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Abstract—We introduce a discretization scheme for continu-
ous localized frames using quasi–Monte Carlo integration and
discrepancy theory. By generalizing classical concepts, we define
a discrepancy measure on the entire phase space R2 and estab-
lish a corresponding Koksma–Hlawka inequality. This approach
enables control over the density of the discretized frame and
ensures the universality of the sampling set, relying only on
the discrepancy of the sampling set and on the Sobolev-type
seminorm of an iterated kernel rather than on specific frame
properties.

Index Terms—localized frames, frame discretization, Quasi-
Monte Carlo method, discrepancy, Koksma-Hlawka inequality

I. Introduction
Continuous frames play a fundamental role in harmonic

analysis and signal processing. Let H be a separable Hilbert
space and (𝑋, 𝜇) a measure space. A family Ψ = (𝜓𝜂)𝜂∈𝑋 ⊂ H
is called a Parseval frame if the mapping 𝜂 ↦→ 𝜓𝜂 is weakly
measurable and

∥ 𝑓 ∥2
H =

∫
𝑋

|⟨ 𝑓 , 𝜓𝜂⟩|2 𝑑𝜇(𝜂), for all 𝑓 ∈ H .

In this setting the analysis operator

𝐶Ψ : H → L2 (𝑋), 𝑓 ↦→ (⟨ 𝑓 , 𝜓𝜂⟩)𝜂∈𝑋,

acts as an isometry onto the reproducing kernel Hilbert space
R := 𝐶Ψ (H) with reproducing kernel

𝑅(𝜈, 𝜂) = ⟨𝜓𝜂 , 𝜓𝜈⟩. (1)

The discretization of continuous frames—that is, replacing
the integral in the frame condition by a discrete sum over a set
Λ ⊂ 𝑋 , such that

𝐴


 𝑓 

2

H ≤
∑︁
𝜆∈Λ

|⟨ 𝑓 , 𝜓𝜆⟩|2 ≤ 𝐵


 𝑓 

2

H

for some constants (the frame bounds) 0 < 𝐴 ≤ 𝐵 < ∞ and
all 𝑓 ∈ H — has been solved in great generality by Freeman
and Speegle [1]. However, in their framework, the phase space
is only assumed to carry a measure, so no further information
on the quality of the discretization beyond the ratio of the frame
bound 𝐵/𝐴 can be expected.

For localized frames, the situation is considerably more
refined. Here the phase space 𝑋 is endowed with a metric, and
the associated reproducing kernel 𝑅 exhibits decay properties.

This work was supported by the FWF project DISCO (PAT4780023).

In particular, one typically requires that 𝑅 satisfies Schur’s test,
i.e. that the Schur norm of 𝑅, given by

∥𝑅∥A1 = ess sup
𝜈∈𝑋

∫
𝑋

|𝑅(𝜈, 𝜂) |𝑑𝜂,

is finite. Under such localization and for sufficiently “tame”
geometry of the phase space, one may introduce a notion of
sampling density—the average number of samples per unit
volume—and even identify a critical density 𝐷− dictated by the
geometry of 𝑋 , see [2] for details. In this context, discretizations
can be compared in terms of how closely their sampling densities
approach 𝐷− while maintaining a small frame bound ratio.

A promising strategy to achieve favorable sampling sets is
to select sampling points that are as uniformly distributed as
possible, relative to the geometry of 𝑋 . In numerical integration,
this quality of a point set is measured by its discrepancy. In
the simplest setting the quasi–Monte Carlo (QMC) method
approximates an integral of a function ℎ over [0, 1]𝑑 by∫

[0,1]𝑑
ℎ(𝜂) 𝑑𝜂 ≈ 1

𝑁

𝑁∑︁
𝑛=1

ℎ(𝑝𝑛),

for a set of sample points P = {𝑝1, . . . , 𝑝𝑁 } ⊂ [0, 1]𝑑 . A
Koksma–Hlawka inequality links the integration error to the
star discrepancy of the point set P,

D∗ (P) = sup
𝜂∈[0,1]𝑑

����#(P ∩ [0, 𝜂])
𝑁

− 𝜇( [0, 𝜂])
���� ,

where 𝜇 is the Lebesgue measure, and a measure of the
smoothness of ℎ. For example, in two dimensions one has:

Theorem 1 (Koksma–Hlawka inequality [3, Prop. 2.18]). Let
P ⊂ [0, 1]2 be a set of 𝑁 points, and let ℎ : [0, 1]2 → C be
a function with continuous mixed partial derivatives 𝜕1ℎ, 𝜕2ℎ
and 𝜕12ℎ. Then the quadrature error

𝑒0 (ℎ,P) =
∫
[0,1]2

ℎ(𝜂) 𝑑𝜂 − 1
𝑁

∑︁
𝑝∈P

ℎ(𝑝)

satisfies��𝑒0 (ℎ,P)
�� ≤ D∗ (P)

[∫
[0,1]2

|𝜕12ℎ(𝜂) | 𝑑𝜂

+
∫ 1

0
|𝜕1ℎ(𝜂1, 1) | 𝑑𝜂1 +

∫ 1

0
|𝜕2ℎ(1, 𝜂2) | 𝑑𝜂2

]
.



Low discrepancy sets thus yield small quadrature errors.
Classical constructions achieve star discrepancies of order
O((log 𝑁)𝑑−1/𝑁) in dimension 𝑑.

In this work we combine ideas from frame theory and quasi–
Monte Carlo integration to obtain new discretization results for
continuous, localized frames. Our first key observation is that
the Schur norm ∥•∥A1 of the difference between the reproducing
kernel and its discretization can be expressed as the supremum
of a family of quadrature errors. On compact subsets of the
phase space, these errors are controlled by the product of the
star discrepancy of the sampling set and a mixed Sobolev norm
of an associated kernel.

Our contributions are as follows. First, we extend the
Koksma–Hlawka (KH) inequality to integrals over the entire
Euclidean space R2 and adapt the definition of star discrepancy
to this new setting. By invoking results of Skriganov [4], we can
infer that for certain lattices Λ ⊂ R2, the point set 𝑎Λ achieves
an asymptotic global discrepancy of order

O
(
𝑎2 ln(2 + 𝑎−1)

)
for 𝑎 → 0, see Section V. This extension represents, to the best
of our knowledge, the first instance of QMC-type integration on
a space of infinite measure. Second, we apply this framework
to derive a new discretization result for continuous frames in
suitable localization classes (Theorem 4). In particular, this
result implies universality of the sampling set: The existence
of a frame discretization for a frame Ψ and sampling set Λ only
depends on its discrepancy and on a Sobolev like seminorm on
its reproducing kernel, not on specifities of the kernel itself.

As a proof of concept, we discretize the short-time Fourier
transform (STFT) and demonstrate that any lattice that is
admissible in the sense of Skriganov [4] yields discretizations
with universal frame bounds invariant under arbitrary dilations
of the generating Gabor window.

By bridging continuous frame theory and quasi–Monte
Carlo integration, our work provides a systematic approach
to constructing discrete frames with controlled density and
stability, thereby enhancing both the theoretical understanding
and practical implementation of frame discretization.

II. From Continuous Frames to Quasi-Monte Carlo
From now on we assume that the continuous frame Ψ

is defined on the Euclidean plane 𝑋 = R2, equipped with
the Lebesgue measure 𝜇. The following approach to frame
discretization can be found in many places, see for instance [5]–
[7]. Let Λ ⊂ R2 be a discrete set and (𝑎𝜆)𝜆∈Λ family of positive
numbers. We want to find a sufficient condition for the family
(√𝑎𝜆𝜓𝜆)𝜆∈Λ to be a discrete frame for H , that is, to satisfy

𝐴


 𝑓 
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H ≤
∑︁
𝜆∈Λ

𝑎𝜆 |⟨ 𝑓 , 𝜓𝜆⟩|2 ≤ 𝐵
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H

for some constants 0 < 𝐴 ≤ 𝐵 < ∞ and all 𝑓 ∈ H . The inclusion
of the weights (𝑎𝜆)𝜆∈Λ above will become relevant in Section
III. This is the case if and only if the frame operator

𝑆Λ : H → H , 𝑆Λ 𝑓 =
∑︁
𝜆∈Λ

𝑎𝜆⟨ 𝑓 , 𝜓𝜆⟩𝜓𝜆

is bounded and stably invertible. The optimal frame bounds are
then 𝐴 = ∥𝑆−1

Λ
∥−1
H→H and 𝐵 = ∥𝑆Λ∥H→H , cf. [8, Prop. 5.4.4].

As the analysis operator 𝐶Ψ : H → R is an isometry, the
push forward of 𝑆Λ by 𝐶Ψ, which is given by 𝑇Λ = 𝐶Ψ𝑆Λ𝐶

−1
Ψ

,
has the same spectral properties as 𝑆Λ. In particular, we have
∥𝑇±1

Λ
∥R→R = ∥𝑆±1

Λ
∥H→H . A short computation reveals that 𝑇Λ

can be written as an integral operator

𝑇Λ𝐹 (𝜂) =
∫
R2
𝑅Λ (𝜂, 𝜈)𝐹 (𝜈) 𝑑𝜈, 𝐹 ∈ R

with the kernel

𝑅Λ (𝜂, 𝜈) =
∑︁
𝜆∈Λ

𝑎𝜆𝑅(𝜂, 𝜆)𝑅(𝜆, 𝜈), 𝜂, 𝜈 ∈ R2 ,

𝑅 being the reproducing kernel (1).
By the standard Neumann series argument, stable invert-

ibility of 𝑇Λ follows if ∥IdR −𝑇Λ∥R→R < 1. As 𝐹 (𝜂) =∫
R2 𝑅(𝜂, 𝜈)𝐹 (𝜈) 𝑑𝜈 for 𝐹 ∈ R we have to bound the operator

norm of

𝐹 ↦→
∫
R2

(
𝑅( · , 𝜈) − 𝑅Λ ( · , 𝜈)

)
𝐹 (𝜈) 𝑑𝜈

on R from above. Schur’s test yields

∥ IdR −𝑇Λ∥R→R ≤ ess sup
𝜈∈R2

∫
R2

��𝑅(𝜂, 𝜈) − 𝑅Λ (𝜂, 𝜈)�� 𝑑𝜂. (2)

We note that the reproducing kernel 𝑅(𝜂, 𝜈) itself satisfies the
reproducing formula 𝑅(𝜂, 𝜈) =

∫
R2 𝑅(𝜂, 𝜌)𝑅(𝜌, 𝜈) 𝑑𝜌. Thus, for

fixed 𝜂, 𝜈 ∈ R2, the integrand on the right hand side of (2) is
equal to������

∫
R2
𝑅(𝜂, 𝜌)𝑅(𝜌, 𝜈) 𝑑𝜌 −

∑︁
𝜆∈Λ

𝑎𝜆𝑅(𝜂, 𝜆)𝑅(𝜆, 𝜈)

������ . (3)

Let us now write the weighted quadrature error of a continu-
ous function ℎ ∈ L1 (R2) as

𝑒(ℎ,Λ) =
∫
R2
ℎ(𝜌) 𝑑𝜌 −

∑︁
𝜆∈Λ

𝑎𝜆ℎ(𝜆). (4)

With the notation 𝐾 (𝜂,𝜈) = 𝑅(𝜂, · )𝑅( · , 𝜈), the expression (3)
can then be identified as the quadrature error |𝑒(𝐾 (𝜂,𝜈) ,Λ) |.

Proposition 2. If the kernel 𝐾 (𝜂,𝜈) satisfies the condition

𝜖 = ess sup
𝜈∈R2

∫
R2

���𝑒 (𝐾 (𝜂,𝜈) ,Λ
) ��� 𝑑𝜂 < 1,

then (√𝑎𝜆𝜓𝜆)𝜆∈Λ is a discrete frame for H with the frame
bounds 1 − 𝜖 and 1 + 𝜖 .

Proof. Resubstituting Equation (3) into (2) yields a suffi-
cient condition for the stable invertibility of 𝑇Λ. Upper and
lower frame bounds can be estimated as ∥𝑇Λ∥R→R ≤ 1 +
∥ IdR −𝑇Λ∥R→R , and ∥𝑇−1

Λ
∥−1
R→R ≥ 1 − ∥ IdR −𝑇Λ∥R→R □



III. Quadrature Error Estimates for Integrals over R2

In this section, we aim to find an upper bound for the
quadrature error as defined in (4). For that, we prove an analogue
to Theorem 1 for functions on R2. However, our approach leads
to a weighted quadrature rule as in (4), with weights (𝑎𝜆)𝜆∈Λ
that are determined by the local structure of Λ.

We assume ℎ ∈ L1 (R2) to have continuous mixed partial
derivatives 𝜕1ℎ, 𝜕2ℎ and 𝜕12ℎ. We further assume that each
square of side-length 1 contains at least one point from Λ. That
is, if we write K = [0, 1]2 for the unit square and #𝑀 for the
cardinality of some set 𝑀 , we have 𝑁𝜌 = #Λ ∩ (K + 𝜌) ≥ 1 for
all 𝜌 ∈ R2. Note that 𝑁𝜌 is always finite as Λ is discrete.

To find an estimate for 𝑒(ℎ,Λ), we start with the expression∫
R2

©­«
∫
K+𝜌

ℎ(𝜂) 𝑑𝜂 − 1
𝑁𝜌

∑︁
𝜆∈Λ∩(K+𝜌)

ℎ(𝜆)ª®¬ 𝑑𝜌. (5)

Denoting the characteristic function of the set K + 𝜌 by 𝜒K+𝜌,
the integral can immediately be simplified and is equal to∫

R2
ℎ(𝜂) 𝑑𝜂 −

∑︁
𝜆∈Λ

ℎ(𝜆)
∫
R2

𝜒K+𝜌 (𝜆)
𝑁𝜌

𝑑𝜌.

Thus, (5) describes the quadrature error 𝑒(ℎ,Λ) with respect to
the weights

𝑎𝜆 =

∫
R2

𝜒K+𝜌 (𝜆)
𝑁𝜌

𝑑𝜌. (6)

To estimate (5) from above, we first take a look at its inner
part

𝑒𝜌 (ℎ,Λ) =
∫
K+𝜌

ℎ(𝜂) 𝑑𝜂 − 1
𝑁𝜌

∑︁
𝜆∈Λ∩(K+𝜌)

ℎ(𝜆)

for fixed 𝜌 ∈ R2. If we take care of the translation by 𝜌, we can
apply Theorem 1 to this difference. For that, we define the star
discrepancy of Λ anchored at 𝜌 by

D∗
𝜌 (Λ) = sup

𝜂∈[0,1]2

�����#Λ ∩ 𝜌 + [0, 𝜂]
𝑁𝜌

− 𝜇( [0, 𝜂])
����� .

Writing 𝜌 = (𝜌1, 𝜌2), we obtain the inequality

|𝑒𝜌 (ℎ,Λ) | ≤ D∗
𝜌 (Λ)

[ ∫ 1

0
|𝜕1ℎ(𝜌1 + 𝜂1, 𝜌2 + 1) | 𝑑𝜂1

+
∫ 1

0
|𝜕2ℎ(𝜌1 + 1, 𝜌2 + 𝜂2) | 𝑑𝜂2 +

∫
[0,1]2

|𝜕12ℎ(𝜌 + 𝜂) | 𝑑𝜂
]
.

(7)

Now, combining (5) with (7) and applying Hölder’s inequality
yields our global quadrature rule.

Proposition 3. Let D∗
shift (Λ) = sup𝜌∈R2 D∗

𝜌 (Λ). Then we have
the inequality

|𝑒(ℎ,Λ) | ≤
∫
R2

|𝑒𝜌 (ℎ,Λ) | 𝑑𝜌

≤ D∗
shift (Λ)

[
∥𝜕1ℎ∥L1 +∥𝜕2ℎ∥L1 +∥𝜕12ℎ∥L1

]
,

where the L1-norms are taken over all of R2.

Together, Propositions 2 and 3 imply a sufficient condition
for Λ to induce a discrete frame as described in Section II.

Theorem 4. Using the notation from Section II, assume that
𝐾 (𝜂,𝜈) has continuous mixed partial derivatives for almost all
𝜂, 𝜈 ∈ R2. Let

Ω(Ψ) = ess sup
𝜈∈R2

∫
R2

[ 


𝜕1𝐾
(𝜂,𝜈)





L1

+



𝜕2𝐾

(𝜂,𝜈)





L1
+



𝜕12𝐾

(𝜂,𝜈)





L1

]
𝑑𝜂. (8)

If D∗
shift (Λ)Ω(Ψ) < 1, then the family (√𝑎𝜆𝜓𝜆)𝜆∈Λ is a

discrete frame for H with the frame bounds 1−D∗
shift (Λ)Ω(Ψ)

and 1 + D∗
shift (Λ)Ω(Ψ).

The discrepancy D∗
shift (Λ) is a quantitative measure on how

uniformly the set Λ is spread in R2. If we replace Λ by 𝑎Λ

with small 𝑎 > 0, we can make the discrepancy D∗
shift (𝑎Λ) as

small as we like. However, the structure of Λ is of particular
importance, as it decides how fast D∗

shift (𝑎Λ) becomes small.
A quickly decreasing discrepancy is essential if we want to find
discretizations where the set 𝑎Λ has controllable density.

In Section V, we describe certain lattices for which the
discrepancy actually has a fast decay, and which can therefore
be used effectively in Theorem 4.

Remark 5. By assumption, we have 𝑁𝜌 ≥ 1 for all 𝜌 ∈ R2,
so (6) implies that 𝑎𝜆 ≤ 1 for all 𝜆 ∈ Λ. If we further assume
Λ to be separated, i.e. 𝑁𝜌 ≤ 𝑛 for some 𝑛 ∈ N, it also follows
that 𝑎𝜆 ≥ 1/𝑛 for all 𝜆 ∈ Λ. Thus, the family (√𝑎𝜆𝜓𝜆)𝜆∈Λ is a
frame for H if and only if (𝜓𝜆)𝜆∈Λ is one, allowing us to remove
the weights from the frame in Theorem 4. Of course, this will
impact the frame bounds.

Remark 6. If Λ is a lattice, we have 𝑎𝜆 = det(Λ) for all 𝜆 ∈ Λ,
where the determinant of the lattice det(Λ) is defined as the area
of a fundamental domain of Λ. This can be seen by evaluating
the integral in (6) via periodization with respect to Λ.

IV. Discretization of the Short-Time Fourier Transform
Short-time Fourier transforms (STFT) [9] and their discretiza-

tions, known as Gabor transforms, are central tools of time-
frequency signal processing. Furthermore, STFTs are likely the
best understood family of continuous frames, with plenty of
related discretization results. It seems worthwhile to investigate
what can be achieved using QMC in this well-studied setting,
though this is probably not the most radical application of our
approach.

Given a window function 𝑔 ∈ L2 (R), we define the STFT by
𝑉𝑔 : L2 (R) → L2 (R2),

𝑉𝑔 𝑓 (𝑥, 𝜔) =
∫
R
𝑓 (𝑡)𝑔(𝑡 − 𝑥)𝑒−2𝜋𝑖𝑡𝜔 𝑑𝑡.

Using time-frequency shifts 𝜋(𝑥, 𝜔)𝑔(𝑡) = 𝑔(𝑡 − 𝑥)𝑒2𝜋𝑖𝑥𝜔

for 𝑥, 𝜔 ∈ R, the STFT can be written as 𝑉𝑔 𝑓 (𝑥, 𝜔) =

⟨ 𝑓 , 𝜋(𝑥, 𝜔)𝑔⟩. We assume


𝑔

L2 = 1, as 𝑉𝑔 then becomes a

unitary mapping. This is equivalent to G = (𝜋(𝜂)𝑔)𝜂∈R2 being
a continuous Parseval frame for L2 (R).



Let 𝜂, 𝜈, 𝜌 ∈ R2. The reproducing kernel of G is given by

𝑅(𝜂, 𝜈) = ⟨𝜋(𝜈)𝑔, 𝜋(𝜂)𝑔⟩ = 𝑉𝑔 (𝜋(𝜈)𝑔) (𝜂).

The kernel 𝐾 (𝜂,𝜈) (𝜌) = 𝑅(𝜂, 𝜌)𝑅(𝜌, 𝜈) is therefore equal to

𝐾 (𝜂,𝜈) (𝜌) = 𝑉𝑔 (𝜋(𝜂)𝑔) (𝜌)𝑉𝑔 (𝜋(𝜈)𝑔) (𝜌).

Using the notation 𝐷𝑔(𝑡) = 𝑔′ (𝑡) and 𝑍𝑔(𝑡) = 2𝜋𝑖𝑡 𝑔(𝑡), some
straightforward computations allow to estimate expression (8)
for the STFT by

Ω(G) ≤ 2
[

𝑉𝑔𝑔

L1



𝑉𝑔𝐷𝑔

L1 +


𝑉𝑔𝑔

L1



𝑉𝑔𝑍𝑔

L1

+


𝑉𝑔𝑔

L1



𝑉𝑔𝑍𝐷𝑔

L1 +


𝑉𝑔𝐷𝑔

L1



𝑉𝑔𝑍𝑔

L1

]
.

This inequality enables us to apply Theorem 4 to the STFT
to obtain Gabor frames of L2 (R), provided that the set Λ has
sufficiently small discrepancy D∗

shift (Λ).

Example 7. For 𝜎 > 0, let 𝑔𝜎 (𝑡) = 𝜎−1/2 exp(− 𝜋

2𝜎2 𝑡
2) be the

L2-normalized Gaussian and G𝜎 the corresponding continuous
frame. Then Ω(G𝜎) can be evaluated exactly as

Ω(G𝜎) = 4𝜋

(
1

√
2𝜎

+
√

2𝜎

)
+ 4𝜋2.

It is minimal for 𝜎0 =
√

2
−1

with Ω(G𝜎0 ) ≈ 64.61.

V. Discrepancy of Admissible Lattices
There are certain lattices Γ ⊂ R2 which have excellent

discrepancy, and which are therefore well suited for our
purposes. We use the same terminology as [4].

Definition 8. Let Γ ⊂ R2 be a lattice. We call Γ admissible if

inf
(𝛾1 ,𝛾2 ) ∈Γ\{0}

|𝛾1𝛾2 | > 0.

Admissible lattices are considered frequently in QMC inte-
gration, see for instance [10], [11] and the references therein.

The following proposition is an immediate consequence of
[4, Cor. 2.1]. We write Γ𝜏 , 𝜏 > 0 for the dilated lattice

Γ𝜏 = {(𝜏𝛾1, 𝜏
−1𝛾2) | (𝛾1, 𝛾2) ∈ Γ}.

Proposition 9. Let Γ ⊂ R2 be an admissible lattice. Then
there is a constant 𝐶 = 𝐶 (Γ) such that

D∗
shift (𝑎Γ𝜏) ≤ 𝐶𝑎2 ln(2 + 𝑎−1) (9)

for all 𝑎 ∈ (0, 1) and all 𝜏 > 0.

If Γ is an admissible lattice, the consequences of Proposition
9 are twofold.

First, if we ignore the dilation by 𝜏 for a moment, we
see that D∗

shift (𝑎Γ) has a fast asymptotic decay for 𝑎 → 0.
For comparison: the discrepancy of the scaled integer lattice
D∗

shift (𝑎Z
2) only has an asymptotic decay linear in 𝑎. In two

dimensions, the rate of decay (9) is in fact best possible [12].
Second, if we allow arbitrary 𝜏 > 0 again, we see that this

decay is uniform for all dilations of Γ. That is, if we write

D∗
dil (Γ) = sup

𝜏>0
D∗

shift (Γ𝜏),

then D∗
dil (𝑎Γ) also has the asymptotic decay (9).

We can utilize the dilation invariance in the following way: For
ℎ ∈ L1 (R2) with continuous mixed partial derivatives, we define
the dilation of ℎ by ℎ𝜏 (𝜂) = ℎ(𝜏𝜂1, 𝜏

−1𝜂2) where 𝜂 = (𝜂1, 𝜂2) ∈
R2. It is easy to see that 𝑒(ℎ𝜏 , 𝑎Γ) = 𝑒(ℎ, 𝑎Γ𝜏) (remember that,
according to remark 6, the weights corresponding to Γ and Γ𝜏

are all equal to det(Γ) = det(Γ𝜏) ). Due to Proposition 3 we
have the estimate

|𝑒(ℎ𝜏 , 𝑎Γ) | ≤ D∗
shift (𝑎Γ𝜏)

[
∥𝜕1ℎ∥L1 +∥𝜕2ℎ∥L1 +∥𝜕12ℎ∥L1

]
≤ D∗

dil (𝑎Γ)
[
∥𝜕1ℎ∥L1 +∥𝜕2ℎ∥L1 +∥𝜕12ℎ∥L1

]
.

(10)

Thus, for 𝑎 → 0, the error 𝑒(ℎ𝜏 , 𝑎Γ) decays fast and uniformly
in 𝜏.

Let us apply this to the STFT. If we replace the window
function 𝑔 ∈ L2 (R) by its L2-normalized dilation 𝑔𝜏 (𝑡) =

𝜏−1/2𝑔(𝜏−1𝑡), the kernel 𝐾 (𝜂,𝜈) (𝜌) becomes

𝐾 ( (𝜏−1𝜂1 ,𝜏𝜂2 ) , (𝜏−1𝜈1 ,𝜏𝜈2 )) (𝜏−1𝜌1, 𝜏𝜌2).

The Schur norm in Proposition 2 is not affected by the dilations
of 𝜂 and 𝜈. Thus, combining Proposition 2 with inequality (10)
yields the following variation of Theorem 4.

Proposition 10. Let Γ ⊂ R2 be an admissible lattice and
assume that D∗

dil (Γ)Ω(𝑔) < 1. Then, for all 𝜏 > 0, the family

(
√︁

det(Γ)𝜋(𝛾)𝑔𝜏)𝛾∈Γ

is a Gabor frame with frame bounds 1 − D∗
dil (Γ)Ω(𝑔) and

1 + D∗
dil (Γ)Ω(𝑔) which are uniform in 𝜏.

Example 11. If we denote the golden ratio by 𝜑, the lattice

Γ =

(
1 𝜑−1

−𝜑−1 1

)
Z2

is admissible. In [13], the authors used this lattice (and implicitly
its admissibility) to discretize the wavelet transform through the
oscillation method.

In more generality, given 𝑟, 𝑠, 𝑢, 𝑣 ∈ R\{0}, the lattice

Γ =

(
𝑟 𝑠

𝑢 𝑣

)
Z2

is admissible if and only if 𝑟/𝑠 and 𝑢/𝑣 are distinct irrational
badly-approximable numbers [14, Ex. 2.10]1 (see [15, App. D]
for a definition of badly-approximable numbers).

Remark 12. The generalization of our theory toR𝑑 for arbitrary
𝑑 ∈ N is straightforward. For example, if we assume ℎ ∈ 𝐿1 (R𝑑)
to have continuous mixed partial derivatives, and if the definition
of D∗

shift (Λ) is extended to Λ ⊂ R𝑑 in the obvious way,
Proposition 3 becomes

|𝑒(ℎ,Λ) | ≤ D∗
shift (Λ)

∑︁
∅≠𝑢⊂{1,...,𝑑}

∥𝜕𝑢ℎ∥𝐿1 .

1The exercise erroneously states that the quotients 𝑟/𝑢 and 𝑠/𝑣 have to be
considered for the equivalence.
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