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Abstract

The predictive uncertainty problem exists in
Transformers. We present that pre-trained
Transformers can be further regularized by em-
ploying mutual information to alleviate such
issues in neural machine translation (NMT). In
this paper, to enhance the representation, we
explicitly capture the nonlinear mutual depen-
dencies existing in two types of attention in
the decoder to reduce the model uncertainty.
Specifically, we employ mutual information to
measure the nonlinear mutual dependencies of
token-token interactions during attention cal-
culation. Moreover, we resort to InfoNCE for
mutual information estimation to avoid the in-
tractable problem. By maximizing the mutual
information among tokens, we capture more
knowledge concerning token-token interactions
from the training corpus to reduce the model
uncertainty. Experimental results on WMT’ 14
En—De and WMT’ 14 En—Fr demonstrate the
consistent effectiveness and evident improve-
ments of our model over the strong baselines.
Quantifying the model uncertainty again ver-
ifies our hypothesis. The proposed plug-and-
play approach can be easily incorporated and
deployed into pre-trained Transformer models.

Code will be released soon!.

1 Introduction

Predictive uncertainty ubiquitously exists in deep
learning or machine learning based models (Ott
et al., 2018a; Xiao and Wang, 2019; Wang et al.,
2019; Abdar et al., 2020; Xiao and Wang, 2021).
It consists of data uncertainty (aleatoric uncer-
tainty) and model uncertainty (epistemic uncer-
tainty). Data uncertainty mainly results from the
noise during the data collection. In practice, model
uncertainty depicts whether the model can best de-
scribe the data distribution, and model uncertainty
significantly attributes to the poor fitting of the data
distribution (Wang et al., 2019). Model uncertainty
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Token-token Uncertainty

interactions Token Token-token
Transformer linear T J (implicitly)
Our model linear + nonlinear T J (explicitly)

Table 1: Comparison between the vanilla Transformer
and our model on the interaction style between tokens
and how to deal with the uncertainty. Both models em-
ploy the label smoothed cross entropy to properly raise
the uncertainty (1) of determining a single token across
the vocabulary. In addition, we explicitly reduce the
uncertainty ({) in the dimension of token-token interac-
tions within a certain context to address the predictive
uncertainty problem (Xiao and Wang, 2021). Defini-
tions of some terms can be found in the Appendix.

can be reduced by feeding more data or knowledge
to the model. Researchers capture and quantify un-
certainties to better interpret models and enhance
the representation.

Recently, almost all research fields of artificial
intelligence have been deeply influenced by the
Transformer (Vaswani et al., 2017). State-of-the-
art neural machine translation (NMT) models are
mostly built upon Transformers (Ott et al., 2018b;
Dehghani et al., 2018; So et al., 2019; Zhou et al.,
2020a; Liu et al., 2020). However, Transformer
models also inevitably suffer from the uncertainty
problem (Ott et al., 2018a; Wei et al., 2020; Xiao
and Wang, 2021; Shelmanov et al., 2021). Xiao
and Wang (2021) and Wei et al. (2020) handle with
such problem outside of the model?. Namely, feed-
ing more unseen samples or augmented data to the
model to reduce the model uncertainty. By contrast,
we address the issue inside the model. We enhance

*Note that, the word ’uncertainty’ is somewhat heavily
reused in the literature. For instance, Xiao and Wang (2021)
incorporated uncertainty into the decoding process to reduce
the hallucination. In practice, the introduced uncertainty en-
ables the model to see otherwise unseen cases to reduce the
model uncertainty in a certain context. Wei et al. (2020) em-
ployed the similar presentation. It should be appropriately
distinguished from the data uncertainty and the model uncer-
tainty in the literature (Kochkina and Liakata, 2020).



the model representation by introducing additional
knowledge, namely feeding the model more rela-
tionships concerning token-token interactions in
terms of nonlinear mutual dependencies.

In this paper, we aim to explicitly capture the
nonlinear mutual dependencies among tokens dur-
ing the attention calculation (self-attention and
encoder-decoder attention in decoder) and reduce
the uncertainty residing in the token-token interac-
tions as shown in Table 1. In particular, we employ
mutual information to measure the nonlinear mu-
tual dependencies between pairs of tokens regard-
ing the token-token interactions. Mutual informa-
tion is a good measure of nonlinear relationships
between random variables. To avoid the intractable
feature of problems by using mutual information,
we resort to InfoNCE for mutual information esti-
mation (Logeswaran and Lee, 2018; van den Oord
et al., 2019; Gutmann and Hyvirinen, 2012). In-
foNCE is a mature framework for unsupervised
contrastive learning. It has the theoretical and prac-
tical guarantee that a reliable lower bound can be
obtained by maximizing it.

Therefore, we can explicitly obtain nonlin-
ear mutual dependencies by regularizing the pre-
trained Transformer models with maximizing mu-
tual information. We dub the regularization of
the token-token interactions in attention calcula-
tion capturing the nonlinear mutual dependencies.
These dependencies are heavily overlooked in the
vanilla Transformer, which can be employed as the
additional knowledge fed to the model and reduce
the model uncertainty. Experiments on WMT’ 14
En—De and WMT’ 14 En—Fr present that the per-
formance of our model has achieved competitive
results over the strong baselines and other counter-
parts. By contrast, to reach the same performance,
contrast models either consume extra training cor-
pus or more trainable parameters.

Contributions and highlights are as follows:

* The proposed idea is simple and makes little
change to the model. It can potentially gen-
eralize to other pre-trained models leveraging
self-attention.

* We explicitly capture nonlinear mutual depen-
dencies between pairs of tokens in attentions
of the decoder to reduce the model uncer-
tainty.

* We adopt an unsupervised contrastive learning
framework to estimate the mutual information,

which serves in the NMT problem.

* We present a detailed analysis of the variants
of the model uncertainty before and after en-
hancing the mutual dependencies.

2 Preliminary

2.1 Mutual Information

Mutual information in discrete distributions is gen-
erally described as Equation 1:

I(X;Y) = D (p(X, Y)[[p(X)p(Y))

Sreem (),

22 p()p(y)

= Ep(ay) [log M] ’

where, X, Y denote two random variables. x, y in-
dicate concrete samples in X and Y. p(-) and p(-, -)
represent marginal probability and joint probability
respectively. D is the Kullback—Leibler diver-
gence (also known as the relative entropy) (Kull-
back and Leibler, 1951).

2.2 Contrastive Learning

Following Kong et al. (2019), we employ InfoNCE
to estimate the mutual information under the con-
trastive learning framework. InfoNCE maximizes
the mutual information to obtain a lower bound,
which in practice is a good estimation of mutual
information:

I(X,Y)>

Epx,v) [fe(l‘, y) —E3 {log > exp fo(z, ﬂ)] ] (2)
ey

+log |,

where, z is the positive sample token of the source
sentence and y is the positive sample token of the
target sentence. fy is a measure of relevance be-
tween z and y. Usually, a similarity score function
is adopted. Y is the negative sample set of y, note
that it contains the positive sample. ¢(-) is a distri-
bution proposal function offering the specific rule
to build the negative sample set. ¥ is a random
sample from the negative sample set.

The following part of Equation 2 is the crucial
component when we incorporate the contrastive
learning framework into the NMT problem:

Epxy) [fole,y) —1og Sgey exp folw,5)] . (3)



3 Methodology

3.1 Motivation to Reduce the Model
Uncertainty

As mentioned in Ott et al. (2018a), a well-trained
model still spreads too much probability mass
across sequences. In other words, model distri-
bution is too spread in hypothesis spaces in that
it has to cater to the uncertainty brought by the
data distribution. Also, as stated in Xiao and Wang
(2021), unsuitable tokens attaining considerable
probability mass attribute to the uncertainty of the
token prediction. Moreover, Wang et al. (2019);
Zhou et al. (2020b) present that lower model un-
certainty indicates a better fitting of the data distri-
bution. Therefore, in a certain context, the model
uncertainty should be reasonably and appropriately
reduced.

The widely adopted training paradigm is token-
level teacher-forcing in NMT, which notoriously
leads to the discrepancy between training and in-
ference, namely, the exposure bias problem (Xie
et al., 2016; Ranzato et al., 2016; Norouzi et al.,
2016). Exposure bias partially accounts for the
model uncertainty. During inference, model distri-
bution dominates the decoding process. However,
high model uncertainty directly indicates unsatis-
factory fitting of the data distribution (Zhou et al.,
2020b; Xiao and Wang, 2019). Canonical auto-
regressive generation can be formulated as Equa-
tion 4:

p(Y | X:0) = [TV p (0t | y<ts z1a050), (4

where, 6 denotes the parameters modeling the lan-
guage model. M is the length of the source sen-
tence and NV is the length of the target sentence.

At each time step, clues on the next token are all
from previously generated tokens. In other words,
it depends on how much uncertainty on the next
token can be reduced by knowing partially gener-
ated prefix tokens. Vanilla Transformer implicitly
reduces the uncertainty of token-token interactions
during decoding. By contrast, we aim to explicitly
reduce the uncertainty of the token-token interac-
tions during the next token generation.

3.2 Contrastive Learning Framework
Construction in NMT

Methods to Build the Training Samples: Con-
trastive learning needs an effective and efficient
relevance measure of two tokens. Specifically, a
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Figure 1: Graphical illustration of how to calculate
fo(a,b). a and b denote two positions (tokens) in target
sentence. In this context, 7" is an abbreviation for "Top",
which should be distinguished from the notation of "the
number of forward passes". Suppose 77 and T35 are
ground-truth targets of position a and b respectively.
There are two critical components composing fy(a, b),
namely f_sim(a,b) and logit(b) for the pair of a and
positive b while f_sim(a,b) and logit(b) for the pair
of a and negative sample b from top k candidates. The
value of f_sim(a,b) can be directly fetched from the
self-attention matrix. In the left subfigure, negative
samples are from the top k candidates in position b
marked by * X’ or marked by *v"*, which offer logit(-).
Causal self-attention matrix is demonstrated in the right
sub-figure. Due to the property of symmetry, there are
two f_sim(a,b) scores of the same value. However,
position m is taken into account rather than position n
in view of the causal relationship.

clear distinction should be presented between the
similarity score of a positive sample a and a pos-
itive sample b and the similarity score of a posi-
tive sample a and a negative sample b. However,
the cosine-based similarity measure solely cannot
properly reflect the subtle difference in this con-
text’. Therefore, we elaborately design a simple
but effective method as Equation 5 and Equation 6:

fo(z,y) = f_sim(x,y) + f_logit(y), (5

where, f_sim(x,y) is the cosine similarity score
between x and y as usual. f_logit(y) is the logit
(score before so ftmax) by the most confident pre-
diction of y (during inference) or the logit corre-
sponding to the ground-truth token of y (during
training).

fo(z,9) = f_sim(z,y) + f_logit(y), (6)

3The vanilla cosine similarity does not elaborately distin-
guish the positive samples and the negative samples in this
context. No matter the positives or negatives, it calculates
a score. The score can be very close to each other due to
the candidates from top ranking. For NMT problems under
contrastive learning, we need to be deliberate in distinguish-
ing them. Therefore, we add an explicit factor to the original
cosine similarity to enhance its representation.



BLEU

Model En—De En—Fr
GNMT+RL Wu et al. (2016) 25.20 40.50
ConvS2S Gehring et al. (2017) 25.16 40.46
Transformer (base) Vaswani et al. (2017) 27.30 38.10
Transformer (big) Vaswani et al. (2017) 28.40 41.80
Evolved Transformer (big) So et al. (2019) 29.80/29.20 41.30
Transformer (ADMIN init) Liu et al. (2020)1 30.10/29.50 43.80/41.80
Uncertainty-Aware SANMT Wei et al. (2020) 30.29 42.92
Baseline (WMT only) Ott et al. (2018b) 29.30/28.60 43.20/41.40
Baseline (WMT+Paracrawl) Ott et al. (2018b) 29.80/29.30 42.10/40.90
Baseline (Reproduced) 290.75/29.30  43.16/41.06
Baseline + finetuning (Contrast group)* 29.89/29.40 43.17/41.06

Ours (Baseline+{ L3 4 5+DS+ED})

30.45%%/29.80** 43.67*/41.51*

 The model has approx. 40M more parameters than ours.
T Our reproduced results are from the provided pre-trained checkpoints.
¥ This is for a fair comparison. Results by directly finetuning fail to pass the significance tests.

Table 2: Performance comparison between different models on WMT’ 14 dataset. Our results are based on the
reproduced results. Default values are case-sensitive tokenized BLEU scores and otherwise a pair of (case-sensitive
tokenized BLEU) / (detok. sacreBLEU). BLEU scores are based on newstest2014 for WMT’ 14 English-German
(En—De) and WMT’ 14 English-French (En—Fr). Checkpoint averaging is not used in our results. For WMT’ 14
En—De, we use the general configuration of L3 4 5+DS+ED and k£ = 40. For WMT’ 14 En—Fr, we use the general
configuration of L3 4 5+DS+ED and k£ = 50. L3 4 5 indicates regularization on the layer 3,4,5 of the decoder. The
definitions and usage of DS and ED can be found in Equation 8. ’x/+x’: significantly better than the baselines
(p < 0.05/p < 0.01) tested by bootstrap resampling. Note that, our results also significantly outperform the

contrast groups (p < 0.05).

where, the first part of the right-hand side is exactly
the same with Equation 5. Difference between
Equation 5 and Equation 6 relies on f_logit(-).
Figure 1 depicts how to calculate the concrete value
of f9 (a, b) .

Due to the steady state of the pre-trained NMT
model, the component f_logit can take up most
of the constituent that well distinguishes a legal
pair of tokens with contrastive pairs. Moreover,
this divergence can be further amplified due to the
monotonicity of softmax operation. This is a key
point our idea leverages to distinguish positive sam-
ple pairs from contrastive sample pairs.

Leveraging the Pre-trained Self-attention Log-
its: To fetch f_sim(xz,y) from multi-head at-
tention, we need a rational strategy. According
to Michel et al. (2019); Voita et al. (2019); Rogers
et al. (2020), it is non-trivial to partition these heads
into groups. Therefore, we take as similarity scores
the average of all heads as follows*:

F_sim(X,Y) = Average (heady, ..., heady), (7)

“We employed other methods to do such work, say MAX
operation. However, the average operation meets our expecta-
tion.

where, X and Y are a set of tokens. Average is
the average operation on similarity scores over all
attention heads. head., is a collection of similarity
scores from attention heads. h is the number of
attention heads. F'_sim(X,Y") contains all pairs of
similarity scores between tokens and other tokens
to be attended. The value of f_sim(zx,y) can be
indexed by (z,y).

Combination objective: The overall objective
consists of the label smoothed cross entropy and
another two custom objectives based on mutual
information maximization constraints as follows:

loss = (1 —a— ) x lce_loss
+ax ED @®)
+ B x DS,

where, [ce_loss indicates the label smoothed cross
entropy loss, E D represents the regularization on
encoder-decoder attention and DS denotes the reg-
ularization on decoder self-attention. Both of them
are defined and estimated as Equation 2. « and 3
are hyperparameters to balance the label smoothed
cross entropy loss and two custom losses.
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Figure 2: Variation of the model uncertainty before regularization and after regularization. The vertical axis is the
model uncertainty. We employ Monte Carlo Dropout on all layers. We adopt three Uncertainty Estimation (UE)
methods, namely, sampled maximum probability (SMP), mean entropy (ME) and BALD-VR to investigate the
variations. The number of forward passes 7" is 10. The results are not normalized over the number of tokens. We
add a control group for a fair comparison. We can infer that our method (histogram in the middle) reliably reduces
the model uncertainty after regularization. However, directly finetuning the baselines introduces more uncertainty

(histogram in the right).

4 Experiments

In this section, we describe the details of our ex-
periments. We evaluate our model on WMT’ 14
En—De and WMT’ 14 En—Fr datasets. Moreover,
we conduct ablation studies to assess the effective-
ness of different objectives and hyperparameters
setup.

4.1 Experimental Setup

We implement our model based on the official
Fairseq toolkit implemented by PyTorch® (Ott et al.,
2019) and report statistical significance tests by us-
ing compare-mt (Neubig et al., 2019)® and sacre-
BLEU ’.

Dataset and Metric We train our model on
WMT’ 14 En—De (4.5M)® and WMT’ 14 En—Fr
(36M). For WMT’14 En—De, we validate our
model on newstest13 and test on newstest2014. Fol-
lowing Ott et al. (2018b), we use byte pair encoding
(BPE) (Sennrich et al., 2016) to prepare the joint
vocabulary of 32K symbols. For WMT’ 14 En—Fr,
we validate our model on newstest12+13 and test
on newstest14. The joint vocabulary is 40K. We
employ two BLEU metrics to evaluate our perfor-
mance, namely, case-sensitive fokenized BLEU and
detokenized sacreBLEU. We report BLEU scores
with a beam size of 4 and a length penalty of 0.6.

Shitps://github.com/pytorch/fairseq

®https://github.com/neulab/compare-mt

"https://github.com/mjpost/sacreBLEU

8To be consistent with the baseline and other counterparts,
we use WMT’16 En—De to train our model and report results
on the WMT’ 14 test set.

Model and Hyperparameters Our model lever-
ages the pre-trained baseline model, which is
an extension of the Transformer big model
(dmodel = dhidden = 1024, Niayer = 6,
Nhead = 16) (Vaswani et al., 2017). We adopt
Adam (Kingma and Ba, 2015) to optimize our
model by setting 51 = 0.90, S = 0.98 and
e = 1le-08. We finetune our model from a pre-
trained checkpoint with the learning rate 3e-04 for
En—De and 5e-04 for En—Fr. Our criterion to
configure ‘ntokens’ and ‘update-freq’ is that, nei-
ther hitting the OOM nor the threshold of the loss
scale. ‘ntokens’ is 10240 for En—De and 9216 for
En—Fr. ‘update-freq’ is 1 for En—De and 4 for
En—Fr. The maximum epoch for En—De is 20
and 10 for En—Fr. Embeddings are shared in all
positions. We tune hyperparameters on the valida-
tion set.

All experiments are conducted on a machine
with 8 NVIDIA TITAN RTX GPU and a memory-
efficient version of FP16 half-precision training.
The proposed method has a relatively low com-
putational overhead, taking roughly 6-7 hours for
the WMT’ 14 En—De dataset. For the WMT’ 14
En—Fr dataset, it takes about two days.

4.2 Main Results

Table 2 demonstrates the performance comparison
of our model and the baseline models along with
other SOTA models on the WMT’ 14 dataset. We
utilize a general setup of L3 4 5+DS+ED to conduct
the experiments. To facilitate comparison with
the results of different studies, we depict both the
case-sensitive fokenized BLEU and detokenized
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Figure 3: Comparison between the probability mass distribution across the token vocab regarding different models
(before regularization, after regularization and the contrast group). The vertical axis is the percentage of probability
mass. The horizontal axis is the index of the vocab. The right figure enhances the contrast of the percentage of each
of the three models to present a more intuitive visual. The experiments are conducted on the WMT’ 14 En—De
dataset. A subset of the test set is randomly selected and employed to report the results. From the figure, it can
be seen that the regularized model has a reasonable distribution of probability mass, which makes sense and is
as anticipated. The contrast group is obtained by directly finetuning the pre-trained checkpoint to the same steps.
However, the probability mass of the contrast group becomes inflated. From Figure 2, the contrast group introduces
more uncertainty. As aforementioned, unsuitable tokens attaining considerable probability mass account for the
uncertainty of the token prediction. By contrast, after regularization, our model has lower model uncertainty, and
its probability mass approaches to shrink, which indicates the probability mass is properly balanced over different

tokens.

SacreBLEU (Post, 2018)°. Morever, to make a
fair comparison, we also directly finetune the pre-
trained checkpoints to the same steps and employ
them as the contrast groups.

As shown in Table 2, it can be seen that our
model achieves a compelling improvement over
the strong baselines and other competitive SOTA
models. Besides, our model significantly outper-
forms both the baseline and the contrast groups.
However, the contrast group fails to pass the sig-
nificance test. Therefore, we can infer that the pro-
posed regularization method has a positive effect
on the performance of the model. And our hypoth-
esis of reducing model uncertainty by enhancing
nonlinear mutual dependencies as additional knowl-
edge is partially verified by model performance
improvement. To further support our view that the
performance improvement is related to the model
uncertainty and dissect the relationship between the
model uncertainty and the probability mass distri-
bution across the vocab, we present more analysis
in the following sections.

Since our method does minute change to the
baseline models, the improvements are reasonable
and justified. Additional contrast groups make our
results even more convincing and credible. More-
over, it is easy to incorporate our approach to ex-

°SacreBLEU hash: BLEU+case.mixed+lang.en-de+ num-
refs.1+smooth.exp+test.wmt14/full+tok.13a+version.1.4.14

isting models leveraging Transformer models. In
practice, our method avoids the requirements of
additional considerations for actual deployment.

4.3 Analysis

Variation of Model Uncertainty: We employ
a combination of BALD (Bayesian Active Learn-
ing Disagreement) (Houlsby et al., 2011; Hazra
et al., 2021) and Variation Ratio (Kochkina and
Liakata, 2020) to conceptually form a new metric
BALD-VR. Along with BALD-VR, we also use
Mean Entropy (Kochkina and Liakata, 2020) and
Sampled Maximum Probability (Shelmanov et al.,
2021) to evaluate the model uncertainty, results are
shown in Figure 2. From Figure 2, we can infer that
the proposed method reduces the model uncertainty
to some extent, which verifies our hypothesis. By
contrast, the contrast group introduces more uncer-
tainty to the model. More details are depicted in
the appendix.

Variation of the Probability Mass As aforemen-
tioned in Section 3.1, high model uncertainty is
potentially related to unsuitable probability mass
distribution. We have presented that our model
reduces the uncertainty and achieves better per-
formance. However, we should unravel the rela-
tionship between the model uncertainty and the
probability mass variation we assumed. To explore
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Figure 4: Ablation studies on the layer-level performance. The vertical axis is the BLEU value and the horizontal
axis is the value of o and 3. L, denotes certain layers. To simplify the experiments, we employ the same value of «
and /3. We try to cover those representative cases and leave the rest for future work. Experiments are conducted
on WMT’ 14 En—De. To reduce the overheads of training, we ignore the influence of k and set £ = 10 in these
experiments. The definitions of DS and ED can be found in Equation 8. From these results, we can infer that DS’
has a slight better performance compared with ’ED’. Employing either DS’ or ’ED’ on all layers of the decoder is
somewhat over-constraint. In a certain range, appropriately adding regularization can be effective in improving
performance. Detailed results are presented in the Appendix.

the variation of model probability mass, we further
analyze the probability mass distribution across to-
ken vocab dimensions with different models on the
same test data. Figure 3 shows the comparison
of probability mass over the three models. It can
be seen that our model softens the distribution of
probability mass and shrinks the probability mass
of several tokens. By contrast, the probability mass
distribution of the contrast group is further bloated,
and within a certain range, the allocated probability
mass increases. The experimental results are con-
sistent in our model and the contrast group, includ-
ing the model before regularization that the high
uncertainty model has an inflated probability mass
distribution, while the low uncertainty model has a
relatively shrinking and more reasonable probabil-
ity mass distribution.

Correlation with the Label Smoothed Cross En-
tropy: There is no conflict between the widely
adopted label smoothed cross entropy (raising un-
certainty) and the proposed idea (reducing uncer-
tainty) in that they perform in the different dimen-
sions. For clarity, label smoothing loosens a one-
hot label to a soft alternative, which occurs from

the viewpoint of a single token across the vocab-
ulary. It aims to penalize the over-confidence of
the model, namely raising the model uncertainty to-
wards a single token decision. While our approach
reduces the uncertainty existing in the interactions
between token and token in a certain context. It
occurs from the perspective of token-token inter-
actions, especially when a certain context is held
during decoding. By contrast, our model pays at-
tention to the inevitably introduced uncertainty that
takes up non-negligible probability mass (Ott et al.,
2018a). Therefore, the proposed idea is a compan-
ion to the label smoothed cross entropy rather than
a replacement or alternative.

4.4 Ablation Study

Contribution of Different Objectives: We em-
ploy two hyperparameters « and 3 to balance differ-
ent losses as shown in Equation 8. We validate the
effectiveness of the proposed mutual information
constraints by setting the hyperparameter 1 —a — 3
from 0.4 to 0.9. When it comes to the case of mul-
tiple layers, a and /3 are equally divided by the
number of layers. Results are depicted in Figure 4.
From Figure 4, it is intuitive to infer that both cus-



k 1 2 3 4 5

20 30 40 50 100 200

BLEU 27.52 27.63 27.77 2779 2786 27.79 27.89 2785 2792 27.89 2791 -

Table 3: The impact of different choices of k (regarding the capacity of a negative sample set) on performance.
The experiment is conducted on the WMT’ 14 En—De valid set. A combination of two regularizations (ED+DS)
is adopted. Here, the metric ’"BLEU” indicates case-sensitive fokenized BLEU. In the case of k = 200, the model
hits the OOM under the same setup of other configurations. We use k = 40 to report the final result of WMT’ 14
En—De. Similarly, we use k = 50 to report the final result of WMT’ 14 En—Fr.

tom objectives have a positive impact on the model
performance. DS’ performs slightly better than
’ED’. The boundary cases are considered as con-
trast groups.

Impact of the Proposed Regularization Meth-
ods on Different Layers of the Decoder: We
conduct ablation experiments of regularization on
layer-level performance in this section. Results are
presented in Figure 4. From Figure 4, it can be
inferred that there is no consistently positive rela-
tionship between the increase in performance and
the increase in regularization on more layers. To a
certain extent, appropriately adding regularization
can be effective in improving performance. How-
ever, too much regularization can lead to perfor-
mance degradation. We speculate that it is caused
by over-regularization. Therefore, considering the
performance and the overhead, we recommend that
the number of regularization layers should be less
than 3.

Hyperparameter &£ in Contrastive Learning
Framework Construction: According to Kong
et al. (2019), the larger the capacity of the nega-
tive sample set, the more accurate the framework
is to estimate the lower bound of mutual informa-
tion. Also, as we demonstrated in Equation 2 and
Equation 3, the lower bound becomes even tighter
when the number of tokens in the negative sample
set is large enough. We conduct experiments with
different hyperparameter k£ as shown in Table 3,
in which we can infer that capacity of a negative
sample set has a positive impact on performance
in a certain range. In the case of k¥ = 1, model
performance is not far from satisfactory, which is
due to the pre-trained nature of the NMT model. In
other words, a pre-trained NMT model itself is a
competent distribution proposal function.

5 Conclusion

In this paper, we propose a novel regularization
method based on the maximization of mutual infor-
mation. We implement our ideas under the unsu-

pervised contrastive learning framework to capture
and enhance nonlinear mutual dependencies among
tokens, which reduces the model uncertainty. Ex-
periments and ablation studies demonstrate the con-
sistent effectiveness of our approach. Besides, anal-
ysis of model uncertainty quantification again veri-
fies our hypothesis.

Limitation and Future Work: To simplify the
ablation studies, we employ the same weights on
’DS’ and ’ED’. Whether there will be further per-
formance gains when taking into account regular-
ization on different encoder layers, we will leave
in the future work. Besides, our idea is based on
the self-attention mechanism, which serves plenty
of pre-trained language models. Nonlinear mutual
dependencies may potentially have a positive influ-
ence on these models for downstream tasks. This is
the first step we take to investigate how to incorpo-
rate the model uncertainty analysis into the NMT
problem.
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Appendix
A Terminology

Token-token interactions We refer to ‘token-
token interactions’ as the process of a token attend-
ing to the other token and formulating its represen-
tation by linear interpolation (vanilla Transformer)
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of relative candidates. There are three types of at-
tention in a Transformer model. The behavior of
token-token interactions is different in each atten-
tion. We concentrate on the attention mechanism
in the decoder, namely the self-attention in the de-
coder and the encoder-decoder attention in the de-
coder. Given the causal feature of the self-attention
in the decoder, we should value the masking mech-
anism. The architecture of the vanilla Transformer
model is shown in Figure 5.

Maximizing mutual information Mathemati-
cally, mutual information is a good measure of
nonlinear relationships between random variables.
Mutual information quantifies the information on
one token to be predicted given previous gener-
ated one in the context of sequence generation. By
maximizing mutual information among tokens dur-
ing token-token interactions, we can capture more
nonlinear mutual dependencies. We name the pro-
cess of maximizing mutual information during fine-
tuning regularization. We refer to ‘enhancing the
nonlinear mutual dependencies’ as the process of
regularization, in other words, maximizing mutual
information. The nonlinear mutual dependencies
we captured can be seen as additional knowledge
extracted from the training corpus. Extra training
corpus or knowledge is capable of reducing the
model uncertainty. We propose our method to re-
duce the model uncertainty in terms of feeding this
knowledge from the existing training corpus. From
the perspective of linguistics, the enhanced repre-
sentation can reinforce token-token connections in
some contexts.

Enhancing nonlinear mutual dependencies En-
hancing or capturing nonlinear mutual dependen-
cies is equal to maximizing mutual information
among tokens or regularization on attention cal-
culation in the decoder. Why nonlinear? Linear
interpolation of representation is intrinsic in the at-
tention mechanism of vanilla Transformer models.
Compared with nonlinear, linear interpolation has
a feature of limited expressiveness. Why mutual
information? Mutual information captures such
nonlinear relationships. What are the dependen-
cies? Relationships or connections of tokens.

Model uncertainty Model uncertainty is also
known as epistemic uncertainty. It describes
whether the model we employ can well fit the data
distribution. Model design and selection accounts
for the model uncertainty. Model uncertainty can
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Figure 5: Transformer model and self-attentions. (a) Self-attention in the encoder. Queries, keys, and values are the
same. It is a symmetric matrix. The outputs of the last layer serve as the keys and values of the encode-decoder
attention in the decoder. (b) Decoder self-attention. Queries, keys, and values are the same as the outputs of the
decoder step by step. It is also a square matrix. Only positions of the lower triangular region are legal. Black blocks
indicate those positions masked to keep the causal property. (c) Encoder-decoder attention in the decoder. Queries
are from outputs of decoder self-attention. Due to the different lengths between the source and target sentence, this
is generally a non-square matrix. In (d), Mark 1 or Mark 2 indicate a target token (indexed by row number) attends
to a source token (indexed by column number) in encoder-decoder attention in the decoder, respectively. It is also
a convenient lookup table to fetch the cosine similarity score of pairs of tokens employed in calculating mutual
information. In (d), a token can attend to Mark 3 but not Mark 4 due to its causal nature. By contrast, Mark 5 and
Mark 6 can be attended by tokens indexed by the row number.

be reduced by feeding more data or knowledge  Data uncertainty Data uncertainty is also named
to the model. Both model uncertainty and data  aleatoric uncertainty. For NLP problems, the se-
uncertainty affect the prediction. In this work, mantically equivalent transformation of sentences
we concentrate on the model uncertainty. Follow-  or tokens attributes to the data uncertainty. Be-
ing Shelmanov et al. (2021); Zhou et al. (2020b);  sides, noisy data generated during the collection of
Xiao and Wang (2019); Wang et al. (2019), we  training corpus can also introduce data uncertainty.
employ Monte Carlo Dropout (Gal and Ghahra-

mani, 2016) to approximate Bayesian inference to Reducing the model uncertainty High model
conduct the Uncertainty Estimation (UE). Specifi-  ypcertainty indicates the poor fitting of the data
cally, we demonstrate the quantification of model  djstribution, which results in worse model perfor-
uncertainty before and after the regularization to  mance. FEither feeding more data or additional
investigate the variation: knowledge can reduce the model uncertainty. We
UE(6) regard these nonlinear mutual dependencies ex-

N tracted by regularizing the model as additional

:i Z Var [ P (yn | 2" 9t>] T ) knowledge fetched from the training corpus. Be-

N & ’ t=1" sides, reducing the model uncertainty is roughly

equal to raising the model confidence of decision-
making in a certain context. Why we would like to
reduce the model uncertainty? And is there any cor-
" . relation between model uncertainty and translation
passes. {9 L 9T} are sampled parameters dur-  quality? There are at least two perspectives to ana-
ing stochastic passes. To be consistent with Wang  lyze these questions. For instance, as we mentioned
et al. (2019), we calculate the uncertainty after the  in Table 1 and also in the Section "Correlation with
prediction process is done in that we do not employ  the Label Smoothed Cross Entropy". In some cases,
the model uncertainty to improve the model predic-  an appropriate increase in the model uncertainty
tion, instead, we quantify the model uncertainty. can generalize the model performance. A good ex-

where, 6 is the set of model parameters. = and
y are training samples. N indicates the num-
ber of samples. 7' is the number of stochastic
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ample is that the widely employed label smoothed
cross entropy properly raises the uncertainty of
determining a single token across the vocabulary.
Because the generalization capability of the model
is enhanced, the translation quality becomes better.
From another perspective of token-token interac-
tions, our approach reduces the uncertainty exist-
ing in the interactions between token and token
in a certain context. The model uncertainty can
be reduced by feeding more data or knowledge to
the model. Therefore, we employ more knowledge
in terms of nonlinear relationships to reduce the
model uncertainty. Please note that our method is
based on enhancing the model representation of
token-token interactions, in other words, it occurs
in a certain context. Intuitively, the model could
be more confident when making decisions in cer-
tain contexts. This is reasonable and makes sense.
From this point of view, an appropriate reduction
of model uncertainty can increase the quality of the
translation.

B Motivation and Connection Between
Different Terms

In this section, we further clarify our motiva-
tion and describe some inner connections between
newly introduced concepts.

We found in the literature that the use of uncer-
tainty reduction can help solve other NLP prob-
lems. And the famous Transformer model in the
NMT problem has the predictive uncertainty prob-
lem. Therefore, we aim to introduce a certain
approach to reduce such predictive uncertainty in
Transformer. Most existing research concentrates
on feeding more data to the model to reduce the
model uncertainty. By contrast, we would like to
enhance the model representation by introducing
additional knowledge, namely feeding the model
more relationships between token-token interac-
tions.

The interactions among two tokens in a sentence
are obtained by a weighted summation in a lin-
ear fashion. We would like to capture more re-
lationships among tokens beyond what we know.
Therefore, mutual information occurs to us. We
employ InfoNCE to approximate the mutual infor-
mation. To facilitate problem-solving, we also for-
mulate the whole problem under the framework of
contrastive learning. We can maximize the mutual
information by InfoNCE to obtain a lower bound.

So far, we have established the relationship be-
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tween the NMT problem and the mutual infor-
mation. We suppose that maximizing the mutual
information could be helpful in the NMT system
from the perspective of reducing the model uncer-
tainty.

To this end, on one hand, we evaluate the per-
formance of translation in the form of the widely
employed BLEU value. On the other hand, we also
verify our hypothesis by quantifying the model
uncertainty before regularization and after regu-
larization. Besides, given that there are relatively
few relevant studies in this research, we also pro-
vide some abbreviated analyses of the analytical
methods.

C Detailed Experimental Results

Some detailed experimental results are presented
in Table 4, Table 5, Table 6, and Table 7 for further
reference.

D Hyperparameters in MC Dropout
Inference

Two key factors that affect the MC dropout infer-
ence. Namely, the number of forward passes 7" and
the dropout ratio p. We investigate such factors in
this section. We conduct ablation experiments and
demonstrate the results in Figure 6. From Figure 6,
we can infer that 7" = 10 and p = 0.3 meet the
requirements.



Models’
l—a-p 0.4 0.5 0.6 0.7 0.8 0.9
a, B 0.6/2 0.5/2 0.4/2 0.3/2 0.2/2 0.1/2
Ls+DS+ED  30.19/29.50 30.26/29.60 30.29/29.60 30.26/29.60 30.13/29.50 30.04/29.40
Lo+DS+ED  30.22/29.50 30.30/29.60 30.34/29.60 30.27/29.60 30.37/29.80 30.09/29.50

a, B 0.6 0.5 0.4 0.3 0.2 0.1
L5+DS 30.09/29.40 30.24/29.50 30.41/29.70 30.21/29.60 30.30/29.70  30.08/29.50
Ls+ED 30.12/29.40  30.31/29.60 30.25/29.50 30.21/29.60 30.25/29.70  30.08/29.50
Lo+DS 30.10/29.40  30.22/29.50 30.39/29.70 30.23/29.60 30.22/29.60  30.09/29.50
Lo+ED 30.06/29.40 30.38/29.70 30.23/29.50 30.24/29.60 30.28/29.70  30.15/29.50
a, B 0.6/2 0.5/2 0.4/2 0.3/2 0.2/2 0.1/2

Lo 5+DS 30.28/29.60  30.29/29.60 30.42/29.70  30.34/29.70  30.26/29.60 30.17/29.60
Lo 5+ED 30.22/29.50  30.29/29.60 30.29/29.60 30.17/29.50 30.32/29.70  30.20/29.60
L4 5+DS 30.27/29.60 30.31/29.60 30.43/29.70 30.41/29.70 30.30/29.70  30.19/29.60
L4 5+ED 30.14/29.40  30.27/29.60 30.25/29.60 30.24/29.60 30.25/29.70  30.22/29.70
Lo 1+DS 30.27/29.60  30.38/29.70  30.46/29.70  30.35/29.70  30.30/29.70  30.18/29.60
Lo 1+ED 30.06/29.30  30.24/29.60 30.27/29.60 30.19/29.60 30.28/29.70 30.18/29.60
a, B 0.6/3 0.5/3 0.4/3 0.3/3 0.2/3 0.1/3

Lo12+DS 30.26/29.60  30.29/29.60 30.42/29.70  30.38/29.70  30.29/29.70  30.16/29.60
Lo12+ED  30.07/29.40 30.27/29.60 30.28/29.60 30.23/29.60 30.26/29.70  30.14/29.60
L3 4 5+DS 30.21/29.50  30.24/29.50  30.46/29.70 30.42/29.70 30.30/29.70 30.13/29.60
L3z 45+ED  30.14/29.50 30.18/29.50 30.28/29.60 30.23/29.60 30.25/29.70  30.19/29.60
a, B 0.6/4 0.5/4 0.4/4 0.3/4 0.2/4 0.1/4

Li234+DS  30.27/29.60 30.30/29.60 30.44/29.70 30.32/29.70  30.27/29.70  30.16/29.60
Li234+ED  30.18/29.50 30.19/29.60 30.20/29.50 30.33/29.70  30.21/29.60  30.22/29.70
Lo123+DS  30.22/29.50 30.31/29.60 30.39/29.70  30.37/29.70  30.31/29.70  30.19/29.60
Lo123+ED  30.15/29.40 30.22/29.50 30.18/29.50 30.27/29.60 30.29/29.70  30.29/29.60
Ly345+DS  30.25/29.50 30.30/29.60 30.40/29.70  30.35/29.70  30.34/29.70  30.20/29.60
Ly345+ED  30.12/29.40 30.23/29.60 30.24/29.60 30.28/29.70  30.23/29.70  30.22/29.60
a, B 0.6/5 0.5/5 0.4/5 0.3/5 0.2/5 0.1/5

Lou—o+DS  30.27/29.60 30.29/29.60 30.36/29.60 30.33/29.70 30.26/29.60 30.15/29.60
Lou—o+ED  30.12/29.40 30.21/29.60 30.24/29.60 30.31/29.70 30.27/29.70  30.18/29.60
Lou—5+DS  30.24/29.50 30.29/29.60 30.47/29.70  30.33/29.70 30.27/29.70  30.12/29.60
Loy—s+ED  30.17/29.50 30.15/29.50 30.18/29.50 30.27/29.60 30.27/29.70  30.19/29.60
a, B 0.6/6 0.5/6 0.4/6 0.3/6 0.2/6 0.1/6

Lou+DS 30.25/29.50  30.20/29.60 30.44/29.70  30.33/29.70  30.27/29.60 30.16/29.60
Loy+ED 30.12/29.40  30.26/29.60 30.22/29.50 30.31/29.70 30.24/29.70  30.15/29.60

" We tune the parameters on the validation set, and report these results on the test set. Values in this table may be
susceptible to different setups that we did not thoroughly explore. However, we do not aim to provide the best situations
of all cases, instead, we offer analysis of possible trends. We ignore the influence of £ and set & = 10 in these
experiments.

Table 4: Ablation studies on the layer-level performance. DS’ indicates the proposed regularization approach
applied on the decoder self-attention. "’ED’ means the proposed regularization approach applied on the encoder-
decoder attention in the decoder. To simplify the experiments, we adopt the same value of « and S to balance
’DS’ and "ED’. For instance, if the weight on the label smoothed cross entropy is w, then «, 8 = (1 — w)/2, when
’DS’ and ’ED’ are applied on a single layer of the decoder. Similarly, «, 5 = (1 — w)/6, when DS’ or ’ED’ are
applied on all layers of the decoder, and so on. Different contributions of DS’ or ’ED’ in the combination fashion
of 'DS+ED’, we leave them in the future work. Ly means the first layer in the decoder. Ls means the last layer.
Lo,5 means the first layer and the last layer. L4 5 means the last two layers. Lo ; means the first two layers. Lo 1 2
means the first three layers. L3 4 5 means the last three layers. L,;;—o means all layers except the first layer. L5
means all layers except the last layer. We average the last 5 checkpoints to report these results. Experiments are
conducted on WMT’ 14 En—De. From these results, we can infer that "DS’ has slight better performance compared
with ’ED’. Employing either 'DS’ or ’ED’ on all layers of the decoder is somewhat over-constraint. In a certain
range, appropriately adding regularization can be effective in improving performance.
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En—De En—Fr
UE (before) UE (after) UE (before) UE (after)
MC-all Sampled max. probability ~ 354.5077 337.3681 166.6318 146.3338
MC-all Mean entropy 2515.1008  2457.2503  1215.0922  1137.0944
MC-all BALD-VR 339.2128 334.9575 114.1011 108.4149

Dropout Type Model Acquisition

Table 5: Variation of the model uncertainty before regularization and after regularization. "MC-all’ means "Monte
Carlo Dropout’ employed on all layers. We employ three Uncertainty Estimation (UE) methods, namely, Sampled
max. probability, Mean Entropy and BALD-VR to investigate the variations. The number of forward passes 1" is 10.
The results are not normalized over the number of tokens.

Num. of T 1 2 3 4 5 6

SMP 338.0088 /319.5488 347.5487 /1 329.9464 350.2366 / 333.0439 351.9552 /334.9495 353.7504 / 335.7504 353.4781 / 336.2595
ME 2403.5835/2341.8491 2460.3462 / 2400.5967 2479.6318 /2421.1494 2492.6663 / 2435.1404 2500.8201 /2441.8916 2504.8918 / 2445.9519
BALD-VR 0/0f 154.9255 / 150.7553 214.0106/210.4574 251.8404 /246.7234 275.8936/270.2872 294.9787 / 288.6808
Num. of T' 7 B 9 10 20% 30%

SMP 353.6949 / 336.5727 353.9379/336.8132 354.3253 /337.1445 354.5077 / 337.3681 176.3070 / 168.1396 87.0544 / 83.3469
ME 2507.3079 / 2449.6633  2509.6550/2451.1414  2512.8601 /2454.7310  2515.1008 / 2457.2503  1249.8004 / 1224.1233  615.8340/ 605.8625

BALD-VR  307.9149/303.4787 321.2128/315.9893 331.2021/326.0425 339.2128 /334.9575 193.9734 /192.5053 101.8218 /101.2766

" Zero values are due to the calculation of variance towards a single value.
* In the case of T' = 20 and T' = 30, results seem to be disproportionate to other cases. This is due to the setup of batch size during inference in order to avoid OOM.

Table 6: The impact of the number of forward passes 7' on MC dropout inference. We show the variations of the
three metrics. *SMP’ for ’sampled maximum probability’; "ME’ for "'mean entropy’; "BALD-VR’ for a combination
of "Bayesian Active Learning by Disagreement’ and ’variation ratio’. The values presented here are UE (before)
/ UE (after). Experiments are conducted on WMT’ 14 En—De. Dropout ratio p is the default value 0.3. We can
infer that as the value 7" increases, the gap between two UEs tends to decrease. However, UE (after) is consistently
smaller than UE (before). Considering the practical situation and following the common literature, we choose
T = 10 throughout the experiments.

dropout ratio p 0.1 0.2 0.3" 0.4 0.5

SMP 302.3890 / 286.0438 323.7969 / 306.6345 354.5077 /337.3681 403.9660 / 388.3170 495:5341/-485:3623
ME 2057.5542/1990.6696  2240.8325/2173.9890 2515.1008 / 2457.2503  2962.1492 /2926.7832 3779:8779+3796:4238
BALD-VR 234.0745/231.3511 285.9575/282.3511 339.2128 /334.9575 406.0213 / 403.2021 529:4787-+537:0319
dropout ratio p 0.6 0.7 0.8 0.9 1.0

SMP 698:8461-/703-8344 890:4090-/-887-0627 940:6628/94381H8 9557371/9557843 8681199-/-868:6059
BALD-VR 803 1H70/823:4362 954-4681-/955:8192 957-755319577553 957755319577553 0+0

7 There are three main types of dropout operation in the implementation of Transformer model, namely, dropout for layer output, dropout for attention weights and dropout for
activation in FEN. Here, we refer "dropout’ to the first case. Note that, 0.3 is the default value for WMT’ 14 En—De model.

Table 7: The impact of the dropout ratio p on MC dropout inference. We show the variations of the three metrics.
’SMP’ for ’sampled maximum probability’; "ME’ for "'mean entropy’; "BALD-VR’ for a combination of ’Bayesian
Active Learning by Disagreement’ and ’variation ratio’. The values presented here are UE (before) / UE (after).
Experiments are conducted on WMT’ 14 En—De. The number of forward passes 7" is 10. From the results above, we
can infer that the appropriate value of the dropout ratio p is no more than 0.4, which is in line with our expectations.

Bad cases are marked by strikethrough.
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Figure 6: Experiments on the selection of hyperparameters in uncertainty estimation. The vertical axis is the
unnormalized model uncertainty score and the horizontal axis is the number of forward pass 7" in the figures of
the first row, and the dropout ratio p in the figures of the second row. Bad cases are marked by red boxes. From
these ablation results, we can infer that the number of 7" has little impact on performance in our work. Following
the general literature, we employ 7" = 10 throughout the experiments. However, the dropout ratio p matters a lot.
From the results shown above, we should use a value less than 0.4. Therefore, we adopt p = 0.3 throughout the
experiments.
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