A-STAR: Toward enhancing LLM’s content-aware capability for table
reasoning

Anonymous ACL submission

Abstract

Current methods for table reasoning with
LLMs can be broadly categorized into two
distinct approaches: text reasoning and code
generation, which leverage natural language
processing and programming paradigms, re-
spectively. The former is subject to table’s
scale for the context length limit of LLMs;
the latter incurs structural bias due to the lack
of awareness of table data. This paper pro-
poses A-STAR, a table reasoning architecture
that enhances LLM’s table content-aware ca-
pability at any scale. Considering the vari-
ous distributions of records related to various
questions in the original table, a decompose-
recombine algorithm is introduced to obtain a
refined table by decomposing the original ta-
ble into sub-tables and recombining the records
related to question extracted from them. Ac-
cording to the characteristics of these tables,
an adaptive strategy will be adopted to select
different solvers to generate multiple candi-
date answers and assign priorities to them. Fi-
nally, a semantic-based voting mechanism is
designed to fuse these answers to obtain the
final response. The experiment shows that
A-STAR has achieved state-of-the-art perfor-
mance in both table-based fact verification and
question answering tasks. Our code is available
at https://anonymous.4open.science/r/A-STAR-
DIDF/.

1 Introduction

Table serves as a fundamental format for repre-
senting structured relational data. While current
large language models (LLMs) excel at many text-
based tasks without task-specific model structure
or training data, relying only on designing input
prompts (Brown et al., 2020; Wei et al., 2022; Wang
et al., 2022; Zhou et al., 2022; Kojima et al., 2022;
Li et al., 2022), they still face challenges in table
reasoning because of the complex structured char-
acteristics of tabular data. The existing LLM-based

table reasoning works can be systematically classi-
fied into two principal paradigms: text reasoning
based on natural language (Chen, 2022; Ye et al.,
2023) and code generation based on symbolic rea-
soning (Cheng et al., 2022; Zhang et al., 2023;
Wang et al., 2024b; Nahid and Rafiei, 2024), em-
ploying linguistic processing and computational
logic respectively.

In code generation, LLLM is prompted to gen-
erate code based on question and table schema
to operate on the table, utilizing its inherent cod-
ing capability to adopt symbolic reasoning, such
as SQL statements (Nahid and Rafiei, 2024) or
python programs (Wang et al., 2024b). Although
this approach achieves scale-agnostic adaptability
because it does not need to access table contents,
it relies heavily on LLM’s inherent coding pattern
to infer the relevant records from question and ta-
ble schema, which may introduce structural bias
into the generated code (Jiang et al., 2024; Wang
et al., 2024a). Consequently, the code may not
accurately reflect the specific content of the table,
leading to incorrect responses. In text reasoning,
LLM is prompted to reason with question and table
data using natural language, benefiting from LLM’s
semantic parsing capability constructed from train-
ing. (Ye et al., 2023) prompts LLM to return a
subset of the given table containing only relevant
records, and then answer the question based on
this subset. Although this approach allows LLM to
be aware of all table contents related to the ques-
tion, thus improving the reliability of reasoning,
the performance is limited by the context length
of LLM, which restricts the application for larger
tables. Through many experiments, (Liu et al.,
2023) compared these two approaches, text reason-
ing performs better on small-scale tables, while
code generation dominates at large-scale tables.

In summary, the limitations of existing table rea-
soning methods force us to explore how a model
can be aware of table content at any scale. We pro-

pose A-STAR, an Adaptive Strategy with TAble Re-
finement for table reasoning. Considering the vari-
ous distributions of records related to various ques-
tions in the original table, a decompose-recombine
algorithm is designed to decompose the original
table into several sub-tables, and recombine the
relevant records extracted from them into a refined
table, and an adaptive strategy is raised to generate
candidate answers with LLM from sub-tables and
refined table and assign different priorities to these
answers. To reduce the inherent inconsistency of
the response form generated by LLLM, a semantic-
based voting is conducted on all candidate answers.
We evaluate A-STAR using different LLMs as the
backbone model on table reasoning tasks involving
table-based question answering and fact verifica-
tion. The experiment results indicate that A-STAR
outperforms all existing LL.M-based baselines.

The major contributions of this paper are listed
below:

* We propose an architecture for table reasoning,
namely A-STAR, that aims to enhance LLM’s
table content-aware capability at any scale.

* An algorithm based on decompose-recombine
is introduced to obtain a refined table which
LLM can handle effectively by decompos-
ing the original table into sub-tables and re-
combining the relevant records extracted from
them. Additionally, a process including adap-
tive solving and priority assigning is designed
to get multiple candidate answers according to
specific table types, they are then fused based
on semantics to obtain the final response.

* Our method has achieved leading performance
compared to other LLM-based methods in
table-based question answering and fact veri-
fication tasks. We further discussed the signif-
icant superiority of our method through more
experiments.

2 Related Works

Table Reasoning with Pre-trained Model Re-
searchers have proposed some pre-trained language
models on table reasoning (Herzig et al., 2020; Liu
et al., 2021; Zhao et al., 2022; Yin et al., 2020; Gu
et al., 2022). They have rich knowledge learned
from large-scale data by collecting or synthesiz-
ing them. However, these methods require a large
amount of corpus related to the task, which results

in a high expense. In addition, they may also lead to
overfitting problems, reducing their generalization.

Table Reasoning with LLM Compared with
pre-trained models, LLM performs well on vari-
ous tasks with zero-shot prompts, demonstrating
the strong generalization. Therefore, there have
been many LLM-based table reasoning methods
recently. The paradigm includes two types: code
generation and text reasoning. For code genera-
tion, Binder (Cheng et al., 2022) prompts LLM to
identify and solve the parts of the question which
cannot be solved by the original program such as
schema linking. TabSQLify (Nahid and Rafiei,
2024) prompts LLLM to decompose table by SQL
statements. ReAcTable (Zhang et al., 2023) intro-
duces ReAct (Yao et al., 2022) into table reasoning.
It prompts LLM using external tools to operate ta-
ble, generating intermediate tables to gradually en-
hance data, thereby converting it into a more acces-
sible format for an easier solution. Similarly, Chain-
of-Table (Wang et al., 2024b) introduce CoT (Wei
et al., 2022). The difference is that it defines a
set of table operations, and then prompts LLM to
generate a table reasoning chain that calls those
operations. Compared with the above methods,
Chain-of-Table partly reduces the bias caused by
letting LLM generate codes directly. For text rea-
soning, Dater (Ye et al., 2023) prompts LLM to
decompose table and question to solve complex
tasks. Besides, H-STAR (Abhyankar et al., 2024)
discussed the issue of integrating text reasoning
and code generation methods. However, it just sim-
ply prompts LLM to choose what strategy to use
for analysis, without delving into the strengths and
the limitations of different strategies, thus lacking
interpretability.

3 Methodology

3.1 Overview

We propose A-STAR, an architecture for LLM-
based table reasoning tasks. It is scale-free and can
fully unleash the potential of LLM by enhancing
its table content-aware capability. As illustrated in
Figure 1, A-STAR includes a table refiner that de-
composes the original table into sub-tables and then
recombines relevant records obtained by the extrac-
tion of sub-tables into a refined table; an adaptive
solver that can adopt different strategies to obtain
multiple candidate answers; and an output summa-
rizer for output processing, which can summarize

Question

Table Refiner

how long did it take for the |
new york americans to win
the national cup after 19367

Title: New York Americans (soccer)

Year ... National Cup
Spring 1932 1st Round
Fall 1932 N/A —

1936/37 Champion

Relative Records
Extraction

— No Record

record refined table Year National Cup
1936/37 Champion
1953/54 Champion

e e
record

Answer

17

Output Summarizer

Candidate Answers-Text (From Sub-tables)-Prio: 1
1 17
Candidate Answers-Text (From Refined Table)-Prio: 2

Candidate Answers-Code (From Refined Table)-Prio: 3
Analysis Fail

Anal;{sis Fail
17 17 1{ears

Analysts Fail

Adaptive Solver

Figure 1: Overview of A-STAR, which consists of three parts: (i) Table Refiner refines the original table into
a refined table which has a higher density of relevant records; (ii) Adaptive Solver uses an adaptive strategy on
different tables to generate multiple candidate answers and assign different priorities to them and (iii) Output
Summarizer unifies semantically identical answers and vote to select the final answer.

all candidate answers and vote based on semantics
to generate the final response.

3.2 Table Refiner

How to enhance the table content-aware capabil-
ity of the model is the key for table reasoning
task. Unlike other table-based tasks, table reason-
ing task requires the model to have a more specific
understanding of the table down to the record level.
Therefore, accurately locating relevant records is
crucial. (Ye et al., 2023) used text reasoning to
accomplish this task, prompting LLM to find all
relevant records in the given table. However, it’s
difficult to search the entire table at once due to
the context length limit of LLMs. Code generation
method (Zhang et al., 2023; Wang et al., 2024b)
prompts LLM to combine keywords from ques-
tion and table schema to infer the relevant records,
while the model does not actually understand the
table data. Therefore, when the question is ambigu-
ous, code generation raises errors.

We design an algorithm based on decompose-
recombine to deal with it. The original table will
be split into several sub-tables and a two-step sam-
pling process for them is used to get the refined
table. Algorithm 1 describes the overall process.

Table Split Line 1 of Algorithm 1 describes this
step. The scale of each sub-table should be con-
sidered to ensure that LLLM can get enough infor-
mation at once while avoiding long context lengths

impairing the performance. Firstly, the original
table will be equally divided into three parts. And
then, if their scales are too large or too small, they
will be re-divided according to a pre-set length. Fi-
nally, the remaining records are merged into an
extra sub-table. In this way, the original table has
been split into a batch of sub-tables that are appro-
priately sized and sufficiently uniform.

Algorithm 1 Table Refinement Algorithm

Require: Table 7', Question @
Ensure: Table T"

1: subs = split_into_subtables(1")

2: Dive the subs into 3 clusters.

3: for mid in each clusters do

4 prompt = gen_prompt(mid, Q)

5 records.append(LLM(prompt))
6: if records not null then
7
8
9

for each adj to the mid do
prompt = gen_prompt(adj, Q)
: records.append(LLM(prompt))
10: end for

11: end if
12: end for

13: T" = records

Two-Step Sampling Process Lines 2 to 9 of
Algorithm 1 describe this step. It’s not wise to
search all of these sub-tables considering time and
expense. For a question, the distribution of its

relevant records in the table contains three situa-
tions: (1) Dense. Like "What is the title of the
next episode of a certain episode?", whose rele-
vant records exist adjacently; (2) Moderate. Like
"How long did it take for a certain team to win the
championship again after a certain year?", whose
relevant records exist in non-adjacent sub-tables;
(3) Wide. Like "How many types of competitions
did a certain athlete participate in?", which do not
clearly mention the specific data, so the relevant
records can exist in all the sub-tables. Based on the
above analysis, we propose a two-step sampling
process. Step 1: Categorize all sub-tables into three
clusters, and select the middle sub-table for each
cluster. Lines 2 to 5 of Algorithm 1 describe this
step. Step 2: Select two adjacent sub-tables from
the same cluster if there are any relevant records in
the selected sub-table. Lines 6 to 9 of Algorithm 1
describe this step.

Relevant Records Extraction LLM is prompted
to judge whether the sub-table contains records
related to the question, and if so, return their row
numbers. After the extraction process is completed,
all these rows are merged into a refined table for
subsequent analysis.

Algorithm 2 Adaptive Solving Algorithm

Require: Original Table T, New Table 7", Set of
Sub-tables T}, Question (), Minimum Length
of Table l,,,;,, Number of analysis n
Ensure: Set of Candidate Answers A
1: if length of T' < [,,;,, then
2: text_prompt = gen_text_prompt(T, Q)

3: A.append(LLM(text_prompt, n))

4: code_prompt = gen_code_prompt(T’, Q)
5: A.append(LLM(code_prompt, n))

6: assign_priority(A, type_a)

7. else

8: for each sub in T do

9: text_prompt = gen_text_prompt(sub,

Q)
10: A.append(LLM(text_prompt, n))
11: end for

12: text_prompt = gen_text_prompt(T”, Q)
13: A.append(LLM(text_prompt, n))

14: code_prompt = gen_code_prompt(7”, Q)
15: A.append(LLM(code_prompt, n))

16: assign_priority(A, type_b)

17: end if

3.3 Adaptive Solver

(Liu et al., 2023) compared the performance of
using text reasoning or code generation to solve
table reasoning tasks through many experiments.
The results show that the accuracy of text reason-
ing performs better when the model can access the
complete table. LLM is mainly trained on natural
language data, which means its capability of code
generation is inherently lower than text reasoning.
However, large-scale tables in real-world scenarios
limits the potential of LLM’s text reasoning capa-
bility. Conversely, an obvious advantage of code
generation is that it can answer a question under
the circumstances of accessing only the schema of
the table, allowing it to handle situations with a
large table scale. However this advantage cannot
fully cover the additional bias introduced by code
generation methods due to the lack of awareness
of table content. In summary, both these methods
have their own strengths and limitations. We must
carefully design the strategy that is flexible enough
to face different situations.

An adaptive strategy is introduced to solve this
problem. It can flexibly select different solvers to
adapt on a sub-table or refined table to get multiple
candidate answers and assign priorities to these
answers. Algorithm 2 describes the overall process.

Solvers Call LLM is prompted to act as different
solvers. Text solver directly gives the answer or a
"can’t be answered" judgment, while code solver
generates code to run on the original table to obtain
the answer or an execution error. To reduce run-
time errors in the generated code, the input and the
output are defined in advance. To further enhance
the diversity, self-consistency (Wang et al., 2022)
that repeatedly calls the solvers multiple times is
used to generate candidate answers.

Priority Assignment The adaptive strategy con-
sists of three parts: (1) Check the scale of original
table. The refinement is not necessary when the
original table is small. In this case, the candidate an-
swers from text reasoning will be considered more
reliable than from code generation, corresponding
to ’type_a’ in Line 6 of Algorithm 2. (2) The can-
didate answers from sub-tables should be given
the highest priority. The sub-tables sampled will
not only be used to extract relevant records, but
they will also be analyzed using text reasoning.
That’s because, first, if all relevant records exist in
the same sub-table, this process will more likely

obtain the correct answer. Second, since each sub-
table contains different records, it’s unlikely that
all candidate answers will be the same, so they will
not cause significant interference to the subsequent
analysis. In a word, a simple text reasoning will be
conducted on all sub-tables, excluding failed pro-
cesses and assigning the highest priority to the re-
maining candidate answers. (3) Prioritizing codes
to analyze the refined table. Regardless of the
scale of the table after refinement, the candidate
answers obtained by code generation will be as-
signed higher priority, corresponding to ’type_b’
in Line 16 of Algorithm 2. Text reasoning is only
suitable when all relevant records are accessible,
while our table refinement algorithm sacrifices ac-
curacy for efficiency and thus cannot guarantee that
all relevant records are found. Therefore, the strat-
egy tends to code generation. Moreover, previous
LLM-based coding-dependent methods simply ex-
tracted the first few records of the table as the view
provided to LLM. In contrast, our method provides
LLM with a view that covers more relevant records,
thereby improving the coding performance. In sum-
mary, all candidate answers are assigned different
priorities through this step, which will affect the
subsequent voting process.

3.4 Output Summarizer

LLM prefers to add unnecessary context or expla-
nation in response, leading to the inconsistency of
the form. For example, for the question "How old is
Bob’s father?", from a semantic perspective, "48",
"48 years old", "Bob’s father is 48 years old this
year" express the same meaning. But from a string
comparison perspective, only one of them can be
considered correct. Previous works mitigated this
impact by designing complex string processing,
while our method utilizes LLM to accomplish this
task for its clear advantage in performing semantic-
related tasks. Overall, in each process LLM is
prompted to compare two candidate answers se-
lected, and give a judgment on whether they are
semantically identical. If yes, they will be unified
into the same answer.

The answer with the highest number of appear-
ances among the candidate answers will be selected
through voting. In this process, priority will only
be considered when some answers appear the same
number of times. It means the answer that appears
more frequently is still preferred despite its low
priority.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate A-STAR on three
commonly-used table reasoning datasets: Tab-
Fact (Chen et al., 2019), WikiTQ (Pasupat and
Liang, 2015) and FeTaQA (Nan et al., 2022).
TabFact is a table-based fact verification dataset,
whose task is to judge whether a statement is true
or not based on table data. We report results on its
small test set. WikiTQ is a table-based question
answering dataset that focuses on answering
questions through complex inference of the table
data. FeTaQA is a more difficult table-based
question answering dataset as it requires longer,
freer responses.

Baselines We report the LLM-based methods
that have performed well on the above datasets,
including Binder (Cheng et al., 2022), Dater (Ye
et al., 2023), ReAcTable (Zhang et al., 2023),
TabSQLify (Nahid and Rafiei, 2024), Chain-of-
Table (Wang et al., 2024b) and H-STAR (Ab-
hyankar et al., 2024). We also report some basic
methods, including (a) Text End-to-End, which
prompts LLM to directly give the answer, (b) Text
CoT, which prompts LLM to think and give a rea-
soning chain before answering, (¢c) Code End-to-
End, which prompts LLM to write code and (d)
Code CoT, which prompts LLM to think and give
a reasoning chain before writing code. Moreover,
we also report some pre-trained methods including
TaPas (Herzig et al., 2020), Tapex (Liu et al., 2021),
ReasTAP (Zhao et al., 2022), OmniTab (Jiang et al.,
2022), LEVER (Ni et al., 2023) and PASTA (Gu
et al., 2022).

In order to discuss the impact of different back-
bone models of A-STAR, we evaluate it based
on Llama3.1-8b (Dubey et al., 2024), Qwen2.5-
7b (Yang et al., 2024) and GPT-40-mini (Achiam
et al., 2023). We reran the tests using codes pro-
vided by their authors. For those who have not
open-sourced the prompt and the code on some
datasets, considering the impact of code (especially
the design of their prompt templates) on the per-
formance, we have decided not to report the per-
formance of these methods on the corresponding
dataset.

Metrics TabFact and WikiTQ both use Execu-
tion Accuracy (EA) as the evaluation metric, we
follow this practice. For TabFact, we prompt LLM
to only generate "true" or "false" and then evaluate

Llama3.1-8b Qwen2.5-7b GPT-40-mini
Methods
TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ
Text End-to-End 55.09 22.44 58.15 20.42 62.01 30.62
Text CoT 60.38 26.52 63.24 23.07 67.34 36.9
Code End-to-End 30.63 24.7 4491 35.7 60.08 46.94
Code CoT 41.85 29.58 47.97 39.8 64.28 49.75
Binder 51.98 27.14 53.51 29.7 67.05 38.03
Dater 57.9 37.41 58.99 40.01 74.7 52
ReAcTable - 37.64 - 40.42 - 57.09
TabSQLity 60.67 44.96 59.39 47.38 78.26 68.76
Chain-of-Table 63.83 - 62.35 - 85.13 -
H-STAR 70.1 51.06 64.38 51.24 89.38 74.95
A-STAR 75.69 58.49 73.22 59.46 89.82 78.5

Table 1: Performance of various methods on TabFact and WikiTQ datasets. -’ indicates that we don’t report the

result because of the irreproducibility.

the answer using string matching. For WikiTQ,
we directly compare the model answer with the
gold answer. We don’t use the Python-based Wik-
iTQ evaluator (Pasupat and Liang, 2015), as our
output summarizer takes this responsibility. Simi-
larly, we evaluate results on FeTaQA by calculating
ROUGE (Lin, 2004) score of the model answer and
the gold answer.

4.2 Experiment Results

Table 1 shows some of the results. Due to space
limitations, we have the additional results in Ap-
pendix A, including comparisons with pre-trained
methods and evaluation on the FeTaQA dataset. In
summary, A-STAR outperforms all existing LLM-
based methods with different datasets and back-
bone models. It is worth mentioning that previous
methods sampled from the train set to construct a
few-shot prompt, while we do not use any exam-
ples, which reduces the cost of generalizing our
method to other table reasoning tasks and leaves
room for further improvement.

We notice that A-STAR shows a decrease in im-
provement compared to other methods when using
a stronger LLLM as the backbone model. That’s
because, with a stronger LLLM, the length of con-
text it can handle increases, which enhances the
performance of text reasoning; and also its cod-
ing skill improves, which makes the code genera-
tion process perform better. In contrast, A-STAR
benefits from the performance improvement of the
LLM itself only when calling it to extract relevant
records from sub-tables. Besides, when generating

an answer, the performance of coding-dependent
methods will be greatly affected by the differences
in LLMs’ coding capabilities, while it has limited
impact on the performance of A-STAR as our adap-
tive solving algorithm. In other words, we aim
to maximize the potential of weak LLM, so the
improvement of the LLM itself will to some ex-
tent compensate for the gap in our performance
compared to other methods.

4.3 Ablation Study

To evaluate the effectiveness of each module in
A-STAR, we conduct an ablation study on the Wik-
iTQ dataset. We remove the table refiner, instead
we always select the first sub-table. We remove the
adaptive solver and only use the text solver or the
code solver to generate candidate answers. More-
over, we shuffle the candidate answers to eliminate
the influence of the priority. We remove the output
summarizer, instead choosing the first candidate
answer as the result.

Table 2 shows the specific contribution of each
module to the A-STAR’s performance. Overall,
removing any module will result in a performance
loss, emphasizing the importance of all modules in
A-STAR. Specifically: (a) Removing the table re-
finer has the least impact on performance, for there
are a considerable number of questions whose an-
swers can be directly obtained from the first few
records in the table. Therefore, our alternative,
which chooses the first sub-table has little impact
on answering these questions. (b) After removing
the adaptive solver, the alternative of using only

Llama3.1-8b GPT-40-mini

A-STAR
w/o Table Refiner

w/o Adaptive Solver(ALL Text Solver)
w/o Adaptive Solver(ALL Code Solver)

w/o Output Summarizer

58.49 78.5
49.06 71.59
48.73 68.76
44.66 67.4
44.34 56.4

Table 2: Performance of A-STAR removing (i) Table Refiner, (ii) Adaptive Solver and (iii) Output Summarizer on

WikiTQ dataset.

the text solvers performed better than using only
the code solvers. That’s because text solvers can
keep a stable performance on a small table, while
code solvers are likely to generate code with errors
on any table. It can be seen that when using only
code solvers, the decrease in performance using
Llama3.1-8b as the backbone model is more sig-
nificant compared to using GPT-40-mini, which re-
flects that the difference in LLM’s inherent coding
capability will significantly affect the performance
of coding-dependent methods. (c) Removing the
output summarizer has the greatest impact on per-
formance. Due to our priority assignment strategy
assigning the highest priority to the candidate an-
swers obtained from sub-tables, the alternative will
always choose them. However, without priority, the
accuracy of the candidate answers obtained from
a sub-table cannot be guaranteed as they may not
necessarily contain relevant records.

Table Scale(Num. of Tokens)

Methods

<2k 2k-4k >4k

Binder 33.59 26.65 5.13
Dater 48.65 28.53 13.68
ReAcTable 46.33 30.09 20.51
TabSQLity 52.7 37.93 30.77
H-STAR 56.95 4545 40.17
A-STAR 65.25 52.04 46.15

Table 3: Performance of various methods on different
scales of tables from WikiTQ dataset, using Llama3.1-
8b as backbone model.

4.4 Discussion

(Chen, 2022) points out that when the number
of table rows exceeds 30, the performance bot-
tleneck that a LLM can handle has been reached.
To evaluate the impact of the table scale, we not
only consider the number of rows but also the
lengths. Specifically, we classify tables in the Wik-

iTQ dataset into three parts by the number of to-
kens: tables with less than 2000 tokens, tables with
more than 4000 tokens and tables with tokens from
2000 to 4000.

The result is in Table 3. All methods show a
decrease in performance when the table scale in-
creases. Relatively, A-STAR controls the magni-
tude, thus ensuring a consistent performance as
much as possible. This is attributed to our extrac-
tion algorithm based on decompose-recombine and
the adaptive priority assignment strategy success-
fully reducing the impact of table scale on the per-
formance.

HE Original Table
Refined Table

25+

15 4

Average Number of Records

TabFact

WikiTQ

Figure 2: Comparison of the scale of original ta-
ble/refined table. We exclude all the small tables as
they do not require refinement.

Table refiner refines the original table into a ta-
ble containing more relevant records and less re-
dundant records through the algorithm based on
decompose-recombine. Figure 2 compares the av-
erage scale of the original table and the refined
table. We exclude all small tables that do not re-
quire refinement. It can be seen that table refiner

significantly reduces the number of records in the
refined table - from an average of 27.69 records
to 6.16 records for the WikiTQ dataset, and from
an average of 14.27 records to 4.25 records for the
TabFact dataset. It demonstrates how our table re-
finer effectively reduces the redundant information
unrelated to the question and allows the LLM to
focus more on valuable information for inference.

Llama3.1-8b GPT-40-mini

58.49 78.5
45.49 67.29

A-STAR
w/o SC

Table 4: Performance of A-STAR with/without Self-
Consistency on WikiTQ dataset.

Table 4 shows the impact of with/without self-
consistency on the performance of A-STAR. We
use self-consistency only when analyzing the re-
fined table but not the sub-tables, so the weight
of candidate answers obtained from sub-tables has
been weakened. In other words, our strategy en-
sures that this part of candidate answers have the
highest priority while reducing their negative im-
pact from the randomness of these answers to the
result. It’s worth noticing that after using a stronger
LLM as the backbone model, the performance loss
without self-consistency decreased from 22.23% to
14.28%. It can be explained by the fact that as the
capability of the LLM improves, it can obtain the
correct answer using any analysis method.

Llama3.1-8b GPT-40-mini

in Text Solver 23.27% 13.42%
in Code Solver 18.34% 11.95%
in Both 31.66% 61.32%

in Neither 26.73% 13.31%

Table 5: The proportion of correct answer in text
solver/code solver/both of them/neither of them on the
WikiTQ dataset.

We calculate the proportion of correct answers
appearing only in the text solver/only in the code
solver/in both/in neither. Table 5 shows the result.
It can be seen that (a) the most common situation is
that both the text solver and the code solver can ob-
tain the correct answer, accounting for 31.66% and
61.32%. It indicates that there is actually no essen-
tial difference between these two methods, but how
we make choices based on the actual situations
is important. In addition, after using a stronger

LLM, the proportion of this situation has reached
an absolute advantage, which once again proves
the viewpoint that as the capability of the LLM im-
proves, it can obtain the correct answer using any
analysis method. (b) The correct answer appears
more frequently in the text solvers than in the code
solvers. There are two reasons for this. First, text
solvers can keep a stable performance on a small
table, while code solvers are likely to generate code
with errors on any table. Second, when analyzing
sub-tables, we only use the text solver. In some
cases, all relevant records may exist in the same
sub-table, so the text solver can directly obtain the
correct answer, which cannot be achieved by code
solvers.

Llama3.1-8b GPT-40-mini

58.49 78.5
38.26 67.52

A-STAR
w/o Unification

Table 6: Performance of A-STAR with/without
Semantic-Consistency on WikiTQ dataset.

Table 6 shows the impact of with/without se-
mantic unification on the performance of A-STAR.
After removing this step, there was an astonishing
and significant decline in the result. We emphasize
that it DOES NOT demonstrate the importance of
unification itself. If there were no such process, the
candidate answers will only be voted on with sim-
ple string matching, thus leading to our adaptive
solving method losing its expected consistency in
the result. In other words, the performance degra-
dation without unification is actually a continuation
of the impact of our adaptive solving method on A-
STAR’s performance, which proves the importance
of this module from the side.

5 Conclusion

In this paper we propose A-STAR, an architecture
for table reasoning that aims to enhance LLM’s
content-aware capability at any scale. It includes
a decompose-recombine algorithm to refine the
original table; an adaptive strategy to obtain var-
ious answers and assign priorities to them; and
a semantic-based voting process to generate the
final response. Experiment results have shown
that A-STAR outperforms all existing LLM-based
methods in typical table reasoning tasks including
question answering and fact verification. Further
analysis highlights the significance of our method.

Limitations

Our method has not been experimented on more
table reasoning tasks such as Text-to-SQL, table-
based prediction and tabular data analysis, etc.,
which imposes a limit on the generalization. In
addition, the datasets used are constructed based
on Wikipedia, the tabular data is simply organized,
clear, easy to understand and not too large. How-
ever, tables in real-world scenarios raise more
challenges including extremely large scale, noisy
records and complex organization forms. How to
address these challenges remains an unresolved
issue.

Moreover, our method further increases the com-
plexity compared to previous LLM-based methods,
involving repeated calls and interactions between
multiple LLMs, which may lead to a possible de-
crease in efficiency. How to find a trade-off be-
tween performance and efficiency is the topic we
will study next.

References

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-
dan K. Reddy. 2024. H-star: Llm-driven hy-
brid sql-text adaptive reasoning on tables. ArXiv,
abs/2407.05952.

OpenAl Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, and
260 others. 2023. Gpt-4 technical report.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Wenhu Chen. 2022. Large language models are few(1)-
shot table reasoners. ArXiv, abs/2210.06710.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir R. Radev, Marilyn Ostendorf, Luke S.
Zettlemoyer, Noah A. Smith, and Tao Yu. 2022.
Binding language models in symbolic languages.
ArXiv, abs/2210.02875.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, and
510 others. 2024. The llama 3 herd of models. ArXiv,
abs/2407.21783.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiao-
man Zhao, and Xiaoyong Du. 2022. Pasta: table-
operations aware fact verification via sentence-table
cloze pre-training. arXiv preprint arXiv:2211.02816.

Jonathan Herzig, Pawet Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2024. A survey on large language
models for code generation. ArXiv, abs/2406.00515.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham
Neubig, and Weizhu Chen. 2022. Omnitab: Pre-
training with natural and synthetic data for few-
shot table-based question answering. arXiv preprint
arXiv:2207.03637.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. ArXiv,
abs/2205.11916.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, B. Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. Making
language models better reasoners with step-aware
verifier. In Annual Meeting of the Association for
Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Annual Meeting of the
Association for Computational Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re-
thinking tabular data understanding with large lan-
guage models. In North American Chapter of the
Association for Computational Linguistics.

Md Mahadi Hasan Nahid and Davood Rafiei.
2024. Tabsqlify: Enhancing reasoning capabili-
ties of llms through table decomposition. ArXiv,
abs/2404.10150.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryscinski,
Hailey Schoelkopf, Riley Kong, Xiangru Tang, and
1 others. 2022. Fetaqa: Free-form table question
answering. Transactions of the Association for Com-
putational Linguistics, 10:35-49.

https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287

Ansong Ni, Srini Iyer, Dragomir R. Radev, Ves Stoy-
anov, Wen tau Yih, Sida I. Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. ArXiv, abs/2302.08468.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang,
Shengmai Chen, Lei Ma, and Tianyi Zhang. 2024a.
Where do large language models fail when generating
code? arXiv preprint arXiv:2406.08731.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024b. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
ArXiv, abs/2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—

24837.

Qwen An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-
yang Lin, and 25 others. 2024. Qwen2.5 technical
report. ArXiv, abs/2412.15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. ArXiv, abs/2210.03629.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. Pro-
ceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023.
Reactable: Enhancing react for table question answer-
ing. Proc. VLDB Endow., 17:1981-1994.

10

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022. Reastap: Injecting table
reasoning skills during pre-training via synthetic rea-
soning examples. arXiv preprint arXiv:2210.12374.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and 1 oth-
ers. 2022. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint
arXiv:2205.10625.

A Supplementary Experiments

Methods TabFact WikiTQ
TaPas 83.9 48.8
Tapex 85.9 57.5
ReasTAP 86.2 58.6
OmniTab - 62.8
LEVER - 65.8
PASTA 90.6 -
A-STAR with Llama3.1-8b 75.69 58.49
A-STAR with Qwen2.5-7b 73.22 59.46
A-STAR with GPT-40-mini ~ 89.82 78.5

Table 7: Performance of pre-trained methods and A-
STAR with different backbone models on TabFact and
WikiTQ datasets.

A.1 Comparison with Pre-trained Methods

Table 7 shows the performance of pre-trained meth-
ods and A-STAR with different backbone model
on TabFact and WikiTQ datasets. We do not rerun
the test but faithfully report the results from the
original paper.

A.2 Evaluation on FeTaQA dataset

Table 8 shows the result of some LLM-based meth-
ods on the FeTaQA dataset with different back-
bone models. Unlike other table reasoning tasks,
FeTaQA requires the model to provide a descrip-
tive statement as the answer rather than directly
giving the result. And for evaluation, FeTaQA cal-
culates the matching degree between the model
statement and the gold statement to assess the qual-
ity of the answer. To address this requirement, we
have slightly modified the prompts to make the
LLM tend to generate longer and more detailed
answers.

It’s worth mentioning that using only simple text
reasoning + CoT can achieve a performance that is
close to or even better than LL.M-based methods.

https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421

Llama3.1-8b Qwen2.5-7b GPT-40-mini
1 2 L 1 2 L 1 2 L

Text End-to-End 042 0.21 0.37 044 0.22 038 0.56 034 0.48
Text CoT 048 024 042 046 024 041 058 035 0.52
Code End-to-End 0.27 0.13 0.25 0.29 0.13 025 0.36 0.18 0.33
Code CoT 028 0.13 025 031 0.15 028 038 0.19 034

TabSQLify 041 02 037 037 016 033 049 035 044
H-STAR 045 023 04 046 025 043 054 044 05
A-STAR 048 025 045 049 027 044 0.63 046 0.52

Methods

Table 8: Performance of various methods on FeTaQA dataset. *1’ and ’2’ means calculating the score using
ROUGE-n where n = 1 or 2. ’L’ means calculating the score using ROUGE-L.

We attribute it to the evaluation rule of the FeTaQA.
ROUGE score measures the completeness of the
information related to the gold answer in the model
answer. In fact, we observed that when the model
generates a longer answer, it’s easier to obtain a
higher ROUGE score, regardless of whether the
answer is correct. In addition, LLM excels in using
descriptive statements to answer a question, which
allows it to generate a response that has a similar
style to the gold answer through a simple prompt.

11

	Introduction
	Related Works
	Methodology
	Overview
	Table Refiner
	Adaptive Solver
	Output Summarizer

	Experiments
	Experimental Setup
	Experiment Results
	Ablation Study
	Discussion

	Conclusion
	Supplementary Experiments
	Comparison with Pre-trained Methods
	Evaluation on FeTaQA dataset

