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Abstract: In multi-agent systems, agents possess only local observations of the
environment. Communication between teammates becomes crucial for enhancing
coordination. Past research has primarily focused on encoding local information
into embedding messages which are unintelligible to humans. We find that using
these messages in agent’s policy learning leads to brittle policies when tested on
out-of-distribution initial states. We present an approach to multi-agent coordi-
nation, where each agent is equipped with the capability to integrate its (history
of) observations, actions and messages received into a Common Operating Pic-
ture (COP) and disseminate the COP. This process takes into account the dynamic
nature of the environment and the shared mission. We conducted experiments
in the StarCraft2 environment to validate our approach. Our results demonstrate
the efficacy of COP integration, and show that COP-based training leads to ro-
bust policies compared to state-of-the-art Multi-Agent Reinforcement Learning
(MARL) methods when faced with out-of-distribution initial states.
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1 Introduction

We consider multi-agent tasks where agents are required to collaborate to accomplish a shared mis-
sion. Multi-Agent Reinforcement Learning (MARL) algorithms can learn decentralized policies,
such that after training, each agent uses only its local observations. In such a setting, sharing infor-
mation with each other can lead to better decision-making. In this paper, we present a technique that
allows agents to learn to communicate in a unified representation grounded in observable quantities.

Local observations

Possible COPs:

Figure 1: The purple and blue agents observe
each other, the orange agent is beyond visual
range. This leads to multiple potential COPs.

Specifically, we equip each agent to integrate its
(history of) own observations, actions and the com-
munication messages into a Common Operating Pic-
ture (COP) [1]. In this short paper, we consider the
state of the underlying DecPOMDP as the COP. The
COP contains the position and attributes of all the
agents. This COP is interpretable by human oper-
ators, making it valuable when considering human
involvement in the decision-making process. We hy-
pothesize that it improves the policy learning for each agent and essentially reduces the problem to
single-agent RL. With better situational-awareness including non-local observations, we show that
the COP leads to out-of-distribution generalization.
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There are several challenges in integrating observations and messages to form a COP in a decen-
tralized fashion. When each agent operates in an egocentric frame of reference, it is difficult to
integrate and align local observations (Figure 1). Agents are often constrained by a limited range of
communication, introducing uncertainty into the COP-building process. This limitation can hinder
the transmission of critical information. It is impractical or unsafe to communicate raw observations.
When agents communicate encoded COPs, the decoding process may introduce errors, potentially
leading to hallucinations or incorrect interpretation of the communication.
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Figure 2: Motivating COPs in MARL.

A quick experiment reveals that inferring such a COP
will significantly benefit the QMIX [2] family of MARL
algorithms. Within the Starcraft2 multi-agent challenge
(SMAC) [3], we tested QMIX on initial states (Test1-
3) different from trained initial states. The experiment
showed brittleness of QMIX [2] (without communica-
tion) and NDQ [4] (with inter-agent communication).
When we allow QMIX to access the state (from the sim-
ulator), the learned policy is less brittle as expected. This
observation suggests that transmitting messages that help
infer the global state can improve generalization in OOD
scenarios. We present a MARL method that grounds the
learned communication in the state.

2 Method

We consider the fully cooperative MARL problem with communication, which can be modeled as
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [5] and formulated as
a tuple ⟨N ,S,A, P,Ω, O,R, γ, C⟩. The sets N = {1, ..., n} denotes the agents, S are the states, A
are the actions, Ω are all observations, and C are all possible communication messages. Each agent
i ∈ N acquires an observation oi ∈ Ω, oi = O(s, i), s ∈ S . A joint action a = ⟨a1, ..., an⟩ leads to
the next state s′ ∼ P (s′|s,a) and a shared global reward r = R(s,a).

Each agent selects action based on observation-action history τi ∈ T ≡ (Ω × A)∗ using a policy
π(ai|τi, cini ). The policy is shared across agents during training. Incoming communication for
agent i, cini = [coutj ∈ C if d(i, j) < ρ] is determined by the communication range ρ and distance
between agents d(i, j). The overall objective is to find a joint policy π(τ ,a) to maximize the
global value function Qπ

tot(τ ,a) = Es,a [
∑∞

t=0 γ
tR(s,a) | s0 = s,a0 = a,π], where τ is the joint

observation-action history and γ ∈ [0, 1) is the discount factor. We follow the Centralized Training
and Decentralized Execution (CTDE) paradigm and adopt QMIX’s [2] architecture to build our
algorithm, as illustrated in Figure 4.

−𝑣𝑣 +𝑣𝑣

+𝑚𝑚−𝑚𝑚

Figure 3: Masking in
the formation of ego-
centric COP. v is the
visual range of the
agent and m is the
map size.

We make a key assumption over prior work: agents have access to the initial
state s0. Our approach “tracks” the COP as a transformation of the initial
state informed by observation-action history and incoming communication.
We communicate two embeddings — local observation-action embeddings
and embeddings describing state evolution. The COP Formation module
involves autoencoding these two key components: (1) In the LOP (local
operating picture) thread, we encode the local observation o into an em-
bedding denoted as zlop and then decode o′. (2) In the COP thread, we
encode all communicated messages using a Self-Attention network to deal
with varying numbers of communication inputs, and obtain an embedding
zcop.

The state is tracked by GRU in hidden vector hcop using the initial state.
Subsequently, hcop is decoded to produce the state s′. Note that ŝ0i , ŝti are
egocentric states centered on agent i. We use ŝ0i to initialize the GRU. The final COP is produced by
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Figure 4: The pipeline of our method. (a) The overall architecture. (b) Information integration and
policy learning. (c) COP formation module.

combining decoded LOP o′ and s′ as ŝ′ti = ŝ′ti × 1vi + o′ti × (1− 1vi), where 1vi is a mask based
on visual range of agent i. The masking is illustrated in Figure 3.

Our CTDE training objective comprises three parts L = LRL + Llop + Lcop, where (1) LRL is
the Temporal Difference (TD)-based loss of QMIX, (2) Llop = Lmse(o

′, o) is the local observation
reconstruction loss averaged over agents and time, and (3) Lcop = Lmse(ŝ

′, ŝ) is the egocentric
state reconstruction loss averaged over agents and time. It is worth noting that COP formation can
also be trained under a fixed policy. By producing an egocentric COP, the agent does not depend on
knowledge of its own location in global frame. We produce an egocentric COP for each agent, and
by comparing COPs across agents one could quantify uncertainty across agents.

3 Experiments

Methods: We compare OOD generalization of our method against: (1) MASIA [6] predicts the
state from other agents’ observations within a QMIX method, (2) NDQ [4] and TarMAC [7] are
prior work on MARL where the learned communication is not grounded on state prediction, (3)
QMIX [2] and QMIX-based baselines QMIX wState and QMIX-Att where each agent has access to
the state and other agents’ observation, respectively. QMIX wState uses the state vector in addition
to the agents’ observation, a strong baseline for our method that assumes known initial state s0.
QMIX-Att uses an attention network to integrate others’ observations, baseline for the self-attention
architecture. Baseline architectures are shown in the appendix.

Scenarios: We evaluate these methods on three maps from the Starcraft Multi-Agent Challenge [3]
namely 1o 10b vs 1r, 1o 2r vs 4r, and 3s vs 5z. The first two maps involve an aerial agent to
track and communicate the location of an enemy agent to other friendly agents. The third map is
a micromanagement task. For each map, we created OOD initial states that are different than the
training initial states. The OOD states are shown in the appendix. The methods are trained on the
training map and evaluated in terms of win rate using episodes with the OOD initial states.

Improved Generalization: As shown in Figure 5, our method achieves significantly higher win
rates on all three maps and in 8 out of 9 OOD states tested, compared to QMIX baselines and
the prior MARL work. Compared to QMIX wState, the prior work MASIA, NDQ and TarMAC
shows brittleness. Our method performs even better than QMIX wState, possibly due to training
embeddings that produce both winning policies and accurate state prediction.
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Figure 5: Comparison of methods on OOD initial states

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Timesteps 1e7

0

20

40

60

80

100

W
in

 R
at

e 
%

1o_10b_vs_1r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Timesteps 1e7

0

20

40

60

80

100

W
in

 R
at

e 
%

1o_2r_vs_4r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Timesteps 1e7

0

20

40

60

80

100

W
in

 R
at

e 
%

3s_vs_5z
QMIX QMIX-Att QMIX-wState MASIA TarMAC NDQ Ours

Figure 6: Training curves of various methods

Sample Complexity: We observe (Figure 6) that our method has significantly lower sample
complexity and faster convergence on the maps that require communication beyond visual range
(1o 10b vs 1r and 1o 2r vs 4r). Obviously, the performance of QMIX plateaus due to lack of
communication, and MASIA and NDQ converge at a slower rate. These plots indicate that state pre-
diction as in our COP-based training is an effective bias for quickly converging to robust policies.

Compression: To understand the success of our method further, we reduce the embedding size from
32 to 16, 8, then 4 (Figure 7). At lower message length, the win rate on OOD maps is surprisingly
only a bit lower. Even at message length of 4, our method produces a significantly higher win rate
than all the comparison methods. In the Appendix, we further ablate the impact of communication
by dropping all messages in test episodes.

Evaluation of COPs: Figure 8 shows the average MSE of the produced COPs on training and OOD
maps. We find that the COPs are highly accurate on training and the first two OOD maps (an MSE
of 0.05 is roughly only 6 pixels in a field of view of 9 pixels). We see clearly that the accuracy of
the MSE (in our method) is directly correlated and predictive of win rate on OOD states. Beyond
OOD generalization, our method produces human-interpretable COPs. Figure 9 shows an example
COP where the location of the enemy is correctly predicted despite OOD initial state.
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Figure 7: Varying message size
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Figure 9: An example of recon-
structed COP (1o 10b vs 1r).
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A Additional Experiments

A.1 Related Works

Communication plays a vital role in multi-agent reinforcement Learning (MARL) systems [8], en-
abling agents to coordinate, share information, and collectively solve complex tasks. However,
there remains an open question regarding what should be communicated and how to effectively uti-
lize these communication messages. In various approaches, such as TarMAC [7], the sending agents
generate both a signature and a message derived from their local observations. Meanwhile, the re-
ceiving agents employ attention mechanisms to combine and integrate these messages based on their
relevance. Other methods, like NDQ [4], introduce information-theoretic regularizers to minimize
overall communication while maximizing the information conveyed by the messages for enhanced
coordination. Some recent works explore more interpretable communications. For instance, [9]
aims to establish a common understanding in communication symbols by autoencoding raw obser-
vations as the communication messages. Additionally, MASIA [6] adopts an approach where raw
observations are communicated and aggregated into a latent representation grounding the true state,
aiming to reconstruct the global state from this embedding.

A.2 Motivating Example in Details

Since the COP leads to better situational-awareness, we hypothesize that it also leads to improved
out-of-distribution generalizations. We illustrate this with the following example. We use the
1o 10b vs 1r map from the Starcraft game [3]. This map comprises a team consisting of 1 fly-
ing unit (Overseer) and 10 ground units (Banelings), with the collective objective of eliminating a
single enemy unit (Roach). The flying and enemy units are initialized simultaneously at one of the
four map corners. The ten ground units are distributed randomly across the map.

To introduce diversity and challenge, we have modified the initial distribution of the flying and en-
emy units and incorporated three out-of-distribution scenarios for this map, as shown in Figure 11a.
In Test 1, the setup closely resembles the training scenario. After selecting one corner to generate
the enemy unit, we randomly position the flying unit within the nearby circle corresponding to that
corner. Test 2 and Test 3 present greater challenges with notably different initial state distributions.
In Test 2, flying and enemy units are generated together across the entire map, introducing a more
complex spatial arrangement. In Test 3, the flying unit is generated inside the middle circle, consid-
erably distant from the enemy unit, creating a scenario demanding different strategic considerations.

Training Test 1 Test 2 Test 30

20

40

60

80

100

Te
st

 W
in

 R
at

e 
%

 
 (2

0,
00

0 
ep

iso
de

s)

62.60 60.40

37.90

27.80

88.94

68.54

19.29

0.32

96.60 94.20

55.80
60.20

QMIX
NDQ
QMIX-wState

Figure 10: Evaluation of MARL methods on al-
ternate laydowns for 1o 10b vs 1r.

We want to answer the following question: Will
policies exhibit improved generalization on out-
of-distribution (OOD) laydowns when agents
possess a higher degree of situational aware-
ness? We employed two strong baseline al-
gorithms to explore this question: QMIX [2]
(without communication) and NDQ [4] (with
inter-agent communication). Additionally, we
implemented QMIX-wstate, which does not
utilize communication but assumes that each
agent has access to both its own partial obser-
vation and the global state. As shown in Figure
10, our findings indicate that QMIX-wstate out-
performs the other algorithms across all OOD
laydown scenarios. This observation strongly
suggests that using the global state, i.e., COP, is advantageous for enhancing generalization in OOD
scenarios.
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A.3 Visualization of OOD Laydowns
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Random Spawn Region        Random Spawn Point

𝑅𝑅0𝑃𝑃1 𝑃𝑃2 

𝑃𝑃3 𝑃𝑃4 

: at 𝑃𝑃𝑖𝑖 , 𝑖𝑖 ∈ {1,2,3,4}

: at 𝑃𝑃,𝑃𝑃 ∈ 𝑅𝑅0

Enemy Unit (Reaper) × 4                   Flying Unit (Overseer) × 1               Ground Unit (Roach) × 2

1𝑜𝑜_2𝑟𝑟_𝑣𝑣𝑣𝑣_4𝑟𝑟

: at 𝑃𝑃,𝑃𝑃 ∈ 𝑅𝑅0

: at 𝑃𝑃,𝑃𝑃 ∈ 𝑅𝑅0

: at 𝑃𝑃,𝑃𝑃 ∈ 𝑅𝑅0

: in 𝑅𝑅0

: in 𝑅𝑅0

(b) 1o 2r vs 4r

Test 1 Test 2 Test 3Training

Random Spawn Region        Random Spawn Point

𝑃𝑃1 𝑃𝑃2 

Enemy Unit (Zealot) × 5                   Ground Unit (Stalker) × 3

3𝑣𝑣_𝑣𝑣𝑣𝑣_5𝑧𝑧

𝑃𝑃1 𝑃𝑃2 𝑃𝑃1 𝑃𝑃2 

: at 𝑃𝑃1 : at 𝑃𝑃2 : at 𝑃𝑃2 : at 𝑃𝑃1 : at 𝑃𝑃2 : at 𝑃𝑃1&𝑃𝑃3
(split randomly)

𝑃𝑃3 𝑅𝑅1 𝑅𝑅2

: in 𝑅𝑅1 : in 𝑅𝑅2

(c) 3s vs 5z

Figure 11: Illustration of modified initial distributions for 1o 10b vs 1r, 1o 2r vs 4r and 3s vs 5z.
In this figure, ”at” means that all indicated agents are generated at the same point P , while ”in”
denotes that all indicated agents are randomly generated at distinct locations within the region R.
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A.4 Pipelines of QMIX-based Baselines

Mixing network

Agent 1 Agent 𝑖𝑖
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… …
GRU

𝑜𝑜𝑖𝑖𝑡𝑡 ,𝑎𝑎𝑖𝑖𝑡𝑡−1

ℎ𝜏𝜏𝑖𝑖
𝑡𝑡  

𝑄𝑄𝑖𝑖(𝜏𝜏𝑖𝑖)

𝜖𝜖-greedy

𝑄𝑄𝑖𝑖(𝜏𝜏𝑖𝑖𝑡𝑡,𝑎𝑎𝑖𝑖𝑡𝑡)

𝑣𝑣𝑖𝑖𝑡𝑡

MLP

𝐿𝐿𝑟𝑟𝑙𝑙

(a) QMIX-wState: the agent takes sti as extra input at each time step.

Mixing network

Agent 1 Agent 𝑖𝑖

𝑣𝑣𝑡𝑡

𝑄𝑄1(𝜏𝜏1𝑡𝑡 ,𝑎𝑎1𝑡𝑡) 

𝑄𝑄𝑡𝑡𝑜𝑜𝑡𝑡

𝑄𝑄𝑖𝑖(𝜏𝜏𝑖𝑖𝑡𝑡,𝑎𝑎𝑖𝑖𝑡𝑡) 

(𝑜𝑜1𝑡𝑡, 𝑎𝑎1𝑡𝑡−1, 𝑐𝑐𝑖𝑖𝑖𝑖1
𝑡𝑡) (𝑜𝑜𝑖𝑖𝑡𝑡, 𝑎𝑎𝑖𝑖𝑡𝑡−1, 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡)

… …
GRU

𝑜𝑜𝑖𝑖𝑡𝑡 ,𝑎𝑎𝑖𝑖𝑡𝑡−1

ℎ𝜏𝜏𝑖𝑖
𝑡𝑡  

𝑄𝑄𝑖𝑖(𝜏𝜏𝑖𝑖)

𝜖𝜖-greedy

𝑄𝑄𝑖𝑖(𝜏𝜏𝑖𝑖𝑡𝑡,𝑎𝑎𝑖𝑖𝑡𝑡)

Self-Attention

𝐿𝐿𝑟𝑟𝑙𝑙

𝑜𝑜−𝑖𝑖𝑡𝑡 , 𝑎𝑎−𝑖𝑖𝑡𝑡−1

𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑞𝑞

𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖
𝑡𝑡 

𝑘𝑘𝑞𝑞𝑞𝑞𝑣𝑣
𝑣𝑣𝑎𝑎𝑣𝑣𝑞𝑞𝑞𝑞𝑣𝑣

(b) QMIX-Att: the agents receives all other agents’ observation and action as communication messages.

Figure 12: Pipelines of QMIX-based baseline algorithms.

A.5 Evaluate Message Dropping
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Figure 13: Evaluation results of our algo-
rithm with and without communication.

To assess the significance of communication, we
conducted experiments in which all messages were
disabled during test episodes. We observe from
3s vs 5z test 2 that the performance drops approx-
imately 20% in terms of win rate without commu-
nication. In other maps, the enemy is mostly sta-
tionary, so the information is primarily conveyed
through the initial state and our approach effectively
integrates this initial state information. However,
even in such scenarios, we observed that the perfor-
mance with communication was either equal to or
superior to the performance without communication.
This suggests that communication offers benefits be-
yond the initial state information, enhancing overall
system performance.
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A.6 QMIX with Varying Observation Sight Ranges

Previous works [6, 10] discussed the dilemma in sight ranges: agents with small sight ranges can
only observe limited information, making it challenging for them to engage in effective cooperation
with their teammates. Conversely, agents with extensive sight ranges are more susceptible to dis-
tractions, degrading the cooperation quality. However, they only draw conclusions from the traffic
junction and collaborative resource collection environments.

We conduct similar experiments on the 1o 10b vs 1r map by running QMIX with varying observa-
tion sight ranges. Interestingly, we have observed that a larger sight range results in quicker conver-
gence, an increased win rate, and improved generalization to out-of-distribution (OOD) scenarios.
We posit that this phenomenon is intertwined with the characteristics of the SMAC environment. In
this context, effective cooperation among allies is critical for locating and attacking enemies to se-
cure victory, and having a broader perspective on the overall situation is essential for accomplishing
these complex tasks.
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(b) Evaluation on OOD Laydowns

Figure 14: Training and evaluation results of QMIX with different sight ranges on 1o 10b vs 1r. A
larger sight range gives us faster convergence speed and a higher win rate, which indicates that the
agent can make wiser decisions if it is more aware of the global state under SMAC scenarios.

Sight Range Training Test 1 Test 2 Test 3

5 Win Rate 39.30% 38.10% 24.50% 31.80%
Return 9.74± 8.77 9.52± 8.73 7.45± 7.61 8.65± 8.30

10 Win Rate 63.00% 64.30% 45.10% 51.20%
Return 14.12± 8.42 14.40± 8.30 11.13± 8.62 12.34± 8.51

15 Win Rate 66.70% 61.10% 51.70% 35.10%
Return 15.50± 7.17 14.73± 7.30 13.38± 7.46 9.86± 8.02

20 Win Rate 72.20% 70.70% 51.90% 9.00%
Return 16.59± 6.28 16.37± 6.40 13.78± 7.00 6.53± 4.77

25 Win Rate 95.10% 91.50% 52.90% 20.70%
Return 19.74± 2.84 19.26± 3.66 13.86± 6.95 8.55± 6.32

30 Win Rate 98.90% 94.30% 67.70% 48.50%
Return 20.21± 1.32 19.62± 3.01 16.04± 6.25 13.28± 6.99

Table 1: Evaluations results on 1o 10b vs 1r over 20,000 episodes.
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A.7 Addtional Evaluation Details

Embedding
Size Training Test 1 Test 2 Test 3

4 Win Rate 99.20% 95.40% 62.30% 63.30%
Return 20.26± 1.14 19.77± 2.73 14.85± 7.22 15.21± 6.92

8 Win Rate 97.50% 96.20% 66.30% 69.10%
Return 20.04± 1.98 19.87± 2.43 15.48± 6.93 16.25± 6.23

16 Win Rate 97.00% 96.20% 60.90% 73.30%
Return 19.98± 2.19 19.89± 2.44 14.54± 7.40 16.74± 6.12

32 Win Rate 98.10% 96.70% 70.00% 70.70%
Return 20.10± 1.75 19.93± 2.27 16.11± 6.56 16.47± 6.14

Table 2: Comparison of our algorithm with different embedding sizes on 1o 10b vs 1r over 20,000
episodes.

Training Test 1 Test 2 Test 3

QMIX Win Rate 62.60% 60.40% 37.90% 27.80%
Return 13.88± 8.64 13.59± 8.63 9.78± 8.52 8.73± 7.62

QMIX-Attn Win Rate 94.80% 73.80% 35.20% 43.20%
Return 19.69± 2.93 16.23± 7.10 9.63± 8.15 11.19± 8.28

QMIX-wState Win Rate 96.60% 94.20% 55.80% 60.20%
Return 19.92± 2.39 19.60± 3.12 13.31± 8.11 14.61± 7.27

MASIA Win Rate 86.16% 68.93% 36.15% 16.46%
Return 18.56± 4.56 15.59± 7.34 9.86± 8.16 6.7798± 6.50

TarMAC Win Rate 90.95% 78.31% 31.13% 18.57%
Return 19.25± 3.81 17.14± 6.42 8.93± 7.97 6.63± 7.00

NDQ Win Rate 88.94% 68.54% 19.29% 0.32%
Return 18.93± 4.18 15.74± 7.01 6.96± 6.99 1.68± 2.22

Our Method Win Rate 98.00% 95.60% 68.60% 71.40%
Return 20.11± 1.77 19.81± 2.63 15.79± 6.90 16.42± 6.37

Table 3: Evaluation results of various algorithms on 1o 10b vs 1r over 20,000 episodes.

Training Test 1 Test 2 Test 3

QMIX Win Rate 50.60% 46.50% 23.00% 12.10%
Return 10.75± 9.58 9.86± 9.65 7.74± 7.46 7.80± 5.15

QMIX-Attn Win Rate 85.60% 46.20% 18.40% 8.40%
Return 18.27± 4.28 9.81± 9.64 7.09± 6.91 7.10± 4.68

QMIX-wState Win Rate 87.30% 78.20% 49.30% 15.50%
Return 18.51± 3.96 16.82± 6.28 13.18± 7.01 8.78± 5.30

MASIA Win Rate 82.81% 45.41% 22.21% 12.53%
Return 17.93± 4.64 9.51± 9.73 7.19± 7.51 7.39± 5.43

TarMAC Win Rate 76.28% 49.20% 20.82% 4.02%
Return 16.60± 6.34 10.56± 9.53 7.11± 7.29 5.79± 3.96

NDQ Win Rate 79.86% 43.20% 22.48% 8.95%
Return 17.56± 4.97 9.28± 9.57 7.36± 7.46 6.72± 4.95

Our Method Win Rate 87.60% 78.00% 61.20% 19.90%
Return 18.61± 3.75 16.71± 6.50 14.92± 6.70 9.61± 5.54

Table 4: Evaluation results of various algorithms on 1o 2r vs 4r over 20,000 episodes.
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Training Test 1 Test 2 Test 3

QMIX Win Rate 99.80% 63.00% 94.40% 88.90%
Return 21.17± 0.62 20.03± 4.05 21.66± 1.54 20.86± 2.50

QMIX-Attn Win Rate 99.90% 0.00% 97.30% 80.00%
Return 22.62± 0.44 0.01± 0.23 22.43± 1.30 20.94± 3.67

QMIX-wState Win Rate 100.00% 16.20% 74.80% 51.80%
Return 25.26± 1.13 18.09± 7.63 24.89± 3.57 17.39± 9.64

MASIA Win Rate 0.00% 0.00% 0.00% 0.01%
Return 9.81± 0.39 5.91± 2.08 5.28± 1.74 7.73± 1.41

TarMAC Win Rate 94.59% 0.00% 24.37% 51.22%
Return 21.67± 1.29 0.00± 0.11 18.84± 4.14 19.30± 4.60

NDQ Win Rate 94.25% 0.13% 80.53% 19.37%
Return 22.08± 1.50 6.10± 2.59 21.72± 2.89 14.99± 5.23

Our Method Win Rate 99.70% 12.90% 96.00% 80.50%
Return 20.95± 0.60 12.37± 7.28 21.22± 1.35 20.52± 3.26

Table 5: Evaluation results of various algorithms on 3s vs 5z over 20,000 episodes.

A.8 Hallucination

We also investigate the occurrence of false positives (hallucinations) at different time steps in the
”1o 10b vs 1r” scenario. By employing the disentangle loss to enforce local consistency, we have
observed a noteworthy outcome: no hallucinations transpire within the agents’ field of view. The
instances of hallucinations that do occur outside the field of view can be primarily attributed to
agents that are no longer active or are considered ”dead.” These hallucinations tend to persist for a
few time steps before fading away.
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Figure 15: False positives across timesteps. < v means within the field of view, and > v means
outside the field of view.
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