0.28 10.85 0.375 0.274 20.22 0.21 8.02 0.366 0.348
Ours 2.10 0.38 11.26 0.415 0.205 9.12 0.29 7.97 0.397 0.193

w/ Interaction Correction
Ours w/o Mo & CM 3.93 0.32 11.43 0.365 0.310 11.03 0.28 7.98 0.536 0.331
Ours joint 4.37 0.31 11.25 0.421 0.342 11.52 0.27 7.92 0.547 0.325
Ours w/o Gcon 2.02 0.37 11.97 0.417 0.196 9.23 0.28 8.03 0.332 0.144
Ours w/o Gsta 1.81 0.39 11.54 0.367 0.181 9.11 0.30 8.10 0.340 0.142
Ours w/o Gsmo 1.83 0.41 11.67 0.370 0.182 8.98 0.29 8.06 0.345 0.142
Ours (Full) 1.62 0.46 12.02 0.347 0.182 8.76 0.31 8.14 0.326 0.141

Table 2. Ablation studies of our model’s variants on the BEHAVE and OMOMO datasets. The right arrow → means closer to real data
is better. w/o CM: we remove the Communication Module (CM) in the DBDM model. w/o pretrain: we train human MDM from scratch
on BEAHVE dataset. global: we adopt the global human pose representation proposed by Liang et al. [28] for both the pretraining of
human MDM and the finetuning of DBDM. w/o Mo & CM: We exclusively finetune the human MDM, while randomly initializing the
object motion. Interaction correction is then applied to optimize contact between the human and object. joint: We train a single diffusion
model that jointly generate human motion, object motion, and affordance. w/o Gcon/Gsta/Gsmo: without contacting/static/smoothness goal
function in interaction correction.

ant without interaction correction (Ours) to demonstrate the499
effectiveness of interaction correction. The model with inter-500
action correction consistently outperforms the variant across501
all control accuracy metrics. As shown qualitatively in Fig-502
ure 10 of Appendix, our full method produces more realistic503
HOIs with better contact compared to the model without504
interaction correction. Furthermore, all sub-functions in505
Interaction Correction contribute to the realistic HOI gen-506
eration, as demonstrated in Ours w/o Gcon, w/o Gsta, w/o507
Gsmo of Table 2.508
Why Human MDM and Object MDM are needed sepa-509
rately? We can ablate this by comparing Table 1 (MDM*)510
and Table 2 (Ours (w/o Interaction Correction). In MDM*511
we jointly learn both human and object motion with a diffu-512
sion model. Our superior results demonstrate that separately513
modeling human motion and object motion with a communi-514
cation module can achieve better results. A key advantage515
is that the human motion diffusion model (MDM) can fine-516
tune a pre-trained MDM [51], leveraging the extensive prior517
knowledge from the large-scale HumanML3D dataset. In518
contrast, jointly predicting human and object motion with519
a single transformer requires training from scratch (due to520
the change of the model architecture) on the much smaller521
BEHAVE dataset, which results in poorer human motion522
results.523

AP (%) ↑ L2 Dist ↓

Ours joint 53.67 0.384
Ours APDM 78.54 0.272

Table 3. APDM evaluation. The reported metrics include Average
Precision (AP) for predicted human contact probabilities and L2
Distance (Dist) error for predicted object contact points.

Why not jointly generate motion and affordance with524

one unified model? We attempt to generate human mo- 525
tion, object motion, and affordance jointly within the same 526
model, as indicated in the Table 2 (Oursjoint). Our joint 527
prediction concatenates affordance data with motion data 528
along the channel dimension and adjusts the input and output 529
dimensions of MDM to generate motions and affordance si- 530
multaneously. Comparing Table 2 Oursjoint and Ours (full) 531
demonstrates that our modular design significantly improves 532
human motion quality, as evidenced by metrics such as FID, 533
R-Precision, and Foot Skate Ratio, as well as the interac- 534
tion quality measured by Contact Distance. Table 3 further 535
validates that our modular design achieves more accurate 536
affordance estimation, measured by AP and L2 Distance. 537
The improvement is attributed to the fact that affordance 538
learning is highly dependent on the geometry of 3D data and 539
text semantics, rather than human and object motions. There- 540
fore, disentangling these elements enhances their respective 541
performances. 542

5. Conclusion 543

In summary, we presented a novel approach HOI-Diff to 544
generate realistic 3D HOIs driven by textual prompts. By 545
employing a modular design, we effectively decompose the 546
complex task of HOI synthesis into simpler sub-tasks, en- 547
hancing the coherence and realism of the generated motions. 548
Our HOI-Diff model successfully generates coarse dynamic 549
human and object motions, while the affordance prediction 550
diffusion model adds precision in predicting contact areas. 551
The integration of estimated affordance data into classifier- 552
guidance further ensures accurate human-object interactions. 553
The promising experimental results on our annotated BE- 554
HAVE dataset demonstrate the efficacy of our approach in 555
producing diverse and realistic HOIs. 556
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