
Under review as submission to TMLR

Relationship between Batch Size and Number of Steps
Needed for Nonconvex Optimization of Stochastic Gradient
Descent using Armijo Line Search

Anonymous authors
Paper under double-blind review

Abstract

Stochastic gradient descent (SGD) is the simplest deep learning optimizer with which to
train deep neural networks. While SGD can use various learning rates, such as constant
or diminishing rates, the previous numerical results showed that SGD performs better than
other deep learning optimizers using when it uses learning rates given by line search methods.
In this paper, we perform a convergence analysis on SGD with a learning rate given by
an Armijo line search for nonconvex optimization. The analysis indicates that the upper
bound of the expectation of the squared norm of the full gradient becomes small when
the number of steps and the batch size are large. Next, we show that, for SGD with the
Armijo-line-search learning rate, the number of steps needed for nonconvex optimization
is a monotone decreasing convex function of the batch size; that is, the number of steps
needed for nonconvex optimization decreases as the batch size increases. Furthermore, we
show that the stochastic first-order oracle (SFO) complexity, which is the stochastic gradient
computation cost, is a convex function of the batch size; that is, there exists a critical batch
size that minimizes the SFO complexity. Finally, we provide numerical results that support
our theoretical results. The numerical results indicate that the number of steps needed for
training deep neural networks decreases as the batch size increases and that there exist the
critical batch sizes that can be estimated from the theoretical results.

1 Introduction

1.1 Background

Nonconvex optimization is useful for training deep neural networks, since the loss functions called the ex-
pected risk and empirical risk are nonconvex and they need only be minimized in order to find the model
parameters. Deep-learning optimizers have been presented for minimizing the loss functions. The simplest
one is stochastic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003; Nemirovski et al., 2009;
Ghadimi & Lan, 2012; 2013) and there are numerous theoretical analyses on using SGD for nonconvex opti-
mization (Jain et al., 2018; Vaswani et al., 2019; Fehrman et al., 2020; Chen et al., 2020; Scaman & Malherbe,
2020; Loizou et al., 2021). Variants have also been presented, such as momentum methods (Polyak, 1964;
Nesterov, 1983) and adaptive methods including Adaptive Gradient (AdaGrad) (Duchi et al., 2011), Root
Mean Square Propagation (RMSProp) (Tieleman & Hinton, 2012), Adaptive Moment Estimation (Adam)
(Kingma & Ba, 2015), Adaptive Mean Square Gradient (AMSGrad) (Reddi et al., 2018), and Adam with
decoupled weight decay (AdamW) (Loshchilov & Hutter, 2019). SGD and its variants are useful for training
not only deep neural networks but also generative adversarial networks (Heusel et al., 2017; Naganuma &
Iiduka, 2023; Sato & Iiduka, 2023).

The performance of deep-learning optimizers for nonconvex optimization depends on the batch size. The
previous numerical results in (Shallue et al., 2019) and (Zhang et al., 2019) have shown that the number of
steps K needed to train a deep neural network halves for each doubling of the batch size b and that there is
a region of diminishing returns beyond the critical batch size b⋆. This fact can be expressed as follows: there

1

Under review as submission to TMLR

is a positive number C such that N := Kb ≈ C for b ≤ b⋆ and N := Kb ≥ C for b ≥ b⋆. The deep neural
network model uses b gradients of the loss functions per step. Hence, when K is the number of steps required
to train a deep neural network, the model has a stochastic gradient computation cost of Kb. We will define
the stochastic first-order oracle (SFO) complexity (Iiduka, 2022; Sato & Iiduka, 2023) of a deep-learning
optimizer to be N := Kb. From the previous numerical results in (Shallue et al., 2019) and (Zhang et al.,
2019), the SFO complexity is minimized at a critical batch size b⋆ and there are diminishing returns once
the batch size exceeds b⋆. Therefore, it is desirable to use the critical batch size when minimizing the SFO
complexity of the deep-learning optimizer.

Not only a batch size but also a learning rate affects the performance of deep-learning optimizers for noncon-
vex optimization. A performance measure of a deep-learning optimizer generating a sequence (θk)k∈N is the
expectation of the squared norm of the gradient of a nonconvex loss function f , denoted by E[∥∇f(θk)∥2].
If this performance measure becomes small when the number of steps k is large, the deep-learning optimizer
approximates a local minimizer of f . For example, let us consider the problem of minimizing a smooth
function f (see Section 2.1 for the definition of smoothness). Here, SGD using a constant learning rate
α = O(1

L) satisfies mink∈[K] E
[
∥∇f(θk)∥2]

= O(1
K + α

b), where L is the Lipschitz constant of ∇f , b is the
batch size, and [K] := {1, 2, . . . , K} (see also Table 1). Moreover, SGD using a learning rate satisfying the
Armijo condition was presented in (Vaswani et al., 2019). The Armijo line search (Nocedal & Wright, 2006,
Chapter 3.1) is a standard method for finding an appropriate learning rate αk giving a sufficient decrease in
f , i.e., f(θk+1) < f(θk) (see Section 2.3.1 for the definition of the Armijo condition).

1.2 Motivation

The numerical results in (Vaswani et al., 2019) indicated that the Armijo-line-search learning rate is superior
to using a constant learning rate when using SGD to train deep neural networks in the sense of minimizing the
training loss functions and improving test accuracy. Motivated by the useful numerical results in (Vaswani
et al., 2019), we decided to perform convergence analyses on SGD with the Armijo-line-search learning rate
for nonconvex optimization in deep neural networks.

Theorem 3 in (Vaswani et al., 2019) is a convergence analysis of SGD with the Armijo-line-search learning
rate for nonconvex optimization under a strong growth condition that implies the interpolation property.
Here, let f : Rd → R be an empirical risk defined by f(θ) := 1

n

∑
i∈[n] fi(θ), where n is the number of

training data and fi : Rd → R is a loss function corresponding to the i-th training data zi. We say that f has
the interpolation property if ∇f(θ) = 0 implies ∇fi(θ) = 0 (i ∈ [n]). The interpolation property holds for
optimization of a linear model with the squared hinge loss for binary classification on linearly separable data
(Vaswani et al., 2019, Section 2). However, the interpolation condition would be unrealistic for deep neural
networks, since their loss functions are nonconvex. The motivation behind this work is thus to show that
SGD with the Armijo-line-search learning rate can solve nonconvex optimization problems in deep neural
networks.

As indicated the second paragraph in Section 1.1, the batch size has a significant effect on the performance
of SGD. Hence, in accordance with the first motivation stated above, we decided to investigate appropriate
batch sizes for SGD with the Armijo-line-search learning rate. In particular, we were interested in verifying
whether a critical batch size b⋆ minimizing the SFO complexity N exists for training deep neural networks
with SGD using the Armijo condition in theory and in practice. This is because the previous studies in
(Shallue et al., 2019; Zhang et al., 2019; Iiduka, 2022; Sato & Iiduka, 2023) showed the existence of critical
batch sizes for training deep neural networks or generative adversarial networks with optimizers with constant
or diminishing learning rates and without Armijo-line-search learning rates.

We are also interested in estimating critical batch sizes before implementing SGD with the Armijo-line-
search learning rate. The previous results in (Iiduka, 2022; Sato & Iiduka, 2023) showed that, for optimizers
using constant learning rates, the critical batch sizes determined from numerical results are close to the
theoretically estimated sizes. Motivated by the results in (Iiduka, 2022; Sato & Iiduka, 2023), we sought to
verify whether, for SGD with the Armijo-line-search learning rate, the measured critical batch sizes are close
to the batch sizes estimated from theoretical results.

2

Under review as submission to TMLR

1.3 Contribution

1.3.1 Convergence analysis of SGD with Armijo-line-search learning rates

The first contribution of this paper is to present a convergence analysis of SGD with Armijo-line-search
learning rates for general nonconvex optimization (Theorem 3.1); in particular, it is shown that SGD with
this rate αk satisfies that, for all K ≥ 1,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤

C1︷ ︸︸ ︷
2(f(θ0)− f∗)
(2− Lnα)α

1
K︸ ︷︷ ︸

B(θ0,K)

+

C2︷ ︸︸ ︷
ασ2

(2− Lnα)α
1
b︸ ︷︷ ︸

V (σ2,b)

, (1)

where the parameters are defined in Table 1 (see also Theorem 3.1). The inequality (1) indicates that the
upper bound of the performance measure mink∈[0:K−1] E[∥∇f(θk)∥2] that consists of a bias term B(θ0, K)
and variance term V (σ2, b) becomes small when the number of steps K is large and the batch size b is large.
Therefore, it is desirable to set K large and b large so that Algorithm 1 will approximate a local minimizer
of f .

The essential lemma to proving (1) is the guarantee of the existence of a lower bound on the learning rates
satisfying the Armijo condition (Lemma 2.1). Although, in general, learning rates satisfying the Armijo
condition do not have any lower bound (Lemma 2.1(i)), the corresponding learning rates computed by a
backtracking line search (Algorithm 2) have a lower bound (Lemma 2.1(ii)). In addition, the descent lemma
(i.e., f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + Ln

2 ∥y − x∥2 (x, y ∈ Rd)) holds from the smoothness condition on f .
Thus, we can prove (1) by using the existence of a lower bound on the learning rates satisfying the Armijo
condition and the descent lemma (see Appendix A.2 for details of the proof of Theorem 3.1).

Table 1: Relationship between batch size b and number of steps K to achieve an ϵ–approximation defined
by mink∈[0:K−1] E[∥∇f(θk)∥2] ≤ C1

K + C2
b = ϵ2 for SGD with a constant learning rate α ∈ (0, 2

Ln
) and for

SGD with the Armijo-line-search learning rate αk ∈ [α, α] ([0 : K − 1] := {0, 1, . . . , K − 1}, f := 1
n

∑
i∈[n] fi

is bounded below by f∗, Li is the Lipschitz constant of ∇fi, Ln := 1
n

∑
i∈[n] Li, and σ2 is the upper bound

of the variance of the stochastic gradient)

Learning Rate Upper Bound C1
K + C2

b Steps K SFO N Critical Batch b⋆

Constant α ∈
(

0,
2

Ln

)
C1

2(f(θ0)− f∗)
(2− Lnα)α K = C1b

ϵ2b− C2
N = C1b2

ϵ2b− C2
b⋆ = 2C2

ϵ2

C2
Lnασ2

2− Lnα

Armijo (c, δ ∈ (0, 1))
C1

2(f(θ0)− f∗)
(2− Lnα)α K = C1b

ϵ2b− C2
N = C1b2

ϵ2b− C2
b⋆ = 2C2

ϵ2

C2
ασ2

(2− Lnα)α

To show the merit of SGD with the Armijo-line-search learning rate, we compare an implementation using
this rate with one using a constant learning rate (see, e.g., (Scaman & Malherbe, 2020, Section 4) for
convergence analyses of SGD with constant learning rates). In this case, we need to set a constant learning
rate α ∈ (0, 2

Ln
) depending on the Lipschitz constant Ln of ∇f (see also Table 1). However, computing Ln

is NP-hard (Virmaux & Scaman, 2018), so it would be unrealistic to set a constant learning rate depending
on Ln before implementing SGD. Meanwhile, we need to set c, δ ∈ (0, 1) in order to use SGD with the
Armijo-line-search learning rate. We would like to emphasize here that we can choose any c, δ ∈ (0, 1) to
implement SGD. That is, for any c, δ ∈ (0, 1), there exists a learning rate satisfying the Armijo condition
(see (11) for the definition of the Armijo condition) and it can be found by conducting a simple backtracking
line search (Algorithm 2) instead of performing a complicated computation such as of the Lipschitz constant
of ∇f (Lemma 2.1).

3

Under review as submission to TMLR

1.3.2 Steps needed for ϵ–approximation of SGD with Armijo line-search-learning rates

The previous results in (Shallue et al., 2019; Zhang et al., 2019; Iiduka, 2022; Sato & Iiduka, 2023) indicated
that, for optimizers, the number of steps K needed to train a deep neural network or generative adversarial
networks decreases as the batch size increases. The second contribution of this paper is to show that, for
SGD with the Armijo-line-search learning rate, the number of steps K needed for nonconvex optimization
decreases as the batch size increases. Let us consider the case in which the right-hand side of (1) is equal to
ϵ2, where ϵ > 0 is the precision. Then, K is a rational function defined for a batch size b by

K = K(b) = C1b

ϵ2b− C2
, (2)

where C1 and C2 are the positive constants defined in (1) (see also Table 1). We can easily show that K
defined above is a monotone decreasing and convex function with respect to b (Theorem 3.2). Accordingly,
the number of steps needed for nonconvex optimization decreases as the batch size increases.

1.3.3 Critical batch size minimizing SFO complexity of SGD with Armijo-line-search learning rates

Using K defined by (2) above, we can further define the SFO complexity N of SGD with Armijo-line-search
learning rates (see also Table 1):

N = Kb = K(b)b = C1b2

ϵ2b− C2
. (3)

We can easily show that N is convex with respect to b and that a global minimizer

b⋆ = 2C2

ϵ2 = 2ασ2

(2− Lnα)αϵ2 (4)

exists for it (Theorem 3.3). Accordingly, there is a critical batch size b⋆ at which N is minimized.

Here, we compare the number of steps KC and the SFO complexity NC for SGD using a constant learning
rate α with KA and NA for SGD using the Armijo-line-search learning rate αk (∈ [α, α]). Let C1,C (resp.
C2,C) be C1 (resp. C2) in Table 1 for SGD using a constant learning rate and let C1,A (resp. C2,A) be C1
(resp. C2) in Table 1 for SGD using the Armijo-line-search learning rate. We have that

C1,A < C1,C iff α >
2− Lnα

2− Lnα
α,

C2,A < C2,C iff α

α
<

σ2
C(2− Lnα)

σ2
A(2− Lnα)

Lnα,

(5)

where σ2
C (resp. σ2

A) denotes the upper bound of the variance of the stochastic gradient for SGD using
a constant learning rate α (resp. the Armijo-line-search learning rate). If (5) holds, then SGD using the
Armijo-line-search learning rate converges faster than SGD using a constant learning rate in the sense that

C1,Ab

ϵ2b− C2,A
= KA < KC = C1,Cb

ϵ2b− C2,C
and C1,Ab2

ϵ2b− C2,A
= NA < NC = C1,Cb2

ϵ2b− C2,C
.

It would be difficult to check exactly that (5) holds before implementing SGD, since (5) involves unknown
parameters, such as Ln = 1

n

∑
i∈[n] Li, σ2

C, and σ2
A. However, it can be expected that (5) holds, since it

is known empirically (Vaswani et al., 2019, Figure 5) that the relationship between the Armijo-line-search
learning rate αk and a constant learning rate α is α < αk ∈ [α, α] (Section 3.3 provides the derivation of
condition (5)).

1.3.4 Numerical results supporting our theoretical results

The numerical results in (Vaswani et al., 2019) showed that SGD with the Armijo-line-search learning rate
performs better than other optimizers in training deep neural networks. Hence, we sought to verify whether

4

Under review as submission to TMLR

the numerical results match our theoretical results (Sections 1.3.1, 1.3.2, and 1.3.3). We trained residual
networks (ResNets) on the CIFAR-10 and CIFAR-100 datasets and a two-hidden-layer multi-layer perceptron
(MLP) on the MNIST dataset. We numerically found that increasing the batch size b decreases the number
of steps K needed to achieve high training accuracies and that there are critical batch sizes minimizing the
SFO complexities. We also estimated batch sizes using (4) for the critical batch size b⋆ and compared them
with ones determined from the numerical results. We found that the estimated batch sizes are close to the
ones determined from the numerical results. To verify whether SGD using the Armijo-line-search learning
rate performs better than SGD using a constant learning rate (see the discussion in condition (5)), we
numerically compared SGD using the Armijo-line-search learning rate with not only SGD using a constant
learning rate but also variants of SGD, such as the momentum method, Adam, AdamW, and RMSProp. We
found that SGD using the Armijo-line-search learning rate and the critical batch size performs better than
other optimizers in the sense of minimizing the number of steps and the SFO complexities needed to achieve
high training accuracies (Section 4).

2 Mathematical Preliminaries

2.1 Definitions

Let N be the set of nonnegative integers, [n] := {1, 2, . . . , n} for n ≥ 1, and [0 : n] := {0, 1, . . . , n} for n ≥ 0.
Let Rd be a d–dimensional Euclidean space with inner product ⟨·, ·⟩ inducing the norm ∥ · ∥.

Let f : Rd → R be continuously differentiable. We denote the gradient of f by ∇f : Rd → Rd. Let L > 0.
f : Rd → R is said to be L–smooth if ∇f : Rd → Rd is L–Lipschitz continuous, i.e., for all x, y ∈ Rd,
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. When f : Rd → R is L–smooth, the following inequality, called the descent
lemma (Beck, 2017, Lemma 5.7), holds: for all x, y ∈ Rd, f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2. Let
f∗ ∈ R. f : Rd → R is said to be bounded below by f∗ if, for all x ∈ Rd, f(x) ≥ f∗.

2.2 Assumptions and problem

Given a parameter θ ∈ Rd and a data point z in a data domain Z, a machine learning model provides a
prediction whose quality can be measured by a differentiable nonconvex loss function f(θ; z). We aim to
minimize the empirical average loss defined for all θ ∈ Rd by

f(θ) = 1
n

∑
i∈[n]

f(θ; zi) = 1
n

∑
i∈[n]

fi(θ),

where S = (z1, z2, . . . , zn) denotes the training set and fi(·) := f(·; zi) denotes the loss function corresponding
to the i-th training data zi.

This paper considers the following smooth nonconvex optimization problem.
Problem 2.1 Suppose that fi : Rd → R (i ∈ [n]) is Li–smooth and bounded below by fi,∗. Then,

minimize f(θ) := 1
n

∑
i∈[n]

fi(θ) subject to θ ∈ Rd.

We assume that a stochastic first-order oracle (SFO) exists such that, for a given θ ∈ Rd, it returns a
stochastic gradient Gξ(θ) of the function f , where a random variable ξ is supported on a finite/an infinite
set Ξ (i.e., supp(ξ) = {x ∈ Ξ: ξ(x) ̸= 0}) independently of θ. We make the following standard assumptions.
Assumption 2.1

(A1) Let (θk)k∈N ⊂ Rd be the sequence generated by SGD. For each iteration k,

Eξk
[Gξk

(θk)] = ∇f(θk), (6)

5

Under review as submission to TMLR

where ξ0, ξ1, . . . are independent samples and the random variable ξk is independent of (θl)k
l=0. There

exists a nonnegative constant σ2 such that

Eξk

[
∥Gξk

(θk)−∇f(θk)∥2]
≤ σ2. (7)

(A2) For each iteration k, SGD samples a batch Bk of size b independently of k and estimates the full
gradient ∇f as

∇fBk
(θk) := 1

b

∑
i∈[b]

Gξk,i
(θk) = 1

b

∑
i∈[b]

∇fξk,i
(θk),

where ξk,i is a random variable generated by the i-th sampling in the k-th iteration.

2.3 Stochastic gradient descent using Armijo line search

2.3.1 Armijo condition

Suppose that f : Rd → R is continuously differentiable. We would like to find a stationary point θ⋆ ∈ Rd

such that ∇f(θ⋆) = 0 by using an iterative method defined by

θk+1 := θk + αkdk, (8)

where αk > 0 is the step size (called a learning rate in the machine learning field) and dk ∈ Rd is the search
direction. Various methods can be used depending on the search direction dk. For example, the method
(8) with dk := −∇f(θk) is gradient descent, while the method (8) with dk := −∇f(θk) + βk−1dk−1, where
βk ≥ 0, is the conjugate gradient method. If we define dk (e.g., dk := −∇f(θk)), it is desirable to set α⋆

k

satisfying

f(θk + α⋆
kdk) = min

α>0
f(θk + αdk). (9)

The step size α⋆
k defined by (9) can be easily computed when f is quadratic and convex. However, for a

general nonconvex function f , it is difficult to compute the step size α⋆
k in (9) exactly. Here, we can use the

Armijo condition for finding an appropriate step size αk: Let c ∈ (0, 1). We would like to find αk > 0 such
that

f(θk + αkdk) ≤ f(θk) + cαk⟨∇f(θk), dk⟩. (10)

When dk satisfies the descent property defined by ⟨∇f(θk), dk⟩ < 0 (e.g., gradient descent using dk :=
−∇f(θk) has the property such that ⟨∇f(θk), dk⟩ = −∥∇f(θk)∥2 < 0), the Armijo condition ensures that
f(θk+1) = f(θk + αkdk) < f(θk). Accordingly, αk satisfying the Armijo condition (10) is appropriate in the
sense of minimizing f .

The existence of step sizes satisfying the Armijo condition (10) is guaranteed.
Proposition 2.1 (Nocedal & Wright, 2006, Lemma 3.1) Let f : Rd → R be continuously differentiable. Let
θk ∈ Rd and let dk (̸= 0) have the descent property defined by ⟨∇f(θk), dk⟩ < 0. Let c ∈ (0, 1). Then, there
exists γk > 0 such that, for all αk ∈ (0, γk], the Armijo condition (10) holds.

2.3.2 Stochastic gradient descent under Armijo condition

The objective of this paper is to solve Problem 2.1 using mini-batch SGD under Assumption 2.1 defined by

θk+1 = θk + αkdk = θk − αk∇fBk
(θk) = θk −

αk

b

∑
i∈[b]

Gξk,i
(θk),

where b > 0 is the batch size and αk > 0 is the learning rate. For each iteration k, we can use θk, fBk
, and

∇fBk
. Hence, the Armijo condition (Vaswani et al., 2019, (1)) at the k-th iteration for SGD can be obtained

by replacing f in (10) with fBk
and using dk = −∇fBk

(θk):

fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2. (11)

6

Under review as submission to TMLR

The Armijo condition (11) ensures that fBk
(θk+1) = fBk

(θk − αk∇fBk
(θk)) < fBk

(θk); i.e., the Armijo
condition (11) is appropriate in the sense of minimizing the estimated objective function fBk

from the full
objective function f . In fact, the numerical results in (Vaswani et al., 2019, Section 7) indicate that SGD
using the Armijo condition (11) is superior to using other deep-learning optimizers to train deep neural
networks.

Algorithm 1 is the SGD algorithm using the Armijo condition (11).

Algorithm 1 Stochastic gradient descent using Armijo line search
Require: c ∈ (0, 1) (hyperparameter), b > 0 (batch size), θ0 ∈ Rd (initial point), K ≥ 1 (steps)
Ensure: θK ∈ Rd

k ← 0
for k = 0, 1, . . . , K − 1 do

Compute αk > 0 satisfying fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2 ◁ Algorithm 2
Compute θk+1 = θk − αk∇fBk

(θk)
end for

The search direction of Algorithm 1 is dk = −∇fBk
(θk) (̸= 0) which has the descent property defined by

⟨∇fBk
(θk), dk⟩ = −∥∇fBk

(θk)∥2 < 0. Hence, from Proposition 2.1, there exists a learning rate αk ∈ (0, γk]
satisfying the Armijo condition (11). Moreover, the proposition guarantees that the learning rate can be
chosen to be sufficiently small, e.g., lim infk→+∞ αk = 0.

The convergence analyses of Algorithm 1 use a lower bound of αk ∈ (0, γk] satisfying the Armijo condition
(11). To guarantee the existence of such a lower bound, we use the backtracking method ((Nocedal & Wright,
2006, Algorithm 3.1) and (Vaswani et al., 2019, Algorithm 2)) described in Algorithm 2.

Algorithm 2 Backtracking Armijo-line-search method (Nocedal & Wright, 2006, Algorithm 3.1)
Require: c, δ, 1

γ ∈ (0, 1) (hyperparameters), α = γ
b
n αk−1 (initialization), θk ∈ Rd, fBk

: Rd → R
Ensure: αk satisfying fBk

(θk − αk∇fBk
(θk)) ≤ fBk

(θk)− cαk∥∇fBk
(θk)∥2

repeat
α← δα

until fBk
(θk − α∇fBk

(θk)) ≤ fBk
(θk)− cα∥∇fBk

(θk)∥2

The following lemma guarantees the existence of a lower bound on the learning rates computed by Algorithm
2. The proof is given in Appendix A.1.
Lemma 2.1 Consider Algorithm 1 under Assumption 2.1 for solving Problem 2.1. Let αk be a learning
rate satisfying the Armijo condition (11) (whose existence is guaranteed by Proposition 2.1), let LBk

be the
Lipschitz constant of ∇fBk

, and let L be the maximum value of the Lipschitz constant Li of ∇fi. Then, the
following hold.

(i) [Counter-example of (Vaswani et al., 2019, Lemma 1)] There exists Problem 2.1 such that αk does
not satisfy min{ 2(1−c)

LBk
, α} ≤ αk, where α is an upper bound of αk.

(ii) [Lower bound on learning rate determined by backtracking line search method] If αk can be computed
by Algorithm 2, then there exists a lower bound of αk such that 0 < α := 2δ(1−c)

L ≤ 2δ(1−c)
LBk

≤ αk.

3 Analysis of SGD using Armijo Line Search

3.1 Convergence analysis of Algorithm 1

Here, we present a convergence analysis of Algorithm 1. The proof of Theorem 3.1 is given in Appendix A.2.
Theorem 3.1 (Upper bound of the squared norm of the full gradient) Consider the sequence
(θk)k∈N generated by Algorithm 1 under Assumption 2.1 for solving Problem 2.1 and suppose that the

7

Under review as submission to TMLR

learning rate αk ∈ [α, α] is computed by Algorithm 2. Then, for all K ≥ 1,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤

C1︷ ︸︸ ︷
2(f(θ0)− f∗)
(2− Lnα)α

1
K︸ ︷︷ ︸

B(θ0,K)

+

C2︷ ︸︸ ︷
ασ2

(2− Lnα)α
1
b︸ ︷︷ ︸

V (σ2,b)

,

where δ, c ∈ (0, 1), L := maxi∈[n] Li, Ln := 1
n

∑
i∈[n] Li (≤ L), f∗ := 1

n

∑
i∈[n] fi,∗, α := 2δ(1−c)

L , and α < 1
Ln

.

Theorem 3.1 indicates that the upper bound of the minimum value of E[∥∇f(θk)∥2] consists of a bias term
B(θ0, K) and variance term V (σ2, b). When the number of steps K is large and the batch size b is large,
B(θ0, K) and V (σ2, b) become small. Therefore, we need to set K large and b large so that Algorithm 1 will
approximate a local minimizer of f .

For the sake of convenience, we list below all assumptions considered in Theorem 3.1:

(1) [Smoothness of loss functions] fi : Rd → R (i ∈ [n]) is Li–smooth and bounded below by fi,∗ (see
Problem 2.1). This implies that f := 1

n

∑
i∈[n] fi is Ln–smooth.

(2) [Conditions of stochastic gradient] Let θk be the k-th iteration generated by SGD and let Gξk
(θk)

be the stochastic gradient of f .

(a) [Unbiased estimator] Eξk
[Gξk

(θk)] = ∇f(θk) (see (6) in Assumption 2.1(A1)).
(b) [Bounded variance] Eξk

[
∥Gξk

(θk)−∇f(θk)∥2]
≤ σ2 (see (7) in Assumption 2.1(A1)).

(c) [Mini-batch stochastic gradient] ∇fBk
(θk) := 1

b

∑
i∈[b] Gξk,i

(θk) = 1
b

∑
i∈[b]∇fξk,i

(θk) (see As-
sumption 2.1(A2)).

(3) [Armijo-line-search learning rate] Let αk be a learning rate satisfying the Armijo condition (11)
(whose existence is guaranteed by Proposition 2.1).

(a) [Computability] We assume that αk can be computed by using the backtracking Armijo-line-
search method (Algorithm 2). Lemma 2.1(ii) thus guarantees the existence of a lower bound
α := 2δ(1−c)

L of αk. The existence of a upper bound α of αk is guaranteed by Proposition 2.1.
(b) [Condition of upper bound] We assume that α < 1

Ln
to ensure that C1 and C2 are positive (see

Theorem 3.1 for the definitions of C1 and C2).

Here, we compare Theorem 3.1 with the convergence analysis of SGD using a constant learning rate. SGD
using a constant learning rate α ∈ (0, 2

Ln
) satisfies

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
(2− Lnα)α

1
K

+ Lnασ2

2− Lnα

1
b

(12)

(The proof of (12) is given in Appendix A.5). We need to set a constant learning rate α ∈ (0, 2
Ln

) depending
on the Lipschitz constant Ln of ∇f . However, since computing Ln is NP-hard (Virmaux & Scaman, 2018),
it is difficult to set α ∈ (0, 2

Ln
). Meanwhile, it is sufficient to set c, δ ∈ (0, 1) in Algorithms 1 and 2 without

computing the Lipschitz constant of ∇f .

We also compare Theorem 3.1 with Theorem 3 in (Vaswani et al., 2019). Theorem 3 in (Vaswani et al.,
2019) indicates that, under a strong growth condition with a constant ρ (i.e., Ei[∥∇fi(θ)∥2] ≤ ρ∥∇f(θ)∥2

(θ ∈ Rd)) and the Armijo condition, SGD satisfies that

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ f(θ0)− f(θ⋆)
∆K

,

where c > 1 − L
ρLn

, α < 2
ρLn

, ∆ := (α + 2(1−c)
L) − ρ(α − 2(1−c)

L + Lnα2), and θ⋆ is a local minimizer of
f . Theorem 3.1 is a convergence analysis of Algorithm 1 without assuming the strong growth condition or
limiting the hyperparameter c. Moreover, Theorem 3.1 shows that using large batch size is appropriate for
SGD using the Armijo line search (Algorithm 1).

8

Under review as submission to TMLR

3.2 Steps needed for ϵ–approximation

To investigate the relationship between the number of steps K needed for nonconvex optimization and the
batch size b, we consider an ϵ–approximation of Algorithm 1 defined as follows:

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ ϵ2, (13)

where ϵ > 0 is the precision.

Theorem 3.1 leads to the following theorem indicating the relationship between b and the values of K that
achieves an ϵ–approximation. The proof of Theorem 3.2 is given in Appendix A.3.
Theorem 3.2 (Steps needed for nonconvex optimization of SGD using Armijo line search)
Suppose that the assumptions in Theorem 3.1 hold. Define K : R→ R for all b > C2

ϵ2 by

K(b) = C1b

ϵ2b− C2
, (14)

where the positive constants C1 and C2 are defined as in Theorem 3.1. Then, the following hold:

(i) [Steps needed for nonconvex optimization] K defined by (14) achieves an ϵ–approximation (13).

(ii) [Properties of the steps] K defined by (14) is monotone decreasing and convex for b > C2
ϵ2 .

Theorem 3.2 ensures that the number of steps K needed for SGD using the Armijo line search to be an
ϵ–approximation is small when the batch size b is large. Therefore, it is useful to set a sufficiently large
batch size in the sense of minimizing the steps needed for an ϵ–approximation of SGD using the Armijo line
search.

We also consider setting small batch sizes, e.g., b = 1. From the condition of the domain of K, we need to
satisfy

b = 1 >
C2

ϵ2 iff α

α
<

(2− Lnα)ϵ2

σ2 (15)

to ensure the results in Theorem 3.2. If the upper bound α satisfies the more restricted condition (15) than
α < 1

Ln
, then SGD using the Armijo line search with b = 1 and K(1) = C1

ϵ2−C2
is an ϵ–approximation (13).

3.3 Critical batch size minimizing SFO complexity

The following theorem shows the existence of a critical batch size for SGD using the Armijo line search. The
proof of Theorem 3.3 is given in Appendix A.4.
Theorem 3.3 (Existence of critical batch size for SGD using Armijo line search) Suppose that
the assumptions in Theorem 3.1 hold. Define SFO complexity N : R→ R for the number of steps K, defined
by (14), needed for an ϵ–approximation (13) and for a batch size b > C2

ϵ2 by

N(b) = K(b)b = C1b2

ϵ2b− C2
, (16)

where the positive constants C1 and C2 are defined as in Theorem 3.1. Then, the following hold:

(i) [SFO complexity] N defined by (16) is convex for b > C2
ϵ2 .

(ii) [Critical batch size] There exists a critical batch size

b⋆ = 2C2

ϵ2 = 2ασ2

(2− Lnα)αϵ2 (17)

such that b⋆ minimizes the SFO complexity (16).

9

Under review as submission to TMLR

(iii) [Upper bound on critical batch size] The critical batch size b⋆ defined by (17) satisfies

b⋆ ≤ ασ2

{α− δ(1− c)α}ϵ2 . (18)

Here, we compare the number of steps KC and the SFO complexity NC for SGD using a constant learning
rate α with KA and NA for SGD using the Armijo-line-search learning rate αk (∈ [α, α]). Let C1,C (resp.
C2,C) be C1 (resp. C2) in Table 1 (see also (12)) for SGD using a constant learning rate and let C1,A (resp.
C2,A) be C1 (resp. C2) in Table 1 (see also Theorem 3.1) for SGD using the Armijo-line-search learning rate.
We have that

2(f(θ0)− f∗)
(2− Lnα)α

= C1,A < C1,C = 2(f(θ0)− f∗)
(2− Lnα)α

iff α >
2− Lnα

2− Lnα
α. (19)

Moreover,

ασ2
A

(2− Lnα)α
= C2,A < C2,C = Lnασ2

C
2− Lnα

iff α

α
<

σ2
C(2− Lnα)

σ2
A(2− Lnα)

Lnα, (20)

where σ2
C (resp. σ2

A) denotes the upper bound of the variance of the stochastic gradient for SGD using a
constant learning rate α (resp. the Armijo-line-search learning rate). If (19) and (20) hold, then SGD using
the Armijo-line-search learning rate converges faster than SGD using a constant learning rate in the sense
that

C1,Ab

ϵ2b− C2,A
= KA < KC = C1,Cb

ϵ2b− C2,C
and C1,Ab2

ϵ2b− C2,A
= NA < NC = C1,Cb2

ϵ2b− C2,C
.

It can be expected that (19) and (20) hold, since it is known empirically (Vaswani et al., 2019, Figure 5) that
the relationship between the Armijo-line-search learning rate αk and constant learning rate α is α < αk.
The next section numerically compares SGD using the Armijo-line-search learning rate with not only SGD
using a constant learning rate but also variants of SGD and examines the performance of SGD using the
Armijo-line-search learning rate.

The previous results in (Shallue et al., 2019; Zhang et al., 2019; Iiduka, 2022) show that, for deep-learning
optimizers, there are critical batch sizes at which the SFO complexities are minimized. We are interested in
verifying whether a critical batch size exists for SGD using the Armijo line search. Theorem 3.3(iii) indicates
that an upper bound on the critical batch size can be obtained from some hyperparameters. Accordingly,
we would like to estimate the critical batch size using the upper bound (18). Therefore, the next section
numerically examines the relationship between the batch size b and the number of steps K needed for
nonconvex optimization and the relationship between b and the SFO complexity N to check if there is a
critical batch size b⋆ minimizing N and if the critical batch size b⋆ can be estimated from our theoretical
results.

4 Numerical Results

We verified whether numerical results match our theoretical results (Theorems 3.2 and 3.3), that is, the
relationship between K and b and the relationship between N and b for Algorithm 1. We also compared
the performance of Algorithm 1 with the performances of other optimizers, such as SGD with a constant
learning rate (SGD), momentum method (Momentum), Adam, AdamW, and RMSProp. The learning rate
and hyperparameters of the five optimizers used in each experiment were determined on the basis of a grid
search.

The metrics were the number of steps K and the SFO complexity N = Kb indicating that the training
accuracy is higher than a certain score. We used Algorithm 1 with the Armijo-line-search learning rate
computed by Algorithm 2 with γ = 2, δ = 0.5, α = 10 (see https://github.com/IssamLaradji/sls for
the setting of parameters), and various values of c. The stopping condition was 200 epochs. The experimental
environment consisted of eight NVIDIA DGX A100 GPUs and two Dual AMD Rome7742 2.25-GHz, 128-
Core CPUs. The software environment was Python 3.8.2, PyTorch 1.6.0, and CUDA 11.6. The code is
available at https://anonymous.4open.science/r/armijo_linesearch-C1C3.

10

https://github.com/IssamLaradji/sls
https://anonymous.4open.science/r/armijo_linesearch-C1C3

Under review as submission to TMLR

4.1 Training ResNet and MLP on the CIFAR-10, CIFAR-100, and MNIST datasets

We trained ResNet-34 on the CIFAR-10 dataset (n = 50000). Figure 1 plots the number of steps needed for
the training accuracy to be more than 0.99 for Algorithm 1 versus batch size. It can be seen that Algorithm
1 decreases the number of steps as the batch size increases. Figure 2 plots the SFO complexities of Algorithm
1 versus the batch size. It indicates that there are critical batch sizes that minimize the SFO complexities.

25 26 27 28 29 210

Batch Size

0

2000

4000

6000

8000

10000

12000

14000

St
ep

s

c=0.05
c=0.10
c=0.15
c=0.20
c=0.25
c=0.30

Figure 1: Number of steps for Algorithm 1 versus
batch size needed to train ResNet-34 on CIFAR-
10

25 26 27 28 29 210

Batch Size

0.4

0.6

0.8

1.0

1.2

1.4

1.6

SF
O

1e6

c=0.05
c=0.10
c=0.15
c=0.20
c=0.25
c=0.30

Figure 2: SFO complexity for Algorithm 1 versus
batch size needed to train ResNet-34 on CIFAR-
10 (The double-circle symbol denotes the mea-
sured critical batch size)

25 26 27 28 29 210

Batch Size

0

2000

4000

6000

8000

10000

12000

14000

St
ep

s

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 3: Number of steps for Algorithm 1 with
c = 0.20 and variants of SGD versus batch size
needed to train ResNet-34 on CIFAR-10

25 26 27 28 29 210

Batch Size

300000

400000

500000

600000

700000

800000

900000

SF
O

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 4: SFO complexity for Algorithm 1 with
c = 0.20 and variants of SGD versus batch size
needed to train ResNet-34 on CIFAR-10

Figures 3 and 4 compare the performance of Algorithm 1 with c = 0.20 with those of variants of SGD. The
figures indicate that, when the batch sizes are from 25 to 29, SGD+Armijo (Algorithm 1) performs better
than the other optimizers. In particular, the SFO complexity of SGD+Armijo (Algorithm 1) using c = 0.20
and the critical batch size (b⋆ = 25) is the smallest of other optimizers for any batch size.

We also considered the case of training ResNet-34 on the CIFAR-100 dataset (n = 50000). Figure 5 plots
the number of steps needed for the training accuracy to be more than 0.99 for Algorithm 1 versus the batch
size, and Figure 6 plots the SFO complexities of Algorithm 1 versus the batch size. As in Figures 1 and 2,
these figures show that Algorithm 1 decreases the number of steps as the batch size increases and there are
critical batch sizes that minimize the SFO complexities.

Figures 7 and 8 compare the performance of Algorithm 1 with c = 0.25 with those of variants of SGD.
The figures indicate that, when the batch sizes are from 25 to 29, SGD+Armijo (Algorithm 1) performs
well. In particular, the SFO complexities of SGD and SGD+Armijo (Algorithm 1) using c = 0.25 and the
critical batch size (b⋆ = 26) are smaller than the SFO complexities of the other optimizers for any batch
size. However, Figure 8 indicates that the SFO complexity of SGD+Armijo (Algorithm 1) increases once
the batch size exceeds the critical value, as promised in Theorem 3.3.

We trained a two-hidden-layer MLP with widths of 512 and 256 on the MNIST dataset (n = 60000). Figure
9 plots the number of steps needed for the training accuracy to be more than 0.97 for Algorithm 1 versus

11

Under review as submission to TMLR

25 26 27 28 29 210

Batch Size

0

5000

10000

15000

20000

25000

30000

35000

St
ep

s

c=0.05
c=0.10
c=0.15
c=0.20
c=0.25
c=0.30

Figure 5: Number of steps for Algorithm 1 versus
batch size needed to train ResNet-34 on CIFAR-
100

25 26 27 28 29 210

Batch Size

0.5

1.0

1.5

2.0

2.5

3.0

SF
O

1e6
c=0.05
c=0.10
c=0.15
c=0.20
c=0.25
c=0.30

Figure 6: SFO complexity for Algorithm 1 versus
batch size needed to train ResNet-34 on CIFAR-
100 (The double-circle symbol denotes the mea-
sured critical batch size)

25 26 27 28 29 210

Batch Size

0

5000

10000

15000

20000

25000

30000

St
ep

s

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 7: Number of steps for Algorithm 1 with
c = 0.25 and variants of SGD versus batch size
needed to train ResNet-34 on CIFAR-100

25 26 27 28 29 210

Batch Size

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

SF
O

1e6

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 8: SFO complexity for Algorithm 1 with
c = 0.25 and variants of SGD versus batch size
needed to train ResNet-34 on CIFAR-100

12

Under review as submission to TMLR

the batch size, and Figure 10 plots the SFO complexities of Algorithm 1 versus the batch size. As in Figures
1, 2, 5, and 6, these figures show that Algorithm 1 decreases the number of steps as the batch size increases
and there are critical batch sizes that minimize the SFO complexities.

25 26 27 28 29 210 211 212 213

Batch Size

1000

1500

2000

2500

St
ep

s

c=0.05
c=0.10
c=0.15
c=0.20
c=0.25
c=0.30

Figure 9: Number of steps for Algorithm 1 versus
batch size needed to train MLP on MNIST

25 26 27 28 29 210 211 212 213

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

SF
O

1e7

c=0.05
c=0.10
c=0.15
c=0.20
c=0.25
c=0.30

Figure 10: SFO complexity for Algorithm 1 ver-
sus batch size needed to train MLP on MNIST
(The double-circle symbol denotes the measured
critical batch size)

25 26 27 28 29 210 211 212 213

Batch Size

0

1000

2000

3000

4000

5000

6000

St
ep

s

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 11: Number of steps for Algorithm 1 with
c = 0.05 and variants of SGD versus batch size
needed to train MLP on MNIST

25 26 27 28 29 210 211 212 213

Batch Size

0

2

4

6

8

SF
O

1e6

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 12: SFO complexity for Algorithm 1 with
c = 0.05 and variants of SGD versus batch size
needed to train MLP on MNIST

26 27 28 29 210 211 212

Batch Size

0

5000

10000

15000

20000

25000

30000

St
ep

s

c=3e-5
c=1e-4
c=3e-4
c=1e-3
c=3e-3

Figure 13: Number of steps for Algorithm 1 ver-
sus batch size needed to train Wide ResNet-50-2
on CIFAR-10

26 27 28 29 210 211 212

Batch Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SF
O

1e6
c=3e-5
c=1e-4
c=3e-4
c=1e-3
c=3e-3

Figure 14: SFO complexity for Algorithm 1 ver-
sus batch size needed to train Wide ResNet-50-2
on CIFAR-10 (The double-circle symbol denotes
the measured critical batch size)

Figures 11 and 12 compare the performance of Algorithm 1 with c = 0.05 with those of variants of SGD.
The figures indicate that SGD+Armijo (Algorithm 1) using c = 0.05 and the critical batch size (b⋆ = 25)
performs better than the other optimizers in the sense of minimizing the SFO complexity. However, as was
seen in Figure 8, Figure 12 indicates that the SFO complexity of SGD+Armijo (Algorithm 1) increases once
the batch size exceeds the critical value.

13

Under review as submission to TMLR

We trained Wide ResNet-50-2 (Zagoruyko & Komodakis, 2017) on the CIFAR-10 dataset (n = 50000).
Figure 13 plots the number of steps needed for the training accuracy to be more than 0.99 for Algorithm
1 versus the batch size. It can be seen that Algorithm 1 decreases the number of steps as the batch size
increases. Figure 14 plots the SFO complexities of Algorithm 1 versus the batch size. It indicates that there
are critical batch sizes that minimize the SFO complexities.

Figures 15 and 16 compare the performance of Algorithm 1 with c = 3×10−4 with those of variants of SGD.
The figures indicate that SGD+Armijo (Algorithm 1) using c = 3×10−4 and the critical batch size (b⋆ = 26)
performs better than the other optimizers in the sense of minimizing the SFO complexity. However, as seen
in Figures 8 and 12, Figure 16 indicates that the SFO complexity of SGD+Armijo (Algorithm 1) increases
once the batch size exceeds the critical value.

26 27 28 29 210 211 212

Batch Size

0

5000

10000

15000

20000

St
ep

s

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 15: Number of steps for Algorithm 1
with c = 3 × 10−4 and variants of SGD versus
batch size needed to train Wide ResNet-50-2 on
CIFAR-10

26 27 28 29 210 211 212

Batch Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SF
O

1e6
SGD+Armijo
SGD
Momentum
AdamW
Adam
RMSProp

Figure 16: SFO complexity for Algorithm 1
with c = 3 × 10−4 and variants of SGD versus
batch size needed to train Wide ResNet-50-2 on
CIFAR-10

Therefore, we can conclude that Algorithm 1 using the critical batch size b⋆ (∈ {25, 26}) performs better
than other optimizers using any batch size in the sense of minimizing the SFO complexities needed to achieve
high training accuracies.

4.2 Estimation of critical batch size

We estimated the critical batch size by using Theorem 3.3(iii) and the ideas presented in (Iiduka, 2022) and
(Sato & Iiduka, 2023). We used Algorithm 1 with c = 0.05 for training ResNet-34 on the CIFAR-100 dataset
(Figures 5 and 6). Theorem 3.3(iii) indicates that the upper bound of the critical batch size involves the
unknown value σ2. We checked that the Armijo-line-search learning rates for Algorithm 1 with c = 0.05 are
about 10 (see also (Vaswani et al., 2019, Figure 5 (Left))). Hence, we used α ≈ α ≈ 10. We estimated the
unknown value X = σ2

ϵ2 in the upper bound (18) of the critical batch size by using δ = 0.5, b⋆ = 25 (see
Figure 6), and α ≈ α ≈ 10 as follows:

b⋆ ≈ ασ2

{α− δ(1− c)α}ϵ2 ≈ X, i.e., X ≈ 32.

Let us estimate the critical batch size using X ≈ 32 and Theorem 3.3(iii). For example, when using Algorithm
1 with c = 0.25 for training ResNet-34 on the CIFAR-100 dataset, the upper bound of the critical batch size
is

α

α− δ(1− c)α
X ≈ 51.2 ≈ 26 = b⋆,

which implies that the estimated critical batch size 51.2 is close to the measured critical batch size b⋆ = 26 =
64 in Figure 6.

14

Under review as submission to TMLR

5 Conclusion

This paper presented a convergence analysis of SGD using the Armijo line search for nonconvex optimization.
The analysis indicates that the upper bound of the expectation of the squared norm of the full gradient
becomes smaller as the number of steps and the batch size grow. Moreover, we investigated the relationship
between the number of steps and the batch size needed for nonconvex optimization of SGD using the Armijo
line search. We showed that the number of steps needed for nonconvex optimization is monotone decreasing
and convex with respect to the batch size; i.e., the steps decrease in number as the batch size increases. We
also showed that the SFO complexity needed for nonconvex optimization is convex with respect to the batch
size and that there exists a critical batch size at which the SFO complexity is minimized. In addition, we gave
an upper bound on the critical batch size and showed that it can be estimated by using some parameters.
Finally, we provided numerical results that support our theoretical findings. We trained ResNets on the
CIFAR-10 and CIFAR-100 datasets and MLP on the MNIST dataset and found that SGD using the Armijo
line search decreases the number of steps as the batch size increases and that SGD using the Armijo line
search and the critical batch size performs better than other optimizers for any batch size in the sense of
minimizing the SFO complexities needed to achieve high training accuracies. Moreover, we showed that the
batch sizes estimated from the upper bound of the critical batch size are close to those of the numerical
results.

References
Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 2017.

Hao Chen, Lili Zheng, Raed AL Kontar, and Garvesh Raskutti. Stochastic gradient descent in correlated set-
tings: A study on Gaussian processes. In Advances in Neural Information Processing Systems, volume 33,
2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic gradient
descent method for non-convex objective functions. Journal of Machine Learning Research, 21:1–48, 2020.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochas-
tic composite optimization I: A generic algorithmic framework. SIAM Journal on Optimization, 22:1469–
1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochas-
tic composite optimization II: Shrinking procedures and optimal algorithms. SIAM Journal on Optimiza-
tion, 23:2061–2089, 2013.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Hideaki Iiduka. Critical bach size minimizes stochastic first-order oracle complexity of deep learning optimizer
using hyperparameters close to one. arXiv: 2208.09814, 2022.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing
stochastic gradient descent for least squares regression: Mini-batching, averaging, and model misspecifi-
cation. Journal of Machine Learning Research, 18(223):1–42, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of The
International Conference on Learning Representations, 2015.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for
SGD: An adaptive learning rate for fast convergence. In Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics, volume 130, 2021.

15

Under review as submission to TMLR

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of The International
Conference on Learning Representations, 2019.

Hiroki Naganuma and Hideaki Iiduka. Conjugate gradient method for generative adversarial networks. In
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of
Proceedings of Machine Learning Research, pp. 4381–4408. PMLR, 2023.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Doklady AN USSR, 269:543–547, 1983.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research and Financial
Engineering. Springer, New York, 2nd edition, 2006.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4:1–17, 1964.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In Proceedings
of The International Conference on Learning Representations, 2018.

Herbert Robbins and Herbert Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22:400–407, 1951.

Naoki Sato and Hideaki Iiduka. Existence and estimation of critical batch size for training generative
adversarial networks with two time-scale update rule. In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 30080–30104. PMLR,
23–29 Jul 2023.

Kevin Scaman and Cédric Malherbe. Robustness analysis of non-convex stochastic gradient descent using
biased expectations. In Advances in Neural Information Processing Systems, volume 33, 2020.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data parallelism on neural network training. Journal of Machine Learning
Research, 20:1–49, 2019.

Tijmen Tieleman and Geoffrey Hinton. RMSProp: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4:26–31, 2012.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-Julien.
Painless stochastic gradient: Interpolation, line-search, and convergence rates. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. In Advances in Neural Information Processing Systems, volume 31, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv: 1605.07146, 2017.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl, Christopher J.
Shallue, and Roger Grosse. Which algorithmic choices matter at which batch sizes? Insights from a noisy
quadratic model. In Advances in Neural Information Processing Systems, volume 32, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

16

Under review as submission to TMLR

A Appendix

A.1 Proof of lemma 2.1

(i) Let k ∈ N and let LBk
be the Lipschitz constant of ∇fBk

. Lemma 1 in (Vaswani et al., 2019) is as follows:

∀fBk
: Rd → R ∀c ∈ (0, 1) ∀θk ∈ Rd ∀α > 0

∃αk ∈ (0, α] (fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2)

⇒ min
{

2(1− c)
LBk

, α

}
≤ αk.

(21)

The negative proposition of (21) is as follows:

∃fBk
: Rd → R ∃c ∈ (0, 1) ∃θk ∈ Rd ∃α > 0

∃αk ∈ (0, α] (fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2)

∧min
{

2(1− c)
LBk

, α

}
> αk.

(22)

We will prove that (22) holds. Let n = b = 1, d = 1, c = 0.1, α = 1, and f(θ) = fBk
(θ) = θ2. From

∇f(θ) = 2θ, we have that LBk
= 2. Since θ∗ = 0 is the global minimizer of f , we set θk ∈ R such that

θk ̸= θ∗. The Armijo condition in this case is such that (θk − 2αkθk)2 ≤ θ2
k − cαk(2θk)2, which is equivalent

to αk ≤ 1− c = 0.9. Hence,

∃αk ∈ (0, 1] (αk ≤ 0.9) ∧ (min {0.9, 1} > αk)

⇔ ∃αk ∈ (0, α] (αk ≤ 1− c) ∧
(

min
{

2(1− c)
LBk

, α

}
> αk

)
⇔ ∃αk ∈ (0, α] (fBk

(θk − αk∇fBk
(θk)) ≤ fBk

(θk)− cαk∥∇fBk
(θk)∥2)

∧min
{

2(1− c)
LBk

, α

}
> αk,

which implies that (22) holds.

(ii) Since αk

δ does not satisfy the Armijo condition (11), we have that

fBk

(
θk −

αk

δ
∇fBk

(θk)
)

> fBk
(θk)− c

αk

δ
∥∇fBk

(θk)∥2. (23)

The LBk
–smoothness of fBk

ensures that the descent lemma is true, i.e.,

fBk

(
θk −

αk

δ
∇fBk

(θk)
)

≤ fBk
(θk) +

〈
∇fBk

(θk),
(

θk −
αk

δ
∇fBk

(θk)
)
− θk

〉
+ LBk

2

∥∥∥(
θk −

αk

δ
∇fBk

(θk)
)
− θk

∥∥∥2
,

which implies that

fBk

(
θk −

αk

δ
∇fBk

(θk)
)
≤ fBk

(θk) + αk

δ

(
LBk

αk

2δ
− 1

)
∥∇fBk

(θk)∥2. (24)

Hence, (23) and (24) imply that

−c
αk

δ
∥∇fBk

(θk)∥2 ≤ αk

δ

(
LBk

αk

2δ
− 1

)
∥∇fBk

(θk)∥2,

which in turn implies that

αk

δ

(
LBk

αk

2δ
− (1− c)

)
∥∇fBk

(θk)∥2 ≥ 0.

17

Under review as submission to TMLR

Accordingly,

LBk
αk

2δ
− (1− c) ≥ 0, i.e., αk ≥

2δ(1− c)
LBk

.

From LBk
= 1

b

∑
i∈[b] Lξk,i

≤ L := maxi∈[n] Li (k ∈ N), we also have that αk ≥ 2δ(1−c)
LBk

≥ 2δ(1−c)
L .

A.2 Proof of Theorem 3.1

The definition of f(θ) := 1
n

∑
i∈[n] fi(θ) and the Li–smoothness of fi (i ∈ [n]) imply that, for all θ1, θ2 ∈ Rd,

∥∇f(θ1)−∇f(θ2)∥ ≤ 1
n

∑
i∈[n]

∥∇fi(θ1)−∇fi(θ2)∥ ≤
∑

i∈[n] Li

n
∥θ1 − θ2∥,

which in turn implies that ∇f is Lipschitz continuous with Lipschitz constant Ln := 1
n

∑
i∈[n] Li. Hence,

the descent lemma ensures that, for all k ∈ N,

f(θk+1) ≤ f(θk) + ⟨∇f(θk), θk+1 − θk⟩+ Ln

2
∥θk+1 − θk∥2,

which, together with θk+1 := θk − αk∇fBk
(θk), implies that

f(θk+1) ≤ f(θk)− αk⟨∇f(θk),∇fBk
(θk)⟩+ Lnα2

k

2
∥∇fBk

(θk)∥2. (25)

From ⟨x, y⟩ = 1
2 (∥x∥2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ Rd), we have that, for all k ∈ N,

⟨∇f(θk),∇fBk
(θk)⟩ = 1

2
(
∥∇f(θk)∥2 + ∥∇fBk

(θk)∥2 − ∥∇f(θk)−∇fBk
(θk)∥2)

.

Accordingly, (25) implies that, for all k ∈ N,

f(θk+1) ≤ f(θk)− αk

2
(
∥∇f(θk)∥2 + ∥∇fBk

(θk)∥2 − ∥∇f(θk)−∇fBk
(θk)∥2)

+ Lnα2
k

2
∥∇fBk

(θk)∥2

= f(θk)− αk

2
∥∇f(θk)∥2 + 1

2
(Lnαk − 1)αk∥∇fBk

(θk)∥2 + αk

2
∥∇f(θk)−∇fBk

(θk)∥2.

From 0 < α ≤ αk ≤ α < 1
Ln

, we have that, for all k ∈ N,

(Lnαk − 1)αk ≤ (Lnα− 1)αk ≤ (Lnα− 1)α < 0.

Hence, for all k ∈ N,

f(θk+1) ≤ f(θk)− α

2
∥∇f(θk)∥2 + 1

2
(Lnα− 1)α∥∇fBk

(θk)∥2 + α

2
∥∇f(θk)−∇fBk

(θk)∥2. (26)

Assumption 2.1 guarantees that

E [∇fBk
(θk)|θk] = ∇f(θk) and E

[
∥∇fBk

(θk)−∇f(θk)∥2|θk

]
≤ σ2

b
. (27)

Hence, we have

E
[
∥∇fBk

(θk)∥2|θk

]
= E

[
∥∇fBk

(θk)−∇f(θk) +∇f(θk)∥2|θk

]
= E

[
∥∇fBk

(θk)−∇f(θk)∥2|θk

]
+ 2E [⟨∇fBk

(θk)−∇f(θk),∇f(θk)⟩|θk] + E
[
∥∇f(θk)∥2|θk

]
≥ ∥∇f(θk)∥2.

(28)

18

Under review as submission to TMLR

Inequalities (26), (27), and (28) guarantee that, for all k ∈ N,

E [f(θk+1)|θk] ≤ f(θk)− α

2
∥∇f(θk)∥2 + 1

2
(Lnα− 1)α∥∇f(θk)∥2 + ασ2

2b
. (29)

Taking the total expectation on both sides of (29) thus ensures that, for all k ∈ N,

1
2
{α− (Lnα− 1)α}E

[
∥∇f(θk)∥2]

≤ E [f(θk)− f(θk+1)] + ασ2

2b
. (30)

Let K ≥ 1. Summing (30) from k = 0 to k = K − 1 ensures that

(2− Lnα)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f(θK)] + ασ2K

2b
,

which, together with the boundedness of f , i.e., f∗ ≤ f(θk), implies that

(2− Lnα)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f∗] + ασ2K

2b
.

Therefore, we have

1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
(2− Lnα)αK

+ ασ2

(2− Lnα)αb
.

Moreover, since we have

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ 1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

,

the assertion in Theorem 3.1 holds.

A.3 Proof of Theorem 3.2

(i) We have
C1

K
+ C2

b
= ϵ2

is equivalent to
K = K(b) = C1b

ϵ2b− C2
.

Hence, Theorem 3.1 leads to an ϵ–approximation.

(ii) We have

dK(b)
db

= −C1C2

(ϵ2b− C2)2 ≤ 0 and d2K(b)
db2 = 2C1C2ϵ2

(ϵ2b− C2)3 ≥ 0,

which implies that K is monotone decreasing and convex with respect to b.

A.4 Proof of Theorem 3.3

(i) From

N(b) = C1b2

ϵ2b− C2
,

19

Under review as submission to TMLR

we have

dN(b)
db

= C1b(ϵ2b− 2C2)
(ϵ2b− C2)2 and d2N(b)

db2 = 2C1C2
2

(ϵ2b− C2)3 ≥ 0,

which implies that N is convex with respect to b.

(ii) We have

dN(b)
db

< 0 if b < b⋆,

= 0 if b = b⋆ = 2C2
ϵ2 ,

> 0 if b > b⋆.

Hence, the point b⋆ minimizes N .

(iii) Lemma 2.1(iii) ensures that

Ln := 1
n

∑
i∈[n]

Li ≤ L = 2δ(1− c)
α

.

Hence,

b⋆ = 2C2

ϵ2 = 2ασ2

(2− Lnα)αϵ2 ≤
2ασ2

αϵ2
α

2{α− δ(1− c)α}
= ασ2

{α− δ(1− c)α}ϵ2 .

A.5 Proof of (12)

Let K ≥ 1. From (25) and αk := α > 0, we have that, for all k ∈ N,

f(θk+1) ≤ f(θk)− α⟨∇f(θk),∇fBk
(θk)⟩+ Lnα2

2
∥∇fBk

(θk)∥2.

Hence, (27) and (28) ensure that, for all k ∈ N,

E [f(θk+1)] ≤ E [f(θk)]− αE
[
∥∇f(θk)∥2]

+ Lnα2

2

(
E

[
∥∇f(θk)∥2]

+ σ2

b

)
,

which implies that, for all k ∈ N,

α

(
1− Lnα

2

)
E

[
∥∇f(θk)∥2]

≤ E [f(θk)− f(θk+1)] + Lnα2σ2

2b
.

Summing the above inequalities from k = 0 to k = K − 1 ensures that

α

(
1− Lnα

2

) K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f(θK)] + Lnα2σ2K

2b
.

Since f is bounded below by f∗ := 1
n

∑
i∈[n] fi,∗, we have

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ 1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2E [f(θ0)− f∗]
α(2− Lnα)K

+ Lnασ2

(2− Lnα)b
.

20

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution
	1.3.1 Convergence analysis of SGD with Armijo-line-search learning rates
	1.3.2 Steps needed for –approximation of SGD with Armijo line-search-learning rates
	1.3.3 Critical batch size minimizing SFO complexity of SGD with Armijo-line-search learning rates
	1.3.4 Numerical results supporting our theoretical results

	2 Mathematical Preliminaries
	2.1 Definitions
	2.2 Assumptions and problem
	2.3 Stochastic gradient descent using Armijo line search
	2.3.1 Armijo condition
	2.3.2 Stochastic gradient descent under Armijo condition

	3 Analysis of SGD using Armijo Line Search
	3.1 Convergence analysis of Algorithm 1
	3.2 Steps needed for –approximation
	3.3 Critical batch size minimizing SFO complexity

	4 Numerical Results
	4.1 Training ResNet and MLP on the CIFAR-10, CIFAR-100, and MNIST datasets
	4.2 Estimation of critical batch size

	5 Conclusion
	A Appendix
	A.1 Proof of lemma 2.1
	A.2 Proof of Theorem 3.1
	A.3 Proof of Theorem 3.2
	A.4 Proof of Theorem 3.3
	A.5 Proof of (12)

