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Abstract

Hierarchical Reinforcement Learning (HRL) agents often struggle with long-
horizon visual planning due to their reliance on error-prone distance metrics. We
propose Discrete Hierarchical Planning (DHP), a method that replaces continuous
distance estimates with discrete reachability checks to evaluate subgoal feasibility.
DHP recursively constructs tree-structured plans by decomposing long-term goals
into sequences of simpler subtasks, using a novel advantage estimation strategy that
inherently rewards shorter plans and generalizes beyond training depths. In addi-
tion, to address the data efficiency challenge, we introduce an exploration strategy
that generates targeted training examples for the planning modules without needing
expert data. Experiments in 25-room navigation environments demonstrate a 100%
success rate (vs. 90% baseline). The method also generalizes to momentum-based
control tasks and requires only logN steps for replanning. Theoretical analysis
and ablations validate our design choices.

1 Introduction

Hierarchical planning enables agents to solve complex tasks through recursive decomposition [8], but
existing approaches face fundamental limitations in long-horizon visual domains. While methods
using temporal distance metrics [27, 2] or graph search [10] have shown promise, their reliance on
precise continuous distance estimation creates two key challenges:

• Coupled Learning Dynamics: Distance estimates depend on the current policy’s quality,
where suboptimal policies produce misleading distances and practical implementations may
require arbitrary distance cutoffs [2, 10].

• Exploratory Objective: The intrinsic rewards used for training explorers may not align
with the planning objective leading to inaccurate distance measures by design (Fig. 9).

We address these issues by reformulating hierarchical planning through discrete reachability – a
paradigm shift from "How far?" to "Can I get there?". Our method (DHP) evaluates plan feasibility
through binary reachability checks rather than continuous distance minimization. This approach
builds on two insights: local state transitions are easier to model than global distance metrics, and
reachability naturally handles disconnected states through 0/1 signaling.

Our key contributions:

• A reachability-based discrete reward scheme for planning. (Sec. 2.3.2, Fig. 7d).
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(a) Agent architecture

(b) GCSR module

(c) Subgoal prediction using GCSR decoder

Figure 1: Illustrations for different module architectures. (a) Overall planning agent architecture. The
world model predicts the state st, the planner takes the current and goal states (st, sg) to output a
latent variable z, the GCSR Decoder is then used to predict a subgoal si. Then the subgoal is used as
a goal to predict another subgoal. This continues recursively till a reachable subgoal swg is found,
which is then passed to the worker. (b) The GCSR module is a conditional VAE that consists of an
encoder and a decoder optimized to predict midway states, given the initial and final states. (c) The
planning policy uses the GCSR decoder to predict subgoals.

• An advantage estimation algorithm for tree-structured plans (Sec. 2.3.3, Fig. 7b).

• A memory conditioned exploration strategy outperforming expert data (Sec. 2.4, Figs.
7c,10).

• An extensive ablation study that measures the contribution of each module (Sec. 3.2).

Empirical results confirm these design choices. On the 25-room navigation benchmark, DHP achieves
perfect success rates (100% vs 90%) with shorter path lengths (Sec. 3.1). Our ablation studies
demonstrate that both the reachability paradigm and the novel advantage estimation contribute
significantly to these gains (Section 3.2). We also test our method in a momentum-based RoboYoga
environment for generalizability. Video: https://sites.google.com/view/dhp-video/home.

2 Discrete Hierarchical Planning (DHP)

In the context of Markovian Decision Processes (MDP), a Reinforcement Learning task can be
imagined as an agent transitioning through states st using actions at. Our task is to find the shortest
path between any two given states (st, sg). To do this, we first use an explorer to collect a dataset of
useful trajectories possible within the environment. Then we learn a planning policy that learns to
predict subgoals, decomposing the initial task into two simpler subtasks. The recursive application of
the policy breaks the subtasks further till subtasks directly manageable by the worker are found.

2.1 Agent Architecture

We use the base architecture from the Director [14] as it has been observed to provide a practical
method for learning hierarchical behaviors directly from pixels. It consists of three modules: world-
model, worker, and manager. The world model is implemented using the Recurrent State Space
Module (RSSM) [13], which learns state representations st using a sequence of image observations
ot. The worker policy πW learns to output environmental actions at to reach nearby states swg . The
manager πM is a higher-level policy that learns to output desirable sub-goal states swg for the worker
(updated every K steps) in the context of an external task and the exploratory objective jointly. We
replace the manager with our explorer policy πE and the planning policy πP as required. Figure 1a
shows the agent architecture during inference using πP . The worker and the world-model are trained
using the default objectives from the Director (for more details see Appendix B). First, we describe
our planning policy and then derive an exploratory strategy fit for it.
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(a) Unrolled subtask tree during Training (b) Planning during Inference

Figure 2: The figure illustrates the plan unrolling process during the training and inference phases.
(a) During Training, the initial task (st, sg) is recursively decomposed into smaller tasks by midway
subgoal prediction to generate a subtask tree. The lowest level nodes represent the simplest decompo-
sition of the initial task as: (st, sg)→ (st, s3, s1, s4, s0, s5, s2, s6, sg). (b) During Inference, only
the first branch of the tree is unrolled. Here, the agent is tasked with reaching sg. So it first divides
the task (st, sg) into two chunks by inserting s0. Then it proceeds to divide the subtask (st, s0)
by inserting s1 and ignoring the second part (s0, sg). The recursive division continues till the first
subgoal reachable in K steps is found. This results in a stack of subgoals shown at the bottom.

2.2 Planning Policy

The Planning policy πP is a goal-conditioned policy that takes the current and goal state as inputs to
yield a subgoal. However, predicting directly in the continuous state space leads to the problem of
high-dimensional continuous control [14, 27]. To reduce the search space for the planning policy, we
train a discrete Conditional Variational AutoEncoder (CVAE) that learns to predict midway states
st+q/2 given an initial and a final state (st, st+q). We refer to this module as Goal-Conditioned
State Recall (GCSR). It consists of an Encoder and a Decoder (Fig. 1b). The Encoder takes the
initial, midway, and final states (st, st+q/2, st+q) as input to output a distribution over a latent
variable EncG(z|st, st+q/2, st+q). The Decoder uses the states (st, st+q) and a sample from the
latent distribution z ∼ EncG(z) to predict the midway state DecG(st, st+q, z) → ŝt+q/2. The
module is optimized using the data collected by the explorer to minimize the ELBO objective (Eq. 1).
A mixture of categoricals (4× 4) is used as the prior latent distribution pG(z) for all our experiments.
Triplets at multiple temporal resolutions q ∈ Q are extracted, allowing the agent to function at all
temporal resolutions. For minimizing overlap between resolutions, we use exponentially increasing
temporal resolutions, Q = {2K, 4K, 8K, ...}.

L(EncG,DecG) =
∑
q∈Q

∥∥st+q/2 − DecG(st, st+q, z)
∥∥2 + βKL[EncG(z|st, st+q/2, st+q) ∥ pG(z)]

where z ∼ EncG(z|st, st+q/2, st+q)
(1)

The planning policy predicts in the learned latent space, which are expanded into sub-goals using the
GCSR decoder as: DecG(st, sg, z) where z ∼ πP (z|st, sg) (Fig. 1c). Note that the word discrete in
our title refers to our plan evaluation method (Sec. 2.3.2), not the action space of the planning policy.

2.3 Planning Policy Optimization

The planning policy is optimized as a Soft-Actor-Critic (SAC) [12] in three steps: construct plans
between random state pairs (Sec. 2.3.1), plan evaluation using discrete rewards and our novel
advantage estimation method (Sec. 2.3.2,2.3.3), and policy updates using policy gradients (Sec.
2.3.4).

2.3.1 Plan Unrolling

Given the initial and final states (st, sg), subgoal generation methods predict an intermediate subgoal
s0 that breaks the task into two simpler subtasks (st, s0) and (s0, sg). The recursive application of the

3



subgoal operator further breaks the task, leading to a tree of subtasks τ . The root node n0 represents
the original task (st, sg), and each remaining node ni in the tree τ represents a sub-task. At each node
ni, the policy predicts a subgoal as: si = DecG(ni,0, ni,1, z) where z ∼ πP (zi|ni). The preorder
traversal of the subtask tree of depth D can be written as n0, n1, n2, ..., n2D+1−2. Figure 2a shows
an example unrolled tree. The lowest-level nodes show the smallest decompositions of the task under
the current planning policy πP .

Inference: Unlike traditional methods for hierarchical planning (eg, cross-entropic methods (CEM)
[29, 22]), which require unrolling multiple full trees followed by evaluation at runtime, our method
does not require full tree expansion. A learned policy always predicts the best estimated subgoal by
default. Thus, we can unroll only the leftmost branch, as only the first reachable subgoal is required
(Fig. 2b). Efficient planning allows the agent to re-plan at every goal refresh step (K), thereby
tackling dynamic and stochastic environments.

2.3.2 Discrete Rewards Scheme

We want to encourage trees that end in subtasks manageable by the worker. A subtask is worker-
manageable if the node goal ni,1 is reachable by the worker from the node initial state ni,0. Since
learning modules inside other learned modules can compound errors, we use a more straightforward
method to check reachability. We simulate the worker for K steps using RSSM imagination, initialized
at ni,0 with goal ni,1. If the cosine_max similarity measure between the worker’s final state st,i and
the assigned goal state is above a threshold ∆R, the node is marked as terminal (Eq. 2). The terminal
nodes do not need further expansion, which is different from the word’s usual meaning in the context
of trees. The lowest layer non-terminal nodes in a finite-depth unrolled tree are called truncated
nodes. Computing the terminal array Ti allows supporting imperfect trees with branches terminating
at different depths. A plan is considered valid if all its branches end in terminal nodes. The policy is
rewarded 1 at terminal nodes and 0 otherwise (Eq. 3). A discrete reward scheme enables optimization
that increases the likelihood of valid plans compared to distance-based approaches, which gradually
optimize the policy to reduce path length.

Ti =T(i−1)/2 ∨ cosine_max(st,i, ni,1) > ∆R (2)

Ri =

{
1, if Ti == True

0, otherwise
(3)

2.3.3 Return Estimation for Trees

Taking inspiration from the standard discounted return estimation for linear trajectories (sequence of
states) [31], we propose an approach for tree trajectories. Returns for a linear trajectory are computed
as the reward received at the next step and discounted rewards thereafter, Gt = Rt+1 + γGt+1.
Similarly, the return estimate for trees is the minimum discounted return from the child nodes. Given
a tree trajectory τ , the Monte-Carlo return (Eq. 4), the 1-step return (Eq. 5), and the lambda return
(Eq. 6) for each non-terminal node as can be written as:

Gi = (1− Ti) ·min(R2i+1 + γG2i+1, R2i+2 + γG2i+2) (4)

G0
i = (1− Ti) ·min(R2i+1 + γvP (n2i+1), R2i+2 + γvP (n2i+2)) (5)

Gλ
i = (1− Ti) ·min(R2i+1 + γ((1− λ)vP (n2i+1) + λGλ

2i+1), R2i+2+

γ((1− λ)vP (n2i+2) + λGλ
2i+2))

(6)

All branches should end in terminal nodes to score a high return with the above formulation. Ad-
ditionally, since the discount factor diminishes the return with each additional depth, the agent can
score higher when the constructed tree is shallow (less maximum depth). This characteristic is similar
to linear trajectories, where the return is higher for shorter paths to the goal [33].

Fig. 3 illustrates example return evaluations for Monte-Carlo returns and n-step truncated returns that
use value estimates to replace rewards at the non-terminal truncated nodes. The n-step returns allow
for generalization beyond the maximum unrolled depth D (Sec. A.2.2). Thus, the tree can be unrolled
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(a) Monte-Carlo return (b) n-step return

Figure 3: Example return estimations for an imperfect tree (node indices at top-left). The dash-
bordered cells indicate terminal nodes where the policy receives a 1 reward and the branch terminates.
While one of the branches terminates early (i = 4), one does not for the unrolled depth (i = 11).
(a) Since we compute the return as the min of the child nodes, the Monte-Carlo return at the root
node is 0 in this case. However, a positive learning signal is still induced at nodes (i = 1, 3, 6). (b)
Using the critic as a baseline for computing n-step returns. The n-step returns allow bootstrapping by
substituting the reward with value estimates v at the truncated node (i = 11). This induces a learning
signal at the root node even if the plan is incomplete for the unrolled depth.

for higher depths DI during inference. We show that the Bellman operators for the above returns are
contractions and repeated applications cause the value function vπP to approach a stationary v∗ (Sec.
A.4). We explore how the return penalizes maximum tree depth and encourages balanced trees (Sec.
A.2.3), implying that the optimal policy inherently breaks tasks roughly halfway.

2.3.4 Policy Gradients

Using tree return estimates (we use n-step lambda returns in all cases), we derive the policy gradients
for the planning policy as (Eq. 7, proof in Sec. A.1). We show that if the function Gλ

i is replaced
by a function independent of the policy actions, the expectation reduces to 0, implying that we can
use the value function as a baseline for variance reduction (Th. A.2). With policy gradients and an
entropy term, to encourage random exploration before convergence, we construct the loss function
for the actor πP and critic vP as (sum over all nodes except the terminal and truncated nodes):

∇πP
J(πP ) = Eτ

2D−2∑
i=0

Gλ
i (τ)∇πP

log πP (zi|ni) (7)

L(πP ) = −Eτ∼πP

2D−2∑
i=0

(1− Ti) · (Gλ
i − vP (ni)) log πP (zi|ni) + ηH[πP (zi|ni)] (8)

L(vP ) = Eτ∼πP

2D−2∑
i=0

(1− Ti) · (vP (ni)−Gλ
i )

2 (9)

2.4 Explorer

During exploration, an exploration policy πE is used as a manager to drive the worker behavior. For
the same problem of continuous control, the Explorer predicts goals in a discrete latent space learned
using a VAE. As the predicted states do not need to be conditioned on other states like the planner, the
Explorer VAE learns state representations unconditionally (similar to Director). The Explorer VAE
consists of an encoder and a decoder (EncU ,DecU ). The encoder predicts latent distributions using
state representations: EncU (z|st), and the decoder tries to reconstruct the states using the samples
from the latent distribution: DecU (z) (Fig. 4a). As the prediction space is unconstrained, we use a
larger latent size (8× 8 mixture of categoricals). The VAE is optimized using the ELBO loss (Eq.
25). The Explorer is implemented as an SAC (Fig. 4b) and optimizes an intrinsic exploratory reward.
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(a) Unconditional VAE

(b) Explorer subgoal prediction (c) Explorer input states

Figure 4: (a) Unconditional VAE that learns to predict states not conditioned on other states. (b) The
explorer uses the memory and the VAE decoder to predict subgoals for the worker. (c) Illustration
showing the states required as inputs for the Explorer for an example trajectory (top) being played
out by an agent. It is a coarse trajectory that shows every K-th frame. The agent is at state st and will
receive rewards when it moves into the placeholder future state st+1 (dashed border). The rewards at
st+1 will be computed using the GCSR for different temporal resolutions q ∈ Q indicated on the
right. The colored arrows indicate the state triplet required to compute the exploratory reward at
st+1. Combining these state dependencies and removing redundancies yields the input requirements
indicated below the dashed line. The inputs consist of the current state and the memory.

2.4.1 Exploratory Reward

Since the planning policy πp uses the GCSR decoder for subgoal prediction, it is limited to the
subgoals learned by the GCSR module. The GCSR training data must contain all possible state
triplets in the environment for the planner to function well. To achieve this, we formulate our
exploratory objective to encourage the Explorer to enact trajectories that are not well-modeled by the
GCSR module. If Explorer traverses a trajectory that contains a state triplet (st, st+q/2, st+q), the
modeling error is measured as the mean squared error between sub-goal st+q/2 and its prediction
using the GCSR decoder. We compute the exploratory rewards for state st based on the previous
states as:

RE
t =

∑
q∈Q

∥∥st−q/2 − DecG(st−q, st, z)
∥∥2 where z ∼ EncG(st−q, st−q/2, st) (10)

2.4.2 Memory Augmented Explorer

Since the exploratory rewards for the current step depend on the past states, the Explorer needs
to know them to guide the agent accurately along rewarding trajectories. Fig. 4c shows the state
dependencies for the exploratory rewards at different temporal resolutions q. Each temporal res-
olution q requires (st−q, st−q/2) for computing reward. For our case, the past states required are:
[(st−K , st−2K), (st−2K , st−4K), ...] for each q ∈ {2K, 4K, ...} respectively. Removing the dupli-
cates reduces the set of states required to: {st, st−K , st−2K , ...}.
To address this, we provide a memory of the past states as an additional input to the exploratory
manager SAC (πE(st,memt), vE(st,memt)) (Fig. 4b). We implement this by maintaining a memory
buffer that remembers every K-th visited state. Then, we extract the required states as memory for the
Explorer. For a trajectory rollout of length T , the required size of the memory buffer is Lmem = T/K,
and the size of the memory input is log2 Lmem.

Practical Consideration: It can be practically infeasible to maintain a large memory buffer. However,
our memory formulation is highly flexible and allows us to ignore exploratory rewards that require
states far in the past. For all our experiments, we use T = 64 length rollouts with Lmem = 8 and
memory input size: 3. The trajectory length also limits the temporal resolutions q for which the
exploratory rewards can be computed. While not entirely optimal, this is sufficient for a significant
performance improvement (Fig. 7c).
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2.4.3 Policy Optimization

The Explorer is optimized as an SAC using the policy gradients from the REINFORCE objective.
RSSM is used to imagine trajectories κ, followed by extracting every K-th frame of the rollout as
abstract trajectories. For clarity, let the time steps of the abstract trajectory be indexed by k, where
k = t/K. Then, the lambda returns Gλ

k are computed for the abstract trajectories using a discount
factor γL (Eq. 11). Finally, the lambda returns are used to formulate the explorer actor and critic loss
(Eq. 12,13).

Gλ
k = RE

k+1 + γL((1− λ)vE(sk+1) + λGλ
k+1) (11)

L(πE) = −Eκ∼πE

T/K−1∑
k=0

(Gλ
k − vE(sk,memk)) log πE(zk|sk,memk) + ηH[πE(zk|sk,memk)]

(12)

L(vE) = Eκ∼πE

T/K−1∑
k=0

(vE(sk,memk)−Gλ
k)

2 (13)

3 Evaluation & Results

Task Details

We extensively test our agent in the 25-room environment, a 2D maze task where the agent must
navigate through connected rooms to reach the target position. Benchmarks from previous methods
show average episode duration > 150 steps, indicating a long-horizon task [27]. Observations are
provided as initial and goal states (64 × 64 images) and a reward 0 < R ≤ 1 upon reaching the
goal position. Each episode lasts 400 steps before terminating with a 0 reward. We use the same
evaluation parameters as the previous benchmarks and average across 100 runs [27]. We also test our
method in momentum-based environments, such as RoboYoga [20], which can be challenging due to
the lack of momentum information in single images (the goal).

Figure 5: Full maze with a
sample run using our agent.

Agent Hyperparameters

We use a common hyperparameter setup for all tasks. The goal
refresh rate is set to K = 8, and the modeled temporal resolutions
as Q = {2K, 4K, 8K, 16K, 32K}. The depth of the unrolled tree
during training is D = 5 and during inference is DI = 8 unless
specified otherwise. For the first 3M steps, the explorer is used as the
manager; then it shifts to the planning policy. The agent is trained
every 16 environmental steps. Please refer to section B for complete
training details.

3.1 Results

Figure 6 shows the sample solutions generated by our agent during
training and inference. Our agent can navigate the maze to reach far
goals successfully and is interpretable.

We compare the performance in terms of the average success rate in reaching the goal state and
the average path length against previous methods. Goal-Conditioned Behavioral Cloning (GC BC,
[24]) that learns goal-reaching behavior from example goal-reaching behavior. Visual foresight (VF,
[9]) that optimizes rollouts from a forward prediction model via the cross-entropic method (CEM,
[29, 23]). Hierarchical planning using Goal-Conditioned Predictors (GCP,[27]) optimized using
CEM to minimize the predicted distance cost. Goal-Conditioned Director (GC-Director). And
LEXA, a SOTA sequential planning method that also uses an explorer and a planner but optimizes
continuous rewards cosine and temporal. GC BC, VF, and GCP performances are taken from [27],
which uses the same evaluation strategy. Table 1 shows that our model outperforms the previous
work in terms of success rate and average episode lengths. Our method and LEXA (Temp) yield the
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(a) (b)

Figure 6: Samples plan by our agent during training and inference. (a) Samples of full plans as
sequences of subgoals from the start states (left) to the goal states (right). The subgoals are extracted
from the goal states of all terminal nodes. The blanks occur when nodes terminate before maximum
depth. (b) Sample subgoals generated during inference. The first and last images indicate the initial
and goal states. Other images represent subgoals that break the path from the initial to the subgoal
image on its right [Same order as 2b]. Blanks are when a reachable subgoal is found before the max
depth.

Agent Success rate Average episode length Compute steps Time complexity
GC BC 7% 402.48 1 1

GC-Director 9% 378.89± 87.67 1 1
LEXA (Cos) 20% 321.04± 153.29 1 1

VF 26% 362.82 MN N
GCP 82% 158.06 (2N + 1)M logN

LEXA (Temp) 90% 70.34± 111.14 1 1
DHP (Ours) 100% 73.84± 46.54 logN logN

Table 1: Average Performance of different approaches on the 25-room navigation task over 100
evaluation runs. N is the number of plan steps, and M is the number of samples generated per plan.

shortest episode lengths. However, note that while LEXA explicitly optimizes for path lengths, our
method uses an implicit objective.

Fig. 7a shows the score and episode length plots for some methods. Here, we plot an extra experiment,
Director (Fixed Goal), where the goal remains fixed and the agent only inputs the current state
image. It can be seen that the agent shows signs of learning, the score falls but rises again around 8M
steps to ∼ 70%. Comparing this to GC-Director (which completely fails) shows that the issue is not
navigation or agent size, but the complexity of a goal-conditioned long-horizon task that requires
planning.

3.2 Ablations

Can the planning method generalize to higher depths?
We train two DHP agents with a maximum tree depth of 3 and 1 during training for planning. The 1
depth agent is only allowed to break the given task once for learning. Fig. 7b shows the comparison
of the agents, and it can be seen that all agents perform similarly. Note that LEXA with an equivalent
horizon does not perform well.

Does the complex exploration strategy help?
We compare the performance of the planning policy trained against three variants: using expert data
(collected using a suboptimal policy in [27]), vanilla exploration objective using the reconstruction
errors from the unconditional VAE (Sec. 2.4), and using an explorer without the memory. Fig. 7c
shows the comparison, and it can be seen that the default agent performs noticeably better.

Figure 8: Robo Yoga Environments

Can the method perform in other environments?
We test our agent in the Deepmind Control Suite
[34] based RoboYoga [20] environment. The task
requires walker and quadruped agents to reach a
goal body orientation specified by an image. The
environment is challenging because it rewards the
agent for maintaining the goal position, whereas our
agent only plans to reach the goal state. Also, the
goal states do not encode the momentum information.
Fig. 8 shows the performance, of our agent at the
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(a) Baselines (b) Bootstapping (c) Exploration (d) Other rewards schemes

Figure 7: Experimental results (mean and stddev across 3 seeds) shown with episodic reward (top
row) and average episode length (bottom row) against the environmental steps. The sharp rise in
performance for our methods indicates the switch from exploration to planning. (a) Baselines:
Comparing our method DHP with state-of-the-art methods. (b) Bootstrapping: Compares shallow
training depth models (D = 1, 3) with the default training depth. (c) Explore data Comparison of
planning policy performance trained on different data. (d) Comparison to Other reward schemes.

RoboYoga tasks. Our agent can solve the walker task, but struggles at quadruped. We observed that
our walker agent maintains the overall pose but constantly sways about the goal position. Fig. 12
shows an episode where the agent headstands constantly. DHP also performs well with the Lightsout
puzzle environment (Sec. F).

How does the method perform with other reward and return schemes?
We compare the default agent against a few variants: DHP (Neg Rew) That rewards −1 at non-
terminal nodes and 0 at terminal (like an existence penalty), DHP (GAE) that estimates advantages
as min of the GAE advantages for each child node, and DHP (Dist Sum) rewards negative estimated
distances (between ni,0 and ni,1) at each node. Fig. 7d shows that the Neg Rew agent performs as
well as the default method, while the others don’t perform as well.

4 Related Work

Hierarchical RL Agents: Hierarchical reinforcement learning (HRL) is a set of techniques that
abstracts actions [4, 35, 3, 32, 26, 21]. Foundational works, such as the options framework [32] and
MAXQ decomposition [8], introduced temporal abstraction, enabling agents to reason at multiple
time scales. Modern approaches learn hierarchical policies through mutual information (Causal
InfoGAN [17], DADS [30]), latent space planning (Director [14]), or trajectory encoding (OPAL [1]).
These results demonstrate that hierarchical decomposition facilitates efficient credit assignment in
planning.

Planning Algorithms: Planning methods aim to solve long-horizon tasks efficiently by exploring
future states and selecting optimal actions [18, 6]. Monte Carlo Tree Search (MCTS) [5] expands a
tree of possible future states by sampling actions and simulating outcomes. While effective in discrete
action spaces, MCTS struggles with scalability in high-dimensional or continuous environments.
Visual Foresight methods [9, 11, 13] learned visual dynamics models to simulate future states,
enabling planning in pixel-based environments. However, they require accurate world models and
can be computationally expensive. Some use explicit graph search over the replay buffer data [10].
Model Predictive Control (MPC) [22, 23] is an online planner that samples future trajectories and
optimizes actions over a finite horizon. These methods rely on sampling the future state and thus do
not scale well with the horizon length. LEXA [16] is a policy-based linear planner that also uses an
explorer for data collection.
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To address the challenges of long-horizon tasks, some planning algorithms decompose complex
problems into manageable subtasks by predicting intermediate subgoals [25, 15, 27]. MAXQ [8]
decomposes the value function of the target Markov Decision Process (MDP) into an additive
combination of smaller MDPs. Sub-Goal Trees [15] and CO-PILOT [2] learn a subgoal prediction
policy optimized to minimize the total predicted distance measures of the decomposed subtasks. GCP
[27] and kSubS [7] use specialized subgoal predicting modules to search for plans. DHRL [19] uses
efficient graph search by decoupling the time horizons of high-level and low-level policies.

While these methods have demonstrated success, they rely heavily on distance-based metrics, which
are challenging to learn and sensitive to policy quality [10, 2]. In contrast, our method utilizes
discrete reachability-based rewards, which are easier to accurately estimate and provide clearer
learning signals.

5 Discussion & Future Work

DHP architecture enables us to train a future-conditioned (goal) planning policy, πP , and a past-
conditioned (memory) exploration policy, πE . The resulting model performs expertly on the standard
25-room long-horizon task than the current SOTA approaches (Fig. 7a). The ablations show that
the method generalizes beyond the training depths (Fig. 7b), the exploratory rewards significantly
impact performance, which are further enhanced using memory (Fig. 7c), and possible alternate
reward schemes (Fig. 7d). Our method relies on imagination for training, which allows for plan
evaluation without the need to access the internal environmental state; however, it may introduce
inaccuracies (Fig. 8). However, we observed better results with discrete rewards than with the
distance-based approach for our model (Fig. 7d). The architecture is flexible, and components can be
used in isolation, e.g., the planning policy optimization can be combined with custom reachability
measures. For future work, the agent can benefit from better and generic goal-state estimation
mechanisms, preferably multimodal. The agent can also learn to generate goals for itself via a
curriculum for targeted exploration, which can benefit exploration in complex environments with
multiple bottleneck states that require a long-term commitment to a goal for efficient exploration.
Given this, we demonstrate that the agent can be beneficial in solving long-range tasks and believe
that the ideas presented in the paper can be valuable to the community independently. The code for
the agent is available at: <URL redacted>.
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A Theoretical Proofs and Derivations

A.1 Policy Gradients for Trees

Given a goal-directed task as a pair of initial and final states (st, sg), a subgoal generation method
predicts an intermediate subgoal s0 that breaks the task into two simpler subtasks (st, s0) and (s0, sg).
The recursive application of the subgoal operator further breaks down the task, leading to a tree of
subtasks τ , where each node ni represents a task. Let the preorder traversal of the subtask tree τ
of depth D be written as n0, n1, n2, ..., n2D+1−2. The root node n0 is the given task, and the other
nodes are the recursively generated subtasks. Ideally, the leaf nodes should indicate the simplest
reduction of the subtask that can be executed sequentially to complete the original task. The tree
can be viewed as a trajectory, where each node ni represents a state, and taking action πP (zi|ni)
simultaneously places the agent in two states, given by the child nodes (n2i+1, n2i+2). Thus, the
policy function can be written as πP (zi|ni), the transition probabilities (can be deterministic also)
as pT (n2i+1, n2i+2|zi, ni), and the probability of the tree trajectory under the policy τπP

can be
represented as:

pπP
(τ) = p(n0) ∗ [πP (z0|n0) ∗ pT (n1, n2|z0, n0)]∗

[πP (z1|n1) ∗ pT (n3, n4|z1, n1)]∗
[πP (z2|n2) ∗ pT (n5, n6|z2, n2)] ∗ ...
[πP (z2D−2|n2D−2) ∗ pT (n2D+1−3, n2D+1−2|z2D−2|n2D−2)]

pπP
(τ) = p(n0)

2D−2∏
i=0

πP (zi|ni)

2D−2∏
i=0

pT (n2i+1, n2i+2|zi, ni)

Theorem A.1 (Policy Gradients). Given a tree trajectory τ specified as a list of nodes ni, generated
using a policy πP . The policy gradients can be written as:

∇πP
J(πP ) = Eτ

2D−2∑
i=0

Ai(τ)∇πP
log ππP

(zi|ni)

Proof. The log-probabilities of the tree trajectory and their gradients can be written as:

log pπP
(τ) = log p(n0) +

2D−2∑
i=0

log πP (zi|ni) +

2D−2∑
i=0

log pT (n2i+1, n2i+2|zi, ni) (14)

∇πP
log pπP

(τ) = 0 +∇πP

2D−2∑
i=0

log πP (zi|ni) + 0 =

2D−2∑
i=0

∇πP
log πP (zi|ni) (15)

The objective of policy gradient methods is measured as the expectation of advantage or some scoring
function A(τ):

J(πP ) = EτA(τ) =
∑
τ

A(τ) · pπP
(τ) (16)

Then the gradients of the objective function ∇πP
J(πP ) wrt the policy πP can be derived as:
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∇πP
J(πP ) = ∇πP

∑
τ

A(τ) · pπP
(τ)

=
∑
τ

A(τ) · ∇πP
pπP

(τ)

=
∑
τ

A(τ) · pπP
(τ)
∇πP

pπP
(τ)

pπP
(τ)

=
∑
τ

A(τ) · pπP
(τ)∇πP

log pπP
(τ)

= EτA(τ) · ∇πP
log pπP

(τ)

= Eτ

2D−2∑
i=0

Ai(τ)∇πP
log πP (zi|ni) (Using Eq. 15)

Theorem A.2 (Baselines). If A(τ) is any function independent of policy actions zi, say b(ni), then
its net contribution to the policy gradient is 0.

Eτ

2D−2∑
i=0

b(ni)∇πP
log πP (zi|ni) = 0

Proof. If A(τ) is any fixed function that does not depend on the actions πP (zi|ni) and only on the
state, say b(ni). Then b(ni) will be independent of the trajectory τ , and it can be sampled from the
steady state distribution under policy ρπP

for any state ni without knowing τ . In that case,

Eτ

2D−2∑
i=0

b(ni)∇πP
log πP (zi|ni) =

2D−2∑
i=0

Eτ [b(ni)∇πP
log πP (zi|ni)]

=

2D−2∑
i=0

Eni∼ρπP
Ea∼πP

[b(ni)∇πP
log πP (zi|ni)]

=

2D−2∑
i=0

Eni∼ρπP
[b(ni)Ea∼πP

∇πP
log πP (zi|ni)]

=

2D−2∑
i=0

Eni∼ρπP
[b(ni)

∑
a

πP (zi|ni)
∇πP

πP (zi|ni)

πP (zi|ni)
]

=

2D−2∑
i=0

Eni∼ρπP
b(ni)[∇πP

∑
a

πP (zi|ni)]

=

2D−2∑
i=0

Eni∼ρπP
b(ni)[∇πP

1] (Sum of probabilities is 1)

= 0

A.2 Policy Evaluation for Trees

We present the return and advantage estimation for trees as an extension of current return estimation
methods for linear trajectories. As the return estimation for a state st in linear trajectories depends
upon the next state st+1, our tree return estimation method uses child nodes (n2i+1, n2i+2) to
compute the return for a node ni. We extend the previous methods, like lambda returns and Gen
realized Advantage estimation (GAE) for trees.
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The objective of our method is to reach nodes that are directly reachable. Such nodes are marked as
terminal, and the agent receives a reward. For generalization, let’s say that when the agent takes an
action zi at node ni, it receives a pair of rewards (R2i+1(ni, zi), R2i+2(ni, zi)) corresponding to the
child nodes. Formally, the rewards R(τ) are an array of length equal to the length of the tree trajectory
with R0 = 0. Then, the agent’s task is to maximize the sum of rewards received in the tree trajectory
Eτ

∑∞
i=0 Ri. To consider future rewards, the returns for a trajectory can be computed as the sum of

rewards discounted by their distance from the root node (depth), Eτ

∑∞
i=0 γ

⌊log2(i+1)⌋−1Ri. Thus,
the returns for each node can be written as the sum of rewards obtained and the discount-weighted
returns thereafter:

Gi = (R2i+1 + γG2i+1) + (R2i+2 + γG2i+2) (17)

Although this works theoretically, a flaw causes the agent to collapse to a degenerate local optimum.
This can happen if the agent can generate a subgoal very similar to the initial or goal state (∥st, ssub∥ <
ϵ or ∥sg, ssub∥ < ϵ). A common theme in reward systems for subgoal trees is to have a high reward
when the agent predicts a reachable or temporally close enough subgoal. Thus, if the agent predicts a
degenerate subgoal, it receives a reward for one child node, and the initial problem carries forward to
the other node.

Therefore, we propose an alternative objective that optimizes for the above objective under the
condition that both child subtasks (n2i+1, n2i+2) get solved. Instead of estimating the return as the
sum of the returns from the child nodes, we can estimate it as the minimum of the child node returns.

Gi = min(R2i+1 + γG2i+1, R2i+2 + γG2i+2) (18)

This formulation causes the agent to optimize the weaker child node first and receive discounted
rewards if all subtasks are solved (or have high returns). It can also be noticed that the tree return for
a node is essentially the discounted return along the linear trajectory that traces the path with the least
return starting at that node. Next, we analyze different return methods in the tree setting and try to
prove their convergence.

A.2.1 Lambda Returns

TD(λ) returns for linear trajectories are computed as:

Gλ
t = Rt+1 + γ((1− λ)V (st+1) + λGλ

t+1) (19)

We propose, the lambda returns for tree trajectories can be computed as:

Gλ
i = min(R2i+1 + γ((1− λ)V (n2i+1) + λGλ

2i+1), R2i+2 + γ((1− λ)V (s2i+2) + λGλ
2i+2))

(20)

This essentially translates to the minimum of lambda returns using either of the child nodes as the
next state. For theoretical generalization, note that the min operator in the return estimate is over
the next states the agent is placed in. Thus, in the case of linear trajectories where there is only one
next state, the min operator vanishes and the equation conveniently reduces to the standard return
formulation for linear trajectories.

Next, we check if there exists a fixed point that the value function approaches. The return operators
can be written as:

T λV (ni) = Eπ[min(R2i+1 + γ((1− λ)V (n2i+1) + λG2i+1),

R2i+2 + γ((1− λ)V (n2i+2) + λG2i+2))]

T 0V (ni) = Eπ[min(R2i+1 + γV (n2i+1), R2i+2 + γV (n2i+2))]

T 1V (ni) = Eπ[min(R2i+1 + γG2i+2, R2i+2 + γG2i+2)]
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Lemma A.3 (Non-expansive Property of the Minimum Operator). For any real numbers a, b, c, d,
the following inequality holds:

|min(a, b)−min(c, d)| ≤ max (|a− c|, |b− d|) .

Proof. To prove the statement, we consider the minimum operator for all possible cases of a, b, c,
and d. Let min(a, b) and min(c, d) be the minimum values of their respective pairs.

Case 1: a ≤ b and c ≤ d

In this case, min(a, b) = a and min(c, d) = c. The difference becomes:

|min(a, b)−min(c, d)| = |a− c|.

Since max (|a− c|, |b− d|) ≥ |a− c|, the inequality holds.

Case 2: a ≤ b and c > d

Here, min(a, b) = a and min(c, d) = d. The difference becomes:

|min(a, b)−min(c, d)| = |a− d|.

Since b ≥ a, |a− d| ≤ |b− d| ≤ max(|a− c|, |b− d|), and the inequality holds.

Case 3: a > b and c ≤ d

Here, min(a, b) = b and min(c, d) = c. The difference becomes:

|min(a, b)−min(c, d)| = |b− c|.

Since a ≥ b, |b− c| ≤ |a− c| ≤ max(|a− c|, |b− d|), and the inequality holds.

Case 4: a > b and c > d

Symmetrical to Case 1.

Conclusion:

In all cases, the inequality

|min(a, b)−min(c, d)| ≤ max (|a− c|, |b− d|)

is satisfied. Therefore, the minimum operator is non-expansive.

Theorem A.4 (Contraction property of the return operators). The Bellman operators T corresponding
to the returns are a γ-contraction mapping wrt. to ∥ · ∥∞

∥T V1 − T V2∥∞ ≤ γ∥V1 − V2∥∞

Proof. We start with the simpler case, T 0. Let V1, V2 be two arbitrary value functions. Then the max
norm of any two points in the value function post update is:

∥T 0V1 − T 0V2∥∞ =∥Eπ[min(R2i+1 + γV1(n2i+1), R2i+2 + γV1(n2i+2))]−
Eπ[min(R2i+1 + γV2(n2i+1), R2i+2 + γV2(n2i+2))]∥∞

=∥Eπ[min(R2i+1 + γV1(n2i+1), R2i+2 + γV1(n2i+2))−
min(R2i+1 + γV2(n2i+1), R2i+2 + γV2(n2i+2))]∥∞
≤∥min(R2i+1 + γV1(n2i+1), R2i+2 + γV1(n2i+2))−
min(R2i+1 + γV2(n2i+1), R2i+2 + γV2(n2i+2))∥∞
≤max(∥γV1(n2i+1)− γV2(n2i+1)∥∞, ∥γV1(n2i+2)− γV2(n2i+2)∥∞)

≤γmax(∥V1(n2i+1)− V2(n2i+1)∥∞, ∥V1(n2i+2)− V2(n2i+2)∥∞)

≤γmax(∥V1(nj)− V2(nj)∥∞, ∥V1(nk)− V2(nk)∥∞)

≤γ∥V1 − V2∥∞ (merging max with ∥ · ∥∞)
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A similar argument can be shown for ∥T 1V1 − T 1V2∥∞ and ∥T λV1 − T λV2∥∞. Using the non-
expansive property (Th. A.3) and absorbing the max operator with ∥ · ∥∞ leads to the standard form
for linear trajectories.

∥T λV1 − T λV2∥∞ ≤∥γ((1− λ)(V1 − V2) + λ(T λV1 − T λV2))∥∞
≤γ(1− λ)∥V1 − V2∥∞ + γλ∥T λV1 − T λV2∥∞ (Using triangle inequality)

(1− γλ)∥T λV1 − T λV2∥∞ ≤γ(1− λ)∥V1 − V2∥∞

∥T λV1 − T λV2∥∞ ≤
γ(1− λ)

1− γλ
∥V1 − V2∥∞

For contraction, γ(1−λ)
1−γλ < 1 must be true.

γ(1− λ)

1− γλ
<1

γ(1− λ) <1− γλ

γ − γλ <1− γλ

γ <1

Which is always true.

Since T 1 is a special case of T λ, it is also a contraction.

A.2.2 Bootstrapping with D-depth Returns

When the subtask tree branches end as terminal (or are masked as reachable), the agent receives
a reward of 1, which provides a learning signal using the discounted returns. However, when the
branches do not end as terminal nodes, it does not provide a learning signal for the nodes above it,
as the return is formulated as min of the returns from child nodes. In this case, we can replace the
returns of the non-terminal leaf nodes with their value estimates. Therefore, in the case that the value
estimate from the end node is high, indicating that the agent knows how to solve the task from that
point onwards, it still provides a learning signal. The n-step return for a linear trajectory is written as:

G
(n)
t = Rt+1 + γG

(n−1)
t+1

with the base case as:

G
(1)
t = Rt+1 + γV (st+1)

We write the n-step returns for the tree trajectory as:

G
(d)
i = min(R2i+1 + γG

(d−1)
2i+1 , R2i+2 + γG

(d−1)
2i+2 )

with the base case as:

G
(1)
i = min(Rt+1 + γV (n2i+1), Rt+2 + γV (n2i+2))

Value estimates help bootstrap at the maximum depth of the unrolled subtask tree D and allow the
policy to learn from incomplete plans.

A.2.3 Properties of Tree Return Estimates

In section A.2 it can be seen how the tree return formulation for a node essentially reduces to the
linear trajectory returns along the path of minimum return in the subtree under it. When the value
function has reached the stationary point. For a subtask tree, if all branches end as terminal nodes,
the return will be γD′

1, where D′ is the depth of the deepest non-terminal node. Otherwise, it would
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be γDV ′ where V ′ is the non-terminal truncated node with the minimum return. Thus, it can be seen
how higher depth penalizes the returns received at the root node with the discount factor γ. This
property holds for linear trajectories, where the policy converges to the shortest paths to rewards,
thereby counteracting discounting [31, 28]. Thus, our goal-conditioned policy similarly converges to
plans trees with minimum maximum depth: minπP

(max di), where di is the depth of node ni.

This property also implies that the returns for a balanced tree will be higher than those for an
unbalanced tree. The same sequence of leaf nodes can be created using different subtask trees. When
the policy does not divide the task into roughly equally tough sub-tasks it results in an unbalanced
tree. Since the tree is constrained to yield the same sequence of leaf nodes, its maximum depth DU

will be higher than or equal to a balanced tree DU ≥ DB . Thus, at optimality, the policy should
subdivide the task in roughly equal chunks. However, it is worth noting that two subtask trees with
different numbers of leaf nodes can have the same maximum depth.

B Architecture & Training Details

B.1 Worker

The worker is trained using K-step imagined rollouts (κ ∼ πW ). Given the imagined trajectory κ,
the rewards for the worker RW

t are computed as the cosine_max similarity measure between the
trajectory states st and the prescribed worker goal swg. First, discounted returns Gλ

t are computed as
n-step lambda returns (Eq. 22). Then the Actor policy is trained using the REINFORCE objective
(Eq. 23) and the Critic is trained to predict the discounted returns (Eq. 24).

RW
t = cosine_max(st, swg) (21)

Gλ
t = RW

t+1 + γL((1− λ)v(st+1) + λGλ
t+1) (22)

L(πW ) = −Eκ∼πW

K−1∑
t=0

[
(Gλ

t − vW (st)) log πW (z|st) + ηH[πW (z|st)]
]

(23)

L(vW ) = Eκ∼πW

K−1∑
t=0

(vW (st)−Gλ
t )

2 (24)

B.2 Explorer

The ELBO objective for the unconditional state recall (UCSR) module is given as:

L(EncU ,DecU ) = ∥st − DecU (zt)∥2 + βKL[EncU (zt|st) ∥ pU (z)] where zt ∼ EncU (zt|st)
(25)

B.3 Goal State Representations

Since the RSSM integrates a state representation using a sequence of observations, it does not work
well for single observations. To generate goal state representations using single observations, we
train an MLP separately that tries to approximate the RSSM outputs (st) from the single observations
(ot). We refer to these representations as static state representations. Moreover, since GCSR modules
require state representations at large temporal distances, it can be practically infeasible to generate
them using RSSM. Thus, we use static state representations to generate training data for the GCSR
module as well. The MLP is a dense network with a tanh activation at the final output layer. It
is trained to predict the RSSM output (computed using a sequence of images) using single-image
observations. To avoid saturating gradients, we use an MSE loss on the preactivation layer using
labels transformed as lnew = atanh(clip(l, δ − 1, 1 − δ)). The clipping helps avoid computational
overflows; we use δ = 10−4.
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Name Symbol Value
Train batch size B 16

Replay trajectory length L 64
Replay coarse trajectory length Lc 48

Worker abstraction length K 8
Explorer Imagination Horizon HE 64

Return Lambda λ 0.95
Return Discount (tree) γ 0.95

Return Discount (worker & explorer) γL 0.99
State similarity threshold ∆R 0.7
Plan temporal resolutions Q {16, 32, 64, 128, 256}

Maximum Tree depth during training D 5
Maximum Tree depth during inference DInf 8

Target entropy η 0.5
KL loss weight β 1.0

GCSR latent size - 4× 4
RSSM deter size - 1024
RSSM stoch size - 32× 32

Optimizer - Adam
Learning rate (all) - 10−4

Adam Epsilon - 10−6

Optimizer gradient clipping - 1.0
Weight decay (all) - 10−2

Activations - LayerNorm + ELU
MLP sizes - 4× 512
Train every - 16
Prallel Envs - 1

Table 2: Agent Hyperparameters

B.4 Implementation Details

We implement two functions: policy and train, using the hyperparameters shown in Table 2. The
agent is implemented in Python/Tensorflow with XLA JIT compilation. Using XLA optimizations,
the total training wall time is 2− 3 days on a consumer GPU (NVIDIA 4090 RTX 24gb). During
inference, the compiled policy function runs in 4.6ms on average, enabling real-time replanning at
217.39 times per second (assuming minimal environmental overhead).

B.4.1 Policy Function

At each step, the policy function is triggered with the environmental observation ot. The RSSM
module processes the observation ot and the previous state st−1 to yield a state representation st.
During exploration, the manager πE uses the st to generate a worker goal using the unconditional
VAE. During task policy, the planning manager πP generates subgoals in the context of a long-term
goal sg, and the first directly reachable subgoal is used as the worker’s goal. Finally, the worker
generates a low-level environmental action using the current state and the worker goal (st, swg). The
algorithm is illustrated in (Alg. 1)

B.4.2 Train Function

The training function is executed every 16-th step. A batch size B of trajectories κ and coarse
trajectories κc is sampled from the exploration trajectories or the expert data. The length of extracted
trajectories is L and the length of coarse trajectories is Lc spanning over Lc ×K time steps. Then
the individual modules are trained sequentially (Alg. 6):

• RSSM module is trained using κ via the original optimization objective [13] followed by
the static state representations (Sec. B.3).

• The GCSR module is trained using the coarse trajectory κc (Sec. 2.2).
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Algorithm 1 DHP Policy Function

Require: Observation ot, Goal og , agent state t, st−1, at−1, swg , mem_buff, mode
Ensure: Action at, new agent state

1: st ← wm(ot, st−1, at−1) {World model update}
2: if t mod K = 0 then
3: if mode == eval then
4: sg ← static_state(og) {Sec B.3}
5: d← 0 {Subgoal planning}
6: while ¬is_reachable(st, sg) ∧ d < DI do
7: z ∼ πP (z|st, sg)
8: sg ← DecG(z, st, sg)
9: d← d+ 1

10: end while
11: swg ← sg
12: else
13: memt ← extract_mem(mem_buff) {Extract memory Sec. 2.4.2}
14: z ∼ πE(z|st,memt)
15: swg ← DecU (z)
16: end if
17: mem_buff← concat(mem_buff[1 :], st)
18: end if
19: at ∼ πW (at|st, swg)
20: return at, t+ 1, st, at, swg,mem_buff

• The worker policy is optimized by extracting tuples (st, st+K) from the trajectories κ and
running the worker instantiated at st with worker goal as st+K (Sec. B.1).

• The planning policy is trained using sample problems extracted as pairs of initial and final
states (st, sg) at randomly mixed lengths from κc. Then the solution trees are unrolled and
optimized as in Sec. 2.3.

• Lastly, the exploratory policy is also optimized using each state in κ as the starting state
(Sec. 2.4.3).

Algorithm 2 Training the GCSR Module

Require: Experience dataset data
1: Initialize triplets← ∅
2: for all window sizes q ∈ Q do
3: Append extract_triplets(data, q) to triplets {Extract (st, st+q/2, st+q)}
4: end for
5: update_gcsr(triplets) {Update CVAE using ELBO objective (Eq. 1)}

Algorithm 3 Training the Worker Policy

Require: Experience dataset data
1: (init,wk_goal)← extract_pairs(data,K) {Extract (st, st+K) state pairs}
2: traj← imagine(init,K) {On-policy trajectory rollout}
3: rew← cosine_max(traj,wk_goal) {Goal similarity reward}
4: ret← lambda_return(rew) {Compute λ-returns (Eq. 22)}
5: update_worker(traj, ret) {Update Worker SAC with REINFORCE (Eqs. 23, 24)}
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Algorithm 4 Training the Planner Policy

Require: Experience dataset data
1: task← sample_task_pairs(data) {Sample (sinit, sgoal) at mixed temporal distances}
2: tree← imagine_plan(task) {Generate subtask tree (Sec. 2.3.1)}
3: rew, is_term← is_reachable(tree) {Node rewards & terminals (Eqs. 2, 3)}
4: ret← tree_lambda_return(rew, is_term) {Lambda return for trees (Eq. 6)}
5: update_planner(tree, ret) {Update Planner SAC with REINFORCE (Eqs. 8, 9)}

Algorithm 5 Training the Explorer Policy

Require: Experience dataset data
1: (init)← extract_states(data) {Extract st states as initial states}
2: traj← imagine(init, HE) {On-policy trajectory rollout}
3: rew← expl_rew(traj) {Exploratory reward (Eq. 10)}
4: ret← lambda_return(rew) {Compute λ-returns (Eq. 11)}
5: update_explorer(traj, ret) {Update Explorer SAC (Eqs. 12, 13)}

Algorithm 6 Overall Training Procedure

Require: Experience dataset data, current mode mode
1: train_rssm(data) {Train world model per [13]}
2: train_gcsr(data) {Alg. 2}
3: train_worker(data) {Alg. 3}
4: train_planner(data) {Alg. 4}
5: train_explorer(data) {Alg. 5}

C Broader Impacts

C.1 Positive Impacts

The imagination-based policy optimization mitigates hazards that can occur during learning. Efficient
training can reduce the carbon footprint of the agents. The agent produces highly interpretable plans
that can be verified before execution.

C.2 Negative Impacts and Mitigations

• Inaccurate Training: Imagination can cause incorrect learning. Mitigation: Rigorous
testing using manual verification of world-model reconstructions against ground truths.

• Malicious Use: Hierarchical control could enable more autonomous adversarial agents.
Mitigation: Advocate for gated release of policy checkpoints.

C.3 Limitations of Scope

Our experiments focus on simulated tasks without human interaction. Real-world impacts require
further study of reward alignment and failure modes.
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D Sample Exploration Trajectories

We compare sample trajectories generated by various reward schemes in this section. Fig. 9 shows
the sample trajectories of an agent trained to optimize the vanilla exploratory rewards. Fig. 10 shows
the sample exploration trajectories of an agent that optimizes only for the GCSR-based rewards. Fig.
11 shows sample exploration trajectories of an agent that optimizes for GCSR exploratory rewards
but without memory. The GCSR rewards-based agent generates trajectories that are less likely to
lead to repeated path segments or remaining stationary. Removing the memory can sometimes cause
inefficient trajectories, where the agent may not perform as expected.

Figure 9: Sample exploration trajectories using the vanilla exploratory rewards. The agent identifies
states with unclear representations and successfully navigates to them, indicating sufficient navigation
capabilities. However, once the agent reaches the goal, it stays there, leading to lower-quality data.

Figure 10: Sample exploration trajectories using the GCSR modules for the path-segments-based
rewards. It can be seen that the agent continuously moves and explores longer state connectivity.

Figure 11: Sample exploration trajectories using the default strategy without the Memory. The
resulting data can have some problematic trajectories.
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E Robo Yoga Samples

Figure 12: Figure shows a sample trajectory (every 8-th frame) for the walker embodiment given
a headstand goal. The agent can maintain a constant headstand; however, it sways about the goal
position. This is because the agent is trained to reach the goal position and not to stay there.

Figure 13: Some failure cases from the plans constructed for the yoga quadruped task where the
agent hallucinates wrong midway states that get verified by the similarity check. We believe this
is because the quadruped agent has a richer state space than the walker, and the states are not very
distinct.
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L State space size Success rate Path lengths
2 16 100% 2.42± 0.56
3 512 86.47% 3.12± 1.66

Table 3: Performance at the lights-out puzzle.

F Lightsout Puzzle

Lightsout is a complex puzzle where the agent is given a binary 2D array representing the state of
lights on/off in a grid of rooms. The objective is to turn off the lights in all rooms; but, toggling the
lights in room (i, j) toggles the lights of connected rooms [(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)].
We measure reachability by iterating over all actions to check if the goal state can be reached in one
step (errorless check). The agent is required to plan a path from the initial state to the final all-out
state.

To assess the planning capability of DHP, the agent is stripped down to just the planning actor and
critic, both of which are implemented as simple dense MLPs. The actor outputs directly in the state
space. For a grid L × L, the size of the state space is 2L

2

. Thus, the agent must choose the right
subgoal state of the possible 2L

2

at each step in tree planning. This is more complex than the 25-room
task, where the agent had to essentially pick from 25 rooms at each step. The agent plans up to a
depth of D = 5, and all branches must terminate in success (within a depth of D = 5) in a single
attempt to score 1; otherwise, it scores 0. Another added complication is that some subgoals can be
dead ends and may not lead to the goal. We observe that our agent performs decently (path lengths
refer to the lengths of the successful paths). Table 3 shows the final results.
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