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Abstract001

Current methods for table reasoning with002
LLMs can be broadly categorized into two003
distinct approaches: text reasoning and code004
generation, which leverage natural language005
processing and programming paradigms, re-006
spectively. The former is subject to table’s007
scale for the context length limit of LLMs;008
the latter incurs structural bias due to the lack009
of awareness of table data. This paper pro-010
poses A-STAR, a table reasoning architecture011
that enhances LLM’s table content-aware ca-012
pability at any scale. Considering the vari-013
ous distributions of records related to various014
questions in the original table, a decompose-015
recombine algorithm is introduced to obtain a016
refined table by decomposing the original ta-017
ble into sub-tables and recombining the records018
related to question extracted from them. Ac-019
cording to the characteristics of these tables,020
an adaptive strategy will be adopted to select021
different solvers to generate multiple candi-022
date answers and assign priorities to them. Fi-023
nally, a semantic-based voting mechanism is024
designed to fuse these answers to obtain the025
final response. The experiment shows that026
A-STAR has achieved state-of-the-art perfor-027
mance in both table-based fact verification and028
question answering tasks. Our code is available029
at https://anonymous.4open.science/r/A-STAR-030
D9DF/.031

1 Introduction032

Table serves as a fundamental format for repre-033

senting structured relational data. While current034

large language models (LLMs) excel at many text-035

based tasks without task-specific model structure036

or training data, relying only on designing input037

prompts (Brown et al., 2020; Wei et al., 2022; Wang038

et al., 2022; Zhou et al., 2022; Kojima et al., 2022;039

Li et al., 2022), they still face challenges in table040

reasoning because of the complex structured char-041

acteristics of tabular data. The existing LLM-based042

table reasoning works can be systematically classi- 043

fied into two principal paradigms: text reasoning 044

based on natural language (Chen, 2022; Ye et al., 045

2023) and code generation based on symbolic rea- 046

soning (Cheng et al., 2022; Zhang et al., 2023; 047

Wang et al., 2024b; Nahid and Rafiei, 2024), em- 048

ploying linguistic processing and computational 049

logic respectively. 050

In code generation, LLM is prompted to gen- 051

erate code based on question and table schema 052

to operate on the table, utilizing its inherent cod- 053

ing capability to adopt symbolic reasoning, such 054

as SQL statements (Nahid and Rafiei, 2024) or 055

python programs (Wang et al., 2024b). Although 056

this approach achieves scale-agnostic adaptability 057

because it does not need to access table contents, 058

it relies heavily on LLM’s inherent coding pattern 059

to infer the relevant records from question and ta- 060

ble schema, which may introduce structural bias 061

into the generated code (Jiang et al., 2024; Wang 062

et al., 2024a). Consequently, the code may not 063

accurately reflect the specific content of the table, 064

leading to incorrect responses. In text reasoning, 065

LLM is prompted to reason with question and table 066

data using natural language, benefiting from LLM’s 067

semantic parsing capability constructed from train- 068

ing. (Ye et al., 2023) prompts LLM to return a 069

subset of the given table containing only relevant 070

records, and then answer the question based on 071

this subset. Although this approach allows LLM to 072

be aware of all table contents related to the ques- 073

tion, thus improving the reliability of reasoning, 074

the performance is limited by the context length 075

of LLM, which restricts the application for larger 076

tables. Through many experiments, (Liu et al., 077

2023) compared these two approaches, text reason- 078

ing performs better on small-scale tables, while 079

code generation dominates at large-scale tables. 080

In summary, the limitations of existing table rea- 081

soning methods force us to explore how a model 082

can be aware of table content at any scale. We pro- 083
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pose A-STAR, an Adaptive Strategy with TAble Re-084

finement for table reasoning. Considering the vari-085

ous distributions of records related to various ques-086

tions in the original table, a decompose-recombine087

algorithm is designed to decompose the original088

table into several sub-tables, and recombine the089

relevant records extracted from them into a refined090

table, and an adaptive strategy is raised to generate091

candidate answers with LLM from sub-tables and092

refined table and assign different priorities to these093

answers. To reduce the inherent inconsistency of094

the response form generated by LLM, a semantic-095

based voting is conducted on all candidate answers.096

We evaluate A-STAR using different LLMs as the097

backbone model on table reasoning tasks involving098

table-based question answering and fact verifica-099

tion. The experiment results indicate that A-STAR100

outperforms all existing LLM-based baselines.101

The major contributions of this paper are listed102

below:103

• We propose an architecture for table reasoning,104

namely A-STAR, that aims to enhance LLM’s105

table content-aware capability at any scale.106

• An algorithm based on decompose-recombine107

is introduced to obtain a refined table which108

LLM can handle effectively by decompos-109

ing the original table into sub-tables and re-110

combining the relevant records extracted from111

them. Additionally, a process including adap-112

tive solving and priority assigning is designed113

to get multiple candidate answers according to114

specific table types, they are then fused based115

on semantics to obtain the final response.116

• Our method has achieved leading performance117

compared to other LLM-based methods in118

table-based question answering and fact veri-119

fication tasks. We further discussed the signif-120

icant superiority of our method through more121

experiments.122

2 Related Works123

Table Reasoning with Pre-trained Model Re-124

searchers have proposed some pre-trained language125

models on table reasoning (Herzig et al., 2020; Liu126

et al., 2021; Zhao et al., 2022; Yin et al., 2020; Gu127

et al., 2022). They have rich knowledge learned128

from large-scale data by collecting or synthesiz-129

ing them. However, these methods require a large130

amount of corpus related to the task, which results131

in a high expense. In addition, they may also lead to 132

overfitting problems, reducing their generalization. 133

Table Reasoning with LLM Compared with 134

pre-trained models, LLM performs well on vari- 135

ous tasks with zero-shot prompts, demonstrating 136

the strong generalization. Therefore, there have 137

been many LLM-based table reasoning methods 138

recently. The paradigm includes two types: code 139

generation and text reasoning. For code genera- 140

tion, Binder (Cheng et al., 2022) prompts LLM to 141

identify and solve the parts of the question which 142

cannot be solved by the original program such as 143

schema linking. TabSQLify (Nahid and Rafiei, 144

2024) prompts LLM to decompose table by SQL 145

statements. ReAcTable (Zhang et al., 2023) intro- 146

duces ReAct (Yao et al., 2022) into table reasoning. 147

It prompts LLM using external tools to operate ta- 148

ble, generating intermediate tables to gradually en- 149

hance data, thereby converting it into a more acces- 150

sible format for an easier solution. Similarly, Chain- 151

of-Table (Wang et al., 2024b) introduce CoT (Wei 152

et al., 2022). The difference is that it defines a 153

set of table operations, and then prompts LLM to 154

generate a table reasoning chain that calls those 155

operations. Compared with the above methods, 156

Chain-of-Table partly reduces the bias caused by 157

letting LLM generate codes directly. For text rea- 158

soning, Dater (Ye et al., 2023) prompts LLM to 159

decompose table and question to solve complex 160

tasks. Besides, H-STAR (Abhyankar et al., 2024) 161

discussed the issue of integrating text reasoning 162

and code generation methods. However, it just sim- 163

ply prompts LLM to choose what strategy to use 164

for analysis, without delving into the strengths and 165

the limitations of different strategies, thus lacking 166

interpretability. 167

3 Methodology 168

3.1 Overview 169

We propose A-STAR, an architecture for LLM- 170

based table reasoning tasks. It is scale-free and can 171

fully unleash the potential of LLM by enhancing 172

its table content-aware capability. As illustrated in 173

Figure 1, A-STAR includes a table refiner that de- 174

composes the original table into sub-tables and then 175

recombines relevant records obtained by the extrac- 176

tion of sub-tables into a refined table; an adaptive 177

solver that can adopt different strategies to obtain 178

multiple candidate answers; and an output summa- 179

rizer for output processing, which can summarize 180
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Figure 1: Overview of A-STAR, which consists of three parts: (i) Table Refiner refines the original table into
a refined table which has a higher density of relevant records; (ii) Adaptive Solver uses an adaptive strategy on
different tables to generate multiple candidate answers and assign different priorities to them and (iii) Output
Summarizer unifies semantically identical answers and vote to select the final answer.

all candidate answers and vote based on semantics181

to generate the final response.182

3.2 Table Refiner183

How to enhance the table content-aware capabil-184

ity of the model is the key for table reasoning185

task. Unlike other table-based tasks, table reason-186

ing task requires the model to have a more specific187

understanding of the table down to the record level.188

Therefore, accurately locating relevant records is189

crucial. (Ye et al., 2023) used text reasoning to190

accomplish this task, prompting LLM to find all191

relevant records in the given table. However, it’s192

difficult to search the entire table at once due to193

the context length limit of LLMs. Code generation194

method (Zhang et al., 2023; Wang et al., 2024b)195

prompts LLM to combine keywords from ques-196

tion and table schema to infer the relevant records,197

while the model does not actually understand the198

table data. Therefore, when the question is ambigu-199

ous, code generation raises errors.200

We design an algorithm based on decompose-201

recombine to deal with it. The original table will202

be split into several sub-tables and a two-step sam-203

pling process for them is used to get the refined204

table. Algorithm 1 describes the overall process.205

Table Split Line 1 of Algorithm 1 describes this206

step. The scale of each sub-table should be con-207

sidered to ensure that LLM can get enough infor-208

mation at once while avoiding long context lengths209

impairing the performance. Firstly, the original 210

table will be equally divided into three parts. And 211

then, if their scales are too large or too small, they 212

will be re-divided according to a pre-set length. Fi- 213

nally, the remaining records are merged into an 214

extra sub-table. In this way, the original table has 215

been split into a batch of sub-tables that are appro- 216

priately sized and sufficiently uniform. 217

Algorithm 1 Table Refinement Algorithm

Require: Table T , Question Q
Ensure: Table T ′

1: subs = split_into_subtables(T )
2: Dive the subs into 3 clusters.
3: for mid in each clusters do
4: prompt = gen_prompt(mid, Q)
5: records.append(LLM(prompt))
6: if records not null then
7: for each adj to the mid do
8: prompt = gen_prompt(adj, Q)
9: records.append(LLM(prompt))

10: end for
11: end if
12: end for
13: T ′ = records

Two-Step Sampling Process Lines 2 to 9 of 218

Algorithm 1 describe this step. It’s not wise to 219

search all of these sub-tables considering time and 220

expense. For a question, the distribution of its 221
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relevant records in the table contains three situa-222

tions: (1) Dense. Like "What is the title of the223

next episode of a certain episode?", whose rele-224

vant records exist adjacently; (2) Moderate. Like225

"How long did it take for a certain team to win the226

championship again after a certain year?", whose227

relevant records exist in non-adjacent sub-tables;228

(3) Wide. Like "How many types of competitions229

did a certain athlete participate in?", which do not230

clearly mention the specific data, so the relevant231

records can exist in all the sub-tables. Based on the232

above analysis, we propose a two-step sampling233

process. Step 1: Categorize all sub-tables into three234

clusters, and select the middle sub-table for each235

cluster. Lines 2 to 5 of Algorithm 1 describe this236

step. Step 2: Select two adjacent sub-tables from237

the same cluster if there are any relevant records in238

the selected sub-table. Lines 6 to 9 of Algorithm 1239

describe this step.240

Relevant Records Extraction LLM is prompted241

to judge whether the sub-table contains records242

related to the question, and if so, return their row243

numbers. After the extraction process is completed,244

all these rows are merged into a refined table for245

subsequent analysis.246

Algorithm 2 Adaptive Solving Algorithm

Require: Original Table T , New Table T ′, Set of
Sub-tables Ts, Question Q, Minimum Length
of Table lmin, Number of analysis n

Ensure: Set of Candidate Answers A
1: if length of T < lmin then
2: text_prompt = gen_text_prompt(T , Q)
3: A.append(LLM(text_prompt, n))
4: code_prompt = gen_code_prompt(T , Q)
5: A.append(LLM(code_prompt, n))
6: assign_priority(A, type_a)
7: else
8: for each sub in Ts do
9: text_prompt = gen_text_prompt(sub,

Q)
10: A.append(LLM(text_prompt, n))
11: end for
12: text_prompt = gen_text_prompt(T ′, Q)
13: A.append(LLM(text_prompt, n))
14: code_prompt = gen_code_prompt(T ′, Q)
15: A.append(LLM(code_prompt, n))
16: assign_priority(A, type_b)
17: end if

3.3 Adaptive Solver 247

(Liu et al., 2023) compared the performance of 248

using text reasoning or code generation to solve 249

table reasoning tasks through many experiments. 250

The results show that the accuracy of text reason- 251

ing performs better when the model can access the 252

complete table. LLM is mainly trained on natural 253

language data, which means its capability of code 254

generation is inherently lower than text reasoning. 255

However, large-scale tables in real-world scenarios 256

limits the potential of LLM’s text reasoning capa- 257

bility. Conversely, an obvious advantage of code 258

generation is that it can answer a question under 259

the circumstances of accessing only the schema of 260

the table, allowing it to handle situations with a 261

large table scale. However this advantage cannot 262

fully cover the additional bias introduced by code 263

generation methods due to the lack of awareness 264

of table content. In summary, both these methods 265

have their own strengths and limitations. We must 266

carefully design the strategy that is flexible enough 267

to face different situations. 268

An adaptive strategy is introduced to solve this 269

problem. It can flexibly select different solvers to 270

adapt on a sub-table or refined table to get multiple 271

candidate answers and assign priorities to these 272

answers. Algorithm 2 describes the overall process. 273

Solvers Call LLM is prompted to act as different 274

solvers. Text solver directly gives the answer or a 275

"can’t be answered" judgment, while code solver 276

generates code to run on the original table to obtain 277

the answer or an execution error. To reduce run- 278

time errors in the generated code, the input and the 279

output are defined in advance. To further enhance 280

the diversity, self-consistency (Wang et al., 2022) 281

that repeatedly calls the solvers multiple times is 282

used to generate candidate answers. 283

Priority Assignment The adaptive strategy con- 284

sists of three parts: (1) Check the scale of original 285

table. The refinement is not necessary when the 286

original table is small. In this case, the candidate an- 287

swers from text reasoning will be considered more 288

reliable than from code generation, corresponding 289

to ’type_a’ in Line 6 of Algorithm 2. (2) The can- 290

didate answers from sub-tables should be given 291

the highest priority. The sub-tables sampled will 292

not only be used to extract relevant records, but 293

they will also be analyzed using text reasoning. 294

That’s because, first, if all relevant records exist in 295

the same sub-table, this process will more likely 296
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obtain the correct answer. Second, since each sub-297

table contains different records, it’s unlikely that298

all candidate answers will be the same, so they will299

not cause significant interference to the subsequent300

analysis. In a word, a simple text reasoning will be301

conducted on all sub-tables, excluding failed pro-302

cesses and assigning the highest priority to the re-303

maining candidate answers. (3) Prioritizing codes304

to analyze the refined table. Regardless of the305

scale of the table after refinement, the candidate306

answers obtained by code generation will be as-307

signed higher priority, corresponding to ’type_b’308

in Line 16 of Algorithm 2. Text reasoning is only309

suitable when all relevant records are accessible,310

while our table refinement algorithm sacrifices ac-311

curacy for efficiency and thus cannot guarantee that312

all relevant records are found. Therefore, the strat-313

egy tends to code generation. Moreover, previous314

LLM-based coding-dependent methods simply ex-315

tracted the first few records of the table as the view316

provided to LLM. In contrast, our method provides317

LLM with a view that covers more relevant records,318

thereby improving the coding performance. In sum-319

mary, all candidate answers are assigned different320

priorities through this step, which will affect the321

subsequent voting process.322

3.4 Output Summarizer323

LLM prefers to add unnecessary context or expla-324

nation in response, leading to the inconsistency of325

the form. For example, for the question "How old is326

Bob’s father?", from a semantic perspective, "48",327

"48 years old", "Bob’s father is 48 years old this328

year" express the same meaning. But from a string329

comparison perspective, only one of them can be330

considered correct. Previous works mitigated this331

impact by designing complex string processing,332

while our method utilizes LLM to accomplish this333

task for its clear advantage in performing semantic-334

related tasks. Overall, in each process LLM is335

prompted to compare two candidate answers se-336

lected, and give a judgment on whether they are337

semantically identical. If yes, they will be unified338

into the same answer.339

The answer with the highest number of appear-340

ances among the candidate answers will be selected341

through voting. In this process, priority will only342

be considered when some answers appear the same343

number of times. It means the answer that appears344

more frequently is still preferred despite its low345

priority.346

4 Experiments 347

4.1 Experimental Setup 348

Datasets We evaluate A-STAR on three 349

commonly-used table reasoning datasets: Tab- 350

Fact (Chen et al., 2019), WikiTQ (Pasupat and 351

Liang, 2015) and FeTaQA (Nan et al., 2022). 352

TabFact is a table-based fact verification dataset, 353

whose task is to judge whether a statement is true 354

or not based on table data. We report results on its 355

small test set. WikiTQ is a table-based question 356

answering dataset that focuses on answering 357

questions through complex inference of the table 358

data. FeTaQA is a more difficult table-based 359

question answering dataset as it requires longer, 360

freer responses. 361

Baselines We report the LLM-based methods 362

that have performed well on the above datasets, 363

including Binder (Cheng et al., 2022), Dater (Ye 364

et al., 2023), ReAcTable (Zhang et al., 2023), 365

TabSQLify (Nahid and Rafiei, 2024), Chain-of- 366

Table (Wang et al., 2024b) and H-STAR (Ab- 367

hyankar et al., 2024). We also report some basic 368

methods, including (a) Text End-to-End, which 369

prompts LLM to directly give the answer, (b) Text 370

CoT, which prompts LLM to think and give a rea- 371

soning chain before answering, (c) Code End-to- 372

End, which prompts LLM to write code and (d) 373

Code CoT, which prompts LLM to think and give 374

a reasoning chain before writing code. Moreover, 375

we also report some pre-trained methods including 376

TaPas (Herzig et al., 2020), Tapex (Liu et al., 2021), 377

ReasTAP (Zhao et al., 2022), OmniTab (Jiang et al., 378

2022), LEVER (Ni et al., 2023) and PASTA (Gu 379

et al., 2022). 380

In order to discuss the impact of different back- 381

bone models of A-STAR, we evaluate it based 382

on Llama3.1-8b (Dubey et al., 2024), Qwen2.5- 383

7b (Yang et al., 2024) and GPT-4o-mini (Achiam 384

et al., 2023). We reran the tests using codes pro- 385

vided by their authors. For those who have not 386

open-sourced the prompt and the code on some 387

datasets, considering the impact of code (especially 388

the design of their prompt templates) on the per- 389

formance, we have decided not to report the per- 390

formance of these methods on the corresponding 391

dataset. 392

Metrics TabFact and WikiTQ both use Execu- 393

tion Accuracy (EA) as the evaluation metric, we 394

follow this practice. For TabFact, we prompt LLM 395

to only generate "true" or "false" and then evaluate 396
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Methods
Llama3.1-8b Qwen2.5-7b GPT-4o-mini

TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ

Text End-to-End 55.09 22.44 58.15 20.42 62.01 30.62
Text CoT 60.38 26.52 63.24 23.07 67.34 36.9

Code End-to-End 30.63 24.7 44.91 35.7 60.08 46.94
Code CoT 41.85 29.58 47.97 39.8 64.28 49.75

Binder 51.98 27.14 53.51 29.7 67.05 38.03
Dater 57.9 37.41 58.99 40.01 74.7 52

ReAcTable - 37.64 - 40.42 - 57.09
TabSQLify 60.67 44.96 59.39 47.38 78.26 68.76

Chain-of-Table 63.83 - 62.35 - 85.13 -
H-STAR 70.1 51.06 64.38 51.24 89.38 74.95
A-STAR 75.69 58.49 73.22 59.46 89.82 78.5

Table 1: Performance of various methods on TabFact and WikiTQ datasets. ’-’ indicates that we don’t report the
result because of the irreproducibility.

the answer using string matching. For WikiTQ,397

we directly compare the model answer with the398

gold answer. We don’t use the Python-based Wik-399

iTQ evaluator (Pasupat and Liang, 2015), as our400

output summarizer takes this responsibility. Simi-401

larly, we evaluate results on FeTaQA by calculating402

ROUGE (Lin, 2004) score of the model answer and403

the gold answer.404

4.2 Experiment Results405

Table 1 shows some of the results. Due to space406

limitations, we have the additional results in Ap-407

pendix A, including comparisons with pre-trained408

methods and evaluation on the FeTaQA dataset. In409

summary, A-STAR outperforms all existing LLM-410

based methods with different datasets and back-411

bone models. It is worth mentioning that previous412

methods sampled from the train set to construct a413

few-shot prompt, while we do not use any exam-414

ples, which reduces the cost of generalizing our415

method to other table reasoning tasks and leaves416

room for further improvement.417

We notice that A-STAR shows a decrease in im-418

provement compared to other methods when using419

a stronger LLM as the backbone model. That’s420

because, with a stronger LLM, the length of con-421

text it can handle increases, which enhances the422

performance of text reasoning; and also its cod-423

ing skill improves, which makes the code genera-424

tion process perform better. In contrast, A-STAR425

benefits from the performance improvement of the426

LLM itself only when calling it to extract relevant427

records from sub-tables. Besides, when generating428

an answer, the performance of coding-dependent 429

methods will be greatly affected by the differences 430

in LLMs’ coding capabilities, while it has limited 431

impact on the performance of A-STAR as our adap- 432

tive solving algorithm. In other words, we aim 433

to maximize the potential of weak LLM, so the 434

improvement of the LLM itself will to some ex- 435

tent compensate for the gap in our performance 436

compared to other methods. 437

4.3 Ablation Study 438

To evaluate the effectiveness of each module in 439

A-STAR, we conduct an ablation study on the Wik- 440

iTQ dataset. We remove the table refiner, instead 441

we always select the first sub-table. We remove the 442

adaptive solver and only use the text solver or the 443

code solver to generate candidate answers. More- 444

over, we shuffle the candidate answers to eliminate 445

the influence of the priority. We remove the output 446

summarizer, instead choosing the first candidate 447

answer as the result. 448

Table 2 shows the specific contribution of each 449

module to the A-STAR’s performance. Overall, 450

removing any module will result in a performance 451

loss, emphasizing the importance of all modules in 452

A-STAR. Specifically: (a) Removing the table re- 453

finer has the least impact on performance, for there 454

are a considerable number of questions whose an- 455

swers can be directly obtained from the first few 456

records in the table. Therefore, our alternative, 457

which chooses the first sub-table has little impact 458

on answering these questions. (b) After removing 459

the adaptive solver, the alternative of using only 460
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Llama3.1-8b GPT-4o-mini

A-STAR 58.49 78.5
w/o Table Refiner 49.06 71.59

w/o Adaptive Solver(ALL Text Solver) 48.73 68.76
w/o Adaptive Solver(ALL Code Solver) 44.66 67.4

w/o Output Summarizer 44.34 56.4

Table 2: Performance of A-STAR removing (i) Table Refiner, (ii) Adaptive Solver and (iii) Output Summarizer on
WikiTQ dataset.

the text solvers performed better than using only461

the code solvers. That’s because text solvers can462

keep a stable performance on a small table, while463

code solvers are likely to generate code with errors464

on any table. It can be seen that when using only465

code solvers, the decrease in performance using466

Llama3.1-8b as the backbone model is more sig-467

nificant compared to using GPT-4o-mini, which re-468

flects that the difference in LLM’s inherent coding469

capability will significantly affect the performance470

of coding-dependent methods. (c) Removing the471

output summarizer has the greatest impact on per-472

formance. Due to our priority assignment strategy473

assigning the highest priority to the candidate an-474

swers obtained from sub-tables, the alternative will475

always choose them. However, without priority, the476

accuracy of the candidate answers obtained from477

a sub-table cannot be guaranteed as they may not478

necessarily contain relevant records.479

Methods
Table Scale(Num. of Tokens)

<2k 2k-4k >4k

Binder 33.59 26.65 5.13
Dater 48.65 28.53 13.68

ReAcTable 46.33 30.09 20.51
TabSQLify 52.7 37.93 30.77
H-STAR 56.95 45.45 40.17
A-STAR 65.25 52.04 46.15

Table 3: Performance of various methods on different
scales of tables from WikiTQ dataset, using Llama3.1-
8b as backbone model.

4.4 Discussion480

(Chen, 2022) points out that when the number481

of table rows exceeds 30, the performance bot-482

tleneck that a LLM can handle has been reached.483

To evaluate the impact of the table scale, we not484

only consider the number of rows but also the485

lengths. Specifically, we classify tables in the Wik-486

iTQ dataset into three parts by the number of to- 487

kens: tables with less than 2000 tokens, tables with 488

more than 4000 tokens and tables with tokens from 489

2000 to 4000. 490

The result is in Table 3. All methods show a 491

decrease in performance when the table scale in- 492

creases. Relatively, A-STAR controls the magni- 493

tude, thus ensuring a consistent performance as 494

much as possible. This is attributed to our extrac- 495

tion algorithm based on decompose-recombine and 496

the adaptive priority assignment strategy success- 497

fully reducing the impact of table scale on the per- 498

formance. 499

Figure 2: Comparison of the scale of original ta-
ble/refined table. We exclude all the small tables as
they do not require refinement.

Table refiner refines the original table into a ta- 500

ble containing more relevant records and less re- 501

dundant records through the algorithm based on 502

decompose-recombine. Figure 2 compares the av- 503

erage scale of the original table and the refined 504

table. We exclude all small tables that do not re- 505

quire refinement. It can be seen that table refiner 506
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significantly reduces the number of records in the507

refined table - from an average of 27.69 records508

to 6.16 records for the WikiTQ dataset, and from509

an average of 14.27 records to 4.25 records for the510

TabFact dataset. It demonstrates how our table re-511

finer effectively reduces the redundant information512

unrelated to the question and allows the LLM to513

focus more on valuable information for inference.514

Llama3.1-8b GPT-4o-mini

A-STAR 58.49 78.5
w/o SC 45.49 67.29

Table 4: Performance of A-STAR with/without Self-
Consistency on WikiTQ dataset.

Table 4 shows the impact of with/without self-515

consistency on the performance of A-STAR. We516

use self-consistency only when analyzing the re-517

fined table but not the sub-tables, so the weight518

of candidate answers obtained from sub-tables has519

been weakened. In other words, our strategy en-520

sures that this part of candidate answers have the521

highest priority while reducing their negative im-522

pact from the randomness of these answers to the523

result. It’s worth noticing that after using a stronger524

LLM as the backbone model, the performance loss525

without self-consistency decreased from 22.23% to526

14.28%. It can be explained by the fact that as the527

capability of the LLM improves, it can obtain the528

correct answer using any analysis method.529

Llama3.1-8b GPT-4o-mini

in Text Solver 23.27% 13.42%
in Code Solver 18.34% 11.95%

in Both 31.66% 61.32%
in Neither 26.73% 13.31%

Table 5: The proportion of correct answer in text
solver/code solver/both of them/neither of them on the
WikiTQ dataset.

We calculate the proportion of correct answers530

appearing only in the text solver/only in the code531

solver/in both/in neither. Table 5 shows the result.532

It can be seen that (a) the most common situation is533

that both the text solver and the code solver can ob-534

tain the correct answer, accounting for 31.66% and535

61.32%. It indicates that there is actually no essen-536

tial difference between these two methods, but how537

we make choices based on the actual situations538

is important. In addition, after using a stronger539

LLM, the proportion of this situation has reached 540

an absolute advantage, which once again proves 541

the viewpoint that as the capability of the LLM im- 542

proves, it can obtain the correct answer using any 543

analysis method. (b) The correct answer appears 544

more frequently in the text solvers than in the code 545

solvers. There are two reasons for this. First, text 546

solvers can keep a stable performance on a small 547

table, while code solvers are likely to generate code 548

with errors on any table. Second, when analyzing 549

sub-tables, we only use the text solver. In some 550

cases, all relevant records may exist in the same 551

sub-table, so the text solver can directly obtain the 552

correct answer, which cannot be achieved by code 553

solvers. 554

Llama3.1-8b GPT-4o-mini

A-STAR 58.49 78.5
w/o Unification 38.26 67.52

Table 6: Performance of A-STAR with/without
Semantic-Consistency on WikiTQ dataset.

Table 6 shows the impact of with/without se- 555

mantic unification on the performance of A-STAR. 556

After removing this step, there was an astonishing 557

and significant decline in the result. We emphasize 558

that it DOES NOT demonstrate the importance of 559

unification itself. If there were no such process, the 560

candidate answers will only be voted on with sim- 561

ple string matching, thus leading to our adaptive 562

solving method losing its expected consistency in 563

the result. In other words, the performance degra- 564

dation without unification is actually a continuation 565

of the impact of our adaptive solving method on A- 566

STAR’s performance, which proves the importance 567

of this module from the side. 568

5 Conclusion 569

In this paper we propose A-STAR, an architecture 570

for table reasoning that aims to enhance LLM’s 571

content-aware capability at any scale. It includes 572

a decompose-recombine algorithm to refine the 573

original table; an adaptive strategy to obtain var- 574

ious answers and assign priorities to them; and 575

a semantic-based voting process to generate the 576

final response. Experiment results have shown 577

that A-STAR outperforms all existing LLM-based 578

methods in typical table reasoning tasks including 579

question answering and fact verification. Further 580

analysis highlights the significance of our method. 581
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Limitations582

Our method has not been experimented on more583

table reasoning tasks such as Text-to-SQL, table-584

based prediction and tabular data analysis, etc.,585

which imposes a limit on the generalization. In586

addition, the datasets used are constructed based587

on Wikipedia, the tabular data is simply organized,588

clear, easy to understand and not too large. How-589

ever, tables in real-world scenarios raise more590

challenges including extremely large scale, noisy591

records and complex organization forms. How to592

address these challenges remains an unresolved593

issue.594

Moreover, our method further increases the com-595

plexity compared to previous LLM-based methods,596

involving repeated calls and interactions between597

multiple LLMs, which may lead to a possible de-598

crease in efficiency. How to find a trade-off be-599

tween performance and efficiency is the topic we600

will study next.601
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A Supplementary Experiments 751

Methods TabFact WikiTQ

TaPas 83.9 48.8
Tapex 85.9 57.5

ReasTAP 86.2 58.6
OmniTab - 62.8
LEVER - 65.8
PASTA 90.6 -

A-STAR with Llama3.1-8b 75.69 58.49
A-STAR with Qwen2.5-7b 73.22 59.46
A-STAR with GPT-4o-mini 89.82 78.5

Table 7: Performance of pre-trained methods and A-
STAR with different backbone models on TabFact and
WikiTQ datasets.

A.1 Comparison with Pre-trained Methods 752

Table 7 shows the performance of pre-trained meth- 753

ods and A-STAR with different backbone model 754

on TabFact and WikiTQ datasets. We do not rerun 755

the test but faithfully report the results from the 756

original paper. 757

A.2 Evaluation on FeTaQA dataset 758

Table 8 shows the result of some LLM-based meth- 759

ods on the FeTaQA dataset with different back- 760

bone models. Unlike other table reasoning tasks, 761

FeTaQA requires the model to provide a descrip- 762

tive statement as the answer rather than directly 763

giving the result. And for evaluation, FeTaQA cal- 764

culates the matching degree between the model 765

statement and the gold statement to assess the qual- 766

ity of the answer. To address this requirement, we 767

have slightly modified the prompts to make the 768

LLM tend to generate longer and more detailed 769

answers. 770

It’s worth mentioning that using only simple text 771

reasoning + CoT can achieve a performance that is 772

close to or even better than LLM-based methods. 773

10

https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421


Methods
Llama3.1-8b Qwen2.5-7b GPT-4o-mini

1 2 L 1 2 L 1 2 L

Text End-to-End 0.42 0.21 0.37 0.44 0.22 0.38 0.56 0.34 0.48
Text CoT 0.48 0.24 0.42 0.46 0.24 0.41 0.58 0.35 0.52

Code End-to-End 0.27 0.13 0.25 0.29 0.13 0.25 0.36 0.18 0.33
Code CoT 0.28 0.13 0.25 0.31 0.15 0.28 0.38 0.19 0.34

TabSQLify 0.41 0.2 0.37 0.37 0.16 0.33 0.49 0.35 0.44
H-STAR 0.45 0.23 0.4 0.46 0.25 0.43 0.54 0.44 0.5
A-STAR 0.48 0.25 0.45 0.49 0.27 0.44 0.63 0.46 0.52

Table 8: Performance of various methods on FeTaQA dataset. ’1’ and ’2’ means calculating the score using
ROUGE-n where n = 1 or 2. ’L’ means calculating the score using ROUGE-L.

We attribute it to the evaluation rule of the FeTaQA.774

ROUGE score measures the completeness of the775

information related to the gold answer in the model776

answer. In fact, we observed that when the model777

generates a longer answer, it’s easier to obtain a778

higher ROUGE score, regardless of whether the779

answer is correct. In addition, LLM excels in using780

descriptive statements to answer a question, which781

allows it to generate a response that has a similar782

style to the gold answer through a simple prompt.783
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