
Under review as a conference paper at ICLR 2024

EXPLORING THE UPPER LIMITS OF TEXT-BASED COL-
LABORATIVE FILTERING USING LLMS: DISCOVERIES
AND INSIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-based collaborative filtering (TCF) has become the mainstream approach for
text and news recommendation, utilizing text encoders, commonly referred to as
language models (LMs), to represent items. However, the current landscape of
TCF models predominantly revolves around the utilization of small or medium-
sized LMs. It remains uncertain what impact replacing the item encoder with
one of the largest and most potent LMs (LLMs for short), such as the 175-billion
parameter GPT-3 model (Brown et al., 2020), would have on recommendation
performance. Can we expect unprecedented results? To this end, we conduct an
extensive series of experiments aimed at exploring the performance limits of the
TCF paradigm. Specifically, we progressively increase the size of item encoders
from one hundred million to one hundred billion, revealing the scaling limits of
the TCF paradigm. Furthermore, we investigate whether these extremely large
LMs can enable a universal item representation for the recommendation task and
revolutionize the traditional ID paradigm, which is considered a significant obstacle
to developing transferable “one model fits all” recommender models. Our study not
only demonstrates positive results but also uncovers unexpected negative outcomes,
illuminating the current state of the TCF paradigm within the community. These
findings will evoke deep reflection and inspire further research on text-based
recommender systems. Our code and datasets will be provided upon acceptance.

1 INTRODUCTION

The explosive growth of online text data has emphasized the significance of text content recommen-
dation across various domains, including e-commerce, news recommendation, and social media.
Text-based collaborative filtering (TCF) has emerged as a pivotal technology for delivering person-
alized recommendations to users based on textual data, such as product descriptions, reviews, or
news articles (Wu et al., 2021; Yuan et al., 2023). The objective of TCF is to accurately capture
user preferences and interests from textual data and provide customized recommendations that align
with their needs. TCF typically employs language models (LMs) as text encoders, integrated into
a recommender architecture using collaborative filtering techniques (Rendle et al., 2010; He et al.,
2017; Koren et al., 2009) to generate user-item matching scores (see Figure 1). The promising results
of TCF have established it as the mainstream approach for text-based recommendation.

By employing language models (LMs) as item encoders, TCF naturally benefits from the latest
advancements in natural language processing (NLP). Particularly, in recent years, large LMs (LLMs)
such as GPT-3 (Brown et al., 2020) and ChatGPT (Aiyappa et al., 2023) have achieved revolutionary
successes in modeling textual data. However, the text encoders utilized in current TCF models often
consist of small or medium-sized LMs, such as word2vec (Mikolov et al., 2013), BERT (Devlin et al.,
2018), and RoBERTa (Liu et al., 2019). This limitation may restrict their recommendation capabilities,
leading to essential questions: Can TCF achieve exceptional results by leveraging extremely large
LMs with tens or hundreds of billions of parameters as text encoders? Is there an upper limit to
TCF’s performance when pushing the size of the text encoder to its extreme? Can TCF with the
LLMs revolutionize the prevailing ID paradigm and usher in a transformative era akin to the universal
foundation models (Bommasani et al., 2021) in NLP?

1

Under review as a conference paper at ICLR 2024

Undoubtedly, the above questions play a crucial role in guiding research within the mainstream TCF
paradigm. However, despite numerous TCF algorithms proposed in literature (Wu et al., 2021; Zhang
et al., 2021a; Li et al., 2022; Bi et al., 2022; Xiao et al., 2022), none of them have explicitly discussed
the above questions. Therefore, instead of introducing yet another algorithm, we aim to decipher
the classic TCF models via a series of audacious experiments that require immense computational
resources.1 Specifically, we explore the below novel questions.

Q1: How does the recommender system’s performance respond to the continuous increase
in the item encoder’s size? Is the performance limits attainable at the scale of hundreds of
billions? To answer it, we perform an empirical study where we systematically increase the size of
the text encoder from 100 million (100M for short) to 175 billion (175B). This study is conducted
on three recommendation datasets, utilizing two most representative recommendation architectures:
the two-tower top-N model DSSM (Huang et al., 2013) and a state-of-the-art sequential model
SASRec (Kang & McAuley, 2018) with Transformer (Vaswani et al., 2017) as the backbone.

Novelty clarification: While the scaling effect has been established in the NLP field, it is important to
note that recommender models not only involve the item encoder but also the user encoder. As a result,
the potential improvement solely from scaling the item encoder remains unknown. A concurrent2

preprint (Kang et al., 2023) by Google teams investigated the impact of scaling the item encoder on
explicit rating prediction. However, to our best knowledge, we are the first to explore the scaling
effect in the context of item recommendation (Cremonesi et al., 2010) from implicit feedback.

Q2: Can LLMs, such as GPT-3 with 175B parameters, generate universal item representations
for recommendation? Developing universal foundation models is an ambitious goal of NLP, as
previos studies have showed the generality of the representations learned by LLMs across various
NLP tasks. However, recommender systems (RS) differ from these objective NLP tasks as they
are personalized and subjective. This raises the question whether the LLMs pre-trained on non-
recommendation data can produce a universal item representation in the recommendation context.

Q3: Can recommender models with a 175B parameter LLM as the item encoder easily beat
the simplest ID embedding based models (IDCF), especially for warm item recommendation?
IDCF is a prevailing recommendation paradigm that has dominated the recommender system (RS)
community for over a decade, particularly in the non-cold start setting. It produces high-quality
recommendations without relying on any item content information. However, recent studies (Ding
et al., 2021; Hou et al., 2022a; Wang et al., 2022; Yuan et al., 2023) indicate that ID features are the
key barrier to achieving transferable “one model fits all” recommender models (see Figure 4). This is
because IDs, e.g., userID and itemID, are typically not shareable across different practical platforms.

Novelty clarification: Although numerous papers claimed that their proposed TCF had achieved
state-of-the-art performance, it is recognized that most of these claims are primarily focused on
cold-start scenarios (Zhang et al., 2021a). However, in order to truly abandon IDs, it is crucial to
surpass its performance in both cold-start and warm scenarios. This presents a considerable challenge
because, thus far, no industrial recommender system has dared to claim to completely give up the
itemID features (userID can be represented by itemID sequence) in the non-cold start item setting.

Q4: How close is the TCF paradigm to a universal “one model fits all” recommender model? In
addition to its performance benefits, TCF is often lauded for its potential transferability, allowing for
cross-domain and cross-platform recommendations without relying on shared IDs. This advantage
contributes to the establishment of a universal foundation model (Bommasani et al., 2021) in the
field of recommender systems. Therefore, we aim to study whether TCF, utilizing LLM as the item
encoder, exhibits effective transferability, particularly its zero-shot recommendation capability.

If both Q3 and Q4 hold true, LLM will undoubtedly possess the potential to revolutionize the existing
recommendation paradigm. In the future, it is conceivable that similar recommendation scenarios
could be addressed with a single recommender model, significantly minimizing the need for redundant
engineering efforts. However, so far, whether the RS field can develop universal models similar to
the NLP community still remains unknown, and the entire community is unable to give a definitive
answer. Our primary contribution in this paper is to conduct preliminary research and establish a
substantial factual foundation for addressing this question more comprehensively in the near future.

1Some of our experiments were performed on 32 NVIDIA 80G A100s for several weeks.
2When mentioning concurrent work, we specifically mean starting from the earliest available preprints.

2

Under review as a conference paper at ICLR 2024

Figure 1: TCF with SASRec and DSSM as recommender backbones. The DTL block is the dense
dimension transformation layers. Item or text encoder used in this study can be 175B parameters.

2 BACKGROUND

LMs for Text. In recent years, significant progress in LM development has had a profound impact
on the field of NLP. word2vec, developed in 2013, revolutionized NLP by providing a scalable and
efficient way of learning word embeddings. Since then, various improvements have been made
to word representation models, such as GloVe (Pennington et al., 2014), TextCNN (Kim, 2015),
ELMo (Peters et al., 2018), etc. In 2018, the BERT model showed state-of-the-art performance on
a range of NLP tasks by introducing a pre-training approach based on masked language modeling.
BERT and its variants (RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2019), XLNet (Yang et al.,
2019), T5 (Raffel et al., 2020), etc.) have become a dominant paradigm in the NLP community in
recent years. More recently, ChatGPT, a conversational AI model has gained significant attention for
its remarkable performance in a wide range of language tasks. Along this line, several other notable
works have contributed to the advancement of LMs, including the Transformer architecture, the GPT
(Radford et al., 2018; 2019; Brown et al., 2020) and Llama (Touvron et al., 2023) models.

LMs for Recommender Systems. Over the past years, LMs have been widely used in item
recommendation tasks, with two main lines of research in this area. The first involves using LMs
to represent textual items (Wu et al., 2021; 2019; Zhang et al., 2021a; Yuan et al., 2023; Wu et al.),
while the second involves using LMs as user encoders or recommendation backbones, such as
SASRec, BERT4Rec (Sun et al., 2019), GRU4Rec (Hidasi et al., 2015), NextItNet (Yuan et al.,
2019), and GPT4Rec (Li et al., 2023b). In this paper, we focus primarily on the first line of research.
Among the various item encoders, lightweight word2vec and medium-sized BERT are the two most
popular options. The literature on this topic can further be classified into two categories: applying
pre-extracted textual features (equivalent to a frozen text encoder) (Ding et al., 2021; Bi et al., 2022)
and end-to-end (E2E) training of text encoders (Yuan et al., 2023; Yang et al., 2022; Li et al., 2023a).
While E2E training typically achieves better results than using a frozen text encoder, the latter
approach is much more computationally efficient than E2E training (Yuan et al., 2023).

The success of ChatGPT has prompted the use of prompt techniques for personalized recommen-
dations (Gao et al., 2023; Liu et al., 2023; Dai et al., 2023). This approach can directly utilize the
ChatGPT API, eliminating the need for separate model training. It is noteworthy that in recent
months, there has been a significant amount of literature on LLM-based recommender systems (see
Appendix D), covering a variety of paradigms. However, this paper specifically concentrates on the
utilization of LLM as the item encoder.

3 PRELIMINARY

We introduce some basic notations and describe two typical recommender paradigms: IDCF & TCF.

Definition. We define the set of users as U = {u1, u2, ..., um} and the set of items as V =
{v1, v2, ..., vn}. The user-item interactions are represented by a binary matrix R = {ruv}, where
ruv ∈ {0, 1} indicates whether user u has interacted with item v.

3

Under review as a conference paper at ICLR 2024

Table 1: Dataset characteristics. Bili8M is mainly used for pre-training to answer Q4.

Dataset #User #Item #Interaction Item Example

MIND 200,000 54,246 2,920,730 Cincinnati Football History (News Title)
HM 200,000 85,019 3,160,543 Solid. White. Ladieswear. (Product Description)
Bili 50,000 22,377 723,071 The last words of The Humans (Video Title)

Bili8M 8,880,000 408,000 104,450,865 The owl is wearing a skirt (Video Title)

In the standard collaborative filtering (CF) setup, we represent each user by a vector θu ∈ Rk and each
item by a vector βv ∈ Rk. The predicted interaction score between user u and item v is computed as
r̂uv = θTu βv . To obtain the user and item vectors, we typically optimize a loss function l(ruv, θ

T
u βv),

where l can either be a pairwise BPR (Rendle et al., 2012) loss or a cross-entropy loss.

In the popular ID-based CF (IDCF) models, θu and βv , also known as userID and itemID embeddings,
can be learned by backpropagating from the user-item interaction data. Following this path, various
recommender models have been developed. For instance, if we use a deep neural network to output
the user vector θu and the item vector βv, denoted by g(ui) and h(vi) respectively, the scoring
function becomes r̂uv = g(ui) · h(vi), which is known as the two-tower DSSM model. Alternatively,
if we represent a user by a sequence of k items that she has interacted with, the scoring function is
r̂uv = G(v1, v2, ..., vk)

Tβv , where G(·) is a sequential network, such as SASRec and BERT4Rec.

By utilizing a text encoder f(vi) to output item representation vectors from the description text,
instead of relying on itemID embedding features, the IDCF model can be converted into the TCF
model, as depicted in Figure 1. Clearly, the only difference between TCF and the typical IDCF
model is in the item representation part. In contrast to IDCF, TCF has the advantage of being able to
utilize both item textual content features and user-item interaction feedback data. In theory, the text
encoder f(vi) can take the form of any language model, such as a shallow-layer word2vec model,
a medium-sized BERT model, or a super-large GPT-3 model. The text encoder f(vi) can be either
frozen or trained jointly with the whole recommender model in an end-to-end (E2E) fashion.

However, due to computational constraints, most real-world recommender systems adopt a two-stage
approach. In this approach, offline features are extracted in advance from a frozen LM encoder and
then incorporated as fixed features into the recommender model during both training and inference
stages. This is primarily due to the resource-intensive nature of joint or E2E training of text encoders,
which requires substantial computing power and time.

4 EXPERIMENTAL SETUPS

4.1 DATASETS, MODELS AND EVALUATION

Datasets. We evaluate TCF with LLM as item encoders on three real-world text datasets: the MIND
news clicking dataset (Wu et al.), the HM clothing purchase dataset3, and the Bili4 comment dataset
from an online video recommendation platform. For MIND, we represent items using their news
article titles, whereas for HM and Bili, we utilize the respective title descriptions of clothes or
videos to represent the items. Across all datasets, each positive user-item interaction is either a click,
purchase, or comment, which serves as an implicit indicator of user preference.

Due to memory issues when comparing to E2E training, we constructed interaction sequences for
each user by selecting their latest 23 items. We exclude users with fewer than 5 interactions as we
do not consider cold user settings. Following the basic pre-processing steps, we randomly selected
200,000 users (along with their interactions) from both the MIND and HM datasets, as well as 50,000

3https://www.kaggle.com/competitions/h-and-m-personalized-fashionrecommendations/overview
4URL: https://www.bilibili.com/. To create this dataset, we randomly crawled short video URLs (with

durations of less than 10 minutes) from 23 vertical channels (including technology, cartoons, games, movies,
food, fashion, etc.) in Bili. We then extracted the public comments on these videos as positive interactions.
Finally, we chronologically combined all user interactions and removed duplicate interactions as the final dataset.

4

Under review as a conference paper at ICLR 2024

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
18.8

19.3

19.8

20.3

19.07

20.24

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
9.2

9.9

10.6

11.3

9.37

11.11

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
3.8

5.1

6.4

7.7

4.45

7.05

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
1.6

2.1

2.6

3.1

1.75

2.88

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
1.8

1.9

2.0

2.1

1.95

2.09

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
1.4

1.6

1.8

2.0

1.58

2.00

Datasets
MIND
HM
Bili

Models
SASRec
DSSM

Figure 2: TCF’s performance (y-axis: HR@10(%)) with 9 text encoders of increasing size (x-axis).
SASRec (upper three subfigures) and DSSM (bottom three subfigures) are used as the backbone.

users from Bili for our main experiments. Additionally, we have also built a large-scale Bili8M
(covering the entire Bili dataset) dataset for pre-training purposes to answer Q4.

Models and Training. To support our main arguments, we selected two representative recommenda-
tion architectures for evaluation: the classical two-tower DSSM model and the SASRec session-based
recommender model. Note that as an initial exploration or a limitation of this work, we do not study
other more complex models. Despite that, many recommender models can be categorized under the
DSSM and SASRec frameworks. For instance, numerous complex CTR (click-through rate) models,
despite being single-tower models, are expected to yield similar conclusions as DSSM.5 .

During training, we utilize the popular batch softmax loss (Yi et al., 2019), which is widely adopted
in industrial systems. For text encoders, we evaluated nine different sizes of GPT models, ranging
from 125M to 175B parameters. These GPT models were re-implemented by Meta AI and are
interchangeably referred to as OPT (Zhang et al., 2022). As for hyper-parameters, we first perform a
grid search for standard IDCF as a reference, After determining the optimal hyper-parameters for
IDCF, we search them for TCF around these optimal values. We report details in Appendix B.

Evaluation. We evaluate the performance of all models using two popular top-K ranking metrics,
namely HR@10 (Hit Ratio) and NDCG@10 (Normalized Discounted Cumulative Gain) (Yuan et al.,
2023). NDCG@10 is reported in Appendix C for saving space. The latest user-item interaction was
used for evaluation, while the second-to-last interaction was used for hyper-parameter searching, and
all other interactions were used for training. All items in the pool are used for evaluation, suggested
by (Krichene & Rendle, 2020).

5 Q1: HAS THE TCF PARADIGM HIT A PERFORMANCE CEILING?

To answer Q1, we conduct experiments by increasing the size of text encoders in the TCF models,
ranging from 125M to 175B parameters. We use SASRec and DSSM as recommender backbones.
The results are given in Figure 2. All LMs are frozen for this study.

As shown, TCF models generally improve their performance by increasing the size of their text
encoders. For instance, with the SASRec as the backbone, TCF improved the recommendation
accuracy from 19.07 to 20.24 on MIND, from 9.37 to 11.11 on HM, and from 4.45 to 7.05 on Bili,6
resulting in improvements of 6.1%, 18.6%, and 58.4%, respectively. Similar observations can also
be made for the DSSM backbone. Furthermore, based on the observed performance trend, we can

5This difference between single or two towers does not affect our key findings.
6We also conduct this study on the large-scale Bili8M dataset, as shown in Appendix Figure 8.

5

Under review as a conference paper at ICLR 2024

125M 1.3B 13B 66B 175B18.0
18.6
19.2
19.8
20.4
21.0

125M 1.3B 13B 66B 175B9.0
10.0
11.0
12.0
13.0
14.0

125M 1.3B 13B 66B 175B4.0
4.8
5.6
6.4
7.2
8.0

125M 1.3B 13B 66B 175B1.5
2.0
2.5
3.0
3.5
4.0

125M 1.3B 13B 66B 175B
1.6
1.8
2.1
2.3
2.6

125M 1.3B 13B 66B 175B1.2
1.4
1.6
1.8
2.0
2.2

(a). TCF using the SASRec backbone

(b). TCF using the DSSM backbone
MIND-Freeze
MIND-Finetune

HM-Freeze
HM-Finetune

Bili-Freeze
Bili-Finetune

Figure 3: TCF with retrained LM vs frozen LM (y-axis: HR@10(%)), where only the top two layers
are retrained. The 175B LM is not retrained due to its ultra-high computational cost.

conclude that the TCF models’ performance has not yet converged when increasing the size of their
text encoders, such as from 13B to 175B. These results suggest that (answer to Q1) the TCF model
with a 175B parameter LM may not have reached its performance ceiling. In other words, if we
had an even larger LM as the text encoder, TCF’s performance could potentially be further improved.
This is a highly desirable property because it indicates that using more powerful LMs (if developed
in the future) as text encoders can result in higher recommendation accuracy.

Interestingly, we find that the TCF model with the 350M parameter LM exhibits the poorest per-
formance across all three datasets, regardless of whether it uses the DSSM or SASRec backbone.
However, the 350M LM is not the smallest text encoder. This could happen because the scaling
relationship between text encoder size and performance is not necessarily strictly linear. However, by
examining the pre-training code and official documentation, we discover that the 350M-parameter
OPT was implemented with several differences compared to all other versions.7 This provides an
explanation for our results. Additionally, beyond the discussion scope of this paper, we also note that
TCF utilizing the SASRec backbone shows significantly superior performance compared to TCF with
the DSSM backbone. Similar findings were reported in much previous literature (Yuan et al., 2023;
Sun et al., 2019; Zhou et al., 2020). One possible reason for this is that representing users using their
interacted items is more effective than using solely the userID feature. Another reason could be that
the SASRec architecture, based on the sequence-to-sequence (seq2seq) training approach, is more
powerful than the two-tower DSSM architecture.

6 Q2: CAN THE 175B LLM ACHIEVE UNIVERSAL TEXT REPRESENTATION?

We are curious about whether a LM with 175B parameters possess a degree of universality in
text encoding. Unlike the objective NLP tasks, here we examine this property using personalized
recommendation as a downstream task. Assuming that a k-dimensional text representation βv

encoded by the 175B parameter LM is an ideal universal representation, any application involving
text representation can directly choose a subset or the entire set of features from βv by providing a
weight vector w that represents the importance of these elements, i.e., y = wTβv. For example, in
a basic matrix factorization setting, w could represent user preference weight to item features, i.e.
w = θu. If all factors of user preference can be observed by the features in βv , we only need to learn
their linear relationship. Moreover, for a perfect universal vector βv, using a frozen representation
should be just as effective as fine-tuning it on a new dataset, or even superior to fine-tuning.

Based on the analysis, we can simply compare the frozen item representation with the fine-tuned item
representation to verify our question. Note that previous studies such as (Yuan et al., 2023) have
investigated this issue, but they only examined text encoders with a size of 100M parameters. Given

7For instance, in all other pre-trained models, the layernorm layer is implemented before the attention layer,
while in the 350M model, it is opposite. Plus, its embedding & hidden layer dimensions are also set differently.

6

Under review as a conference paper at ICLR 2024

Table 2: Accuracy comparison (HR@10) of IDCF and
TCF using the DSSM & SASRec backbones. FR is TCF
using frozen LM, while FT is TCF using fine-tuned LM.

Data SASRec DSSM

IDCF 175BFR 66BFT IDCF 175BFR 66BFT

MIND 20.05 20.24 21.07 3.99 2.83 3.27
HM 12.02 11.24 13.29 6.79 2.09 2.35
Bili 7.01 6.88 8.15 2.27 2.00 2.01

Table 3: Zero-shot recommendation ac-
curacy (HR@10). 175Bzero means zero-
shot accuracy of TCF with 175B LM.
‘train’ is to retrain TCF on these data.

Model MIND HM QB

Random 0.02 0.01 0.18
175Bzero 0.13 0.39 4.30
175Btrain 20.24 11.11 29.90

Table 4: Warm item recommendation (HR@10). 20 means items < 20 interactions are removed.
TCF175B uses the pre-extracted features from the 175B LM. Only the SASRec backbone is reported.

Data MIND HM Bili

#Interaction 20 50 200 20 50 200 20 50 200

IDCF 20.56 20.87 23.04 13.02 14.38 18.07 7.89 9.03 15.58
TCF175B 20.59 21.20 22.85 12.03 12.68 16.06 7.76 8.96 15.47

the significantly enhanced representation capabilities of the 175B LM (as shown in Table 5), it is
uncertain whether the findings remain consistent when the encoder is scaled up by a factor of 1000

As shown in Figure 3, TCF models (both SASRec and DSSM) outperform their frozen versions when
the text encoders are retrained on the recommendation dataset. Surprisingly, TCF with a fine-tuned
125M LM is even more powerful than the same model with a frozen 175B LM. This result potentially
suggests that (answer to Q2) even the item representation learned by an extremely large LM (e.g.,
GPT-3) may not result in a universal representation, at least not for the text recommendation
task. Another key insight is that although LLMs have revolutionized so many NLP problems, there is
still a significant domain gap between RS and NLP - specifically, inferring user preferences appears
to be more challenging. We suspect that the text representation even extracted from the strongest
and largest LM developed in the future may not perfectly adapt to the RS dataset. Retraining the
LLM on the target recommendation data is necessary for optimal results. However, from a positive
perspective, since LLMs have not yet reached the performance limit, if future more powerful LLMs
are developed, the performance of frozen text representation may become more close to fine-tuning.
For instance, we observe that SASRec with a 175B LM (compared to the 125M LM) is already very
close in performance to the fine-tuned 66B LM, with relative accuracy gaps of 3.92%, 16%, 13.5%
on HM, and Bili, respectively. This is a promising discovery since fine-tuning such a large LM is
very challenging in practical scenarios.8 Note while we did not fine-tune all layers of the largest LM,
we did assess the performance using medium-sized LMs (such as 1.3B and 13B) by optimizing all
layers and the top two layers, which yielded comparable results.

It is worth noting that the above conclusions are based on the assumption that user-item interaction
feedback serves as the gold standard for the recommendation task, but this may not always be the
case in practice. As a limitation, this study does not address this issue, as the entire theory of modern
recommender systems is currently based on this assumption.

7 Q3: CAN IDCF BE EASILY SURPASSED BY TCF WITH A 175B LLM?

TCF is a classical paradigm for text-based recommendation, while IDCF is the dominant paradigm
in the entire field of RS. Can TCF models with a 175B parameter LLM easily beat IDCF models
with learnable item embedding vectors? While many prior studies have reported that their TCF
models achieved state-of-the-art results, few have explicitly and fairly compared their models with

8Even when fine-tuning only the top two layers, as used in our experiments, it still necessitates 10-100x more
training time than using pre-extracted fixed features.

7

Under review as a conference paper at ICLR 2024

IDCF TCF Foundation
Recsys Model

Figure 4: Route to foundation recommender mod-
els (FRM). The cross indicates that the IDCF
paradigm have no chance to achieve FRM, the
tick indicates that for text-centric RS, TCF can
basically replace IDCF, and the question mark in-
dicates that whether the TCF paradigm can achieve
the widely recognized FRM remains still unknown.

Table 5: TCF’s results (HR@10) with represen-
tative text encoders in the last 10 years. Text
encoders are frozen and the SASRec backbone
is used. Advances in NLP benefit RS.

Model Date MIND HM Bili

word2vec 2013 15.21 8.08 2.66
BERTlarge 2018 18.99 9.68 3.56

T5XXL 2019 19.56 9.21 4.81

OPT175B 2022 20.24 11.11 7.05

corresponding IDCF counterparts under the same backbone networks and experimental settings
(including samplers and loss functions).9 Moreover, many of them focus on cold item setting, with
fewer studies explicitly examining regular (with both cold and warm items) or warm item settings.
Recently, (Yuan et al., 2023) discovered that TCF can be comparable to IDCF by jointly training
a 100M parameter LM, but frozen representations still significantly underperformed. Therefore, a
natural question is whether our conclusions would differ if we use a 1000x larger LLM as the item
encoder?

As shown in Table 2, we observe that even with the 175B parameter LLM and fine-tuned 66B
parameter LLM, TCF is still substantially inferior to IDCF when using DSSM as the backbone. These
results are consistent with (Yuan et al., 2023). As explained, the DSSM architecture and training
approach exhibit limited effectiveness in training TCF models. Both the IDCF and TCF models with
DSSM perform worse than the seq2seq-based SASRec model. However, a notable finding different
from (Yuan et al., 2023) is that we reveal that TCF with the SASRec backbone performs comparably
to IDCF on the MIND and Bili datasets, even when the LLM encoder is frozen, as shown in Table 2
and 4. This represents a significant advancement since no previous study has explicitly claimed that
TCF, by freezing an NLP encoder (or utilizing pre-extracted fixed representations), can achieve on
par performance to its IDCF counterparts specifically in the context of warm item recommendation.10

This is probably because smaller LM-based item encoders in prior literature, such as BERT and
word2vec, are inadequate in generating effective text representations comparable to IDCF, see Table 5.

The reason for the weaker performance of TCF on HM is that textual information alone is insufficient
to fully represent the product item, as factors such as price and quality are also critical in enticing
user clicks and purchases on HM. However, in the case of news recommendation, we can generally
assume that users are primarily drawn to the textual content (i.e., titles) of items, although this may
not always be the case. That is the reason we believe TCF with frozen text encoders performs on par
with IDCF is surprising as IDCF can implicitly learn latent factors beyond textual features but feature
representation pre-extracted from a NLP encoder cannot. Furthermore, we notice that SASRec with a
fine-tuned text encoder can clearly outperform IDCF on all three datasets. However, as mentioned,
such end-to-end training using a text encoder is computationally expensive, despite its effectiveness.

The answer to Q3 is that, for text-centric recommendation, TCF with the seq2seq based SASRec
backbone and utilizing a 175B parameter frozen LLM can achieve similar performance to
standard IDCF, even for warm item recommendation. However, even by retraining a super-
large LM item encoder, TCF with a DSSM11 backbone has little chance to compete with its
corresponding IDCF. The simple IDCF still remains a highly competitive approach in the warm
item recommendation setting. If the computation can be reduced, joint training of a powerful
sequential recommender model (i.e., SASRec) with its text encoder can lead to markedly better
results than IDCF.

9Without conducting a fair comparison, researchers are unable to accurately assess the true progress.
10We simply omit the results for cold item recommendation, as TCF has been consistently demonstrated to

outperform IDCF in these settings in numerous literature, e.g., in (Yuan et al., 2023; Hou et al., 2022b).
11A very recent study (Rajput et al., 2023) suggested that standard CTR models, such as DSSM and

DeepFM (Guo et al., 2017), may be replaced by the seq2seq generative architecture, such as SASRec. This
means seq2seq model may have a chance to be a mainstream recommendation architecture.

8

Under review as a conference paper at ICLR 2024

8 Q4: HOW CLOSE IS THE TCF PARADIGM TO A UNIVERSAL RECOMMENDER
MODEL?

In this paper, we are particularly interested in comparing with the dominant IDCF paradigm. This
is because ID features (including userIDs and itemIDs) are considered as a primary obstacle to the
transferable or foundation recommender models due to their non-sharability (Yuan et al., 2023; Hou
et al., 2022a; Rajput et al., 2023; Wang et al., 2022; Ding et al., 2021; Shin et al., 2021). We argue
that to achieve foundation models in recommender systems may require satisfying two conditions,
as illustrated in Figure 4: (1) abandoning userID and itemID features, and (2) achieving effective
transferability across domains and platforms. Based on the above results, we conclude that for text-
centric recommender systems, TCF-based sequential recommender models can basically substitute
IDCF methods. However, regarding (2), it remains uncertain whether TCF has impressive transfer
learning ability, especially when its item representations are extracted from a extremely large LM.

Inspired by the remarkable success of zero-shot learning in NLP, our goal is to assess the zero-shot
transfer learning capability of TCF, considering that items with text features may be inherently
transferable. Following (Ding et al., 2021), we first pre-train a SASRec-based TCF model with the
175B parameter frozen LM as item encoder on the large-scale Bili8M dataset. We then directly
evaluate the pre-trained model in the testing set of MIND, HM and QB12. The results, presented in
Table 3, indicate that while TCF models outperform random item recommendation by achieving an
accuracy improvement of 6-40x, they still fall notably short of TCF models that have been retrained
on the new data. We note that user behaviors in the source Bili8M dataset may differ significantly
from HM and MIND datasets due to their distinct contexts of e-commerce and news recommendation
scenarios. However, it is similar to that of QB, as both involve similar types of item recommendations.

The answer to Q4 is that while TCF models with LLMs do exhibit a certain degree of transfer
learning capability, they still fall significantly short of being a universal recommender model,
as we had initially envisioned. For a universal recommendaton model, not only should item
representations be transferable, but also the matching relationship between users and items needs to
be transferable. However, the matching relationship is closely related to the exposure strategy or bias
of the specific recommender platform. Therefore, compared to NLP and computer vision (CV), the
transferability of recommender models is even more challenging. This also explains why, up until
now, there haven’t been any pre-trained models in the field of recommender systems that have attained
the same level of prominence and recognition as BERT and ChatGPT in the NLP field. For instance,
the lack of a pre-trained recommender model in the HuggingFace library that can support various
recommendation scenarios (similar or dissimilar) further reinforces this point. However, this does not
necessarily indicate that TCF have no potential to become a universal recommender model. It will
require the collective effort of the entire recommender system community. This includes utilizing
highly diverse and extremely large pre-training datasets (Ni et al., 2023), employing advanced training
and transfer learning techniques, and engaging in deeper considerations for evaluation (e.g., removing
platform exposure bias when evaluating downstream recommendation tasks (Fan et al., 2023)).

9 CONCLUSION

This paper does not describe a new text recommender algorithm. Instead, it extensively explores
the performance limits and several core issues of the prevailing text-based collaborative filtering
(TCF) techniques. From a positive perspective, TCF still has untapped potential and can further
improve with the advancement of NLP large models’ representation capacity. However, on the other
hand, even with item encoders consisting of tens of billions of parameters, re-adaptation to new
data remains necessary for optimal recommendations. Furthermore, the current state-of-the-art TCF
models do not exhibit the anticipated strong transferability, suggesting that building large foundation
recommender models may be more challenging than in the fields of NLP and computer vision.
Nonetheless, TCF with text encoders of 175 billion parameters is already a significant leap forward,
as it fundamentally challenges the dominant ID-based CF paradigm, which is considered the biggest
obstacle to developing universal “one-for-all" recommender models, although not the only one.

12QQ Browser (QB) is a feed recommendation dataset from which we extracted short video titles, similar to
items from Bili. It contains 5546 items 17809 users and 137979 interactions.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-Yeol Ahn. Can we trust the evaluation on
chatgpt? arXiv preprint arXiv:2303.12767, 2023.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation,
2023.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. Mtrec: Multi-task learning
over bert for news recommendation. In Findings of the Association for Computational Linguistics:
ACL 2022, pp. 2663–2669, 2022.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pp. 39–46, 2010.

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao
Zhang, and Jun Xu. Uncovering chatgpt’s capabilities in recommender systems. arXiv preprint
arXiv:2305.02182, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. Zero-shot recommender systems.
arXiv preprint arXiv:2105.08318, 2021.

Yu-chen Fan, Yitong Ji, Jie Zhang, and Aixin Sun. Our model achieves excellent performance on
movielens: What does it mean? arXiv preprint arXiv:2307.09985, 2023.

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, and Jiawei Zhang. Chat-
rec: Towards interactive and explainable llms-augmented recommender system. arXiv preprint
arXiv:2303.14524, 2023.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5), 2023.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong Wen. Towards
universal sequence representation learning for recommender systems. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 585–593, 2022a.

Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong Wen. Towards
universal sequence representation learning for recommender systems, 2022b.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep
structured semantic models for web search using clickthrough data. In Proceedings of the 22nd
ACM international conference on Information & Knowledge Management, pp. 2333–2338, 2013.

10

Under review as a conference paper at ICLR 2024

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi,
and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on user rating
prediction. arXiv preprint arXiv:2305.06474, 2023.

Yoon Kim. Convolutional neural networks for sentence classification. EMNLP, 2015.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

Walid Krichene and Steffen Rendle. On sampled metrics for item recommendation. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
1748–1757, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley. Text is
all you need: Learning language representations for sequential recommendation. arXiv preprint
arXiv:2305.13731, 2023a.

Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng Shang, Zhenhua Dong, Xin Jiang, and Qun Liu.
Miner: Multi-interest matching network for news recommendation. In Findings of the Association
for Computational Linguistics: ACL 2022, pp. 343–352, 2022.

Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gpt4rec: A
generative framework for personalized recommendation and user interests interpretation. arXiv
preprint arXiv:2304.03879, 2023b.

Lei Li, Yongfeng Zhang, and Li Chen. Personalized prompt learning for explainable recommendation.
ACM Transactions on Information Systems, 41(4):1–26, 2023c.

Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. Is chatgpt a good recommender? a
preliminary study. arXiv preprint arXiv:2304.10149, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013.

Yongxin Ni, Yu Cheng, Xiangyan Liu, Junchen Fu, Youhua Li, Xiangnan He, Yongfeng Zhang, and
Fajie Yuan. A content-driven micro-video recommendation dataset at scale, 2023.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

11

Under review as a conference paper at ICLR 2024

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H Keshavan, Trung Vu, Lukasz Heldt,
Lichan Hong, Yi Tay, Vinh Q Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. arXiv preprint arXiv:2305.05065, 2023.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov
chains for next-basket recommendation. In Proceedings of the 19th international conference on
World wide web, pp. 811–820, 2010.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Kyuyong Shin, Hanock Kwak, Kyung-Min Kim, Minkyu Kim, Young-Jin Park, Jisu Jeong, and
Seungjae Jung. One4all user representation for recommender systems in e-commerce. arXiv
preprint arXiv:2106.00573, 2021.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441–1450,
2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Jie Wang, Fajie Yuan, Mingyue Cheng, Joemon M Jose, Chenyun Yu, Beibei Kong, Zhijin Wang,
Bo Hu, and Zang Li. Transrec: Learning transferable recommendation from mixture-of-modality
feedback. arXiv preprint arXiv:2206.06190, 2022.

Lei Wang and Ee-Peng Lim. Zero-shot next-item recommendation using large pretrained language
models. arXiv preprint arXiv:2304.03153, 2023.

Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, and Tat-Seng Chua. Generative recommendation:
Towards next-generation recommender paradigm. arXiv preprint arXiv:2304.03516, 2023.

Chuhan Wu, Fangzhao Wu, Suyu Ge, Tao Qi, Yongfeng Huang, and Xing Xie. Neural news
recommendation with multi-head self-attention. In Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th international joint conference on natural
language processing (EMNLP-IJCNLP), pp. 6389–6394, 2019.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Empowering news recommendation with
pre-trained language models. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1652–1656, 2021.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu,
Xing Xie, Jianfeng Gao, Winnie Wu, and Ming Zhou. Mind: A large-scale dataset for news
recommendation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 3597–3606.

Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, Bhuvan Middha, Fangzhao Wu, and Xing Xie. Train-
ing large-scale news recommenders with pretrained language models in the loop. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4215–4225,
2022.

12

Under review as a conference paper at ICLR 2024

Yoonseok Yang, Kyu Seok Kim, Minsam Kim, and Juneyoung Park. Gram: Fast fine-tuning of pre-
trained language models for content-based collaborative filtering. arXiv preprint arXiv:2204.04179,
2022.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe
Zhao, Li Wei, and Ed Chi. Sampling-bias-corrected neural modeling for large corpus item
recommendations. In Proceedings of the 13th ACM Conference on Recommender Systems, pp.
269–277, 2019.

Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. A simple
convolutional generative network for next item recommendation. In Proceedings of the twelfth
ACM international conference on web search and data mining, pp. 582–590, 2019.

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni.
Where to go next for recommender systems? id-vs. modality-based recommender models revisited.
arXiv preprint arXiv:2303.13835, 2023.

Qi Zhang, Jingjie Li, Qinglin Jia, Chuyuan Wang, Jieming Zhu, Zhaowei Wang, and Xiuqiang He.
Unbert: User-news matching bert for news recommendation. In IJCAI, pp. 3356–3362, 2021a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yuhui Zhang, Hao Ding, Zeren Shui, Yifei Ma, James Zou, Anoop Deoras, and Hao Wang. Language
models as recommender systems: Evaluations and limitations. 2021b.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In Proceedings of the 29th ACM international conference on
information & knowledge management, pp. 1893–1902, 2020.

13

Under review as a conference paper at ICLR 2024

A TEXT ENCODER DETAILS

Table 6: List of Large LMs and their details

Name Model Size Parameters Architecture Source
BERT Large 340M Encoder-only https://huggingface.co/bert-large-uncased

T5Encoder XXL 5.5B Encoder-only https://huggingface.co/t5-11B

OPT

125M 125M Decoder-only https://huggingface.co/facebook/opt-125m
350M 350M Decoder-only https://huggingface.co/facebook/opt-350m
1.3B 1.3B Decoder-only https://huggingface.co/facebook/opt-1.3b
2.7B 2.7B Decoder-only https://huggingface.co/facebook/opt-2.7b
6.7B 6.7B Decoder-only https://huggingface.co/facebook/opt-6.7b
13B 13B Decoder-only https://huggingface.co/facebook/opt-13b
30B 30B Decoder-only https://huggingface.co/facebook/opt-30b
66B 66B Decoder-only https://huggingface.co/facebook/opt-66b

175B 175B Decoder-only https://github.com/
facebookresearch/metaseq/tree/
main/projects/OPT

B HYPER-PARAMETER TUNING

Before tuning hyper-parameters for TCF, we grid search IDCF on each dataset as a reference.
Specifically, we search for learning rates within the range of {1e-3, 1e-4, 1e-5, 5e-5} and hidden
dimensions from {64, 128, 256, 512, 1024} for both DSSM and SASRec; we search batch size within
{64, 128, 256, 512} for SASRec and {1024, 2048, 4096} for DSSM; we set a fixed dropout rate of
0.1, and tune the weight decay within {0.01, 0.1}; we search the number of Transformer layers in
SASRec within {1, 2, 3, 4}, and the number of attention heads within {2, 4, 8}. After determining the
optimal hyper-parameters for IDCF, we search the TCF around these optimal values with the frozen
text encoder (using the 125M variant) by the same stride. To ensure a fair comparison of the scaling
effect, we employ the same hyper-parameters for all TCF models with different sizes of frozen text
encoder (i.e., pre-extracted features). For TCF models with E2E learning of text encoders, we kept
the optimal hyper-parameters the same as those with frozen encoder, except for the learning rates. We
separately tune the learning rate, as larger text encoders typically require a smaller learning rate. The
details are given below. We utilize the AdamW optimizer (Loshchilov & Hutter, 2017) for all models.

Table 7: Optimal hyper-parameters for IDCF, including learning rate (lr), embedding size (k), batch
size (bs), the number of Transformer layers (l), the number of attention heads (h), and weight decay
(wd). The dimension of feed forward layer in Transformer block is 4× k.

Data SASRec DSSM

lr k bs l h wd lr k bs l h wd

MIND 1e-4 512 64 2 2 0.1 1e-5 256 4096 2 2 0.1
HM 1e-3 128 128 2 2 0.1 1e-4 1024 1024 2 2 0.1
Bili 1e-3 128 256 2 2 0.1 1e-3 1024 1024 2 2 0.1

Table 8: Optimal hyper-parameters for TCF with frozen text encoder.

Data SASRec DSSM

lr k bs l h wd lr k bs l h wd

MIND 1e-4 512 64 2 2 0.1 1e-5 256 4096 2 2 0.1
HM 1e-4 512 64 2 2 0.1 1e-3 1024 1024 2 2 0.1
Bili 1e-3 128 64 2 2 0.1 1e-3 512 1024 2 2 0.1

14

https://huggingface.co/bert-large-uncased
https://huggingface.co/t5-11B
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-350m
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/facebook/opt-6.7b
https://huggingface.co/facebook/opt-13b
https://huggingface.co/facebook/opt-30b
https://huggingface.co/facebook/opt-66b
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT

Under review as a conference paper at ICLR 2024

Table 9: The learning rate of item encoder for TCF with E2E learning. The search range is suggested
by the original paper of OPT.

Data SASRec DSSM

125M 1.3B 13B 66B 125M 1.3B 13B 66B

MIND 1e-4 1e-4 8e-5 3e-5 1e-4 1e-4 1e-4 1e-4
HM 1e-4 1e-4 1e-4 8e-5 1e-4 1e-4 1e-4 1e-4
Bili 1e-4 1e-4 3e-5 3e-5 1e-4 1e-4 1e-4 1e-4

C MORE RESULTS ON NDCG@10

Table 10: Warm item recommendation (NDCG@10). 20 means items < 20 interactions are removed.
TCF175B uses the pre-extracted features from the 175B LM. Only SASRec backbone is reported.

Data MIND HM Bili

#Inter. 20 50 200 20 50 200 20 50 200

IDCF 11.36 11.47 12.71 8.47 9.35 12.07 4.41 5.01 8.30
TCF175B 11.38 11.61 12.56 7.44 7.90 10.33 4.34 4.84 7.97

Table 11: Accuracy (NDCG@10) comparison of IDCF and TCF using DSSM and SASRec. FR
represents using frozen LM, while FT represents using fine-tuned LM.

Data Metric SASRec DSSM

ID TCF175B
FR TCF66B

FT ID TCF175B
FR TCF66B

FT

MIND NDCG@10 11.06 11.09 11.77 1.72 1.42 1.58
HM NDCG@10 7.76 6.91 8.20 4.19 1.08 1.22
Bili NDCG@10 3.93 3.77 4.56 1.12 1.01 1.06

Table 12: Zero-shot recommendation accuracy (NDCG@10). 175Bzero means zero-shot accuracy of
TCF with 175B LM. ‘train’ is to retrain TCF on these data.

Model Date MIND HM Bili

Word2vec 2013 7.52 4.81 1.30
BERTlarge 2018 10.45 6.01 1.83

T5XXL 2019 10.72 5.50 2.54
OPT175B 2022 11.17 6.88 3.95

15

Under review as a conference paper at ICLR 2024

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
10.0

10.4

10.8

11.2

10.53

11.17

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
5.7

6.1

6.5

6.9

5.81

6.88

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
1.9

2.6

3.3

4.0

2.41

3.85

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
0.7

1.0

1.3

1.6

0.89

1.44

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
0.9

1.0

1.1

1.2

0.98

1.08

12
5M

35
0M 1.3

B
2.7

B
6.7

B
13

B
30

B
66

B
17

5B
0.7

0.8

1.0

1.1

0.82

1.01

Datasets
MIND
HM
Bili

Models
SASRec
DSSM

Figure 5: TCF’s performance (y-axis: NDCG@10(%)) with 9 text encoders of increasing size (x-axis).
SASRec (upper three subfigures) and DSSM (bottom three subfigures) are used as the backbone.

125M 1.3B 13B 66B 175B
10.1
10.4
10.8
11.2
11.5

125M 1.3B 13B 66B 175B
5.9
6.5
7.0
7.6
8.1

125M 1.3B 13B 66B 175B
2.6
3.1
3.5
4.0
4.4

125M 1.3B 13B 66B 175B0.8
1.0
1.1
1.3
1.4
1.6

125M 1.3B 13B 66B 175B
1.0
1.0
1.1
1.2
1.3

125M 1.3B 13B 66B 175B0.8
0.9
1.0
1.0
1.1
1.2

(a). TCF using the SASRec backbone

(b). TCF using the DSSM backbone
MIND-Freeze
MIND-Finetune

HM-Freeze
HM-Finetune

Bili-Freeze
Bili-Finetune

Figure 6: TCF with retrained LM vs frozen LM (y-axis: NDCG@10(%)), where only the top two
layers are retrained. The 175B LM is not retrained due to its ultra-high computational cost.

16

Under review as a conference paper at ICLR 2024

Item Title 1 Item Title 2 Item Title T

Language Model

User Representation

Language
Model

Item Title 1

Item Title N

......

......

Recommendation
T+1

Input

Output
Dot Product

Figure 7: Architecture of GPT4Rec.

D OTHER PARADIGMS FOR LLM-BASED RECOMMENDER MODELS

This paper primarily focuses on the TCF paradigm with LLMs as item encoders. However, apart
from TCF, there are other paradigms for LLM-based recommendation models. Here, we briefly
investigate two popular approaches, namely the GPT4Rec paradigm and ChatGPT4Rec paradigm
(see next section)

The GPT4Rec (Li et al., 2023b) paradigm (as illustrated in Fig 7) utilizes LLM as the backbone
architecture rather than the item encoder. In this approach, the text of items clicked by users is
concatenated and fed into the LLM to obtain user representations. Recommendations are then made
by calculating the dot product between the user representation and the candidate item representations,
which are also represented using LLM.

We conducted experiments using LLMs with 1.3B and 125M versions. As shown in Table 13,
fine-tuning only the top-1 block resulted in significantly worse performance compared to full fine-
tuning. Even the 1.3B version LLM performed substantially worse than the 125M version when fully
fine-tuned. In fact, we have discovered that freezing the LLM or only fine-tuning the top-1 block
makes it extremely challenging to provide effective recommendations using this approach.

Furthermore, the GPT4Rec paradigm necessitates significant computational resources and GPU
memory. When dealing with longer user sequences, it is not practical to fully fine-tune a very large
LLM. This limitation helps explain why the GPT4Rec paradigm has not yet employed very large
LLMs as a backbone. Most of such paper used the LLM with a size smaller than 3B.

Furthermore, when comparing the performance of the GPT4Rec model with our TCF approach, it
becomes apparent that the new GPT4Rec paradigm significantly underperforms compared to the
classical TCF paradigm.

17

Under review as a conference paper at ICLR 2024

Table 13: Results of GPT4Rec (HR@10(%)) paradigm. Even in 80G A100, we were not able to fully
fine-tune 1.3B GPT4Rec. Note that this paradigm requires too much computation and memory when
there are long-range item interactions.

Dataset Finetune 1 block (125M) Finetune 1 block (1.3B) Finetune All (125M)
MIND 3.26 5.19 13.48

Bili 0.04 0.09 1.28

HM 0.12 0.17 2.89

125M 13B 175B1.78

2.45

3.13

3.80

1.88

2.82

3.70

125M 13B 175B0.90

1.31

1.71

2.12

1.00

1.50

2.02

Figure 8: TCF’s performance (y-axis: HR@10(%) in left and NDCG@10(%) in right) of 3 item
encoder with increased sizes (x-axis) on Bili8M. SASRec is used as the backbone. LLM is frozen.

E CHATGPT4REC

Beyond the TCF paradigm, building text recommender models by leveraging prompt strategies is
also becoming increasingly popular (Geng et al., 2023; Wang & Lim, 2023; Li et al., 2023c; Zhang
et al., 2021b). Recently, due to the tremendous success of ChatGPT, a number of preprint papers
have explored the use of prompt engineering with ChatGPT for recommender systems (Gao et al.,
2023; Liu et al., 2023; Dai et al., 2023; Wang et al., 2023). Readers may be interested in whether
prompt-based techniques on ChatGPT, referred to as ChatGPT4Rec13, can outperform the classical
TCF paradigm under the common recommendation setting. Do we still need the TCF paradigm in
the ChatGPT era?

We randomly selected 1024 users from the testing sets of MIND, HM, and Bili, and created two tasks
for ChatGPT. In the first task (Task 1 in Table 14), ChatGPT was asked to select the most preferred
item from four candidates (one ground truth and three randomly selected items), given the user’s
historical interactions as a condition. The second task (Task 2 in Table 14) was to ask ChatGPT to
rank the top-10 preferred items from 100 candidates (one ground truth and 99 randomly selected
items, excluding all historical interactions), also provided with the user’s historical interactions as
input. We begin by asking ChatGPT if it understands the request, in order to ensure the quality of the
prompts. Both the prompts and their answers in Fig 9 to Fig 12. The results are given in Table 14,
which illustrate ChatGPT’s poor performance compared to TCF in typical recommendation settings.
Similar bad results have also been reported in (Liu et al., 2023; Bao et al., 2023). Despite that, we
believe with more finely-tuned prompts, ChatGPT may have the potential for certain recommendation
scenarios. Another major drawback of ChatGPT is that it cannot generate recommendations from an

13We use gpt-3.5-turbo API in https://platform.openai.com/docs/models/gpt-4

18

Under review as a conference paper at ICLR 2024

Table 14: ChatGPT4Rec vs TCF. FR & FT means freezing and fine-tuning LM respectively.

Data Task 1-HR@1 Task 2-HR@10

Random ChatGPT TCF175B
FR TCF66B

FT Random ChatGPT TCF175B
FR TCF66B

FT

MIND 25.00 25.68 96.48 96.58 10.00 9.86 97.07 97.9
HM 25.00 29.59 88.18 90.63 10.00 12.21 83.79 90.33
Bili 25.00 24.51 77.64 81.05 10.00 8.50 70.80 73.34

item pool with millions of items due to limited memory. This limitation limits the use of ChatGPT as
a re-ranking module in existing recommendation pipelines and prevents its use for recommendations
from a huge pool of millions of closed-domain items.

In recent months, there has been a substantial increase in literature on recommender systems based
on LLM and ChatGPT. It is challenging to thoroughly investigate and compare all these approaches
within a single paper. However, we believe that these new paradigms (fine-tuning, prompt-tuning,
instruct-tuning, adapter-tuning, etc.) have the potential to bring fresh insights to the recommender
system community and may even surpass existing classical paradigms.

The primary contribution of this paper focuses on the performance of the TCF paradigm, which is
defined to employ the LLM as the item encoder.

F THE PROMPTS OF CHATGPT4REC

The output by ChatGPT in Figure 9 indicates that ChatGPT fully understands the recommendation
request. Figure 10, 11 and 12 are prompts for ChatGPT on MIND, HM, and Bili respectively.

Do you understand our request, is it clear? "Please return a list of the top 10 most relevant
video titles from the unordered candidate pool as a personalized recommendation, based on the
user's viewed history, formatted as a JSON array. Do not include any titles from the user's
viewed history in the recommendations. Please note that the candidate pool is not in any
particular order, any ranking based on the order of items in the pool should be assumed.

User viewed history:
1.MC Lucky Gun PVP! When you fire a gun in "Desert Ash" and duel with lucky cubes!
2.Minecraft Kep1er WADADA Dance Relay Open
...
12.Central Conservatory of Music professors perform famous songs! The roof beautifully.

Unordered candidate news title pool (no order should be assumed):
- Times Youth League Ma Jiaqi
- Teach you to make homemade strawberry ice cream,with delicate taste and no ice residue,
...
- Pea Shooter: There's something wrong with the zombies here today!

Top 10 news titles from candidates pool to recommend to the user as JSON array (from highest
to lowest priority, titles only)：".

Yes, I understand your request. You would like to receive a list of the top 10 most relevant
video titles as personalized recommendations for a user. The recommendations should be based
on the user's viewed history, and the titles should not include any videos that the user has
already viewed. The candidate pool is an unordered list, and any ranking based on the order
of items in the pool should be assumed.To clarify, you have provided a sample user viewed
history and an unordered candidate video pool. You are requesting the top 10 video titles
from the candidate pool to be recommended to the user. The recommendations should be returned
as a JSON array, sorted from highest to lowest priority based on relevance. Only the titles
should be included in the JSON array.Is that correct?

Figure 9: Verifying that ChatGPT understands the request.

19

Under review as a conference paper at ICLR 2024

By analyzing the user's click history as a personalized news recommender. Please recommend the
news titles they are most likely to click from the given 4 options according to their click
history.

User click history:
1. The Strangest State Taxes Across America
2. Manchester Town Committee chairman struck, killed by car

…
14. Julian Edelman On Josh Gordon: It's An Unfortunate Situation

Options:
A. Hannah Did 30-Minute Workouts at Home and Lost 117 Pounds in Less Than 12 Months
B. Tyler Lockett injury update: Seahawks WR hospitalized with 'pretty severe’ swelling in leg
C. Mom pushes her obnoxious boyfriend on family
D. What You Should Eat First Thing in the Morning to Help You Lose Weight

Provide a recommendation from options with no explanation (Format: [A-D]. “News Title"):

B. Tyler Lockett injury update: Seahawks WR hospitalized with 'pretty severe’ swelling in leg

(a) Example of Task 1 in Table 14) for MIND

Please return a list of the top 10 most relevant news titles from the unordered candidate pool
as a personalized recommendation, based on the user's click history, formatted as a JSON array.
Do not include any titles from the user's click history in the recommendations. Please note
that the candidate pool is not in any particular order, any ranking based on the order of
items in the pool should not be assumed!

User click history:
1. The Strangest State Taxes Across America
2. Manchester Town Committee chairman struck, killed by car

…
14. Julian Edelman On Josh Gordon: It's An Unfortunate Situation

Unordered candidate news title pool (no order should be assumed):
- Authorities: Dive boat owner faked invoices, photos to collect lionfish bounties
- 18-Year-Old Dead After Accidental Shooting In Fort Smith

…
- Wall Street eyes Washington next week

Top 10 news titles from candidates pool to recommend to the user as JSON array (from highest
to lowest priority, titles only):

[
"He Never Smoked a Day in His Life. At 28, He Was Diagnosed With Lung Cancer.",
"Vladimir Tarasenko to undergo surgery, out for at least 5 months",
"Another anti-Muslim group wants to hold event at Trump's Palm Beach resort, Mar-a-Lago",
"Unique friendship continues to grow 1 year after Camp Fire",
"Deadline for public input on proposed HUD rule nears",
"Former President Jimmy Carter recovering after brain surgery",
"Twitter reacts to the return of Markelle Fultz",
"Why aren't more women getting mammograms?",
"Social Security: 5 smart ways to get more benefits",
"For men with breast cancer, early detection is critical"

]

(b) Example of Task 2 in Table 14) for MIND

Figure 10: Prompt for MIND

20

Under review as a conference paper at ICLR 2024

Act as a personalized shopping recommender by analyzing a user's purchase history. Based on
their preferences, recommend the most likely product title they will click from 4 given options.

User purchase history:
1. Stripe. Light. Blue. Ladieswear. Blouse in a modal and cotton weave with a round …
2. 2. Solid. Dark. Grey. Lingeries/Tights. Microfibre thong briefs with a low waist, …

…
11. Solid. Dark. Blue. Ladieswear. Top in linen jersey with a V-neck and short sleeves.

Options:
A. All over pattern. Dusty Light. Grey. Sport. Ankle-length sports tights in fast-drying …
B. Solid. Medium Dusty. Brown. Ladies Accessories. Suede ankle boots with open toes and …
C. Solid. Light. Yellow. Lingeries/Tights. Push-up bra in lace with underwired, padded …
D. "Lace. Dusty Light. Orange. Divided. Jumper in a soft, fine-knit viscose blend with …

Provide a recommendation from options with no explanation (Format: [A-D]. “Product Title"):

A. All over pattern. Dusty Light. Grey. Sport. Ankle-length sports tights in fast-drying …

(a) Example of Task 1 in Table 14) for HM

Please return a list of the top 10 most relevant product titles from the unordered candidate
pool as a personalized recommendation, based on the user's purchase history, formatted as a
JSON array. Do not include any titles from the user's purchase history in the recommendations.
Please note that the candidate pool is not in any particular order, any ranking based on the
order of items in the pool should not be assumed!

User purchase history:
1. Stripe. Light. Blue. Ladieswear. Blouse in a modal and cotton weave with a round
2. Solid. Dark. Grey. Lingeries/Tights. Microfibre thong briefs with a low waist, …

…
11. Solid. Dark. Blue. Ladieswear. Top in linen jersey with a V-neck and short sleeves.

Unordered candidate product title pool (no order should be assumed):
- Stripe. Dark. Green. Ladieswear. Long shirt in woven fabric with a collar, buttons down
- Solid. Bright. Red. Ladieswear. Trousers in woven fabric with a high waist and an …
…
- Solid. Dark. Black. Ladies Accessories. Ankle boots in imitation leather with platform …

Top 10 news titles from candidates pool to recommend to the user as JSON array (from highest
to lowest priority, titles only):

[
"All over pattern. Dusty Light. White. Ladieswear. Blouse in an airy weave with a",
"All over pattern. Dusty Light. Pink. Baby Sizes 50-98. Two pairs of leggings in",
"Solid. Bright. Metal. Ladies Accessories. Metal studs in the shape of gift bows.",
"Solid. Light. Metal. Ladies Accessories. Narrow metal rings in various sizes and designs.",
"Stripe. Dark. Green. Ladieswear. Long shirt in woven fabric with a collar, buttons down",
"Solid. Bright. Red. Ladieswear. Trousers in woven fabric with a high waist and an",
"Solid. Medium Dusty. Brown. Children Accessories, Swimwear. Boots in imitation leather …",
"All over pattern. Medium Dusty. Brown. Menswear. Boxer shorts in a cotton weave with",
"Solid. Dusty Light. Orange. Ladies Accessories. Toe-post mules in imitation leather …",
"Solid. Dark. Khaki green. Divided. Fitted top in glossy jersey with a deep V-neck"

]

(b) Example of Task 2 in Table 14) for HM

Figure 11: Prompt for HM

21

Under review as a conference paper at ICLR 2024

Act as a personalized video recommender by analyzing a user's viewed history. Based on their
preferences, recommend the most likely video title they will click from 4 given options.

User viewed history:
1. MC Lucky Gun PVP! When you fire a gun in "Desert Ash" and duel with lucky cubes! minecraft
2. Kep1er WADADA Dance Relay Open
…
22. Central Conservatory of Music professors perform famous songs! The roof beautifully …

Options:
A. The finished product "hey mama" of the two-hour quick-arrangement of the art candidates …
B. Ultra-short-throw laser TV Epson 735F contrast ratio 2500000: 1 HD restore color visual …
C. Monster Hunter Rise" large expansion "Monster Hunter Rise: Dawn" promotional video
D. Piano x Yuri on Ice｜Yuri on ICE

Provide a recommendation from options with no explanation (Format: [A-D]. “Video Title"):

B. Ultra-short-throw laser TV Epson 735F contrast ratio 2500000: 1 HD restore color visual …

(a) Example of Task 1 in Table 14) for Bili

Please return a list of the top 10 most relevant video titles from the unordered candidate
pool as a personalized recommendation, based on the user's viewed history, formatted as a JSON
array. Do not include any titles from the user's viewed history in the recommendations. Please
note that the candidate pool is not in any particular order, any ranking based on the order of
items in the pool should not be assumed!

User viewed history:
1. MC Lucky Gun PVP! When you fire a gun in "Desert Ash" and duel with lucky cubes! minecraft
2. Kep1er WADADA Dance Relay Open

…
22. Central Conservatory of Music professors perform famous songs! The roof beautifully …

Unordered candidate video video pool (no order should be assumed):
- [Times Youth League Ma Jiaqi
- Teach you to make homemade strawberry ice cream, with delicate taste and no ice residue, …
…
- Pea Shooter: There's something wrong with the zombies here today! [These plants are a bit …

Top 10 news titles from candidates pool to recommend to the user as JSON array (from highest
to lowest priority, titles only):

[
"Teach you to make homemade strawberry ice cream, with delicate taste and no ice …",
"[Is this really a human] popping john super control mechanical dance",
"[Blade of Demon Slayer I Purgatory Kyojuro] Big Brother's 66-Second Heart Challenge",
"[High-energy Sekiro] The most handsome Iai Kendo, performed in the game!",
"[Undertale] Stronger Than You Response (ver. Frisk) - Animati",
"[Hexagonal Palace Lantern]Make it with only a few pieces of paper! I don't buy lanterns …",
"[Tutorial] Chaoshan Bamboo Oil-Paper Lantern",
"[Quansheng Dance Studio] Stunning Four ❤ \"Mango\" Chinese Jazz Choreography MV",
"[Final Fantasy XIV Spring Festival]Gu Raha Tia's Unknown Nursery Rhyme (model …",
"[Polandball]The country that has been invaded by Germany for the longest time"

]

(b) Example of Task 2 in Table 14) for Bili

Figure 12: Prompt for Bili

22

	Introduction
	Background
	Preliminary
	Experimental Setups
	Datasets, Models and Evaluation

	Q1: Has the TCF paradigm hit a performance ceiling?
	Q2: Can the 175B LLM achieve universal text representation?
	Q3: Can IDCF be easily surpassed by TCF with a 175B LLM?
	Q4: How close is the TCF paradigm to a universal recommender model?
	Conclusion
	Text Encoder details
	Hyper-parameter tuning
	More results on NDCG@10
	Other paradigms for LLM-based recommender models
	ChatGPT4Rec
	The prompts of ChatGPT4Rec

