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Abstract

Spatio-temporal modeling and forecasting are challenging due to their complicated1

spatial dependence, temporal dynamics, and scenarios. Many statistical models,2

such as Spatial Auto-regression Model (SAR) and Spatial Dynamic Panel Data3

Model (SDPD), are restricted by a pre-specified spatial weight matrix and thus4

are limited to reflect its flexibility. Graph-based or convolution-based methods5

can learn more flexible representations, but they fail to show the exact interactions6

between locations due to the lack of explainability. This paper proposes a spatial re-7

gression model with shape functions to address the limitations of existing methods.8

Our method learns the shape functions by incorporating shape constraints, which9

are able to capture spatial variability or distance-based effects over distance. There-10

fore, our approach enjoys a learnable spatial weight matrix with a distance-based11

explanation. We demonstrate our method’s efficiency and forecasting performance12

on synthetic and real data.13

1 Introduction14

Spatio-temporal data is widely observed in many areas, such as transportation (33; 27), climatology15

(2), and environmental research(19). The popularity of spatio-temporal data brings varieties of tasks16

for researchers, and one of the key tasks is forecasting. Spatio-temporal data has some inherent17

characteristics, namely, spatial dependence and temporal dynamics, which need to be considered for18

modeling and forecasting.19

Spatial dependence means that the observations at different locations are not independent, and20

observations at closer locations often have a stronger correlation. In the statistics community,21

extensive research has been conducted to model spatial dependence, and various spatial models have22

been proposed. For example, in the spatial autoregressive (SAR) models, the spatial dependence is23

modeled by a product of an unknown parameter and a pre-specified spatial weight matrix (4; 1; 11; 12).24

Combined with the panel data, various types of spatial panel data models have been used to analyze25

spatio-temporal data (35; 13; 7; 22). One limitation of the autoregressive models is that the elements26

of the spatial weight matrix are pre-specified, such as an inverse distance. Although these pre-27

specified spatial weight matrices are applied to capture decreased distance-based effects, they fail to28

capture complex distance relations in real-world applications.29

Researchers in the computer science community have developed various methods modeling spatio-30

temporal data using deep neural networks. Various neural network architectures have been proposed31

and applied to spatio-temporal forecasting, for example, spatio-temporal LSTM (31), fully connected32

gated graph architecture (20), Convolutional LSTM (23) and etc. One advantage of these methods33

is that they can incorporate unstructured data and rely on a high-performance computing platform34

to learn complicated representations for spatio-temporal problems. However, a critical limitation of35

these methods is that they fail to explain how the spatial interaction works explicitly. The lack of36
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interpretability restricts its reliability and deep insights into the underlying spatio-temporal process.37

The explanation can be obtained if we can estimate the coefficient matrix that intuitively explains38

spatio-temporal interactions.39

In this paper, we propose an Explainable Spatio-Temporal Forecasting (ESTF) model, which utilizes40

a spatial autoregressive model with shape functions to address the current limitations. Our method41

extends the vector autoregressive (VAR) model (24) by incorporating distance information into the42

temporal coefficient matrix using shape functions (3). The shape constraints are designed to be43

consistent with the common fact that observations from neighbours have stronger spatial dependence44

versus long-distance pairs. It is known as Tobler’s First Law, which is "Everything is related to45

everything else, but near things are more related than distant things"(26; 18). Unlike the pre-specified46

spatial weight matrix, this coefficient matrix is learnable and is thus more flexible in capturing47

real-world complex spatial relations. Moreover, the shape functions are represented as a combination48

of basis functions, and thus a smaller number of parameters needs to be estimated. Finally, ESTF can49

be easily extended to forecasting in non-stationary scenarios using a dynamic spatial weight matrix.50

We conduct experiments on both simulated and real data, and the results demonstrate that our method51

achieves better forecast accuracy and is computationally efficient and more explainable.52

2 Related work53

Statistical models Several works focus on temporal dynamics when considering spatio-temporal54

forecasting problems. The classical time series models, such as VAR, and ARIMA models, are applied55

to spatio-temporal process modeling(21; 38). Besides, a spatial weight matrix is also introduced to the56

ARIMA model to capture spatial dependence (28). The non-stationarity, particularly unit-root non-57

stationarity, is mainly modeled by ARIMA or Co-integration models. In addition, spatial regression58

models or panel data are classical models in econometrics and can also be applied to model spatio-59

temporal problems. These models, for example, spatial auto-regression models, take spatial weight60

matrix into consideration and estimate parameters in the framework of regression. However, the61

common characteristics of these models need a pre-specified spatial weight matrix(35; 6). Elements62

in the matrices are generally an inverse distance of corresponding locations. Meanwhile, these63

spatial models focus on statistical inference on the scalar parameters placed before the spatial weight64

matrix(25). Although there are many choices for the spatial weight matrix, such as inverse distance,65

adjacency relationships, and K-nearest neighbors, there is a lack of research on estimating the spatial66

weight matrix. The pre-specified spatial weight matrix restricts models’ application and fails to67

capture more complicated underlying spatial dependence. Some researchers developed a sparse68

spatio-temporal model that can estimate a sparse spatial weight matrix (17). The strict sparse setting69

also restricts the wide application of the spatial weight matrix.70

Graph-based methods Graph-based methods are widely applied for a non-Euclidean domain.71

Some types of spatio-temporal data, for example, traffic flow data or brain network data, can be72

represented as graphs. The graph structures well model the complicated spatial dependence. Thus,73

the definition or pre-specified graphs structure is normally required when developing a graph-based74

model. Related works can be found in (30; 14). The common typical method is GraphCNN, which is75

to apply a convolutional transformation to the neighbors of each node (29; 34). The graph convolution76

can capture patterns and features in the spatial domain. Graph-based methods have been proposed77

and widely applied to lots of real cases. Traffic flow data modeling and forecasting is a popular topic78

in this area (30; 20). Other topics, for example, climate sensor data (16), video (10) and etc, are also79

applied by variant graph-based models. RNN or LSTM combined with graphs, i.e., a sequence of80

graphs, are also considered in spatio-temporal forecasting problems (10).81

CNN-based methods Unlike graph-based methods, CNN-based methods are more suitable for82

modeling spatio-temporal data collected in regular grid locations. It applies filters to find relationships83

between neighboring inputs. Although some works (32) applied convolution neural networks to84

model non-grid traffic data, it is more common to see CNN-based methods process grid structures,85

e.g., images, video rather than a general domain. As some spatio-temporal data are collected from a86

regular grid in the Euclidean space (29), they thus can be viewed as a kind of special image. The CNN87

structure combined with RNN or LSTM has been developed to make forecasting for spatio-temporal88

data, for example, diffusion convolutional RNN (15), Convolutional LSTM networks (23; 36)and etc.89
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3 Proposed method90

3.1 Problem formulation and notation91

We use a n × 1 vector Xt = {x1t,x2t, · · · ,xnt} to denote observations at time t, where n is92

the number of locations. At each location i, Si = (cxi , c
y
i ) is the coordinates of the location i.93

The distance between location Si and Sj is dij =
√
(dxij)

2 + (dyij)
2, where dxij = |cxi − cxj | and94

dyij = |cyi − cyj |. Our goal is to make forecasting for spatio-temporal data: given training data set95

X1,X2, · · · ,XT, we would like to make forecasting for the next h, X̂T+1, · · · , X̂T+h.96

3.2 The stationary spatio-temporal model with shape functions97

We first consider the stationary case. To model the spatio-temporal stationary process, we consider98

the following model99

Xt =

p∑
k=1

WkXt−k + ϵt, (1)

where Wk is a spatial weight matrix for capturing the spatial dependence at lag k, and ϵt is white100

noise. Moreover, we assume the (i, j)th element of Wk, w(k)
ij , depends on the distance dij . That is,101

w
(k)
ij depends on a function fk(dij).102

For spatio-temporal data, the spatial dependence, represented by w
(k)
ij , between locations decreases103

as the distance between two locations increases. In other words, there is a shape constraint for104

the function fk(d), such as a decreasing function. In order to estimate the shape function, we105

model fk(d) as a linear combination of basis functions gi(d), i = 1, 2, · · · ,m. More specifically,106

the shape function fk(d) is a linear combination of basis functions and coefficients with positive107

value fk(d) = a21,kg1(d) + · · ·+ a2m,kgm(d), where a1,k, · · · , am,k are parameters to be estimated.108

The constraint of decrease needs parameters non-negative and thus each parameters squared. The109

spatial weight matrix can take the value of decreased shape function directly. The element of Wk110

is w(k)
ij = fk(dij). The details of the shape function and the corresponding basis functions can be111

found in Section 3.4112

The parameters in shape functions can be estimated from the neural network illustrated in Figure 1.
The neural network can be trained from the following criterion:

min
{Wk}p

k=1

T∑
t=1

||Xt − X̂t||2 =

T∑
t=1

||Xt −
p∑

k=1

ŴkX̂t−k||2.

3.3 The non-stationary spatio-temporal model with time-variant shape functions113

The static spatial weight matrix Wk can reflect spatial dependence and thus can be applied to114

stationary scenarios. Next, we consider the nonstationary case. Therefore, we extend the stationary115

model to non-stationary cases. The spatial weight matrices only reflect static relationships across time116

lags in the static model. Unlike these settings, we change spatial weight matrices to be time-variant.117

The spatial weight matrices formed by time-variant shape functions can thus capture non-stationary118

dynamic spatial dependence. The non-stationary model has the form below,119

Xt =

p∑
k=1

Wt,kXt−k + ϵt. (2)

where ϵt is white noise, and Wt,k relies on shape function ft,k(d). Similar with stationary settings,
the time-variant shape functions are still represented as a linear combination of basis functions
gi(d), i = 1, 2, · · · ,m. The coefficients are therefore time-variant. The shape function at time t has
the form below ft,k(d) = a21,t,kg1(d)+ · · ·+ a2m,t,kgm(d). Unlike stationary setting, the coefficients
of nonstationary setting, {ai,t,k}mi=1, depend on the time t. The non-stationary model can be trained
from the criterion by minimizing

min
{Wt,k}p

k=1

||Xt − X̂t||2 = ||Xt −
p∑

k=1

Ŵt,kX̂t−k||2.
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The networks for the stationary model as well as the non-stationary model are presented in the Figure120

1.121
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Figure 1: The neural network for the stationary spatio-temporal process (left) and non-stationary
spatio-temporal process (right).

3.4 The basis functions for shape functions122

The shape functions are integrated into our model to obtain distance-based explanations in stationary123

and non-stationary scenarios. The motivation of the proposed shape functions is that as the distance124

between two observations increases, the effects between these two locations decreases. These distance-125

based effects can be reflected in spatial weight matrix W and each element in the matrix can measure126

how the corresponding locations interact. The shape function is represented as a linear combination of127

basis functions. The basis functions, satisfying shape constraint, rely on the corresponding definition128

of basis functions.129

Definition of basis functions for various shape constraints. We list the definition of basis functions130

for increased and decreased shape (3). The distance quantile among {di1,j1 , di2,j2 , , · · · , diN ,jN } at131

quantile level q1, q2, · · · , qm is denoted by {d(1), d(2), · · · , d(m)}, where 0 ≤ q1 < q2 < · · · < qm ≤132

1 and {q1, q2, · · · , qm} = { 1
m , 2

m , · · · , 1}. Here, we can set the number of m << n2, and thus, the133

number of parameters is significantly reduced.134

For the constraint of monotone decreasing function, the basis function is defined as gi(d) = 1{d<d(i)}.135

The basis function for the shape function with the constraint of concave decrease is defined as136

gi(d) = (d(i) − d)1{d(i)≤d} and convex decrease is defined as gi(d) = (d(i) − d)1{d≤d(i)}, for137

1 ≤ i ≤ m. Figure 2 shows the definition of basis functions for monotone decreased and increased138

shape functions, respectively. We only present four basis functions for each shape and each of them139

is related to four quantile levels. The dashed lines indicate the turning points for each basis function140

and they equal one or zero at the beginning and turn to zero or one at turning points.141

𝑔1
𝑔2
𝑔3
𝑔4

𝑔1
𝑔2
𝑔3
𝑔4

𝑑(1)
𝑑(1)𝑑(2) 𝑑(2)𝑑(3) 𝑑(3)𝑑(4) 𝑑(4)

𝑔1
𝑔2

𝑔3
𝑔4

𝑔4
𝑔3

𝑔2
𝑔1

Figure 2: The basis functions for decreased shape (left) and for increased shape (right). The arrows
indicate domain of each basis functions.
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3.5 Model forecasting142

The stationary model requires fixed shape functions and related spatial weight matrix are time-143

invariant. Given training data set X1,X2, · · · ,XT, we can estimate spatial weight matrix144

Ŵ1, Ŵ2, · · · , Ŵp and make forecasting iteratively. That is X̂T+1 =
∑p

k=1 ŴkXT+1−k, X̂T+2 =145

Ŵ1X̂T+1 +
∑p

k=2 ŴkXT+2−k, · · · X̂T+h =
∑p

k=1 ŴkX̂T+h−k.146

The non-stationary model incorporate time-variant spatial weight matrix Ŵt,·. Given the training
data set X1,X2, · · · ,XT, we can obtain corresponding shape functions f̂1,·, f̂2,·, · · · , f̂T,·, where
· denotes time lag. For lag p = 1, we can use {f̂t}Tt=1 to represent time-variant shape functions
for convenience. We can make dynamic forecasts for the next h windows. One simple forecasting
method is to use ŴT,k to make forecast for X̂T+h, that is

X̂T+h =

p∑
k=1

ŴT,kXT+h−k.

The alternative method is to retrain the new forecast to obtain the latest shape functions as well as
spatial weight matrix. Given long-term forecast window L, we first make short-term forecast for h
steps

X̂T+h =

p∑
k=1

ŴT+h,kXT+h−k,

where h = 1, 2, · · · and ŴT+h,k is estimated by training forecast value of X̂T+h−k. We repeat the147

process until L steps in total have been predicted.148

We summarize the whole process of our model when making spatio-temporal forecasts.149

Step 1 Given the observation {Xt}Tt=1 and its coordinates, calculate all distance pairs among all150

locations, denoted by {di1,ji , · · · , diN ,jN }.151

Step 2 Calculate { 1
m , 2

m , · · · , 1} quantile levels and obtain corresponding distance quantile value152

{d(1), d(2), · · · , d(m)}.153

Step 3 Determine the shape constraints and construct corresponding basis functions. Specify the154

time lag p.155

Step 4 Train the model according to the illustration of Figure 1.156

4 Experiment157

In order to assess our model in stationary and non-stationary scenarios, we synthesize data. Then,158

we apply our model to make some comparisons. On the one hand, we need to evaluate how159

the estimated shape functions look and assess their similarity and accuracy. On the other hand,160

our model can make spatio-temporal forecasting after estimating for spatial weight matrix. The161

basic idea for completing the two goals is to set up the expected shape function and compare162

estimated parameters with the real one. Next, we assess the forecasting performance with baseline163

models. Codes and data for replicating our experiments are anonymously published at https:164

//anonymous.4open.science/r/STVAR-F16E/.165

4.1 Simulation for stationary model166

Here, we synthesize 100 stationary spatio-temporal data sets. The spatial domain consists of
30 locations and their coordinates can be found at https://anonymous.4open.science/r/
STVAR-F16E/. For each location, we observe 500 values. The observation is generated from
the stationary model Xt =

∑p
k=1 WkXt−k + ϵt, where ϵt is randomly generated from the standard

normal distribution. The next step is to construct random spatial weight matrices for each synthesized
data set. The shape functions are set to be decreasing, and we set them as a logarithmic function:

α(− log(d+ 1) + log(170)),

where α is randomly generated from uniform distribution [0.05,0.06] but kept to be fixed for each167

simulated data set. We use d+ 1 to avoid zero value. This setting can make the real shape function168
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decrease and make it equal to zero when d = 169. The stationary model can iteratively generate the169

Xt given initial value X0, where X0 is randomly generated from a uniform distribution with bounds170

[-0.01,0.01]. The time lags are set as p = 1.171

11.5 29.8 48.3 72.1 104.5 163.2
Distance

0.0

0.1

0.2

0.3

0.4

Stationary Simulation
Actual SF
Estimated SF

Figure 3: The sample of estimated shape function.
Distances are shown every 20th quantile.

Estimation for shape functions. In Figure 3,172

the estimated shape function is presented in red,173

while the real shape function is presented in blue.174

It can be seen that the estimated shape function175

can capture the trend of the real shape function.176

Training details. The first 300 steps are used as177

training data, saving the last 200 steps for eval-178

uation. We train all models for 100 epochs with179

Adam optimizer (5) and a learning rate of 0.01.180

The process involves parallel training across 10181

CPUs. We select 100 quantile levels, and thus182

100 basis functions gi(d) were generated as the183

inputs for the model.184

Assessment for forecasting. We assess the fore-185

casting performance for the stationary model186

with baseline models. As introduced in the liter-187

ature review, the baseline models are selected from the VAR model(21), the spatial panel data(SPE)188

model that applied pre-specified spatial weigh matrix (28), graph-based models (20; 37) and189

convolution-based models (15; 23). The error metrics are mean absolute error and root mean squared190

error defined by 1
Nn

∑N
j=1

∑n
i=1

∑T+h
t=T |X̂(j)

it −X
(j)
it |

h , 1
Nn

∑N
j=1

∑n
i=1

√
1
h

∑T+h
t=T (X

(j)
it − X̂

(j)
it )2,191

respectively. The Table 1 shows the six baseline models with the proposed model. As totally we192

have 100 synthesised data sets, X(j)
it and X̂

(j)
it denote i− th variable in j − th data sets. n = 30 is193

the number of locations and N = 100 is the number of synthesised data. We conducted one-step194

forecasting for the next 200 observations.195

Compared with baseline models, the proposed model performs better under the metric MAE and196

RMSE. The proposed method outperforms the closest competing method, DC-RNN, by 10%.197

4.2 Experiments for non-stationary model198

We conduct a simulation for the non-stationary model with time lag p = 1 and synthesize 100 data
sets using a similar approach to the stationary model simulation. The initial value X0 and ϵt are
generated from a uniform and normal distribution respectively. The locations of observations are the
same as those in the stationary model simulation. In order to construct Wt, the time-varying shape
functions are created under the decreased constraint. The shape function at time t is constructed as

αt(− log(d+ 1) + log(170)),

where αt controls the level of value at each time t. ϵt is generated from a normal distribution. X0 is199

generated from a uniform distribution with bound [-0.001,0.001].200

Shape functions settings and estimation. The shape functions are set as time-variant, as they can201

simulate the non-stationary process across time. We specified α0 at t = 0 from uniform distribution202

[1 × 10−4,2 × 10−4] and then make an interpolation from α0 to α500. The total length for every203

location is 500 and we set α500 = 10 × α0. For example, generally if α0 = 0.0001, we have204

αt = 0.0001(1− t
T ) + 0.001 t

T , where T = 500. This setting guarantee that shape functions vary205

from lower level to higher level. The larger αt is, the more larger distance-based effects they have.206

Thus, the corresponding spatial weight matrix consists of dynamic shape functions and can reflect the207

non-stationary dependence among each site. We present the estimated shape functions in Figure 4208

and compare them with the real ones.209
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Figure 4: The sample of estimated shape function for the 120 testing time steps. Distances are shown
every 40th quantile.

Training details. Similar to the stationary simulation, the train-test split is 300− 200 over the data210

size of 500. However, we train all models for 100 epochs with Adam optimizer (5) at a learning rate211

of 0.001. We train models in parallel across 10 CPUs.212

Forecasting performance. The forecasting performance is assessed by the same metrics used in the213

previous simulation for the stationary case. We made a one-step forecast by our model. As for the214

baseline models, we adjusted their published code accordingly. The results show that the proposed215

model can still capture non-stationary processes compared with baseline models. The proposed216

method outperforms the other competing methods. The error metric is shown in Table 1.217

Table 1: The error metrics with baseline models for simulation.

Methods Stationary Simulation Non-stationary Simulation
MAE RMSE MAE RMSE

VAR 2.9611± 1.8573 3.2588± 1.8077 2.4426± 1.2285 2.7676± 1.2015
SPM 1.8850± 0.6348 1.8671± 0.6778 2.1918± 0.7350 2.2161± 0.6876
DC-RNN 0.8960± 0.0370 1.1168± 0.0426 0.9017± 0.0358 1.1328± 0.0463
FC-GAGA 2.5425± 0.2965 3.1066± 0.3633 1.0270± 0.0080 1.2939± 0.0120
GMAN 1.6806± 0.1491 1.9293± 0.1483 1.5714± 0.1104 1.8608± 0.1155
ConvLSTM 2.9495± 0.2980 3.2509± 0.2887 2.2478± 0.2295 2.5469± 0.2324
ESTF 0.7997 ± 0.0015 1.0017 ± 0.0016 0.8075 ± 0.0016 1.0112 ± 0.0020

4.3 Real case studies218

Air quality data. We apply our model to air quality data, which records air quality in California over219

2021 1. The daily mean of PM 2.5 is recorded across 172 sites.220

We obtain the first 200 steps for training and perform forecasting for the next 165 steps. All models221

are trained for 100 epochs using Adam optimizer (5), at a learning rate of 0.01 and batch size of222

50. We present the estimated time-variant shape functions in supplemental file. The value of shape223

functions decays to zero at around 5.926, which is 80% quantile in the sample of distance pairs. In224

other words, the distance-based effects decay to zero at a distance equal or larger than 5.926. Our225

1https://www.epa.gov/outdoor-air-quality-data/download-daily-data
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model has ideal performance with low time consummation compared with baseline models. We put226

detailed forecasting results of simulation and real cases in a supplemental file.227
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Figure 5: Comparing efficiency vs. performance
trade-off at different quantile values.

Figure 6: The significant distance-based effect
among all 30 locations.

The result is shown in Table 2. The ESTF performs best in terms of RMSE, while the DC-RNN228

method performs best in terms of MAE. For the computational time, the ESTF method is significantly229

faster than most machine learning methods, and only takes around 1/10 time of DC-RNN. In Figure 5,230

MAE, RMSE, and time are presented with different numbers of m. As m increases, the computational231

time increases while both MAE and RMSE decrease. There is a significant increase in the forecasting232

performance when m increases from 10 to 50. For m > 50, the forecasting performance does not233

increase much as m increases.234

One key advantage of the ESTF method is that we can make an explicit distance-based explanation235

for our dataset. Figure 6 shows the distance-based effects at time t = 9. We only present the effects236

using a threshold to obtain a more concise visualization. The estimated shape function f̂9 ranges237

from 0 to 9.8 and we set 5 as the threshold. The red line indicates the value of the shape function238

larger than 7, while the gray line indicates the value between 5 and 7. Figure 6 shows how any two239

locations interact and measure the distance-based effects quantitatively. For example, air quality240

monitoring sites around the Greater Los Angeles(red circle in Figure 6) area have a strong spatial241

interaction with each other, such as node 7 and node 8.242

4.4 SO2 data243

Texas is the second largest manufacturing state in the USA and prediction for SO2 is critical task for244

researchers. The data 2 records daily SO2 at 31 locations in 2021. More detailed spatial information245

can be found in the supplemental file. The numeric result is listed in Table 2.246

Table 2: The error metrics with baseline models for real case study. Clock time (in seconds) for real
case study is recorded when training each model for 100 epochs on a single CPU.

Methods Air quality data SO2 data
MAE RMSE Training time (s) Inference Time (s) MAE RMSE Training Time (s) Inference Time (s)

VAR 16.9844 22.3410 3.56 0.04 6.2705 9.1388 3.330 0.016
SPM 8.4547 13.8262 0.31 0.03 7.1453 9.1086 0.143 0.027
DC-RNN 4.7157 9.3873 203 1.211 3.5094 6.8681 264.215 1.366
FC-GAGA 7.8671 18.1870 181 2.759 4.5976 7.7528 169.425 2.889
GMAN 12.5268 17.3817 140 1.823 4.1099 7.4806 172.016 1.581
ConvLSTM 12.6292 17.9149 53 1.940 4.1445 8.0688 96.233 1.656
ESTF 5.2237 9.2169 22 1.625 4.2966 6.8307 31.050 1.868

Similar conclusions can be drawn in SO2 data as that of air quality data. The ESTF model performs247

best under the RMSE metric, while DC-RNN is best in the MAE metric. In terms of training time,248

2https://www.epa.gov/outdoor-air-quality-data/download-daily-data
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the proposed ESTF method costs around 10% of that of DC-RNN. For the inference time, ESTF and249

DC-RNN are comparable.250
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Figure 7: Comparing efficiency vs. performance
trade-off at different quantile values.
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Figure 8: The significant distance-based effect
among all 31 locations at t = 90

The efficiency analysis and performance at different quantiles are shown in Figure 7. Together with251

Figure 5, we can see that the increasing number of basis functions does not have much improvement252

when the number of basis functions is larger than 50, while the training time increases as the number253

of basis functions increases. The spatial distribution at time t = 90 is presented in Figure 8 where254

coordinates are denoted by latitude and longitude. Two significant clusters, representing Houston255

and Dallas respectively, have the strongest distance-based effect. It quantitatively shows how these256

neighbors affect each other. Counties around Dallas-Fort Worth metropolitan area show strong257

interaction, which should be noted by environmental policy-makers. More detailed results are258

presented in the supplemental file.259

5 Discussion260

This paper applies learnable shape functions to capture distance-based effects. It can model dynamic261

spatial dependence for stationary and non-stationary spatio-temporal data based on their distance.262

The model does not have the limitations of classical statistical spatial models and provides a more263

explanatory model than usual deep learning methods. Furthermore, some spatio-temporal data, such264

as temperature for sea surface and air quality monitoring data, usually viewed as collected from the265

continuous field, are more suitable for the proposed models since these kinds of data follow the basic266

rule that variability between two locations is significantly affected by their distance. However, some267

spatio-temporal data, such as traffic flow or some biology data, do not follow the rule. As a result, the268

spatial dependence may rely on road structure or biological mechanisms instead of distance. It is269

worth researching such data by considering graph structure when estimating spatial weight matrix. In270

addition, we can develop spatio-temporal causal inference based on the ESTF model. Grander causal271

analysis can be done by fitting the first-order VAR model (24). The estimation of the coefficients272

matrix of the VAR model attracts researchers’ interest as it can be treated as a causal transition273

matrix. In the causal inference community, lots of work have been conducted on the VAR model274

(8; 9). However, there is a lack of research on causal inference under the spatio-temporal process.275

The quantitative distance-based effects in ESTF can be further researched and extended to develop a276

spatio-temporal causal model.277
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