
HomeRobot: Open-Vocabulary Mobile Manipulation
Sriram Yenamandra∗1 Arun Ramachandran∗1 Karmesh Yadav∗1,2 Austin Wang1
Mukul Khanna1 Theophile Gervet2,3 Tsung-Yen Yang2 Vidhi Jain3

Alexander William Clegg2 John Turner2 Zsolt Kira1 Manolis Savva4

Angel Chang4 Devendra Singh Chaplot2 Dhruv Batra1,2 Roozbeh Mottaghi2
Yonatan Bisk2,3 Chris Paxton2

1Georgia Tech 2FAIR, Meta AI 3Carnegie Mellon 4Simon Fraser
homerobot-info@googlegroups.com

Abstract: HomeRobot (noun): An affordable compliant robot that navigates
homes and manipulates a wide range of objects in order to complete everyday tasks.

Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any
object in any unseen environment, and placing it in a commanded location. This is
a foundational challenge for robots to be useful assistants in human environments,
because it involves tackling sub-problems from across robotics: perception,
language understanding, navigation, and manipulation are all essential to OVMM.
In addition, integration of the solutions to these sub-problems poses its own
substantial challenges. To drive research in this area, we introduce the HomeRobot
OVMM benchmark, where an agent navigates household environments to
grasp novel objects and place them on target receptacles. HomeRobot has two
components: a simulation component, which uses a large and diverse curated
object set in new, high-quality multi-room home environments; and a real-world
component, providing a software stack for the low-cost Hello Robot Stretch to
encourage replication of real-world experiments across labs. We implement both
reinforcement learning and heuristic (model-based) baselines and show evidence
of sim-to-real transfer of the nav and place skills. Our baselines achieve a 20%
success rate in the real world; our experiments identify ways future work can
improve performance. See videos on our website: https://ovmm.github.io/.

Keywords: Sim-to-real, benchmarking robot learning, mobile manipulation

1 Introduction

The aspiration to develop household robotic assistants has served as a north star for roboticists since
the beginning of the field. The pursuit of this vision has spawned multiple areas of research within
robotics from vision to manipulation, and has led to increasingly complex tasks and benchmarks.
A useful household assistant requires creating a capable mobile manipulator that understands a wide
variety of objects, how to interact with the environment, and how to intelligently explore a world
with limited sensing. This has separately motivated research in diverse areas like navigation [1, 2],
service robotics [3–5], language understanding [6, 7] and task and motion planning [8]. We refer
to this guiding problem as Open-Vocabulary Mobile Manipulation (OVMM): a useful robot will
be able to find and move arbitrary objects from place to place in an arbitrary home.

Prior work does not tackle mobile manipulation in large, continuous, real-world environments. Instead,
it generally simplifies the setting significantly, e.g. by using discrete action spaces, limited object
sets, or small, single-room environments that are easily explored. However, recent developments
tying language and vision have enabled robots to generalize beyond specific categories [9–13],
often through multi-modal models such as CLIP [14]. Further, comparison across methods has
remained difficult and reproduction of results across labs impossible, since many aspects of the

2nd Workshop on Language and Robot Learning.

homerobot-info@googlegroups.com
https://ovmm.github.io/

Chair

Toy Animal

Table

Find Object on Start Receptacle Pick Object from Start Receptacle Find Goal Receptacle Place Object on Goal Receptacle

Drawer

Pitcher

Serving Cart

Move toy animal from chair to table

Move pitcher from drawer to serving cart

SI
M

RE
AL

Figure 1: Open-Vocabulary Mobile Manipulation requires agents to search for a previously unseen
object at a particular location, and move it to the correct receptacle.

settings (environments, and robots) have not been standardized. This is especially important now, as
a new wave of research projects have begun to show promising results in complex, open-vocabulary
navigation [9, 15, 11, 12, 16] and manipulation [17, 10, 18] – again on a wide range of robots and
settings, and still limited to single-room environments. Clearly, now is the time when we need a
common platform and benchmarks to drive the field forward.

In this work, we define Open-Vocabulary Mobile Manipulation as a key task for in-home robotics and
provide benchmarks and infrastructure, both in simulation and the real world, to build and evaluate
full-stack integrated mobile manipulation systems, in a wide variety of human-centric environments,
with open object sets. Our benchmark will further reproducible research in this setting, and the fact
that we support arbitrary objects will enable the results to be deployed in a variety of real-world
environments.

OVMM: We propose the first reproducible mobile-manipulation benchmark for the real world,
with an associated simulation component. In simulation, we use a dataset of 200 human-authored
interactive 3D scenes [19] instantiated in the AI Habitat simulator [20, 21] to create a large number
of challenging, multi-room OVMM problems with a wide variety of objects curated from a variety of
sources. Some of these objects’ categories have been seen during training; others have not. In the real
world, we create an equivalent benchmark, also with a mix of seen and unseen object categories, in a
controlled apartment environment. We use the Hello Robot Stretch [22]: an affordable and compliant
platform for household and social robotics that is already in use at over 40 universities and industry
research labs. Fig. 1 shows instantiations of our OVMM task in both the real-world benchmark and
in simulation. We have a controlled real-world test environment, and plan to run the real-world
benchmark yearly to assess progress on this challenging problem. Real-world benchmarking will be
run as a part of the NeurIPS 2023 HomeRobot OVMM competition [23].

HomeRobot: We also propose HomeRobot,1 a software framework to facilitate extensive bench-
marking in both simulated and physical environments. It comprises identical APIs that are imple-
mented across both settings, enabling researchers to conduct experiments that can be replicated in
both simulated and real-world environments. Table 1 compares HomeRobot OVMM to the literature.
Notably, HomeRobot provides a robotics stack for the Hello Robot Stretch which supports a range
of capabilities in both simulation and the real world, and is not restricted to just the OVMM task.
Our library also supports a number of sub-tasks, including manipulation learning [24], continuous
learning [25], navigation [26], and object-goal navigation [2].

1https://github.com/facebookresearch/home-robot

2

https://github.com/facebookresearch/home-robot

Object Continuous Robotics Open
Scenes Cats Inst. Actions Sim2Real Stack Licensing Manipulation

Room Rearrangement [28] 120 118 118 ✖ ✖ ✖ ✔ ✖
Habitat ObjectNav Challenge[29] 216 6 7,599 ✔ ✖ ✖ ✔ ✖
TDW-Transport [30] 15 50 112 ✖ ✖ ✖ ✓ ✓
VirtualHome [31] 6 308 1,066 ✖ ✖ ✖ ✔ ✓
ALFRED [6] 120 84 84 ✖ ✖ ✖ ✔ ✓
Habitat 2.0 HAB [21] 105 20 20 ✔ ✖ ✖ ✔ ✔
ProcTHOR [32] 10,000 108 1,633 ✖ ✖ ✖ ✔ ✔

RoboTHOR [33] 75 43 731 ✖ ✔ ✖ ✔ ✖
Behavior-1K [34] 50 1,265 5,215 ✔ ✔ ✖ ✖ ✓
ManiSkill-2 [35] 1 2,000 2,000 ✔ ✓ ✖ ✓ ✔

OVMM + HomeRobot 200 150 7,892 ✔ ✔ ✔ ✔ ✔

Table 1: Comparisons of our proposed benchmark with prior work. We provide a large number of
environments and unique objects, focusing on manipulable objects, with a continuous action space.
Uniquely, we also provide a multi-purpose, real-world robotics stack, with demonstrated sim-to-real
capabilities, allowing others to reproduce and deploy their own solutions. Additional nuances in
footnote3. ✓Partial availability ✖Not available ✔Capability available

In this paper, we use HomeRobot to compare two families of approaches: a heuristic solution, using
a motion planner shown to work for real-world object search [2], and a reinforcement learning (RL)
solution, which learns how to navigate to objects given depth and predicted object segmentation.
We use the open-vocabulary object detector DETIC [27] to provide object segmentation for both
the heuristic and RL policies. We observe that while the RL methods moved to the object more
efficiently if an object was visible, the heuristic planner was better at long-horizon exploration.
We also see a substantial drop in performance when switching from ground-truth segmentation to
DETIC segmentation. This highlights the importance of the HomeRobot OVMM challenge, as only
through viewing the problem holistically - integrating perception, planning, and action - can we build
general-purpose home assistants.

To summarize, in this paper, we define Open-Vocabulary Mobile Manipulation as a new, crucial
task for the robotics community in Sec. 3. We provide a new simulation environment, with multiple,
multi-room interactive environments and a wide range of objects. We implement a robotics library
called HomeRobot which provides baseline policies implementing this in both the simulation and the
real world. We describe a real-world benchmark in a controlled environment, and show how current
baselines perform in simulation and in the real world under different conditions. We plan to initially
run this real-world benchmark as a Neurips 2023 competition [23].

2 Related Work

We discuss work related to challenges and reproducibility of robotics research in more detail, but
continue the discussion of datasets and simulators in Appendix A.

Challenges. There have been several challenges aiming to benchmark robotic systems at different
tasks. These challenges provided a great testbed for ranking different systems. However, in most
of the challenges (e.g., [36–39, 3]), the participants create their own robotic platform making a fair
comparison of the algorithms difficult. There are also challenges where the organizers provide the
robotic platform to the participants (e.g., [40]). However, changing the task during the periodic
evaluations made it difficult to track progress over time. Our aim is to have a real world benchmark
using a standard hardware that is sustainable at least for a few years.

Reproducibility of robotics research. Standardized robotics benchmarks have been pursued for a
long time, often by open-sourcing robot designs or introducing low-cost robots [41–49]. However, the
environments in which these robots are used vary dramatically, leading to evaluation of components
(e.g., object navigation, SLAM) in isolation, instead of as components of a larger system that

3ALFRED uses object masks for interaction. ObjectNav uses scans, not full object meshes. ProcThor scenes
are procedurally generated, this has the benefit that the potential number of environments is unbounded.

3

REALSIM

Figure 2: A low-cost home robot performing tasks in both a simulated and a real-world environment.
We provide both (1) challenging simulated tasks, wherein a mobile manipulator robot must find and
grasp multiple seen and unseen objects, and (2) a corresponding real-world robotics stack to allow
others to reproduce this research and evaluation to produce useful home robot assistants.

may not benefit from those changes. The HomeRobot stack enables end-to-end benchmarking of
individual components by providing a full robotics stack, with multiple implementations of different
sub-modules. The simplicity helps move beyond standardized sets of objects (e.g., [50–52]) to a
common set of robots, objects, and environments. Ours is the only benchmark to provide a broadly
capable robotics stack for implementing and sharing robotics code; this is similar to projects like
PyRobot [53], which doesn’t also provide a strong simulation benchmark.

Real World Benchmarks. RoboTHOR [33] provides a common set of scenes and objects for
benchmarking navigation. RB2 [54] ranks different manipulation algorithms in a local setting.
TOTO [55] takes a step further by providing a training dataset and running the experiments for
the users. However, training and testing happen in the same environments and are limited to
tabletop manipulation. Finally, the NIST Task Board [56] is a successful challenge for fine-grained
manipulation skills [57], also limited to a tabletop context. Kadian et al. [58] propose the Habitat-
PyRobot bridge (HaPy) to allow real-world testing on the locobot robot; their framework is limited
to navigation, and doesn’t provide a generally-useful robotics stack with visualizations, debugging,
motion planners, tooling, etc.

3 Open-Vocabulary Mobile Manipulation

Formally, our task is set up as instructions of the form: “Move (object) from the
(start_receptacle) to the (goal_receptacle).” The object is a small and manipulable
household object (e.g., a cup, stuffed toy, or box). By contrast, start_receptacle and
goal_receptacle are large pieces of furniture, which have surfaces upon which objects can be
placed. The robot is placed in an unknown single-floor home environment - such as an apartment - and
must, given the language names of start_receptacle, object, and goal_receptacle, pick up
an object that is known to be on a start_receptacle and move it to any valid goal_receptacle.
start_receptacle is always available, to help agents know where to look for the object.

The agent is successful if the specified object is indeed moved from a start_receptacle on
which it began the episode, to any valid goal_receptacle. We give partial credit for each step
the robot accomplishes: finding the start_receptacle with the object, picking up the object,
finding the goal_receptacle, and placing the object on the goal_receptacle. There can be
multiple valid objects that satisfy each query.

Crucially, we need and develop both (1) a simulation version of the Open-Vocabulary Mobile
Manipulation problem, for reproducibility, training, and fast iteration, and (2) a real-robot stack with
a corresponding real-world benchmark. We compare the two in Fig. 2. Our simulated environments
allow for varied, long-horizon task experimentation; our real-world HomeRobot stack allows for

4

experimenting with real data, and we design a set of real-world tests to evaluate the performance
of our learned and heuristic baselines.

The Robot. We use the Hello Robot Stretch [22] with DexWrist as the mobile manipulation platform,
because it (1) is relatively affordable at $25, 000 USD, (2) offers 6 DoF manipulation, and (3) is
human safe and human-sized, making it safe to test in labs [24, 11] and homes [2], and can reach
most places a human would expect a robot to go. For a breakdown of hardware choices, see Sec. H.1.

Objects. These are split into seen vs. unseen categories and instances. In particular, at test time we
look at unseen instances of seen or unseen categories; i.e. no seen manipulable object from training
appears during evaluation. Agents must pick and place any requested object.

Receptacles. We include common household receptacles (e.g. tables, chairs, sofas) in our dataset;
unlike with manipulable objects, all possible receptacle categories are seen during training.

Scenes. We have both a simulated scene dataset and a fixed set of real-world scenes with specific
furniture arrangements and objects. In both simulated and real scenes, we use a mixture of objects
from previously-seen categories, and objects from unseen categories as the goal object for our
Open-Vocabulary Mobile Manipulation task. We hold out validation and test scenes, which do not
appear in the training data; while some receptacles may re-appear, they will be at previously unseen
locations, and target object instances will be unseen.

Scoring. We compute success for each stage: finding object on start_receptacle, successfully
picking up object, finding goal_receptacle, and placing object on the goal. Overall success
is true if all four stages were accomplished. We compute partial success as a tie-breaker, in which
agents receive 1 point for each successive stage accomplished, normalized by the number of stages.
More details in Appendix C.

3.1 Simulation Dataset

Figure 3: HSSD scenes.

The Habitat Synthetic Scenes Dataset (HSSD) [19] consists of 200+
human-authored 3D home scenes containing over 18k 3D models of
real-world objects. Like most real houses, these scenes are cluttered
with furniture and other objects placed into realistic architectural
layouts, making navigation and manipulation similarly difficult to
the real world. We used a subset of HSSD [19] consisting of 60
scenes for which additional metadata and simulation structures were
authored to support rearrangement 4. For our experiments, these are
divided into train, validation, and test splits of 38, 12, and 10 scenes
each, following the splits in the original HSSD paper [19].

Objects and Receptacles. We aggregate objects from AI2-
Thor [59], Amazon-Berkeley Objects [60], Google Scanned Ob-
jects [61] and the HSSD [19] dataset to create a large and diverse
dataset of real-world robot problems. In total, we annotated 2,535 ob-
jects from 129 total categories.We identified 21 different categories
of receptacles which appear in the HSSD dataset [19].

SC, SI SC, UI UC, UI Total

Cats 85 64 44 129
Insts 1,363 748 424 2,535

Table 2: # of objects in the sim for each split of
(S)een and (U)nseen (I)nstance and (C)ategory.

We construct our final set of furniture receptacle
objects by first automatically labeling stable areas
on top of receptacles, then manually refining and
processing these in order to remove invalid or in-
accessible receptacles. In addition, collision proxy
meshes were automatically generated and in many
cases manually corrected to support physically ac-
curate procedural placement of object arrangements.

4All 200+ scenes with rearrangement support will be released soon.

5

Figure 4: HomeRobot is a simple, easy-to-set-up library that works in multiple environments and
requires only relatively affordable hardware. Computationally intensive operations are performed on
a desktop PC with a GPU, and a dedicated consumer-grade router provides a network interface to a
robot running low-level control and SLAM.

Episode Generation. We generate episodes consisting of varying object arrangements and
particular values for object, start_receptacle, and goal_receptacle, which allow our agent
to successfully move about and interact with the world. In the case of Open-Vocabulary Mobile
Manipulation, this task is particularly challenging because we have to place objects in locations that
are navigable, meaning that the robot can get to them, reachable, meaning its arm can make it to
these locations, and from which we can navigate to a navigable, reachable goal receptacle. For full
episode generation details see App. D.2.

Training and Validation Split. Training episodes consist of objects from the large pool of seen
instances of seen categories (SC,SI). In contrast, we use unseen instances of seen object categories
(SC,UI) and unseen instances of unseen categories (UC,UI) for validation and test episodes. Two-
thirds of the categories were randomly designated as seen, and two-thirds of the objects in the seen
category were randomly marked as seen instances. Splits are in Table 2 and the distribution of objects
across categories is in App. Fig. 6.

3.2 Real World Benchmark

Real-world experiments are performed in a controlled 3-room apartment environment, with a sofa,
kitchen table, counter with bar, and TV stand, among other features. We documented the positioning
of various objects and the robot start position, in order to ensure reproducibility across trials. Images
of various layouts of the test apartment are included in Fig. 2, and task execution is shown in Fig. 16.

During real-world testing, we selected object instances that did not appear in simulation training,
split between classes that did and did not appear. We used eight different categories: five seen (Cup,
Bowl, Stuffed Toy, Medicine Bottle, and Toy Animal), and three unseen (Rubik’s cube, Toy Drill,
and Lemon). We performed 20 experiments for each of our two different baselines and with seven
different receptacle classes: Cabinet, Chair, Couch, Counter, Sink, Stool, Table.

4 The HomeRobot Library

To facilitate research on these challenging problems, we open-source the HomeRobot library, which
implements navigation and manipulation capabilities supporting Hello Robot’s Stretch [22]. In our
setup, it is assumed that users have access to a mobile manipulator and an NVIDIA GPU-powered
workstation. The mobile manipulator runs the low-level controller and the localization module, while
the desktop runs the high-level perception and planning stack(Fig. 4). The robot and desktop are
connected using an off-the-shelf router5. The key features of our stack include:

5Our experiments used a NetGear Nighthawk router.

6

Transferability: Unified state and action spaces between simulation & real-world settings for each
task, providing an easy way to control a robot with either high-level action spaces (e.g., pre-made
grasping policies) or low-level continuous joint control.
Modularity: Perception and action components to support high-level states (e.g. semantic maps,
segmented point clouds) and high-level actions (e.g. go to goal position, pick up target object).
Baseline Agents: Policies that use these capabilities to provide basic functionality for OVMM.

4.1 Baseline Agent Implementation

Crucially, we provide baselines and tools that enable researchers to effectively explore the Open-
Vocabulary Mobile Manipulation task. We include two types of baselines in HomeRobot: a heuristic
baseline, using motion planning [2] and simple rules for manipulation; and a reinforcement learning
baseline. In addition, we have implemented example projects from several recently released papers,
testing different capabilities such as object-goal navigation [1, 2], skill learning [24], continual
learning [25], and image instance navigation [26]. We implement a high-level policy called
OVMMAgent which calls a sequence of skills one after the other. These skills are:

FindObj/FindRec: Locate an object on a start_receptacle; or find a goal_receptacle.
Gaze: Move close enough to an object to grasp it, and orient head to get a good view of the object.
The goal of the gaze action is to improve the success rate of grasping.
Pick: Pick up the object. We provide a high-level action for this, since we do not simulate the
gripper interaction in Habitat. However, our library is compatible with a range of learned grasping
skills and supports learning policies for grasping.
Place: Move to a location in the environment and place the object on top of the goal_receptacle.

Specifically, OVMMAgent is a state-machine that calls FindObj, Gaze, Pick, FindRec, and Place in
that order, where Pick is a grasping policy provided by the robot library in the real world. The other
skills are created using the approaches given below:

Heuristic. We implement a version using only off-the-shelf learned models and heuristics, noting
that previous work in mobile manipulation has used these models to great effect (e.g. [62]). Here,
DETIC [63] provides masks for an open-vocabulary set of objects as appropriate for each skill.
The start_receptacle, object,goal_receptacle for each episode is given. Fig. 16 shows an
example of the heuristic navigation and place policy being executed in the real world (App. E).

RL. We train the four skills in our modified version of Habitat [21] as policies which predict actions
given depth, ground truth semantic segmentation and priopreceptive sensors (i.e. joints, gripper state),
using DDPPO [64]. While RGB is available in our simulation, our baseline policies do not directly
utilize it; instead, they rely on predicted segmentation from Detic [27] at test time.

5 Results

We first evaluate the two baselines in our simulated benchmark, followed by evaluation in a real-
world, held-out test apartment. These results highlight the significance of OVMM as a challenging
new benchmark, encompassing numerous essential challenges that arise when deploying robots in
real-world environments.

We break down the results by sub-task in addition to reporting the overall performance in Tables 3
and 4. The columns FindObj, Pick and FindRec refer to the first 3 phases of the task mentioned in
the scoring section (Sec. 3), and succeeding in the final Place phase leads to a successful episode.

Simulation. We evaluate the baselines on held-out scenes, with objects from unseen instances of
seen classes, and unseen instances of unseen classes, as described in Sec. 3.1. We show results with
two different perception systems: Ground Truth segmentation, where we use the segmentation
input directly from the simulator, and DETIC segmentation [27], where the RGB images from the
simulator are passed through DETIC, an open-vocabulary object detector.

7

Simulation Results Skill Partial Success Rates Overall
Success Rate

Partial
Success MetricPerception Navigation Gaze Place FindObj Pick FindRec

Ground Truth Heuristic None Heuristic 54.1 48.5 31.5 5.1 34.8
Heuristic RL RL 56.5 51.5 42.3 13.2 40.9

RL None Heuristic 65.4 54.8 43.7 7.3 42.8
RL RL RL 66.6 61.1 50.9 14.8 48.3

DETIC [27] Heuristic None Heuristic 28.7 15.2 5.3 0.4 12.4
Heuristic RL RL 29.4 13.2 5.8 0.5 12.2

RL None Heuristic 21.9 11.5 6.0 0.6 10.0
RL RL RL 21.7 10.2 6.2 0.4 9.6

Table 3: Partial and overall success rate (SR) (in %) for different combinations of skills and perception
systems. The partial SR for each skill is dependent on the previous skill’s SR. The partial SR for the
place skill is the same as the overall SR. The partial success metric is calculated by averaging the 4
partial SRs. One of the main causes of failures for our baseline systems was perception; ground-truth
perception is notably better. Both RL and heuristic skills struggled to navigate tightly constrained
multi-room environments and successfully place objects.

We report results on HomeRobot OVMMin Table 3. RL policies outperformed heuristic methods
for both navigation and placement tasks. However, all policies declined in performance when
using DETIC instead of ground truth segmentation. Heuristic policies exhibited less degradation
in performance compared to RL policies: when using DETIC, the heuristic FindObj policy even
outperforms RL. We attribute this to the heuristic policy’s ability to incorporate noisy predictions by
constructing a 2D semantic map, which helps handle small objects that are prone to misclassification.
Furthermore, using the learned gaze policy led to improved pick performance, except when used in
combination with the Heuristic nav with DETIC perception. Example simulation trajectories can be
found in Appendix Figure 18, and comparisons of seen versus unseen categories in Appendix G.2.

Real World. Finally, we conducted a series of experiments in a real-world held-out apartment setting.
We performed a total of 20 episodes, utilizing a combination of seen and unseen object classes as
our target objects. The results of these experiments are presented in Table 4. RL performed slightly
better than the Heuristic baseline, successfully completing 1 extra episode and achieving a success
rate of 20%. This difference primarily stemmed from the pick and place sub-tasks. In the pick task,
the RL Gaze skill plays a crucial role in achieving better alignment between the agent and the target
object, which leads to more successful grasping. Similarly, the RL place skill demonstrated more
precision, ensuring that the object stayed closer to the surface of the receptacle.

Real World FindObj Pick FindRec Overall Success

Heuristic Only 70 35 30 15
RL Only 70 45 30 20

Table 4: Success Rate (in %) for heuristic and RL
baselines in the real world OVMM task. In both
cases, the grasping action is executed as described
in Sec. 4; but initial conditions of the robot such
as its position relative to the object or to other
obstacles may cause various failures.

Both simulation and real-world results show the
baselines are promising, but insufficient, for
Open-Vocabulary Mobile Manipulation. DE-
TIC [27] caused many failures due to misclas-
sification, both in simulation and the real world.
Further, RL navigation was on par or better than
heuristic policies in both sim and real. Although
our RL place policy performed better in sim than
heuristic place, it needs further improvement in
the real world. Gaining the advantages of web-
scale pretrained vision-language models like DETIC, but tuned to our agents may be crucial for
improving performance.

6 Conclusions and Future Work

We proposed a combined simulation and real-world benchmark to enable progress on the important
problem of Open-Vocabulary Mobile Manipulation. We ran extensive experiments showing promising
simulation and real-world results from two baselines: a heuristic baseline based on a state-of-the-art
motion planner [2] and a reinforcement learning baseline trained with DDPPO [64]. In the future, we
hope to improve the complexity of the problem space, adding more complex natural language and
multi-step commands, and provide end-to-end baselines instead of modular policies.

8

7 Acknowledgements

We would like to thank Andrew Szot for help with Habitat policy training, Santhosh Kumar Ra-
makrishnan with help on Stretch Object navigation in simulation and on the real robot, and Eric
Undersander for help with improving Habitat rendering. Priyam Parashar, Xiaohan Zhang, and Jay
Vakil helped with testing on Stretch and real-world scene setup.

We would also like to thank the whole Hello Robot team, but especially Binit Shah and Blaine Mat-
ulevich for their help with the robots, and Aaron Edsinger and Charlie Kemp for helpful discussions.

The Georgia Tech effort was supported in part by ONR YIP and ARO PECASE. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the U.S. Government,
or any sponsor.

References
[1] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. Toshev, and

E. Wijmans. Objectnav revisited: On evaluation of embodied agents navigating to objects.
arXiv, 2020.

[2] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot. Navigating to objects in the real
world. arXiv, 2022.

[3] T. Wisspeintner, T. Van Der Zant, L. Iocchi, and S. Schiffer. Robocup@ home: Scientific
competition and benchmarking for domestic service robots. Interaction Studies, 2009.

[4] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, L. Mösenlech-
ner, W. Meeussen, and S. Holzer. Towards autonomous robotic butlers: Lessons learned with
the pr2. In ICRA, 2011.

[5] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and
S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial intelligence,
1999.

[6] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
CVPR, 2020.

[7] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating
household activities via programs. In CVPR, 2018.

[8] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual Review of Control, Robotics, and Autonomous
Systems, 4:265–293, 2021.

[9] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S. Ryoo, A. Stone, and D. Kappler.
Open-vocabulary queryable scene representations for real world planning. arXiv, 2022.

[10] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, B. Zitkovich,
F. Xia, C. Finn, et al. Open-world object manipulation using pre-trained vision-language
models. arXiv, 2023.

[11] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam. Clip-fields: Weakly
supervised semantic fields for robotic memory. arXiv, 2022.

[12] B. Bolte, A. Wang, J. Yang, M. Mukadam, M. Kalakrishnan, and C. Paxton. Usa-net: Unified
semantic and affordance representations for robot memory. arXiv, 2023.

9

[13] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon
manipulation of unknown objects via task and motion planning with estimated affordances. In
ICRA, 2022.

[14] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In ICML, 2021.

[15] K. M. Jatavallabhula, A. Kuwajerwala, Q. Gu, M. Omama, T. Chen, S. Li, G. Iyer, S. Saryazdi,
N. Keetha, A. Tewari, et al. Conceptfusion: Open-set multimodal 3d mapping. arXiv, 2023.

[16] J. Krantz, E. Wijmans, A. Majundar, D. Batra, and S. Lee. Beyond the nav-graph: Vision
and language navigation in continuous environments. In European Conference on Computer
Vision (ECCV), 2020.

[17] W. Liu, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Object-centric diffusion for
semantic rearrangement of novel objects. arXiv, 2022.

[18] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv, 2023.

[19] M. Khanna*, Y. Mao*, H. Jiang, S. Haresh, B. Shacklett, D. Batra, A. Clegg, E. Undersander,
A. X. Chang, and M. Savva. Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of
3D Scene Scale and Realism Tradeoffs for ObjectGoal Navigation. arXiv preprint, 2023.

[20] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. ICCV,
2019.

[21] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam,
D. S. Chaplot, O. Maksymets, et al. Habitat 2.0: Training home assistants to rearrange their
habitat. In NeurIPS, 2021.

[22] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. The design of stretch: A compact,
lightweight mobile manipulator for indoor human environments. In ICRA, 2022.

[23] S. Yenamandra, A. Ramachandran, M. Khanna, K. Yadav, D. S. Chaplot, G. Chhablani,
A. Clegg, T. Gervet, V. Jain, R. Partsey, R. Ramrakhya, A. Szot, T.-Y. Yang, A. Edsinger,
C. Kemp, B. Shah, Z. Kira, D. Batra, R. Mottaghi, Y. Bisk, , and C. Paxton. Homerobot open
vocab mobile manipulation challenge 2023. https://aihabitat.org/challenge/2023_
homerobot_ovmm/, 2023.

[24] P. Parashar, J. Vakil, S. Powers, and C. Paxton. Spatial-language attention policies for efficient
robot learning. arXiv, 2023.

[25] S. Powers, A. Gupta, and C. Paxton. Evaluating continual learning on a home robot, 2023.

[26] J. Krantz, T. Gervet, K. Yadav, A. Wang, C. Paxton, R. Mottaghi, D. Batra, J. Malik, S. Lee,
and D. S. Chaplot. Navigating to objects specified by images. arXiv, 2023.

[27] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes
using image-level supervision. In ECCV, 2022.

[28] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi. Visual room rearrangement. In CVPR,
2021.

[29] K. Yadav, J. Krantz, R. Ramrakhya, S. K. Ramakrishnan, J. Yang, A. Wang, J. Turner,
A. Gokaslan, V.-P. Berges, R. Mootaghi, O. Maksymets, A. X. Chang, M. Savva, A. Clegg, D. S.
Chaplot, and D. Batra. Habitat challenge 2023. https://aihabitat.org/challenge/
2023/, 2023.

10

https://aihabitat.org/challenge/2023_homerobot_ovmm/
https://aihabitat.org/challenge/2023_homerobot_ovmm/
https://aihabitat.org/challenge/2023/
https://aihabitat.org/challenge/2023/

[30] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius,
A. Bhandwaldar, N. Haber, et al. Threedworld: A platform for interactive multi-modal physical
simulation. NeurIPS Datasets and Benchmarks Track, 2021.

[31] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating
household activities via programs. In CVPR, 2018.

[32] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Salvador, K. Ehsani, W. Han, E. Kolve,
A. Farhadi, A. Kembhavi, and R. Mottaghi. Procthor: Large-scale embodied ai using procedural
generation. In NeurIPS, 2022.

[33] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk,
E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi. RoboTHOR: An Open
Simulation-to-Real Embodied AI Platform. In CVPR, 2020.

[34] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martín-Martín, C. Wang, G. Levine,
M. Lingelbach, J. Sun, et al. Behavior-1k: A benchmark for embodied ai with 1,000 everyday
activities and realistic simulation. In CoRL, 2023.

[35] T. Mu, Z. Ling, F. Xiang, D. C. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:
Generalizable manipulation skill benchmark with large-scale demonstrations. In NeurIPS
Datasets and Benchmarks Track, 2021.

[36] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and
C. Orlowski. The darpa robotics challenge finals: Results and perspectives. The DARPA
Robotics Challenge Finals: Humanoid Robots To The Rescue, 2018.

[37] G. Seetharaman, A. Lakhotia, and E. P. Blasch. Unmanned vehicles come of age: The darpa
grand challenge. Computer, 2006.

[38] M. Buehler, K. Iagnemma, and S. Singh. The DARPA urban challenge: autonomous vehicles
in city traffic. Springer Berlin, Heidelberg, 2009.

[39] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A. Rodriguez,
J. M. Romano, and P. R. Wurman. Analysis and observations from the first amazon picking
challenge. IEEE Transactions on Automation Science and Engineering, 2016.

[40] L. D. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, and C. Sullivan. The darpa lagr program:
Goals, challenges, methodology, and phase i results. Journal of Field Robotics, 2006.

[41] M. Müller and V. Koltun. Openbot: Turning smartphones into robots. In ICRA, 2021.

[42] N. Kau, A. Schultz, N. Ferrante, and P. Slade. Stanford doggo: An open-source, quasi-direct-
drive quadruped. In ICRA, 2019.

[43] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich, M. Naveau, V. Berenz,
S. Heim, F. Widmaier, J. Fiene, A. Badri-Spröwitz, and L. Righetti. An open torque-controlled
modular robot architecture for legged locomotion research. IEEE Robotics and Automation
Letters, 2019.

[44] B. Yang, J. Zhang, V. H. Pong, S. Levine, and D. Jayaraman. Replab: A reproducible low-cost
arm benchmark platform for robotic learning. arXiv, 2019.

[45] D. V. Gealy, S. McKinley, B. Yi, P. Wu, P. R. Downey, G. Balke, A. Zhao, M. Guo, R. Thomas-
son, A. Sinclair, P. Cuellar, Z. McCarthy, and P. Abbeel. Quasi-direct drive for low-cost
compliant robotic manipulation. In ICRA, 2019.

[46] M. Wüthrich, F. Widmaier, F. Grimminger, S. Joshi, V. Agrawal, B. Hammoud, M. Khadiv,
M. Bogdanovic, V. Berenz, J. Viereck, M. Naveau, L. Righetti, B. Schölkopf, and S. Bauer.
Trifinger: An open-source robot for learning dexterity. In CoRL, 2020.

11

[47] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and V. Kumar. ROBEL:
RObotics BEnchmarks for Learning with low-cost robots. In CoRL, 2019.

[48] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. K. Gupta. Pyrobot:
An open-source robotics framework for research and benchmarking. arXiv, 2019.

[49] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cáp, Y. F. Chen, C. Choi, J. Dusek,
Y. Fang, D. Hoehener, S. Liu, M. M. Novitzky, I. F. Okuyama, J. Pazis, G. Rosman, V. Varric-
chio, H.-C. Wang, D. S. Yershov, H. Zhao, M. R. Benjamin, C. Carr, M. T. Zuber, S. Karaman,
E. Frazzoli, D. D. Vecchio, D. Rus, J. P. How, J. J. Leonard, and A. Censi. Duckietown: An
open, inexpensive and flexible platform for autonomy education and research. In ICRA, 2017.

[50] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In ICRA, 2015.

[51] D. Morrison, P. Corke, and J. Leitner. Egad! an evolved grasping analysis dataset for diversity
and reproducibility in robotic manipulation. IEEE Robotics and Automation Letters, 2020.

[52] B. Yang, P. E. Lancaster, S. S. Srinivasa, and J. R. Smith. Benchmarking robot manipulation
with the rubik’s cube. IEEE Robotics and Automation Letters, 2020.

[53] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta. Pyrobot: An
open-source robotics framework for research and benchmarking. arXiv, 2019.

[54] S. Dasari, J. Wang, J. Hong, S. Bahl, Y. Lin, A. S. Wang, A. Thankaraj, K. S. Chahal, B. Çalli,
S. Gupta, D. Held, L. Pinto, D. Pathak, V. Kumar, and A. Gupta. Rb2: Robotic manipulation
benchmarking with a twist. arXiv, 2022.

[55] G. Zhou, V. Dean, M. K. Srirama, A. Rajeswaran, J. Pari, K. B. Hatch, A. Jain, T. Yu, P. Abbeel,
L. Pinto, C. Finn, and A. Gupta. Train offline, test online: A real robot learning benchmark.
arXiv, 2022.

[56] K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W. Uemura, and Y. Yokoko-
hji. Benchmarking protocols for evaluating small parts robotic assembly systems. IEEE
Robotics and Automation Letters, 2020.

[57] W. Lian, T. Kelch, D. Holz, A. Norton, and S. Schaal. Benchmarking off-the-shelf solutions to
robotic assembly tasks. In IROS, 2021.

[58] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and
D. Batra. Are we making real progress in simulated environments? measuring the sim2real
gap in embodied visual navigation. arXiv, 2019.

[59] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. AI2-THOR: an interactive 3d environment for visual AI. arXiv,
2017.

[60] J. Collins, S. Goel, A. Luthra, L. Xu, K. Deng, X. Zhang, T. F. Y. Vicente, H. Arora, T. Diderik-
sen, M. Guillaumin, et al. Abo: Dataset and benchmarks for real-world 3d object understanding.
In CVPR, 2022.

[61] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and
V. Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household items.
In ICRA, 2022.

[62] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and
T. Funkhouser. Tidybot: Personalized robot assistance with large language models. arXiv,
2023.

12

[63] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnification: Learning view
synthesis using multiplane images. SIGGRAPH, 2018.

[64] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. Dd-ppo:
Learning near-perfect pointgoal navigators from 2.5 billion frames. In ICLR, 2019.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[66] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In ICLR, 2019.

[67] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piqa: Reasoning about physical common-
sense in natural language. In AAAI, 2020.

[68] M. Sap, H. Rashkin, D. Chen, R. LeBras, and Y. Choi. SocialIQA: Commonsense reasoning
about social interactions. In EMNLP, 2019.

[69] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

[70] S. Keisuke, L. B. Ronan, B. Chandra, and C. Yejin. Winogrande: An adversarial winograd
schema challenge at scale. In AAAI, 2019.

[71] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In ECCV, 2014.

[72] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. In EMNLP, 2016.

[73] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In ICRA, 2016.

[74] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. IJRR, 2018.

[75] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.
In CoRL, 2022.

[76] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, S. Savarese, and L. Fei-Fei. Roboturk: A crowdsourcing platform for robotic skill
learning through imitation. In CoRL, 2018.

[77] P. Sharma, L. Mohan, L. Pinto, and A. K. Gupta. Multiple interactions made easy (mime):
Large scale demonstrations data for imitation. In CoRL, 2018.

[78] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.
Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. arXiv, 2017.

[79] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. arXiv, 2019.

13

[80] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto. Robot learning in homes: Improving
generalization and reducing dataset bias. In NeurIPS, 2018.

[81] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. D. Reid, S. Gould, and
A. van den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation
instructions in real environments. In CVPR, 2017.

[82] H. Team. Habitat CVPR challenge, 2019. URL https://aihabitat.org/challenge/
2019/.

[83] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. Tchapmi, A. Toshev, R. Martín-Martín, and
S. Savarese. Interactive gibson benchmark: A benchmark for interactive navigation in cluttered
environments. IEEE Robotics and Automation Letters, 2020.

[84] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robinson, and
K. Grauman. Soundspaces: Audio-visual navigation in 3d environments. In ECCV, 2020.

[85] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kembhavi, and
R. Mottaghi. Manipulathor: A framework for visual object manipulation. In CVPR, 2021.

[86] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In CoRL, 2019.

[87] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 2020.

[88] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge. Room-across-room: Multilingual
vision-and-language navigation with dense spatiotemporal grounding. In EMNLP, 2020.

[89] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-Chen, S. Gella, R. Pi-
ramithu, G. Tur, and D. Hakkani-Tur. TEACh: Task-driven embodied agents that chat. In
AAAI, 2022.

[90] X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, and G. S. Sukhatme. Dialfred: Dialogue-enabled
agents for embodied instruction following. IEEE Robotics and Automation Letters, 2022.

[91] A. Szot, K. Yadav, A. Clegg, V.-P. Berges, A. Gokaslan, A. Chang, M. Savva, Z. Kira, and
D. Batra. Habitat rearrangement challenge. https://aihabitat.org/challenge/2022_
rearrange, 2022.

[92] C. M. Kim, M. Danielczuk, I. Huang, and K. Goldberg. Simulation of parallel-jaw grasping
using incremental potential contact models. In ICRA, 2022.

[93] D. Hall, B. Talbot, and N. Sünderhauf. The robotic vision challenges. https://
nikosuenderhauf.github.io/roboticvisionchallenges/cvpr2022, 2022.

[94] A. Kurenkov, R. Martín-Martín, J. Ichnowski, K. Goldberg, and S. Savarese. Semantic
and geometric modeling with neural message passing in 3d scene graphs for hierarchical
mechanical search. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 11227–11233. IEEE, 2021.

[95] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf. Sayplan:
Grounding large language models using 3d scene graphs for scalable task planning. arXiv
preprint arXiv:2307.06135, 2023.

[96] J. Chen, G. Li, S. Kumar, B. Ghanem, and F. Yu. How to not train your dragon: Training-free
embodied object goal navigation with semantic frontiers. arXiv preprint arXiv:2305.16925,
2023.

14

https://aihabitat.org/challenge/2019/
https://aihabitat.org/challenge/2019/
https://aihabitat.org/challenge/2022_rearrange
https://aihabitat.org/challenge/2022_rearrange
https://nikosuenderhauf.github.io/roboticvisionchallenges/cvpr2022
https://nikosuenderhauf.github.io/roboticvisionchallenges/cvpr2022

[97] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In ICRA, 2021.

[98] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox. 6-dof grasping for target-driven
object manipulation in clutter. In ICRA, 2020.

[99] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In CVPR, 2020.

[100] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in
belief space for partially observable task and motion problems. In ICRA, 2020.

[101] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In ICCV, 2019.

[102] C. Paxton, C. Xie, T. Hermans, and D. Fox. Predicting stable configurations for semantic
placement of novel objects. In CoRL, 2022.

[103] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexible and scalable slam system
with full 3d motion estimation. In Proc. IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR). IEEE, November 2011.

[104] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In ICRA, 2000.

[105] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In NeurIPS, 2020.

[106] B. Yamauchi. A frontier-based approach for autonomous exploration. In IEEE International
Symposium on Computational Intelligence in Robotics and Automation, 1997.

[107] J. A. Sethian. Fast marching methods. SIAM review, 1999.

[108] D. S. Chaplot, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore using active
neural mapping. ICLR, 2020.

[109] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. CVPR, 2021.

[110] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[111] K. M. Jatavallabhula, S. Saryazdi, G. Iyer, and L. Paull. gradslam: Automagically differentiable
slam. arXiv preprint arXiv:1910.10672, 2019.

[112] Q. Gu, A. Kuwajerwala, S. Morin, K. M. Jatavallabhula, B. Sen, A. Agarwal, C. Rivera,
W. Paul, K. Ellis, R. Chellappa, et al. Conceptgraphs: Open-vocabulary 3d scene graphs for
perception and planning. arXiv preprint arXiv:2309.16650, 2023.

[113] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al. Ros:
an open-source robot operating system. In ICRA Workshop on Open Source Software, 2009.

15

Appendix

Table of Contents
A Extended Related Work 16

B Limitations 17

C Metrics 18
C.1 Simulation Success Metrics . 18
C.2 Real World Success Metrics . 18

D Simulation Details 19
D.1 Object Categories Appearing in the Scene Dataset 19
D.2 Episode Generation Details . 21
D.3 Diversity in Receptacle Instances . 22
D.4 Scene Clutter Complexity . 22
D.5 Improved scene visuals . 23
D.6 Action Space Implementation . 24

E HomeRobot Implementation Details 24
E.1 Pose Information . 25
E.2 Low-Level Control for Navigation . 25
E.3 Heuristic Grasping Policy . 25
E.4 Heuristic Placement Policy . 26
E.5 Navigation Planning . 27
E.6 Navigation Limitations . 28

F Reinforcement Learning Baseline 28
F.1 Action Space . 29
F.2 Observation Space . 29
F.3 Training Setup . 29
F.4 ConceptFusion . 31

G Additional Analysis 31
G.1 Number of steps taken in each stage by different baselines 32
G.2 Performance on Seen vs. Unseen Object Categories 33

H Hardware Setup 34
H.1 Hardware Choice . 34
H.2 Robot Setup . 35
H.3 Visualizing The Robot . 37
H.4 Using The Stretch: Navigation vs. Position Mode 37

A Extended Related Work

It is difficult to do justice to the rich embodied AI, natural language, computer vision, machine
learning, and robotics communities that have addressed aspects of the work presented here. The
following extends some of the discussion from the main manuscript about important advances that
the community has made.

16

Benchmarks have helped the community focus their efforts and fairly compare system performance.
For example, the YCB objects [50] allowed for direct comparison of results across manipulators and
models. While benchmarks and leaderboards are comparatively rare in robotics [49, 56, 33, 54, 63,
3, 39], they have been hugely influential in machine learning (e.g. ImageNet [65], GLUE [66], and
various language benchmarks [67–70], COCO [71], and SQuAD [72]). In robotics, competitions
such as RoboCup@Home [3], the Amazon Picking Challenge [39], and the NIST task board [56] are
prevalent and influential as an alternative, but generally systems aren’t reproducible across teams.

Datasets. In addition to the environments referenced in Table 1, offline datasets including robot
interactions with scenes have been used widely to train models. These datasets are typically obtained
using robots alone (e.g., [73, 74]), by teleoperation (e.g., [75, 76]) or human-robot demonstration
(e.g., [77]). Previous works such as [78] aim to collect large-scale datasets while works such as
[79] consider scaling across multiple embodiments. [80] take a step further by collecting robot data
in unstructured environments. Unlike these works, we do not limit our users to a specific dataset.
Instead, we provide a simulator with various scenes that can generate large-scale consistent data for
training. Also, note that we test the models in unseen environments, while most of the mentioned
works use the same environment for training and testing.

Simulation benchmarks. The embodied AI community has provided various benchmarks in
simulation platforms for tasks such as navigation [1, 81–84], object manipulation [85, 35, 86, 87],
instruction following [6, 88–90], room rearrangement [28, 91], grasping [92] and SLAM [93].
While these benchmarks ensure reproducibility and fair comparison of different methods, there is
always a gap between simulation and reality since it is infeasible to model all the details of the real
world in simulation. Our benchmark, in contrast, enables fair comparison of different methods and
reproducibility of the results in the real world. Additionally, previous benchmarks often operate in a
simplified discrete action space [20, 6], even forcing that structure on the real world [2].

Robotics benchmarking. Robotics benchmarks must contend with the diversity of hardware,
morphology, and resources across labs. One solution is simulation [87, 59, 35, 20, 21, 83, 86, 6],
which can provide reproducible and fair evaluations. However, the sim-to-real gap means simulation
results may not be indicative of progress in the real world [2]. Another proposed solution is robotic
competitions such as RoboCup@Home [3], the Amazon Picking Challenge [39], and the NIST task
board [56]. However, participants typically use their own hardware, making it difficult to conduct fair
comparisons of the different underlying methods, and means results are not transferable to different
labs or settings. This is also a large barrier to entry to these competitions.

Exploration of unseen environments. Various papers have looked at the problem of object search
in different home environments. Gervet et al. [2] use a mixture of heuristic/model-based planning
and reinforcement learning to achieve strong results in a variety of real-world environments; impor-
tantly their planning-based methods perform competitively to the best learning-based methods, and
much better than end-to-end reinforcement learning on real tasks. Also promising is graph-based
exploration. Kurenkov et al. [94] propose hierarchical mechanical search, based on a 3d scene
graph representation, for exploring environments; although unlike in our Open-Vocabulary Mobile
Manipulation task, they assume such a scene graph exists. Similarly, SayPlan [95] performs a search
over a complex scene graph using a large language model; however, this approach also does not look
into iteratively constructing this scene graph on new scenes. While there is active work in iteratively
exploring and building scene graphs and other hierarchical representations (e.g. [96]), there are not
yet strongly established methods in this space.

B Limitations

Due to simulation limitations, we don’t physically simulate grasping in the current version of the
benchmark, which is why we provide a separate policy for this in the real world. Grasping is a
well-studied problem [97–99], but simulations that train useful real-world grasp systems require
special consideration. We also currently consider full natural language queries out-of-scope. Finally,

17

we did not evaluate many motion planners (see Sec. E.2), or performed task-and-motion-planning
with replanning, as would be ideal for a long horizon task [100].

C Metrics

We informally defined our scoring metrics in Sec. 3. Here, we provide formal definitions of our
partial success metrics.

C.1 Simulation Success Metrics

Success in simulation is defined per stage as:

• FindObj: Successful if the agent reaches within 0.1m of a viewpoint of the target object on
start_receptacle, and at least 0.1% of the pixels in its camera frame belong to an object
instance.

• Pick: Successful if FindObj succeeded, the agent enables the gripper at an instant where an
object instance is visible and its end-effector reaches within 0.8m of a target object. We magically
snap the object to the agent’s gripper in simulation.

• FindRec: Successful if Pick succeeded, and the agent reaches within 0.1m of a viewpoint of a
goal_receptacle, and at least 0.1% of the pixels in its camera frame belong to the object containing
a valid receptacle.

• Place: Successful if FindRec succeeded, the agent releases the object and subsequently the
object stays in contact with the goal_receptacle with linear and angular velocities below a
threshold of 5e−3 m/s and 5e−2 rad/s respectively for 50 contiguous steps. Further, the agent should
not collide with the scene while attempting to place the object.

An episode is considered to have succeeded if it succeeds in all 4 stages within 1250 steps.

Better pick success condition. We plan to use a more realistic grasping condition in simulation. We
try replacing the magic snap in simulation with a stricter condition that requires the agent to move
its arm near the object without colliding with the scene or other objects. Additionally, we tested a
baseline (Figure 5) that performs top-down grasps resembling our real-world grasping policy, and
resorting to side-ways grasps when the object is farther. While this baseline succeeds in reaching the
object starting from an object viewpoint 79% of the time, it does so without colliding only 47% of
the time.

C.2 Real World Success Metrics

Success in real world is defined per stage as:

• FindObj: Successful if the agent reaches within 1m of the target object on start_receptacle
and the object is visible in the RGB image from the camera.

• Pick: Successful if FindObj succeeded and the agent successfully picks up the object from the
start_receptacle.

• FindRec: Successful if Pick succeeded, and the agent reaches within 1m of a goal_receptacle,
and the goal_receptacle is visible in the RGB image from the camera.

• Place: Successful if FindRec succeeded and the agent places object on a goal_receptacle
and the object settles down on the goal_receptacle stably.

Given that the scene we use in the real world is much smaller than the apartments in the simulation,
we allow the agent to act in the environment for 300 timesteps. The episode is considered to have
succeeded if it succeeds in all 4 stages.

18

Figure 5: A few success and failure cases for our simple grasping policy under the new grasp success
condition that requires the agent’s arm to reach near the object without colliding. The agent resorts to
sideways grasps when the object can’t be reached via a top-down grasp that bends the gripper. Most
grasping failures are because of the collisions with the scene.

D Simulation Details

D.1 Object Categories Appearing in the Scene Dataset

action_figure, android_figure, apple, backpack, baseballbat, basket, basketball,
bath_towel, battery_charger, board_game, book, bottle, bowl, box, bread, bundt_pan,
butter_dish, c-clamp, cake_pan, can, can_opener, candle, candle_holder, candy_bar,
canister, carrying_case, casserole, cellphone, clock, cloth, credit_card, cup,
cushion, dish, doll, dumbbell, egg, electric_kettle, electronic_cable, file_sorter,
folder, fork, gaming_console, glass, hammer, hand_towel, handbag, hard_drive, hat,
helmet, jar, jug, kettle, keychain, knife, ladle, lamp, laptop, laptop_cover,
laptop_stand, lettuce, lunch_box, milk_frother_cup, monitor_stand, mouse_pad,
multiport_hub, newspaper, pan, pen, pencil_case, phone_stand, picture_frame,
pitcher, plant_container, plant_saucer, plate, plunger, pot, potato, ramekin,
remote, salt_and_pepper_shaker, scissors, screwdriver, shoe, soap, soap_dish,
soap_dispenser, spatula, spectacles, spicemill, sponge, spoon, spray_bottle,
squeezer, statue, stuffed_toy, sushi_mat, tape, teapot, tennis_racquet,
tissue_box, toiletry, tomato, toy_airplane, toy_animal, toy_bee, toy_cactus,
toy_construction_set, toy_fire_truck, toy_food, toy_fruits, toy_lamp, toy_pineapple,
toy_rattle, toy_refrigerator, toy_sink, toy_sofa, toy_swing, toy_table, toy_vehicle,
tray, utensil_holder_cup, vase, video_game_cartridge, watch, watering_can,
wine_bottle
In Fig. 7 we show some of the examples of a selection of these categories from the training and
validation/test splits.

19

10
1

10
2

cu
sh

ion

bo
x

pic
tur

e f
ram

e

cu
p
bo

ok
bo

wl
clo

ck
sh

oe
gla

ss

bo
ttle

pa
n
tra

y
stu

ffe
d t

oy

so
ap

 di
sp

en
se

r

tom
ato

po
tat

o
lap

top
eg

g
bre

ad
ap

ple

sta
tue

du
mbb

ell

ca
nd

le

mult
ipo

rt h
ub

ca
ss

ero
le

toy
 an

im
al

jug ac
tio

n f
igu

re

tea
po

t

ha
nd

 to
wel

toy
 ve

hic
le

sp
ray

 bo
ttle

pla
nt

co
nta

ine
r

kn
ife
ce

llp
ho

ne

tap
e
sp

ice
mill

ten
nis

 ra
cq

ue
t

ke
ttle
ele

ctr
ic

ke
ttle

pe
n
lap

top
 st

an
d

ga
ming

 co
ns

ole

cre
dit

 ca
rd

bo
ard

 ga
me

ba
se

ba
llb

at

Seen Categories

Seen Category
Seen Intances
Unseen Intances

Single seen instance categories:
watch, toy swing, toy pineapple,
toy food, toy fire truck, toy cactus,
sushi mat, stuffed toy, spoon, spec-
tacles, spatula, soap dish, screw-
driver, scissors, ramekin, pitcher,
mouse pad, monitor stand, milk
frother cup, lunch box, laptop
cover, lamp, ladle, keychain, hat,
handbag, hammer, fork, folder,
file sorter, carrying case, candy
bar, candle holder, cake pan, c-
clamp, butter dish, bundt pan, bath
towel, basketball

10
1

10
2

va
se

pla
te

po
t

let
tuc

e

toi
let

ry

pla
nt

sa
uc

er

clo
th

sa
lt a

nd
 pe

pp
er

sh
ak

er

pe
nc

il c
as

e

ha
rd

dri
ve

ne
wsp

ap
er

ca
nis

ter

plu
ng

er

an
dro

id
fig

ure

rem
ote

ca
n

ba
sk

et

wine
 bo

ttle

toy
 ra

ttle

toy
 ai

rpl
an

e

sp
on

ge

ph
on

e s
tan

d

jar

Unseen Categories

Single instance categories: wa-
tering can, video game cartridge,
utensil holder cup, toy table, toy
sofa, toy sink, toy refrigerator, toy
lamp, toy fruits, toy construction
set, toy bee, tissue box, squeezer,
soap, helmet, electronic cable,
doll, dish, can opener, battery
charger, backpack

Figure 6: Number of objects across different splits, for both seen categories and unseen categories.
We divide objects between categories that appear in training data – seen categories – and those that
do not – unseen categories. The goal of Open-Vocabulary Mobile Manipulation is to be able to find
and manipulate objects specified by language.

cushion

cup

pan

vase

plate

plant saucer

Figure 7: Example objects in our object dataset across 6 categories. The cushion, cup, and pan
categories are in the train split, and the vase, plate, and plant saucer are in the validation and test sets.

20

D.2 Episode Generation Details

Figure 8: Visualization of the navigable geometry (top row) and top-down views of example scenes
from the Habitat Synthetic Scenes Dataset (HSSD) [19]. We use the computed navigable area to
efficiently generate a large number of episodes for the Open-Vocabulary Mobile Manipulation task.
Object placement positions are sampled to be near navigable areas of the map, atop one of a large
variety of different receptacles, such that the robot can reach them.
When generating episodes, we find the largest indoor navigable area in each scene, and then filter
the list of all receptacles from this scene that are too small for object placement. Fig. 8 shows the
navigable islands in several of our scenes (top row), and corresponding top-down views of each scene
in the bottom row. We then sample objects according to the current split (train, validation, or test).
We run physics to ensure that objects are placed in stable locations. Then we select objects randomly
from the appropriate set, as determined by the current split.

Figure 9: First-person view from different precomputed viewpoints in our episode dataset. These
viewpoints are used as goals for training navigation skills, and are used in the initialization of the
placement and gaze/grasping skills as well. The purple mesh indicates receptacle surface.
Finally, we generate a set of candidate viewpoints, shown in Fig. 9, which represent navigable
locations to which the robot can move for each receptacle. These are used for training specific skills,
such as navigation to receptacles. Each viewpoint corresponds to a particular start_receptacle
or goal_receptacle, and represents a nearby location where the robot can see the receptacle and is
within 1.5 meters. Fig. 10 gives examples of where these viewpoints are created.

Navmesh: We precompute a navigable scene geometry as done in [20] for faster collision checks of
the agent with the scene. The “mesh” comprising this navigable geometry is referred to as a navmesh.

21

Figure 10: Viewpoints created for an object during episode generation. The gray area is the navigable
region of the scene. The big red dot and the black box are the object’s center and bounding box
respectively. The surrounding dots are viewpoint candidates: red dots were rejected because they
weren’t navigable, and blue dots were rejected because they were too far from the object. The green
dots are the final set of viewpoints.

Figure 11: The variation in instances belonging to the "table" category in our dataset.

Number of objects: This is dynamically set per scene to 1.5-2× the total available receptacle area in
m2. For example, if the total receptacle surface area for a scene is 10m2, then 15-20 objects will be
placed. The exact number of objects will be randomly selected per episode to be in this range.

The full set of included receptacles in simulation is: bathtub, bed, bench, cabinet, chair,
chest_of_drawers, couch, counter, filing_cabinet, hamper, serving cart,
shelves, shoe_rack, sink, stand, stool, table, toilet, trunk, wardrobe, &
washer_dryer.

D.3 Diversity in Receptacle Instances

The instances within each receptacle category exhibit substantial variability. Figure 11 shows a few
different receptacles from our dataset belonging to the "table" category.

D.4 Scene Clutter Complexity

Our procedural placement of target and distractor objects creates diverse and interesting scenarios
that require reasoning over which direction to approach receptacles, stable placement in clutter, open
vocabulary object detection under occlusion which makes the task quite challenging. Figure 12 shows
a few examples of clutter surrounding target objects in our scenes.

22

Figure 12: A few examples of clutter surrounding the target object in our simulation settings.

Figure 13: Here we present the improvements in scene visuals with Horizon-based Ambient
Occlusion (HBAO) and expanded Physics-based Rendering (PBR) material support added to the
Habitat renderer. The top row shows images from the default renderer whereas the bottom row shows
the improved renderings.

D.5 Improved scene visuals

We rewrote and expanded the existing Physically-Based Rendering shader (PBR) and added Horizon-
based Ambient Occlusion (HBAO) to the Habitat renderer, which led to notable improvements in
viewing quality which were necessary for using the HSSD [19] dataset.

• Rewrote PBR and Image Based Lighting (IBL) base calculations.

• Added multi-layer material support covering KHR_materials_clearcoat,
KHR_materials_specular, KHR_materials_ior, and KHR_materials_anisotropy
for both direct and indirect (IBL) lighting.

• Added tangent frame synthesis if precomputed tangents are not provided.

• Added HDR Environment map support for IBL.

We present comparisons between default Habitat visuals and improved renderings in Figure 13.

We also benchmark the ObjectNav training speeds of a DDPPO-based RL agent with and without the
improved rendering and present the results in 14. We see that the improvement in scene lighting and

23

Figure 14: Minor drop in FPS with improved scene rendering: Here, we benchmark the training
speeds (through FPS numbers) of two ObjectNav training runs with and without the HBAO and
PBR-based improved scene visuals. We observe that the improved rendering leads to a very small
drop in FPS from around 340 to 330 (3 % drop).

rendering comes at the cost of only a 3% dip in training FPS (decreasing from around 340 to around
330).

D.6 Action Space Implementation

We look at two different choices of action space for our navigation agents, either making discrete or
continuous predictions about where to move next. Our expectation from prior work might be that the
discrete action space would be notably easier for agents to work with.

Discrete. Previous benchmarks often operate in a fully discrete action space [20, 6], even in the real
world [2]. We implement a set of discrete actions, with fixed in-place rotation left and right, and
translation of steps 0.25m forward.

Continuous. Our continuous action space is implemented as a teleporting agent, where the robot
needs to move around by predicting a local waypoint. Our robot’s low-level controllers are expected
to be able to get the robot to this location, in lieu of simulating full physics for the agent.

In simulation, this is implemented as a check against the navmesh - we use the navmesh to determine
if the robot will go into collision with any objects if moved towards the new location, and move it to
the closest valid location instead.

E HomeRobot Implementation Details

Here, we describe more specifics for how we implemented the heuristic policies provided as a baseline
to accelerate home assistant robot research.

Although there exists a considerable body of prior research looking at learning specific grasping [101,
98, 99, 97] or placement [102, 17] skills, we found that it was easiest to implement heuristic policies
with low CPU/GPU requirements and high interpretability. Other recent works have similarly used
heuristic grasping and placement policies to great affect (e.g. TidyBot [62]).

There are three different repositories within the open-source HomeRobot library:

• home_robot: Shared components such as Environment interfaces, controllers, detection,
and segmentation modules.

• home_robot_sim: Simulation stack with Environments based on Habitat.

• home_robot_hw: Hardware stack with server processes that run on the robot, client API
that runs on the GPU workstation, and Environments built using the client API.

24

Most policies are implemented in the core home_robot library. Within HomeRobot, we also divide
functionality between Agents and Environments, similar to how many reinforcement learning
benchmarks are set up [20].

• Agents contain all of the necessary code to execute policies. We implement agents that use
a mixture of heuristic policies and policies learned on our scene dataset via reinforcement
learning.

• Environments provide common logic; they provide Observations to the Agent and a
function that allows them to apply their action to the (real or simulated) environment.

E.1 Pose Information

We get the global robot pose from Hector SLAM [103] on the Hello Robot Stretch [22], which is
used when creating 2d semantic maps for our model-based navigation policies.

E.2 Low-Level Control for Navigation

The Hello Stretch software provides a native interface for controlling the linear and angular velocities
of the differential-drive robot base. While we do expose an interface for users to control these
velocities directly, it is desirable to have desired short-term goals as a more intuitive action space for
policies, and to make them updateable at any instant to allow for replanning.

Thus, we implemented a velocity controller that produces continuous velocity commands that move
the robot to an input goal pose. The controller operates in a heuristic manner: by rotating the
robot so that it faces the goal position at all times while moving towards the goal position, and then
rotating to reach the goal orientation once the goal position is reached. The velocities to induce these
motions are inferred with a trapezoidal velocity profile and some conditional checks to prevent it
from overshooting the goal.

Limitations The Fast Marching Method-based motion planning from prior work [2] that we
describe in Sec. E.2. It assumes the agent is a cylinder, and therefore is much more limited in where
it can navigate than, e.g., a sampling-based motion planner like RRT-connect [104] which can take
orientation into account. In addition, our semantic mapping requires a list of classes for use with
DETIC [27]; instead, it would be good to use a fully open-vocabulary scene representation like
CLIP-Fields [11], ConceptFusion [15], or USA-Net [12], which would also improve our motion
planning significantly.

E.3 Heuristic Grasping Policy

Figure 15: Grasping tests in various lab environments. To provide a strong baseline, we tuned the
grasp policy to be highly reliable given the Stretch’s viewpoint, on a variety of objects.
Numerous powerful grasp generation models have been proposed in the literature, such as GraspNet-
1Billion [99], 6-DOF GraspNet [98], and Contact-GraspNet [97]. However, for transparency, repro-

25

Figure 16: An example of the robot navigating to a goal_receptacle (sofa) and using the heuristic
place policy to put down the object (stuffed animal). Heuristic policies provide an interpretable and
easily extended baseline.

ducibility, and ease of installation, we implement a simple, heuristic grasping policy, which assumes
a parallel gripper performing top-down grasps. Heuristic grasp policies appear throughout robotics
research (e.g. in TidyBot [62]). In our case, the heuristic policy voxelizes the point cloud, and chooses
areas at the top of the object where points exist, surrounded by free space, in order to grasp. Fig. 15
shows the simple grasp policy in action and additional details are presented in Sec. E.3. This policy
works well on a wide variety of objects, and we saw comparable performance to the state-of-the-art
open-source grasping models we tested [97, 99].

The intuition is to identify areas where the gripper fingers can descend unobstructed into two sides of
a physical part of the object, which we do through a simple voxelization scheme. We take the top
10% of points in an object, voxelize at a fixed resolution of 0.5cm, and choose grasps with free voxels
(where fingers can go) on either side of occupied voxels. In practice, this achieved a high success rate
on a variety of real objects.

The procedure is as follows:

1. Given a target object point cloud, convert the point cloud into voxels of size 0.5 cm.

2. Select top 10% occupied voxels with the highest Z coordinates.

3. Project the selected voxels into a 2-D grid.

4. Consider grasps centered around each occupied voxel, and identify three regions: two where
the gripper fingers will be and one representing the space between the fingers.

5. Score each grasp based on 1) how occupied the region between the fingers is, and 2) how
empty the two surrounding regions are.

6. Perform smoothing on the grasp scores to reject outliers (done by multiplying scores with
adjacent scores).

7. Output grasps with final scores above some threshold.

We compared this policy to other methods like ContactGraspnet [97], 6-DoF Graspnet [98, 101], and
Graspnet 1-Billion [99]. We saw more intermittent failures due to sensor noise using these pretrained
methods, even after adapting the grasp offsets to fit to the Hello Robot Stretch’s gripper geometry. In
the end, we leave training to better grasp policies for future work.

E.4 Heuristic Placement Policy

As with grasping, a number of works on stable placement of objects have been proposed in the litera-
ture [102, 17]. To provide a reasonable baseline, we implement a heuristic placement strategy that
assumes that the end-receptacle is at least barely visible when it takes over; projects the segmentation
mask onto the point cloud and chooses a voxel on the top of the object. Fig. 16 shows an example of
the place policy being executed in the real world.

26

Specifically, our heuristic policy is implemented as such:

1. Detect the end-receptacle in egocentric RGB observations (using DETIC [27]), project
predicted image segment to a 3D point cloud using depth, and transform point cloud to robot
base coordinates using camera height and tilt.

2. Estimate placement point: Randomly sample 50 points on the point cloud and choose one
that is at the center of the biggest (point cloud) slab for placing objects. This is done by
scoring each point based on the number of surrounding points in the X/Y plane (Z is up)
within a 3 cm height threshold.

3. Rotate robot for it to be facing the placement point, then move robot forward if it is more
than 38.5 cm away (length of retracted arm + approximate length of the Stretch gripper).

4. Re-estimate placement point from this new robot position.

5. Accordingly, set arm’s extension and lift values to have the gripper be a few cm above
placement position. Then, release the object to land on the receptacle.

E.5 Navigation Planning

Our heuristic baseline extends prior work [2], which was shown to work in a wide range of human
environments. We tune it for navigating close to other objects and extended it to work in our
continuous action space – challenging navigation aspects not present in the original paper. The
baseline has three components:

Semantic Mapping Module. The semantic map stores relevant objects, explored regions, and
obstacles. To construct the map, we predict semantic categories and segmentation masks of objects
from first-person observations. We use Detic [27] for object detection and instance segmentation and
backproject first-person semantic segmentation into a point cloud using the perceived depth, bin it
into a 3D semantic voxel map, and finally sum over the height to compute a 2D semantic map.

We keep track of objects detected, obstacles, and explored areas in an explicit metric map of the
environment from [105]. Concretely, it is a binary K x M x M matrix where M x M is the map
size and K is the number of map channels. Each cell of this spatial map corresponds to 25 cm2 (5 cm
x 5 cm) in the physical world. Map channels K = C + 4 where C is the number of semantic object
categories, and the remaining 4 channels represent the obstacles, the explored area, and the agent’s
current and past locations. An entry in the map is one if the cell contains an object of a particular
semantic category, an obstacle, or is explored, and zero otherwise. The map is initialized with all
zeros at the beginning of an episode and the agent starts at the center of the map facing east.

Frontier Exploration Policy. We explore the environment with a heuristic frontier-based exploration
policy [106]. This heuristic selects as the goal the point closest to the robot in geodesic distance
within the boundary between the explored and unexplored region of the map.

Navigation Planner. Given a long-term goal output by the frontier exploration policy, we use the
Fast Marching Method [107] as in [105] to plan a path and the first low-level action along this path
deterministically. Although the semantic exploration policy acts at a coarse time scale, the planner
acts at a fine time scale: every step we update the map and replan the path to the long-term goal. The
robot attempts to plan to goals if they have been seen; if it cannot get within a certain distance of the
goal objects, then it will instead plan to a point on the frontier.

Navigating to objects on start_receptacle. Since small objects (e.g. action_figure, apple)
can be hard to locate from a distance, we leverage the typically larger start_receptacle goals for
finding objects. We make the following changes to the original planning policy [108]:

1. If object and start_receptacle co-occur in at least one cell of the semantic map, plan to
reach the object

2. If the object is not found but start_receptacle appears in the semantic map after exclud-
ing the regions within 1m of the agent’s past locations, plan to reach the start_receptacle

27

Figure 17: Real-world examples (also see Fig 2). Our system is able to find held-out objects in an
unseen environment and navigate to receptacles in order to place them, all with no information about
the world at all, other than the relevant classes. However, we see this performance is highly dependent
on perception performance for now; many real-world examples also fail due to near-miss collisions.

3. Otherwise, plan to reach the closest frontier

In step 2, we exclude the regions that the agent has been close to, to prevent it from re-visiting already
visited instances of start_receptacle.

E.6 Navigation Limitations

We implemented a navigation system that was previously used in extensive real-world experiments [2],
but needed to tune it extensively for it to get close enough to objects to grasp and manipulate them.
The original version by Gervet et al. [2] was focused on finding very large objects from a limited
set of only six classes. Ours supports many more, but as a result, tuning it to both be able to grasp
objects and avoid collisions in all cases is difficult.

This is partly because the planner is a discrete planner based on the Fast Marching Method [107],
which cannot take orientation into account and relies on a 5cm discretization of the world. ampling-
based motion planners like RRT-Connect [104], or like that used in the Task and Motion Planning
literature [100, 8], may offer better solutions. Alternately, we could explore optimization-based
planners specifically designed for open-vocabulary navigation planning, as has recently been pro-
posed [12].

Our navigation policy relies on accurate pose information from Hector SLAM [103], and unfortunately
does not handle dynamic obstacles. It also models the robot’s location as a cylinder; the Stretch’s
center of rotation is slightly offset from the center of this cylinder, which is not currently accounted
for. Again, sampling-based planners might be better here.

F Reinforcement Learning Baseline

We train four different RL policies: FindObject, FindReceptacle, GazeAtObject, and
PlaceObject.

28

F.1 Action Space

F.1.1 Navigation Skills

FindObject and FindReceptacle are, collectively, navigation skills. For these two skills, we use
the discrete action space, as mentioned in Sec. D.6. In our experiments, we found the discrete action
space was better at exploration and easier to train.

F.1.2 Manipulation Skills

For our manipulation skills, we using a continuous action space to give the skills fine grained control.
In the real world, low-level controllers have limits on the distance the robot can move in any particular
step. Thus, in simulation, we limit our base action space by only allowing forward motions between
10-25 cm, or turning by 5-30 degrees in a single step. The head tilt, pan and gripper’s yaw, roll and
pitch can be changed by at most 0.02-0.1 radians in a single step. The arm’s extension and lift can be
changed by at most 2-10cm in a single step. We learn by teleporting the base and arm to the target
locations.

F.2 Observation Space

Policies have access to depth from the robot head camera, and semantic segmentation, as well as the
robot’s pose relative to the starting pose (from SLAM in the real world), camera pose, and the robot’s
joint states, including the gripper. RGB image is available to the agent but not used during training.

F.3 Training Setup

All skills are trained using a slack reward of -0.005 per step, incentivizing completion of task using
minimum number of steps. For faster training, we learn our policies using images with a reduced
resolution of 160x120 (compared to Stretch’s original resolution of 640x480).

F.3.1 Navigation Skills

We train FindObject and FindReceptacle policies for the agent to reach a candidate object or
a candidate target receptacle respectively. The training procedure is the same for both skills. We
pass in the CLIP [14] embedding corresponding with the goal object, as well as segmentation masks
corresponding with the detected target objects. The agent is spawned arbitrarily, but at least 3 meters
from the target, and must move until within 0.1 meters of a goal “viewpoint,” where the object is
visible.

Input observations: Robot head camera depth, ground-truth semantic segmentation for all receptacle
categories (receptacle segmentation), robot’s pose relative to the starting pose, joint sensor giving
states of camera and arm joints. We implement object-level dropout for the semantic segmentation
mask, where each object has a probability of 0.5 of being left out of the mask. In addition, the input
observation space includes the following:

• Goal specification: For FindObject, we pass in the CLIP embedding of the target object
and the start receptacle category. For FindReceptacle, we pass in the goal receptacle
category.

• Goal segmentation images: During training, the simulator provides ground truth goal
object segmentation; on the real robot, these are predicted by DETIC [27]. For FindObject,
we pass in two channels: one showing all instances of candidate objects, one showing all
instances of candidate start receptacles. For FindReceptacle, we pass a single channel
showing all instances of candidate goal receptacles. We implement a similar object-level
dropout procedure here as we did for the receptacle segmentation.

Initial state: The agent is spawned at least 3m away from the candidate object or receptacle. It starts
in “navigation mode,” with the robot’s head facing forward.

29

Actions: The policy predicts translation and rotation waypoints, as well as a discrete stop action.

Success condition: The agent should call the discrete stop action when it reaches within 0.5m of a
goal viewpoint. The agent should be facing the target: the angle between the agent’s heading direction
and the ray from the robot to the center of the closest candidate object should be no more than 15
degrees.

Reward: Assume at time step t, the geodesic distance to the closest goal is given by d(t), the
angle between agent’s heading direction and the ray from agent to closest goal is given by θ(t), and
did_collide(t) indicates if the action the agent took at time t− 1 resulted in a collision at time t. The
training reward is given by:

RFindX(t) = α[d(t− 1)− d(t)] + β1[d(t) ≤ Dclose][θ(t− 1)− θ(t)] + γ1[did_collide(t)]

with α = 1, β = 1, γ = 0.3 and Dclose = 3.

F.3.2 GazeAtObject

The GazeAtObject skill starts near the object and provides some final refinement steps until the
agent is close enough to call a grasp action, i.e. it is in arm’s length of the object and the object is
centered and visible. The agent needs to move closer to the object and then adjust its head tilt until
the candidate object is close and centered. It makes predictions to move and rotate the head, as well
as to center the object and make sure it’s within arm’s length so that the discrete grasping policy can
execute.

The GazeAtObject skill is supposed to start off from locations and help reach a location within
arm’s length of a candidate object. This is trained by first initializing the agents close to candidate
start receptacles. The agent is then tasked to reach close to the agent and adjust its head tilt such that
the candidate object is close and centered in the agent’s camera view. We next provide details on the
training setup.

Input observations: Ground truth semantic segmentation of candidates objects, head depth sensor,
joint sensor giving all head and arm joint states, sensor indicating if the agent is holding any object,
clip embedding for the target object name.

Initial state: The robot again starts in “navigation mode,” with its arm retracted, with the gripper
facing downwards, and with the head/camera facing the base, base at an angle of 5 degrees of the
center object and on one of the “viewpoint” locations pre-computed during episode generation. The
object will therefore be assumed to be visible.

Actions: This policy predicts base translation and rotation waypoints, camera tilt, as well as a discrete
“grasp” action.

Success condition: The center pixel on the camera should correspond to a valid candidate object and
the agent’s base should be within 0.8m from the object.

Reward: We train the gaze policy mainly with a dense reward based on the distance to the goal.
Specifically, assuming the distance of the end-effector to the closest candidate goal at time t is d(t)
(in meters), the agent receives a reward proportional to d(t − 1) − d(t). Further, when the agent
reaches 0.8m, we provide an additional reward for incentivizing the agent to look toward the object.

Let θ(t) denote the angle (in radians) between the ray from the agent’s camera to the object and the
camera’s normal. Then the reward is given as:

RGaze(t) = α[d(t− 1)− d(t)] + β1[d(t) ≤ γ]cos(θ(t))

with α = 2, β = 1 and γ = 0.8 in our case.

The agent receives an additional positive reward of 2 once the episode succeeds and receives a
negative reward of −0.5 for centering its camera towards the wrong object.

30

F.3.3 PlaceObject

Finally, the robot must move its arm in order to place the object on a free spot in the world. In this
case, it starts at a viewpoint near a goal_receptacle. It must move up to the object and open its
gripper in order to place the object on this surface.

Input observations: Ground truth segmentation of goal receptacles, head depth sensor, joint sensor,
sensor indicating if the agent is holding any object, CLIP [14] embedding for the name of the object
being held.

Initial configuration: Arm retracted, with gripper down and holding onto an object, head facing the
base. The agent is spawned on a viewpoint with its base facing the object with an error of at most 15
degrees.

Actions: Base translation and rotation waypoints, all arm joints (arm extension, arm lift, gripper yaw,
pitch, and roll), a manipulation mode action that can be invoked only once in an episode to turn the
agent’s head towards the arm and rotate the base left by 90 degrees. The agent is not allowed to move
its base while in manipulation mode.

Success condition: The episode succeeds if the agent releases the object and the object stays on the
receptacle for 50 timesteps.

Reward: The agent receives a positive sparse reward of 5 when it releases the object and the object
comes in contact with a target receptacle. Additionally, we provide a positive reward of 1 for each
step the object stays in contact with the target receptacle. It receives a negative reward of −1 if the
agent releases the object but the object does not come in contact with the receptacle.

F.4 ConceptFusion

In the main paper, we introduced two key approaches based on end-to-end reinforcement learning
and a heuristic baseline. Both methods are dependent on the detection results generated by a readily
available open vocabulary object detector [27]. Notably, these 2D detection models do not leverage
information from prior time steps to inform their detection decisions.

In order to address these limitations, we explored the application of ConceptFusion [15], an open-
set scene representation technique. ConceptFusion harnesses foundation models like CLIP [14],
DINO [109], and others to construct 3D maps from multiple images. For our experimentation, we
employed the open-source implementation of ConceptFusion, which utilizes the Segment Anything
Model (SAM) [110] for object segmentation in RGB images and CLIP for feature extraction from
each segmentation mask. It’s important to note that our experiments were conducted in a simulated
environment, obviating the need for GradSLAM [111], as we had access to ground truth depth maps
and pose information to support our map construction efforts.

During our initial experimentation, we observed that ConceptFusion demanded significant com-
putational resources and memory, with processing times reaching up to 5 seconds per frame for
map construction. Remarkably, it’s worth noting that the authors of ConceptFusion have recently
published a new paper titled "ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and
Planning," [112] which addresses some of the computational challenges we encountered. However,
we leave the exploration of ConceptGraphs as a potential avenue for future research.

G Additional Analysis

Here, we provide some additional analysis of the different skills we trained to complete the Open-
Vocabulary Mobile Manipulation task.

31

 Pick a box from a stand and place it on a chair.

Episode start Find object Find receptacle Place object

 Pick a multiport hub from a stool and place it on a table.

 Pick a toy from a table and place it on a stool.

Figure 18: We show multiple executions of the Open-Vocabulary Mobile Manipulation task in a
variety of simulated environments.

Nav. Manip. Perception FindObj Gaze FindRec Place Total

Heuristic Heuristic Ground Truth 291.8 - 65.5 8.4 360.5
Heuristic RL Ground Truth 293.5 19.4 64.3 84.4 438.7
RL Heuristic Ground Truth 295.1 - 105.0 7.0 401.6
RL RL Ground Truth 302.4 25.7 112.8 45.9 455.2
Heuristic Heuristic DETIC [27] 335.0 - 29.5 6.7 361.8
Heuristic RL DETIC [27] 330.1 152.0 27.5 68.2 556.5
RL Heuristic DETIC [27] 509.5 - 153.3 7.1 610.4
RL RL DETIC [27] 539.1 101.3 124.4 33.7 634.7

Table 5: The number of steps that the agent takes performing each of the skills for different baselines.
Note that here we only consider the cases where the skill terminates. The last column gives the total
number of steps the agent takes on average for executing the four skills.

G.1 Number of steps taken in each stage by different baselines

Table 5 shows the number of steps taken by each skill in our baseline. With DETIC perception, we
observed that the RL skills explored less efficiently than our simple heuristic-based planner; this
translates to far fewer steps taken in successful episodes, although because RL exploration essentially
“gives up” if an object isn’t nearby, it can take lots of steps in many situations. In the real world, we
saw similar behavior - sometimes, the RL policies would not explore enough to be able to find a goal
at all.

32

Nav. Manip. Perception FindObj Gaze Pick FindRec Place Place terminates

Heuristic Heuristic Ground Truth 100.0 - 65.1 65.1 62.1 62.1
Heuristic RL Ground Truth 100.0 65.6 64.3 64.3 61.3 52.2
RL Heuristic Ground Truth 100.0 - 76.3 76.2 66.8 66.8
RL RL Ground Truth 100.0 77.0 74.5 74.5 65.1 60.6
Heuristic Heuristic DETIC [27] 100.0 - 34.7 34.7 31.1 31.1
Heuristic RL DETIC [27] 100.0 33.9 27.2 27.2 24.4 17.6
RL Heuristic DETIC [27] 100.0 - 32.9 32.7 24.2 24.2
RL RL DETIC [27] 100.0 34.7 24.9 24.8 18.1 15.3

Table 6: We report the percentage of times each skill gets invoked for each of the different baselines.
The last column gives the percentage of times the agent finishes executing all skills.

FindObj Success. PickObj Success. FindRec Success Overall Success
Nav. Manip. Perception SC,UI UC,UI All SC,UI UC,UI Total SC,UI UC,UI All SC,UI UC,UI All

Heuristic Heuristic Ground Truth 50.9 53.2 54.1 46.4 47.2 48.5 27.5 30.0 31.5 4.1 5.2 5.1
Heuristic RL Ground Truth 54.9 58.2 56.5 48.6 55.1 51.5 39.0 37.3 42.3 14.5 12.0 13.2
RL Heuristic Ground Truth 67.1 64.1 65.4 55.0 51.0 54.8 44.8 44.8 43.7 6.2 7.8 7.3
RL RL Ground Truth 68.4 65.8 66.6 63.7 57.6 61.1 54.7 49.0 50.9 15.7 14.4 14.8
Heuristic Heuristic DETIC [27] 22.2 21.1 28.7 12.5 10.5 15.2 3.2 3.3 5.3 0.9 0.7 0.4
Heuristic RL DETIC [27] 22.4 22.2 29.4 11.9 11.8 13.2 5.1 3.5 5.8 0.3 1.4 0.5
RL Heuristic DETIC [27] 18.7 23.0 21.9 9.9 11.8 11.5 5.8 5.3 6.0 0.3 0.0 0.6
RL RL DETIC [27] 21.5 20.7 21.7 10.9 11.0 10.2 6.9 6.2 6.2 1.0 0.7 0.4

Table 7: Performance breakdown by seen and unseen categories, and compared to overall performance.
In our baselines, we relied heavily on a pretrained object detector for generalization, so we don’t see
a dramatic difference in performance between seen and unseen objects.

Next, we observe that the Gaze and Place policies, which were trained with ground truth perception,
take significantly longer to terminate with DETIC perception.

Finally, in Table 6, we look at the percentage of times the agent attempts each of the different skills.
We find that the RL trained FindObj skill terminates more often than the heuristic FindObj skill and
episodes terminate less frequently with DETIC perception when compared to GT perception.

G.2 Performance on Seen vs. Unseen Object Categories

Table 7 shows results broken down by seen vs. unseen instances, and seen vs. unseen categories.
Specifically we look at these two pools of objects from the validation set:

• SC,UI: Seen category, unseen instance. An object of a class that appeared in the training
data (e.g., “cup”), but not a specific “cup” that appeared in the training data.

• UC,UI: Unseen instance of an unseen category; an object of a type that did not appear in
the training data at all.

In general, because we are relying on DETIC and not training our own semantic perception for this
baseline, we do not see a large difference between the two categories of object.

G.2.1 Example DETIC predictions

In Table 5, we observe that the Gaze policy takes a significantly longer time to terminate with
DETIC [27] perception. The gaze policy (see Fig. 19) tries to center the agent on the object of
interest by allowing the agent to move its base and camera tilt. For this, it relies on DETIC’s ability
to detect novel objects. Now, we visualize DETIC segmentations of agent’s egocentric observations
by placing agent at the points where the Gaze skill is expected to start: the object’s viewpoints. We
observe that while DETIC succeeds in a few cases, it fails at consistently detecting the objects in the
egocentric frame.

33

Figure 19: RL Gaze skill in action: The agent is allowed to move its base and change its camera tilt
to get closer to objectand bring objectat the center of its camera frame

Human Commercially Manipulation Approximate
Name Mobile Sized Safe Available DOF Cost

Boston Dynamics Spot ✔ ✖ ✖ ✔ 7 $200,000
Franka Emika Panda ✖ ✖ ✓ ✔ 7 $30,000
Locobot ✔ ✖ ✔ ✖ 5 $5,000
Fetch ✔ ✔ ✓ ✖ 7 $100,000
Hello Robot Stretch ✔ ✔ ✔ ✔ 4 $19,000
Stretch with DexWrist ✔ ✔ ✔ ✔ 6 $25,000

Table 8: Notes on platform selection. We chose the Stretch with DexWrist as a good compromise
between manipulation, navigation, and cost, while being human-safe and approximately human-sized.

H Hardware Setup

Here, we will discuss choices related to the real-world hardware setup in extra detail along with
information about the tools that we use for the visualization on the robot. This appendix contains
notes on how to set up the robotics stack in the real world, useful tools that we contribute, and some
best practices for development. Setting up mobile robots is hard, and one of the main goals of the
HomeRobot project is to make it both easy and somewhat affordable for researchers.

H.1 Hardware Choice

We describe some options for commercially available robotics hardware in Tab. 8. While the Franka
Emika Panda is not a mobile robot, we include it here because it’s a very commonly used platform in
both industrial research labs and at universities, making its price a fair comparison point for what is
reasonable.

34

Figure 20: Visualization of groundtruth and DETIC [27] segmentation masks for agent’s egocentric
RGB observations. Note that we use a DETIC vocabulary consisting of the fixed list of receptacle
categories and target objectname. We observed that DETIC often fails to accurately detect all the
objects present in the given frame.

H.2 Robot Setup

One challenge with low-cost mobile robots is how we can run GPU- and compute-intensive models to
evaluate modern AI methods on them. The Stretch, like many similar robots, does not have onboard
GPU, and will always have more limited compute than is available on a similar workstation.

As described in Sec. 4, we address this with a simple network configuration shown in Fig. 21. There
are three components:

1. The desktop running code – in our case, the eval_episode.py script from HomeRobot –
which connects to a remote mobile manipulator.

2. The dedicated router – an off-the-shelf consumer router, such as a Netgear Nighthawk
router. This should ideally be dedicated for your robot and desktop setup to ensure good
performance.

3. The mobile robot itself: a Stretch with DexWrist, as described above.

After the robot is configured, then you just need to run one script, a ROS launch file, as described in
the HomeRobot startup instructions, which can be done over SSH. Then, with a properly configured
robot and router, you can visualize information on the desktop side, showing the robot’s position,
map from SLAM, and cameras. On the robot side, the only necessary command is:

roslaunch home_robot_hw startup_stretch_hector_slam.launch

35

Figure 21: Network setup diagram for HomeRobot. We can run visualizations on a GPU-enabled
workstation while running only the necessary code on a robot for low-level control and SLAM.

Checking network performance. We describe the visualization tools available briefly in the next
section, but to check that the setup is working properly, you can start rviz and wave your hand in
front of the robot – you should see minimal latency when waving a hand in front of the camera.

Timing between the robot and the remote workstation. We use ROS [113] as our communications
layer, and to implement low-level control on the robot. This also provides network communication.
However, due to potential latency between the robot and the desktop, we also need to make sure that
observations are up to date.

We set up the robot to block after executing most navigation motions, in order to make this process
simpler until there is an up to date image observation from the robot side. This means that timing
between the robot and the workstation is extremely important: if we do not have up-to-date timing,
we might have SLAM poses and depth measurements that do not match, which will lead to worse
performance.

We solved this by having a clock on the robot side publish its time over ROS, and configuring all
systems to use this ROS master clock instead of system time. This prevents the user from having to
worry about Linux time synchronization protocols like NTP when setting up the robot for the first
time.

36

H.3 Visualizing The Robot

Figure 22: Exploring a real-world apartment during testing. The robot uses Detic [27] to perceive
the world and update a 2D map (center) which captures where it’s seen relevant classes, and which
obstacles exist; detections aren’t always reliable, especially given a large and changing vocabulary of
objects that we care about. In the HomeRobot stack, we provide a variety of tools for visualizing and
implementing policies, including integration of RVIZ (right).

We use RVIZ, a part of ROS, to visualize results and progress. Fig. 22 shows three different outputs
from our system: on the far left, an image from the test environment being processed by Detic; in the
center, a top-down map generated by the navigation planner described in Sec. E.2; and on the right,
an image from RVIZ with the point cloud from the robot’s head camera registered against the 2D
lidar map created by Hector SLAM.

One advantage of the HomeRobot stack is that it is designed to work with existing debugging tools
- especially ROS [113]. ROS is a widely-used framework for robotics software development that
comes with a lot of online resources, official support from Hello Robot, and a rich and thriving
open-source community with wide industry backing.

H.4 Using The Stretch: Navigation vs. Position Mode

We leave API documentation to the HomeRobot code base, but want to note one other complexity
when using the robot. Stretch’s manipulator arm is pointed to the right of its direction of motion,
which means that it cannot both look where it is going and manipulate objects at once. This allows the
robot to be lower cost and fit the human profile - more information on the robot’s design is available
in other work [22].

However, it’s something important to consider when trying to control Stretch to perform various tasks.
We use Stretch in one of two modes:

• Navigation mode: the robot’s camera is facing forward; we use reactive low-level control
for navigation; the robot can rotate in place, roll backward, and will reactively track goals
sent from the desktop.

• Manipulation mode: the robot’s camera is facing towards its arm; we do not use reactive
low-level control for navigation and do not rotate the base. Instead, we treat the robot’s base
as an extra, lateral degree of freedom for manipulation.

This is especially relevant when grasping or placing; it means that, for our heuristic policies, the robot
transitions into manipulation mode after moving close enough to the goal, and may track slightly to
the left or the right, in order to act as if it had a full 6dof manipulator.

All in all, these changes make the low-cost robot more capable and easier to use for a variety of
tasks [12, 24, 25].

37

	Introduction
	Related Work
	Open-Vocabulary Mobile Manipulation
	Simulation Dataset
	Real World Benchmark

	The [height=14pt]figures/HomeRobot.pngHomeRobot Library
	Baseline Agent Implementation

	Results
	Conclusions and Future Work
	Acknowledgements
	Appendix
	 Appendix
	Extended Related Work
	Limitations
	Metrics
	Simulation Success Metrics
	Real World Success Metrics

	Simulation Details
	Object Categories Appearing in the Scene Dataset
	Episode Generation Details
	Diversity in Receptacle Instances
	Scene Clutter Complexity
	Improved scene visuals
	Action Space Implementation

	HomeRobot Implementation Details
	Pose Information
	Low-Level Control for Navigation
	Heuristic Grasping Policy
	Heuristic Placement Policy
	Navigation Planning
	Navigation Limitations

	Reinforcement Learning Baseline
	Action Space
	Navigation Skills
	Manipulation Skills

	Observation Space
	Training Setup
	Navigation Skills
	GazeAtObject
	PlaceObject

	ConceptFusion

	Additional Analysis
	Number of steps taken in each stage by different baselines
	Performance on Seen vs. Unseen Object Categories
	Example DETIC predictions

	Hardware Setup
	Hardware Choice
	Robot Setup
	Visualizing The Robot
	Using The Stretch: Navigation vs. Position Mode

