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ABSTRACT

In deep learning practice, large random initialization is commonly used. Under-
standing the behavior of gradient descent (GD) with such initialization is both
crucial and challenging. This paper focuses on a simplified matrix factorization
problem, delving into the dynamics of GD when using large initialization. Lever-
aging a novel signal-to-noise ratio argument and an inductive argument, we offer a
detailed trajectory analysis of GD from the initial point to the global minima. Our
insights indicate that even with a large initialization, GD can exhibit incremental
learning, which coincides with experimental observations.

1 INTRODUCTION

Understanding generalization and optimization in deep learning remains a pivotal and challenging
area of research (Sun, 2019; Jakubovitz et al., 2019). Despite their vast model complexity, neural
networks consistently exhibit remarkable generalization properties (Zhang et al., 2016). Conven-
tional theories, such as uniform convergence, fall short in fully explaining this exceptional success,
spurring a plethora of new research on generalization.

One influential line of research delves into the implicit bias of gradient-based methods (Vardi, 2023).
It is believed in these works that gradient-based algorithms induce an implicit bias towards solutions
that generalize well. Prominent examples include Soudry et al. (2018)’s work on logistic regression,
Arora et al. (2019)’s work on deep matrix factorization, and Ji & Telgarsky (2018)’s work on deep
linear networks, among many others.

This paper focuses on the implicit bias of gradient descent (GD) in matrix factorization. Matrix fac-
torization acts as a simplified model for neural network study, mirroring the training of a two-layer
linear network. Additionally, it is intrinsically linked to a range of engineering problems including
matrix sensing, matrix completion, dictionary learning, and phase retrieval, among others (Chi et al.,
2019). In recent years, researchers have studied various optimization facets of matrix factorization,
encompassing topics like optimization landscape (Sun et al., 2016; 2018; Zhu et al., 2021), global
convergence and the convergence rate of GD (Gunasekar et al., 2017; Ma et al., 2018; Chen et al.,
2019), and the effects of random initialization (Stöger & Soltanolkotabi, 2021). General theories in
non-convex optimization have also shed significant light on the matrix factorization problem. No-
tably, Lee et al. (2016) show that GD escapes saddle points almost surely under the strict saddle
point condition. This implies the global convergence of GD for problems whose local minima are
all global minima and whose saddle points are all strict.

Despite these advancements in matrix factorization, the theoretical understanding of GD with large
initialization remains largely unexplored. Specifically, consider the symmetric matrix factorization
problem

X∗ = argmin
X∈Rd×r

∥Σ−XX⊤∥2F, (1)

where Σ ∈ Rd×d is a positive semi-definite matrix of rank at least r. The solutions of problem (1)
are given by X∗X∗⊤ = Σr, where Σr is the best rank r approximation of Σ. Finding such X∗

poses a non-convex optimization challenge, and much research has been undertaken to understand
GD’s behavior in solving this problem or its variants. For instance, Zhu et al. (2021) demonstrate
that problem (1) has no spurious local minima, possesses only strict saddle points, and satisfies a
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local regularity condition. Such analysis implies that GD converges to the global minima almost
surely, and the convergence is at a linear rate if initialized in a local region surrounding the global
minima. The global minima are unknown in practice, so researchers also examine GD with inaccu-
rate or random initialization. Stöger & Soltanolkotabi (2021) show that if using a sufficiently small
initialization, then GD behaves like a spectral method in early iterations. Based on this, the authors
establish the linear global convergence rate of GD with small initialization. Furthermore, using a
similar argument, Jin et al. (2023) demonstrate an incremental learning phenomenon of GD with
small initialization; Eigenvectors associated with larger eigenvalues are learned first. GD with small
initialization has also been studied in other works such as Ma et al. (2022); Soltanolkotabi et al.
(2023) and related references. Nevertheless, the behavior of GD when initialized with large values
remains less understood.

Here we refer to X0 = ϖN0 as large initialization if ϖ is a positive constant independent of d and
N0’s entries are independently distributed as N (0, 1

d ). Correspondingly, small initialization refers
to the case where ϖ tends to zero as d tends to infinity. Notably, when d tends to infinity, the norm
∥X0∥ converges to a positive constant (or zero) for large (or small) initialization. Existing literature
using small initialization typically assumes ϖ be of order d−ι(κ), where κ > 1 is the conditional
number and ι(·) is an increasing function with ι(∞) = ∞. Such small initialization, despite the solid
theories, is seldom adopted in practice. For example, in deep learning, Lecun initialization (LeCun
et al., 2002), Xavier initialization (Glorot & Bengio, 2010), Kaiming initialization (He et al., 2016),
and many other initialization strategies all use large random initialization, i.e., ϖ is a constant.
Hence, despite the challenges, examining the properties of GD with large initialization is still of
great importance.

This paper explores the behaviors of GD with large initialization when addressing problem (1). By
using novel signal-to-noise (SNR) and inductive arguments, we offer a comprehensive analysis of
the GD trajectory starting from the initial point to the global minima. We show that GD with large
initialization may still exhibit an incremental learning phenomenon (Jin et al., 2023; Gissin et al.,
2019; Li et al., 2020). Our result also implies the fast global convergence of GD under certain
transition assumptions. It is worth noting that the verification of the transition assumptions remains
a problem. For convenience, we informally summarize our results below.

Theorem 1 (Informal) Suppose Σ is a positive semi-definite matrix with leading r+1 eigenvalues
strictly decreasing. Let Xt be the GD sequence for problem (1) with X0 = ϖN0, where ϖ is a
positive constant independent of d and N0 ∈ Rd×r has independent N (0, 1

d ) entries. Then

• the GD sequence converges to the global minima almost surely (Lee et al., 2016; Zhu et al., 2021);

• a comprehensive trajectory analysis of GD is given, indicating that eigenvectors associated with
larger eigenvalues are learned first;

• under an unverified transition assumption, GD achieves ϵ-accuracy in O(log( 1ϵ )+ log(d)) steps.

To illustrate our results more clearly, we provide a simple but representative experiment on rank-two
matrix approximation. The parameters are set as follows: d = 4000, r = 2, and Σ = diag(1, 0.5, e),
where e ∈ Rd−r is an arithmetic sequence transitioning from 0.3 down to 0. Let X0 = 0.5N0 with
the entries of N0 independently drawn from N (0, 1

d ). We compute the GD sequence Xt with a step
size of 0.1 and evaluate the errors ∥Σr −XtX

⊤
t ∥F, where Σr = diag(1, 0.5, 0, . . . , 0) is the best

rank-r matrix approximation to Σ. In Figure 1, we plot the error curve, highlight several noteworthy
points on the curve, and depict the heat maps of the first three rows and columns of XtX

⊤
t at these

steps. Observations reveal that GD exhibits an incremental learning phenomenon and the error curve
has two types of shapes: flat and steep.

To interpret the error curve displayed in Figure 1, we shall analyze the first r rows of Xt one by one.
In particular, we will study the dynamics of the quantities σ1(uk,t) and σ1(uk,tK

⊤
k,t), where uk,t

is the k-th row of Xt and Kk,t is the (k + 1)-to-d-th rows of Xt. These quantities are associated
with the diagonal and off-diagonal elements in the heat map of XtX

⊤
t . Hence, one can correspond

our mathematical analysis with the dynamics of the heat maps displayed in Figure 1. Notably,
our analysis on the SNR σ2

1(uk,t)/σ1(uk,tKk,t) demonstrates that the off-diagonal elements shall
decrease in a geometric rate, once the signal strength σ2

1(uk,t) reaches a certain level. This motivates
us to employ an inductive argument to analyze the whole convergence trajectory.
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Figure 1: Plot 1 shows the errors ∥Σr −XtX
⊤
t ∥F over iterations. Plots 2-5 show the heat maps of

the top three rows and columns of XtX
⊤
t at iterations t = 0, 37, 80, 140, and 300, corresponding to

the red points in Plot 1.

The rest of this paper proceeds as follows. Section 2 reviews the usage of SNR analysis for rank-one
matrix approximation. Section 3 uses the SNR analysis to prove the local linear convergence of GD
in general rank problems. In Section 4, we examine the random initialization. Specifically, Section
4.1 reviews small initialization and Section 4.2 considers large initialization and presents our main
theorem. In Section 5, we provide a sketch of proof. Concluding discussions are given in Section 6
and proofs are provided in the Appendix.

2 SNR ANALYSIS FOR RANK-ONE MATRIX APPROXIMATION

The rank-one matrix approximation is well-studied. Chen et al. (2019) demonstrated that GD with
large random initialization exhibits linear convergence to the global minima, leveraging a SNR argu-
ment. Specifically, consider problem (1) with r = 1 and assume1 Σ = diag(λ1, . . . , λd) is diagonal
with decreasing diagonal elements and λ1 > λ2. Let the initial point x0 ∈ Rd be a vector such
that the first entry is non-zero and the norm ∥x0∥ is smaller than 2λ1. Then xtx

⊤
t converges to

diag(1, 0, . . . , 0) fast, where xt is given by the GD update rule

xt = xt−1 + η(Σ− xt−1x
⊤
t−1)xt−1, (2)

and η is the learning rate. In their analysis, Chen et al. (2019) first decompose xt as xt = (at, bt)
⊤

with at ∈ R and bt ∈ Rd−1. Then the GD rule can be rewritten as

at = at−1 + ηλ1at−1 − η(a2t−1 + ∥bt−1∥2)at−1, (3)

bt = bt−1 + ηΣresbt−1 − η(a2t−1 + ∥bt−1∥2)bt−1, (4)

where Σres = diag(λ2, . . . , λd). Let αt = |at| and βt = ∥bt∥ and assume ηλ1 is smaller than some
constant, say 1

12 . Then it is direct to derive that

αt = (1 + ηλ1 − ηα2
t−1 − ηβ2

t−1)αt−1, (5)

βt ≤ (1 + ηλ2 − ηα2
t−1 − ηβ2

t−1)βt−1. (6)

Dividing (6) by (5), we can show that

βt

αt
≤

1 + ηλ2 − ηα2
t−1 − ηβ2

t−1

1 + ηλ1 − ηα2
t−1 − ηβ2

t−1

· βt−1

αt−1
≤ (1− η∆

3
) · βt−1

αt−1
, (7)

1There is no loss of generality to assume that Σ is diagonal because GD analysis is invariant to rotations.
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where ∆ = λ1 − λ2 is the eigengap and the second inequality uses that

h(s) =
1− η∆/2 + s

1 + η∆/2 + s
≤ h(

1

2
) ≤ 1− η∆

3
, ∀s ∈ [−1

2
,
1

2
]. (8)

Inequality (7) states that the ratio βt

αt
will decay to zero geometrically fast. Using this, Chen et al.

(2019) establish that βt and αt converge fast to zero and λ1 respectively. Our paper refers to this
argument as a SNR analysis, and we refer to αt as the signal strength and βt as the noise strength.

3 BENIGN INITIALIZATION

Generalizing the SNR argument to general rank problems poses additional challenges. For instance,
the global minima cannot be characterized by the two real numbers αt and βt. Even if we find other
effective quantities representing the GD sequence, giving desired dynamic analysis as in (5) and (6)
remains challenging. In essence, this issue originates from the heterogeneity in different dimensions
or mathematically the non-commutativity of matrix multiplication.

One way to tackle the issue is to use a benign initialization with a high initial SNR. This allows us to
extend the SNR analysis to general rank problems and establish the local linear convergence of GD.
Consider problem (1) with general r and assume Σ = diag(λ1, . . . , λd) is diagonal with decreasing
diagonal elements and ∆ := λr − λr+1 > 0. Let X0 ∈ Rd×r be an initial point and

Xt = Xt−1 + η(Σ−Xt−1X
⊤
t−1)Xt−1, (9)

where η is the learning rate. For the SNR argument, we decompose Xt as (U⊤
t ,J⊤

t )⊤, where Ut is
the first r rows of Xt and Jt is the rest d− r rows of Xt. In analogy to the rank-one case, we may
think of Ut as the signal and Jt as the noise, because at the global minima U is non-zero while J
is zero. By adopting a benign initialization, we mean σr(U0) is large while σ1(J0) is small. More
precisely, we define the following set

R = {X =

(
U
J

)
| σ2

1(X) ≤ 2λ1, σ
2
r(U) ≥ ∆/4, σ2

1(J) ≤ λr −∆/2}. (10)

The set R contains all the global minima of problem (1). Moreover, the SNR σ2
r(U)/σ2

1(J) is larger
than the constant ∆/(4λ1) for any X in R. If we initialize GD within R, then the sequence Xt

will remain in R and the SNR will grow fast to infinity. Consequently, we can establish the local
linear convergence of GD as in Theorem 2. Theorem 2 is useful for examining random initialization.
Specifically, when X0 /∈ R, the convergence of GD consists of two stages, the first stage when the
sequence enters R and the final convergence stage. Only the first stage needs to be further analyzed.

Theorem 2 Suppose η ≤ ∆2

36λ3
1

, X0 ∈ R, and Xt is given by (9). Then, for small ϵ > 0, we have

∥Σr −XtX
⊤
t ∥ ≤ ϵ in O( 6

η∆ ln
200rλ3

1

η∆2ϵ ) iterations, where Σr = diag(λ1, . . . , λr, 0, . . . , 0).

Remark 3 While our paper aims to understand large initialization in later sections, Theorem 2 is
still an additional contribution of the paper. Prior works on local linear convergence either study
the rank-one case (Chen et al., 2019) or require Σ to be exact of rank r (Zhu et al., 2021). Their
arguments cannot be directly used to prove Theorem 2. In contrast, by employing an SNR argument,
we can establish the local linear convergence for general cases. Our SNR analysis relies on a lower
bound for the signal σ2

r(Ut+1) and an upper bound for the noise σ2
1(Jt+1). These two bounds need

to be related so that the ratio of SNRt+1 by SNRt can be analyzed. This is the challenging part of the
SNR analysis. Finally, we note that although we assume Σ is positive semi-definite for simplicity,
our proof can be easily extended to general symmetric Σ. Also, it can be modified to establish the
local linear convergence of GD for matrix sensing (Zhu et al., 2021).

4 RANDOM INITIALIZATION

Benign initialization has limited practical utility as it requires oracle information. This is particularly
true in matrix sensing scenarios when Σ is only observed through random measurements (Stöger &
Soltanolkotabi, 2021). Hence, researchers have begun to investigate random initialization. Note that
by Theorem 2, the convergence analysis of GD reduces to studying how long it takes for the sequence
to enter R. Once the sequence enters R, it will converge to the global minimum exponentially fast.
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4.1 SMALL RANDOM INITIALIZATION

Existing works (except for the rank-one case) all consider the scenario of small random initialization.
They assume X0 = ϖN0, where N0 ∈ Rd×r has independent N (0, 1

d ) entries and ϖ is very small.
By the concentration results, the norm ∥X0∥ is of order O(ϖ). When ϖ is sufficiently small, the
higher-order term X·X

⊤
· X· in (9) becomes negligible in the early stage. Consequently, in the early

stage, the GD iteration behaves like a spectral method (or a power method):
Xt ≈ Xt−1 + ηΣXt−1. (11)

The eigenvectors associated with larger eigenvalues will be learned faster. Using the same U ,J in
Section 3, we know σr(Ut+1)/σr(Ut) is greater than σ1(Jt+1)/σ1(Jt) for small t, meaning that the
signal strength increases faster than the noise strength. As long as we pick a sufficiently small ϖ, we
can show that after O(log(d)) rounds, σ2

r(Ut) will rise above ∆/4 while σ1(Jt) remains negligible.
This implies that the sequence Xt will enter the region R quickly, and combined with a local linear
convergence result, Stöger & Soltanolkotabi (2021) demonstrate the linear global convergence of
GD. In addition, Jin et al. (2023) reveal the incremental learning behavior of GD with a small ϖ.

These work typically require ϖ = d−ι(κ) for some positive, increasing function ι(·), where κ =
λ1/∆ ≥ 1 is the conditional number. For instance, Stöger & Soltanolkotabi (2021) require

ϖ ≲ min{d−1/2, d−3κ2

}. (12)
Jin et al. (2023) require a even smaller ϖ. Such ϖ decays to zero fast when d increase or κ increases.

4.2 LARGE RANDOM INITIALIZATION

In sharp contrast, practitioners often use large initialization with X0 = ϖN0, where ϖ is a constant
independent of d. For this case, the arguments in Section 3 or Section 4.1 are insufficient for
building effective theories. Specifically, the initial SNR is too low to use the arguments in Section 3.
Also, the initial magnitude ∥X0∥ is high, rendering the arguments in Section 4.1 unfeasible. To
understand large initialization, we will give a delicate dynamic analysis, corresponding to Figure 1
and related discussions in the introduction.

To proceed, we first introduce some notations. Consider problem (1) with rank r and assume without
loss of generality that Σ = diag(λ1, . . . , λd) is diagonal with decreasing diagonal elements. We
assume the leading r + 1 eigenvalues of Σ are strictly decreasing, meaning that the eigengap ∆ =
mini≤r{λi−λi+1} is positive. Let Xt be the GD sequence from (9) and X0 be the initial point. We
define uk,t as the k-th row of Xt and Kk,t as the (k + 1)-to-d-th rows of Xt. Their relationships
to Figure 1 have been discussed in the introduction. Finally, to present our main theorem, we define
the following quantities related to the GD trajectory.

• First, we define tinit,1 = min{t ≥ 0 | Xt ∈ S} as the first time when Xt enters S, where

S = {X ∈ Rd×r | σ2
1(X) ≤ 2λ1, σ

2
1(Kk) ≤ λk − 3∆

4
,∀k ≤ r}, (13)

and Kk stands for the (k+1)-to-d rows of X . Here S represents a set where the norms of X and
Kk are suitably upper bounded.

• Next, we define two constants t∗ and t♯ as follows:

t∗ = log

(
∆2

8λ3
1 + 144r2λ1

)
/ log(1− η∆/6), and t♯ = log

(
∆

4r

)
/ log(1− η∆/6). (14)

• Finally, we define the following quantities successively until Tur .
◦ Tuk

= min{t ≥ 0 | σ2
1(uk,t+tinit,k) ≥ ∆/2}. It characterizes the time when the k-th signal

strength surpasses ∆/2 since tinit,k.
◦ tk = tinit,k + Tuk

+ t∗.
◦ t∗k is defined as the smallest integer such that

r(1− η∆/6)t
∗
k ≤

√
∆

8
min{σ1(uk+1,tk+t∗k

),

√
∆

2
}. (15)

t∗k characterizes the time when the (k + 1)-th signal strength is no longer smaller than a
geometrically decaying sequence.
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◦ tinit,k+1 = tk + t∗k.

These quantities represent the durations of various stages of the GD convergence. In Theorem 6, we
provide upper bounds for these quantities and characterize the behavior of GD in specific time. Our
result is deterministic and applicable to the case of large random initialization.

Assumption 4 Assume t∗k < ∞ for all k ≤ r.

Assumption 5 (Transition Assumption) Assume t∗k = O(log(d)) for all k ≤ r.

Theorem 6 Suppose η ≤ ∆
100λ2

1
, σ1(X0) ≤ 1√

3η
, Xt is the GD sequence, and Assumption 4 holds.

Then we have

1. tinit,1 = O( 1
ηλ1

log 1
6ηλ1

) +O( 1
η∆ log 8λ1

∆ ), which is a small constant. Moreover, Xt ∈ S
for all t ≥ tinit,1. This property holds even without Assumption 4.

2. For all k ≤ r, tk and tinit,k are finite. In addition, Tuk
= O( 4

η∆ log ∆
2σ2

1(uk,tinit,k
)
).

3. For all k ≤ r and t ≥ tinit,k + Tuk
, we have σ2

1(uk,t) ≥ ∆
2 .

4. For all k < r and t ≥ tk, we have σ1(uk,tK
⊤
k,t) ≤ (1− η∆/6)t−tk and

|pk,t| ≤ (2λ1 +
24r

η∆
) · (1− η∆/8)t−tk , (16)

where pk,t = λk − σ2
1(uk,t). This demonstrates the incremental learning of GD.

5. For all t ≥ tR := tinit,r + Tur
+ t∗ + t♯, we have Xt ∈ R.

6. GD achieves ϵ-accuracy, i.e., ∥Σr−XtX
⊤
t ∥F ≤ ϵ, after tR+O( 6

η∆ ln
200rλ3

1

η∆2ϵ ) iterations.

7. If Assumption 5 holds, then GD achieves ϵ-accuracy in O(log(d) + log(1/ϵ)) iterations.

Let us discuss about the assumptions and conclusions. First, we assume σ1(X0) ≤ 1/
√
3η. It holds

with high probability when we use X0 = ϖN0 with ϖ ≲ 1√
η and the same N0 as before. This

order 1√
η is optimal from the above, because the GD sequence may simply diverge when σ1(X0) is

too large. For instance, consider Σ = 0 and ησ2
1(X0) ≥ 3. By an inductive argument and the GD

iteration (9), we can show that

σ1(Xt+1) ≥ (ησ2
1(Xt)− 1) · σ1(Xt) > 2σ1(Xt), ∀t.

This implies that GD diverges in this scenario and justifies that our condition for ϖ is rate optimal.
The only possible improvement is a constant factor. In addition, we compare our requirements with
(12) in the scenario of small initialization. Specifically, condition (12) decays to zero exponentially
fast when d increases, while our condition is independent of d.

Next, we emphasize that Assumption 4 almost surely holds if we use random initialization. This
follows from the theory of Lee et al. (2016) and the landscape analysis of Zhu et al. (2021). Zhu
et al. (2021) show that problem (1) only has strict saddle points and all local minima are global
ones. Lee et al. (2016) prove that GD almost surely avoids strict saddle points. Combining these two
results, we know GD converges to the global minimum for problem (1). This implies Assumption 4
because if it does not hold for some k, then σ1(uk,t) will converge to zero and the GD sequence will
converge to a saddle point. This case almost never happens. This proves the following proposition.

Proposition 7 Suppose η ≤ ∆
100λ2

1
. Then the following set

failure set := {X ∈ Rd×r | σ1(X) ≤ 1√
3η

,Xt is the GD sequence initialized with X,

and Assumption 4 does not hold for this sequence Xt.}
has measure zero.
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Third, Assumption 5 is a more advanced assumption because it upper bounds the quantity t∗k. We
call it a transition assumption because it allows us to transit the analysis from the k-th row to the
(k + 1)-th row and it assumes the transition time is O(log(d)). With this assumption, we could
obtain the seventh property in Theorem 6, that is, the fast global convergence of GD. Nevertheless,
it is challenging to verify this assumption. In Section 5.1.3, we will give more discussions.

Fortunately, without Assumption 5, the first six properties in Theorem 6 still hold. These properties
provide meaningful characterizations of the convergence of GD. Specifically, all quantities beyond
t∗k are suitable upper bounded either by a constant or a logarithmic term. These bounds explain
the fast convergence of GD in Figure 1 (to a certain degree). Moreover, the fourth property is
noteworthy. It demonstrates that the k-th signal strength will converge linearly to the target value
since the tk-th step. This is independent of t∗j for all j ≥ k. In other words, the k-th signal will
converge fast to the target value independent of the behavior of the latter ((k + 1)-to-r-th) signals.
This explains the incremental learning phenomenon exhibited by GD.

5 PROOF SKETCH

In this section, we will provide a sketch of proof. We will start with rank-two matrix approximation
and then extend it to general rank problems. The only difference between rank-two problem and
general rank problems lies in how many rounds of inductive arguments are needed.

5.1 RANK-TWO MATRIX APPROXIMATION

To start with, we first show that when σ1(X0) ≤ 1√
3η

, the GD sequence will quickly enter the region
S defined in (13), and the sequence will remain in S afterwards. This proves the first property in
Theorem 6. Recall that tinit,1 = min{t ≥ 0 | Xt ∈ S} and Xt is the GD sequence given by (9).

Lemma 8 Suppose η ≤ 1
12λ1

and σ1(X0) ≤ 1√
3η

. Then Xt ∈ S for all t ≥ tinit,1, where

tinit,1 = O
(

1

ηλ1
log

1

6ηλ1

)
+O

(
1

η∆
log

8λ1

∆

)
.

Lemma 8 demonstrates that S is an absorbing set of GD, meaning that the sequence will remain in
the set after its first entrance. This enables us to use the property Xt ∈ S in subsequent analysis.

5.1.1 σ2
1(u1,t) INCREASES ABOVE ∆/2

Our next step is to analyze the first row u1,t of Xt. This is in sharp contrast to the results in Section 3
and 4.1, where the first r rows of Xt are analyzed together. Although using large initialization makes
previous analysis infeasible, it is still manageable to examine only the first row of Xt. In Lemma 9,
we show that σ2

1(u1,t) increases fast above ∆/2, and it remains larger than that afterwards. This
proves the second and third properties in Theorem 6 for k = 1. In addition, this aligns with the first
stage of the GD dynamics as displayed in Figure 1.

Lemma 9 Suppose η ≤ 1
12λ1

, σ1(X0) ≤ 1√
3η

, and σ1(u1,tinit,1) > 0. Then σ2
1(u1,t) ≥ ∆

2 for all
t ≥ tinit,1 + Tu1

, where

Tu1
= O

(
4

η∆
log

∆

2σ2
1(u1,tinit,1)

)
.

5.1.2 SNR CONVERGES LINEARLY TO INFINITY AND σ2
1(u1,t) CONVERGES

Once σ2
1(u1,t) exceeds ∆

2 , then by a technique similar to (7), we can show that the SNR σ2
1(u1,t)

σ1(u1,tK⊤
1,t)

converges linearly to infinity, where K1,t is the 2-to-d-th rows of Xt. Since σ2
1(u1,t) belong to the

interval [∆/2, 2λ1] by Lemma 8 and 9, we can show that the noise strength σ1(u1,tK
⊤
1,t) diminishes

to zero fast. In particular, when u1,tK
⊤
1,t = 0, the dynamics of u1,t becomes

u1,t+1 = u1,t + ηλ1u1,t − ησ2
1(u1,t)u1,t.

7
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This update rule implies the fast convergence of σ2
1(u1,t) to λ1. Generally, when the term u1,tK

⊤
1,t

is close to zero, the dynamics of u1,t will mimic the above iteration. Following this, we can establish
the fast convergence of σ2

1(u1,t) to λ1. These results are established in Lemma 10. This relates to
property 4 in Theorem 6, and elucidates the second stage of the GD dynamics as depicted in Figure 1.

Lemma 10 Suppose η ≤ ∆
100λ2

1
, σ1(X0) ≤ 1√

3η
, and σ1(u1,0) > 0. Then for all t ≥ t1, we have

σ1(u1,tK
⊤
1,t) ≤ (1− η∆/6)t−t1

where t1 = tinit,1 + Tu1
+ t∗, Tu1

is given in Lemma 9, and t∗ is a constant defined in (14). In
addition, let p1,t = λ1 − σ2

1(u1,t) be the error term. Then for all t ≥ t1, we have

|p1,t| ≤ (2λ1 + 24
24r

η∆
) · (1− η∆/8)t−t1 .

5.1.3 TRANSITION ASSUMPTION AND INDUCTION

Lemma 10 shows that the magnitude σ1(u1,tK
⊤
1,t) diminishes linearly to zero. This motivates us to

decouple the original matrix factorization problem into two sub-problems. For the first sub-problem,
we study the convergence of the first row of Xt, which has been presented in previous section. In the
second sub-problem, we examine K1,t, the 2-to-d-th rows of Xt. Such decoupling is exact when
u1,tK

⊤
1,t = 0; under this condition, the update rule of K1,t becomes

K1,t = K1,t−1 + η(Γ1 −K1,t−1K
⊤
1,t−1)K1,t−1,

where Γ1 = diag(λ2, . . . , λd). This is congruent with the GD update rule of Xt as in (9), and hence
an inductive argument could be applied.

Generally, when the noise term σ1(u1,tK
⊤
1,t) only decreases fast but does not reach zero, one should

check whether u1,tK
⊤
1,t is negligible (in the analysis of u2,t). Specifically, if σ1(u2,t) is not always

decreasing at the same speed as σ1(u1,tK
⊤
1,t), then we can apply the above inductive argument. To

formulate this intuition, we introduce a variable t∗1. It is defined as the smallest integer such that

r(1− η∆/6)t
∗
1 ≤

√
∆

8
min{σ1(u2,t1+t∗1

),

√
∆

2
}, (17)

where t1 is defined in Lemma 10. Recall that for all t ≥ t1, σ1(u1,tK
⊤
1,t) ≤ (1 − η∆/6)t−t1 .

Hence, (17) essentially compares the second signal strength σ1(u2,·) with an upper bound on the
noise term σ1(u1,tK

⊤
1,t). It turns out that the noise term is negligible when (17) holds. In particular,

a similar result as Lemma 9 can be established for the second signal σ1(u2,·), leading to Lemma 11.
It is also related to the second and third property in Theorem 6 (for k = 2).

Lemma 11 Suppose conditions of Lemma 10 holds. Let tinit,2 = t1 + t∗1, where t1 is given by
Lemma 10 and t∗1 is given by (17). Suppose t∗1 < ∞. Then σ2

1(u2,t) ≥ ∆
2 for all t ≥ tinit,2 + Tu2

,
where

Tu2 = O
(

4

η∆
log

∆

2σ2
1(u2,tinit,2)

)
.

In Lemma 11, we assume t∗1 < ∞, which relates to Assumption 4. If we assume t∗1 = O(log(d)) as
in Assumption 5, then we can show that Tu2

= O(log(d)) as well. While we have not theoretically
characterized the quantity t∗1, our theories are still insightful in the following sense.

• First, the term σ1(u1,tK
⊤
1,t) is shown to decay to zero linearly fast while σ2

1(u2,t) does not seem
to possess similar theories. Hence, we may expect that the time point t∗1 is not large.

• Second, t∗1 characterizes the time when the GD sequence escapes from the saddle points2. This
time is inevitable for the GD sequence converging to the global minima. Even we do not provide
an upper bound on t∗1, we know the convergence behavior of GD during this time. Notably, during
this time, both σ1(u1,tK

⊤
1,t) and σ2

1(u2,t) converge to zero fast.

2Any stationary point with u2 = 0 is a saddle point. Hence, if the GD sequence Xt converges with t∗1 = ∞,
then it must converge to a saddle point.
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• Thirdly, during the time t1-(t1+t∗1), while σ2
1(u2,t) converges to zero fast, the first signal σ2

1(u1,t)
still converges to λ1, as shown in Lemma 10. This means the convergence of the first signal is not
affected by the behaviors of the rest signals, which supports the incremental learning phenomenon
– leading signals first converge even when the rest are stuck by saddle points.

• Finally, the time t1 to t1+t∗1 aligns with the third stage of the GD dynamics as displayed in Figure
1. The experiment shows that the time t∗1 is not too long.

Despite these arguments, there is still a need to examine the duration t∗1 in the future research, which
might involve investigating specific initialization mechanisms.

5.1.4 FINAL CONVERGENCE

Since r = 2, the analysis of previous three stages implies that both the first signal strengths are
larger than ∆/2, and the related noise components are geometrically decaying. A simple verification
shows that the GD sequence Xt will quickly enter the region R, which is defined in (10). Then by
the local linear convergence of GD in Theorem 2, we shall complete the characterization of the GD
sequence’s convergence to the global minima. This final stage aligns with the fourth stage of the GD
dynamics as illustrated in Figure 1.

5.2 GENERAL RANK MATRIX APPROXIMATION

It is direct to extend rank-two matrix approximation to general rank case. The key point is to repeat
the inductive arguments for (r− 1) rather than one times. Similar to the rank-two case, we will now
successively show that σ2

1(uk,t) surpasses ∆/2 and σ1(uk,tK
⊤
k,t) diminishes linearly to zero for all

k ≤ r. Moreover, we will show that σ2
1(uk,t) converges to λk after certain iterations. Once the

first r rows of Xt are all analyzed, we can show that the sequence Xt quickly enters the region R
defined in (10). By invoking the local linear convergence theorem, we will conclude the proof.

Our analysis consistently uses the SNR argument, where the choices of SNRs vary across different
contexts. Specifically,

• When we analyze the k-th signal strength in Theorem 6, we will analyze the SNR σ2
1(uk,t)

σ1(uk,tK⊤
k,t)

.

This will prove both the diminishing of σ1(uk,tK
⊤
k,t) and the convergence of σ2

1(uk,t) to λk.

• When we analyze the local linear convergence in Theorem 2, we will take the SNR as σ2
r(Ut)

σ2
1(Jt)

,
where U ,J are defined in Section 3. Such analysis will prove the linear convergence of J to zero.

6 CONCLUDING REMARKS

This paper presents a comprehensive analysis of the trajectory of GD in addressing matrix factor-
ization issues, emphasizing particularly on instances with large initialization. The analysis employs
both a SNR argument and an induction argument to bolster the investigation’s depth and insight.
Our finding is that even with large initialization, GD may still exhibit an incremental learning phe-
nomenon. Also, the main challenging convergence issue is to escape from the saddle points. We
hope our findings can inspire other researchers in related fields.

There are several limitations within this paper, bringing future research opportunities.

• First, we do not upper bound the time t∗k defined in (14). Hence, it is of interest to give an effective
upper bound. Also, one may examine this point to see if negative results can be established.

• Second, our paper requires a strictly decreasing top eigenvalues. Extending to more general ma-
trices may need additional studies.

• Third, our analysis focuses on the simplest matrix factorization setting. It is intriguing to study
similar results in other settings, such as matrix sensing, where Σ is only accessible via linear mea-
surements. Our delicate dynamic analysis is sensitive to the noise introduced by the measurement
mechanism. Hence, new theoretical tools are needed.

• Fourth, it is interesting to examine GD in solving deep matrix factorization. It is unknown how
large initialization affects the GD trajectory in that case.
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