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Abstract

Modern deep learning models often exhibit overconfident predictions, inadequately
capturing uncertainty. During model optimization, the expected calibration error
tends to overfit earlier than classification accuracy, indicating distinct optimiza-
tion objectives for classification error and calibration error. To ensure consistent
optimization of both model accuracy and model calibration, we propose a novel
method incorporating a probability-dependent gradient decay coefficient into loss
function. This coefficient exhibits a strong correlation with the overall confidence
level. To maintain model calibration during optimization, we utilize a proportional-
integral-derivative (PID) controller to dynamically adjust this gradient decay rate,
where the adjustment relies on the proposed relative calibration error feedback
in each epoch, thereby preventing the model from exhibiting over-confidence or
under-confidence. Within the PID control system framework, the proposed relative
calibration error serves as the control system output, providing an indication of the
overall confidence level, while the gradient decay rate functions as the controlled
variable. Moreover, recognizing the impact of gradient amplitude of adaptive decay
rates, we implement an adaptive learning rate mechanism for gradient compensa-
tion to prevent inadequate learning of over-small or over-large gradient. Empirical
experiments validate the efficacy of our PID-based adaptive gradient decay rate ap-
proach, ensuring consistent optimization of model calibration and model accuracy.
The code of implementation is available in https://github.com/UHIF/PID_AGD.

1 Inroduction

Model calibration aims to refine the uncertainty distribution of model output, ensuring its faithful
reflection of the inherent uncertainty characteristics. Softmax mapping is commonly employed
in the baseline learning to establish the output-probability mapping. Yet, with the escalation in
model parameterizations, the output uncertainty distribution from over-parameterized models tends
to become over-confident [1]. Consequently, the baseline strategy, which exclusively depends on
Softmax mapping without accounting for calibration characteristics as optimization objectives, fails to
achieve perfect model calibration. Particularly in high-risk applications, inadequate model calibration
poses heightened safety risks [2, 3].

There are three primary strategies for calibrating uncertainty in deep learning models: Bayesian
neural networks, post-processing calibration, and training-based model calibration. Bayesian neural
networks (BNNs) integrate Bayesian inference into their framework, distinguishing them from tradi-
tional neural networks [4, 5]. In contrast to conventional neural networks, which yield point estimates,
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BNNs offer a probability distribution across potential outputs, enabling uncertainty quantification in
predictions [6]. This is accomplished by assigning prior distributions to the network’s parameters and
iteratively updating these distributions using Bayes’ theorem as more data is acquired.

The post-processing calibration methods involve establishing the additional output-probability re-
lationship through supplementary mappings to refine output uncertainty distribution [7, 8, 9]. This
calibration method avoids disrupting the original model’s decision-making pertaining to the primary
task, maintaining the original generalization performance [10]. However, a notable drawback emerges:
the necessity of additional structure to establish the mapping between outputs and probabilities [11].
This task possesses unique characteristics, demanding calibrated properties to construct output-
probability mapping structures, optimization goals, and strategies. Unlike typical loss functions
and metrics in machine learning, uncertainty is sample-specific; however, validating it individually
is infeasible [12]. Furthermore, when validated collectively, it fails to fully represent individual
sample properties, presenting challenges in calibrating individual sample. This presents a difficulty
in calibrating model confidence via post-processing structures [13, 14].

Another approach to model calibration involves integrating various elements into the baseline opti-
mization strategy for deep learning [7]. This enhancement of elements during the optimization leads
to an improvement in the uncertainty distribution of the model output. These methods encompass a
range of techniques including pre-training [15], data augmentation [16], label smoothing [17], weight
decay [1], early stopping [18], structure sparsity [19], convolutional structure [20], and others. These
methods not only bolster the calibration of the model and refine the output uncertainty distribution
but also delve into the dynamic attributes of the model optimization, thereby enhancing decision-
making. Additionally, they improve the interpretability in the decision-making and optimization
process. Furthermore, certain loss functions for model output distribution have been devised based
on uncertainty properties. These include MMCE [14], Correctness Ranking Loss [21], CALS [22],
Focal loss [23, 24], and FLSD [25]. They jointly address classification accuracy and confidence
calibration to mitigate the inclination of the over-confidence and under-confidence.

In the optimization of Softmax-based cross-entropy loss, model accuracy and model calibration
represent distinct optimization characteristics [26]. Model calibration tends to be overfitting earlier
in the optimization compared to accuracy [1]. To ensure consistent optimization between model
accuracy and calibration, it is imperative to achieve high accuracy while maintaining adequate
calibration. Our approach introduces a hyperparameter that controls the gradient decay rate within
the Softmax output-probability mapping. It indicated a negative correlation between the gradient
decay rate with increasing instance-level probability and the overall confidence distribution [27]. To
achieve consistent optimization of accuracy and calibration, we propose detecting model calibration
through a validation set in the optimization process. Drawing inspiration from the notable success of
proportional-integral-derivative (PID) controllers in automatic control systems [28], we introduce
an Adaptive Probability-dependent Gradient Decay through PID controller approach to calibrate the
model. Moreover, considering that probability-dependent gradient decay rate may impact gradient
amplitude, we design a dynamic learning rate mechanism corresponding to the changing gradient
decay rate to offset fluctuations in gradient amplitude.

Our main contributions in this work can be summarized as follows: (1) We propose adaptive
probability-dependent gradient decay via PID controller. This approach utilizes the feedback mecha-
nism from automatic control to detect model calibration and adjust the probability-dependent gradient
decay rate coefficient in Softmax, ensuring consistent optimization of model calibration and accuracy.
(2) To counteract fluctuations in gradient magnitude caused by the adaptive probability-dependent
gradient decay rate, we introduce a dynamic learning rate schedule to follow the dynamic decay rate.
(3) Empirical experiments confirm the effectiveness of our approach, achieving improved model
calibration while maintaining the model’s generalization ability.

2 Problem formulation

2.1 Model calibration

Considering a dataset
{
(xi, yi)

}N

i=1
⊂ Rn × Rm and classifier f maps x to the outputs zj , j =

1, . . . ,m on m classes and k = argmaxjzj . The ground-truth y and predicted labels ŷ are formulated
in one-hot format where yc = 1 and ŷk = 1, where c represents the truth class. The associated
confidence score of the predicted label in baseline is p̂ = max sj(z), j = 1, . . . ,m, where s (·)
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Figure 1: The gradient magnitude of different gradient decay β with increasing probability pc.

represents Softmax mapping Rm → Rm. However, Softmax mapping probabilities are not accurately
reflected in the properties of model output [1]. The probability estimation of modern deep models
may show over-confidence or under-confidence.

Confidence Calibration Perfect calibration of neural network can be realized when the confidence
score reflects the real probability that the classification is classified correctly. Formally, the perfectly
calibrated network satisfied P (ŷ = y|p̂ = p) = p for all p ∈ [0, 1]. However, in practical applications,
the sample is divided into M bins {Db}Mb=1. The limited availability of data restricts the ability to
accurately estimate the calibration error. According to their confidence scores and the calibration error,
an approximation is calculated for each bins {Db}Mb=1. Db contains all sample with p̂ ∈

[
b
M , b+1

M

)
.

Average confidence is computed as conf (Db) =
1

|Db|
∑

i∈Db
p̂i and the bin accuracy is computed

as acc (Db) =
1

|Db|
∑

i∈Db
I
(
yic = ŷic

)
. ECE and MCE [29] are calculated as follows.

ECE =

M∑
b=1

|Db|
N
|acc (Db)− conf (Db)| (1)

MCE = max
b∈{1,...,M}

|acc (Db)− conf (Db)| (2)

2.2 Parametric Softmax

Softmax cross-entropy (CE) is expressed as

J = − log
ezc∑m
j=1 e

zj
(3)

We introduce two hyperparameters in the Softmax mapping, which is expressed as follows:

J = − log
ezc/τ∑

j ̸=c e
zj/τ + βezc/τ

(4)

The parametric Softmax cross-entropy can be approximated as the following max function, as shown
in (5). Minimizing this max function is expected that output zc can be larger than other class
outputs zj , j = 1, . . . ,m, j ̸= c, which is in line with the logic of the one-versus-all classification
decision-making cls (z (x)) = max {zj (x)} , j = 1, . . . ,m.

lim
τ→0

− log
ezc/τ∑

j ̸=c e
zj/τ + βezc/τ

= lim
τ→0

max {log β, zj − zc/τ , j = 1, . . . ,m, j ̸= c} (5)

The temperature coefficient τ has been extensively investigated in model calibration. Temperature
scaling represents a commonly utilized calibration technique in post-processing calibration methods.
β is regarded as a soft margin, with its approximation procedure detailed in Eq. (5). Consequently,
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(a) β = 20 (b) β = 10 (c) β = 5

(d) β = 1 (e) β = 0.1 (f) β = 0.01

Figure 2: Confidence and reliability diagrams with ResNet18 on CIFAR-100. (bins = 10) In
each subplot, the left plot illustrates the sample distribution in individual bins, while the right plot
displays the average confidence and accuracy in each bin. Ideally, calibration aims for consistency
between accuracy and average confidence in each bin. It indicates that a smaller gradient decay rate
β is associated with more pronounced miscalibration of the model, while a larger gradient decay rate
mitigates this issue.

CE can be interpreted as a margin-based loss function. Nonetheless, due to the distance distortion
between input and representation spaces, maximizing the margin in the input space of models is not
achieved simultaneously by large margin Softmax. Consequently, its dynamic characteristic in the
optimization process tends to be ambiguous.

2.3 Probability-dependent gradient decay

Considering the Softmax with the sole hyperparameter β, the temperature τ is set to 1.

J = − log
ezc∑

j ̸=c e
zj + βezc

(6)

Let us first consider the gradient of the Softmax.

∂J

∂zc
= −

∑
ezj − ezc∑

ezj + (β − 1) ezc
(7)

∂J

∂zj
=

ezj∑
ezj + (β − 1) ezc

(8)

Introducing probabilistic output pj = ezj

ez1+···+ezm as an intermediate variable, we obtain

∂J

∂zj
=


− 1− pc
1 + (β − 1)pc

, j = c

pj
1 + (β − 1)pc

, j ̸= c
(9)

Fig. 1 illustrates how the introduced hyperparameter β determines the gradient decay rate as
the instance-level probability increases. More empirical experimental results can be found in the
Appendix A.2. A smaller β results in a reduced decay rate of gradient amplitude corresponding
to probability. Empirical investigations have shown that the magnitude of β during optimization
determines the average confidence level and consequently impacts the calibration performance of
the model. Fig. 2 demonstrates that a low gradient decay rate exacerbates the over-confidence in
the model’s output, whereas a high gradient decay rate can alleviate this issue and yield improved
calibration results [27].
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Figure 3: The framework of PID controller-based adaptive probability-dependent gradient decay.

3 Methodology

The probability-dependent gradient decay rate exhibits a negative correlation with the model’s
average confidence, as shown in Fig. 2 and Appendix A.2. Higher gradient decay rates result in
a concave reduction in gradient magnitude as the sample confidence increases, thereby yielding a
smoother distribution of confidence. Although high gradient decay rates can mitigate over-confidence
distributions for samples, excessively small or large gradient magnitudes may lead to inadequate
optimization. Consequently, we propose an adaptive gradient decay rate by a PID controller to ensure
model calibration on optimization. Additionally, we propose a variable learning rate schedule to
adjust the gradient and counterbalance the impact of fluctuating gradient decay rates on gradient
magnitude. The whole framework is shown in Fig. 3.

3.1 PID controller approach for adaptive probability-dependent gradient decay

Our approach focuses on regulating the gradient decay rate by monitoring the average confidence
and accuracy within each bin of the validation set throughout model optimization. This aims to
enhance the model’s calibration and dynamic properties during optimization. Eq. (1) specifies
the desired calibration by representing only the absolute value of the difference between average
confidence and accuracy within each bin. However, it fails to capture the under-confidence and
over-confidence in model calibration. Therefore, we propose a Relative Calibration Error (RCE) to
reflect over-confidence and under-confidence:

RCE =

M∑
b=1

|Db|
N

(conf (Db)− acc (Db)) (10)

In the control system depicted in Fig. 3, RCE serves as the output, with the gradient decay coefficient
acting as the controlled variable. The target RCE value is set to 0. During each iteration, the
model processes the validation set to calculate the RCE. If the RCE is greater than 0, it indicates
over-confidence in the probability distribution, necessitating an increase in the gradient decay rate
during model optimization. Conversely, if the RCE is less than 0, it signifies under-confidence in
the probability distribution, prompting a decrease in the gradient decay rate. The PID controller
determines the specific adjustment required for the gradient decay coefficient β. A PID controller
continually computes an error e (t), representing the disparity between the desired optimal RCE and
the control system output. It then applies a correction u (t) to the system, incorporating proportional
(P ), integral (I), and derivative (D) terms of e (t). Mathematically, there is:

u (t) = Kpe (t) +Ki

∫ t

0

e (t) dt+Kd
∂

∂t
e (t) (11)
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Algorithm 1: PID controller-based adaptive gradient decay

Data: Training set
{
xtrain
i , ytraini

}N

i=1
; Validation set

{
xval
i , yvali

}Nval

i=1
; Classification model

fθ; Learning rate λ; Batch size NB ; Maximum iteration Tmax; PID controller Kp, Ki and
Kd.

Result: Classification model fθ
1 Initialize θ, β, λ;
2 while t < Tmax do
3 # Adjust gradient decay rate β by PID controller;
4 RCE of validation set← Computing by Eq.(10);
5 u (t)← Computing by Eq.(11);
6 βt ← Computing by Eq.(12);
7 # Adjust learning rate λ by gradient compensation;
8 α (t)← Computing by Eq.(14);
9 λ (t)← Computing by Eq.(15);

10 # Optimize neural network by gradient-descent;
11 θ ← θ + λ (t)∂J∂θ ;
12 end

where Kp, Ki and Kd are the gain coefficients on the P , I and D terms, respectively. The coefficients
Kp, Ki and Kd determine the contributions of present, past and future errors to the current correction.
e (t) = −RCE (t) represents the error of the t th optimization epoch. Since 0 < β, the updating step
is described as follows:

βt = βt−1e
−u(t) (12)

The PID controller is a widely employed feedback control mechanism in engineering and industrial
processes [30, 28]. It is utilized in systems requiring precise control over variables. As depicted in
Fig. 3, the PID controller is utilized in the model optimization to regulate RCE, ensuring balanced
model calibration and mitigating overfitting compared to model accuracy within the baseline strategy.
As depicted in (11), the PID comprises three terms: the proportional (P ) term, integral (I) term,
and derivative (D) term. Firstly, the proportional (P ) action ensures that the controller responds
proportionally to the current error. It provides an immediate correction to minimize the RCE.
Secondly, the integral (I) action continuously integrates the error over time and adjusts the control
signal accordingly, eliminating any steady-state error. It eliminates any steady-state error by gradually
reducing the cumulative error to zero. Thirdly, the derivative (D) action anticipates the future behavior
of the error by considering its rate of change, damping oscillations and overshoots to improve system
stability and transient response. PID controllers play a crucial role in maintaining stability, accuracy,
and efficiency in ensuring precise model calibration by adjusting probability-dependent gradient
decay in model optimization.

3.2 Adaptive learning rate for gradient compensation

Changes in the probability-dependent gradient decay rate significantly impact model calibration
because varying decay rates change dynamic characteristic on the optimization for different samples.
While a large gradient decay rate can maintain a similar confidence level in optimizing both high-
confidence and low-confidence samples, a small decay rate results in a curriculum learning sequence
where confidence in low-confidence samples increases only when confidence in high-confidence
samples reaches a certain threshold. Nonetheless, varying decay rates also lead to changing gradient
magnitudes, thereby influencing model optimization. For instance, a small gradient at the outset of
optimization could result in insufficient optimization, thereby diminishing the model’s generalization.
To mitigate the influence of gradient magnitude fluctuations on model optimization, we implement a
dynamic learning rate to counteract the impact of gradient fluctuations caused by varying β.

Since
∣∣∣ ∂J
∂zc

∣∣∣ +∑
j ̸=c

∣∣∣ ∂J
∂zj

∣∣∣ = 2
∣∣∣ ∂J
∂zc

∣∣∣, ∣∣∣ ∂J
∂zc

∣∣∣ can represent the gradient magnitude of the sample in
output layer. Building on (9), we establish a metric to quantify the magnitude of the gradient at that
specific gradient decay rate β:
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(a) Uncalibrated (b) Ours (c) Temp. Scaling

(d) Matrix Scaling (e) Vector Scaling (f) Hist. Bin.

Figure 4: Confidence histograms and reliability diagrams for different calibration methods
with ResNet35 on CIFAR-100. In each subplot, the left plot illustrates the sample distribution in
individual bins, while the right plot displays the average confidence and accuracy in each bin. Our
training calibration can improve performance on confidence estimate.

α (t) =

∫ 1

0

1− pc
1 + (βt − 1) pc

dpc (13)

Since β > 0, we obtain

α (t) =

{ βt ln βt−βt+1
(βt−1)2

0.5

βt ̸= 1
βt = 1

(14)

The learning rate, adjusted to account for the gradient dynamics over t epoch, is modified according
to the following formula:

λ (t) = λ (t− 1)α (t− 1)/α (t) (15)
where λ (t) is learning rate of t th optimization epoch. The assumption underlying the gradient com-
pensation proposed in (13)-(15) relies on the uniform distribution of samples within the probability
interval [0, 1]. Integrating

∣∣∣ ∂J
∂zc

∣∣∣ within the probability range [0, 1] approximates the variation in
gradient amplitudes across different gradient decay coefficients β. However, this assumption may not
hold true during the optimization process. Nonetheless, this simple adaptive learning rate approach
can effectively mitigate the issue of excessively small gradients resulting from overly large gradient
decay rates. When the magnitude decreases, learning rate increases accordingly to compensate for the
change in gradient amplitude. The whole Adaptive Probability-dependent Gradient Decay method by
PID controller (PID-AGD) for model calibration is described in Algorithm 1.

4 Empirical experiments

The experimental validation comprises four main components. Firstly, we assess the performance of
our algorithm and other calibration methods in terms of model calibration. Secondly, we compare
the accuracy and model calibration results of our method with those obtained using different loss
functions in supervised learning. Thirdly, we conduct ablation experiments on the proportional term
Kp, integral term Ki, and differential term Kd across PID controller. Finally, we conducted the
ablation experiment with different optimizers to verify the effectiveness of the adaptive learning rate
for gradient compensation.

Train setting The baseline models include ResNet and VGG variants. The datasets comprised SVHN,
CIFAR-10/100, 102 Flower and Tiny-ImageNet. In CIFAR-10/100, the training set contained 40,000
images, with testing and validation sets comprising 10,000 images each. The ratio of training set,
validation set and test set in 102 Flower is 2:1:1 respectively. For Tiny-ImageNet, 100,000 images
were used for training, and 10,000 images for testing and validation. SVHN utilized 58,606 training
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Table 1: The calibration performance of different post-hoc calibration methods. The best results
are in bold, and relative improvements over 2nd best result in each section are in red. Results are
averaged over five runs with different seeds.

Dataset Model Metric Uncalibrated Hist. Binning Temp. Scaling Vector Scaling TS-AvUC Ours

CIFAR-100 ResNet18
ECE 0.160±0.025 0.025±0.006 0.033±0.006 0.061±0.012 0.028±0.004 0.006(↓ 0.019)
MCE 0.344±0.055 0.078±0.012 0.059 ±0.011 0.138 ±0.022 0.052(↓ 0.007) 0.068↑±0.018

AdaECE 0.160±0.023 - 0.030±0.007 0.061±0.011 0.027±0.006 0.007(↓ 0.020)

CIFAR-100 ResNet35
ECE 0.172±0.027 0.034±0.009 0.026±0.004 0.056±0.011 0.035±0.008 0.011 (↓ 0.015)
MCE 0.351±0.061 0.064±0.010 0.053(↓ 0.010) 0.117±0.019 0.146±0.025 0.063↑±0.011

AdaECE 0.172±0.028 - 0.027±0.006 0.053±0.010 0.034±0.007 0.014(↓ 0.013)

CIFAR-100 ResNet50
ECE 0.186±0.031 0.025±0.004 0.030±0.013 0.073±0.021 0.052±0.012 0.016(↓ 0.009)
MCE 0.407±0.101 0.110±0.015 0.091±0.022 0.153±0.036 0.116±0.021 0.056(↓ 0.035)

AdaECE 0.186±0.029 - 0.029±0.012 0.071±0.028 0.052±0.010 0.006(↓ 0.023)

CIFAR-100 VGG16
ECE 0.240±0.106 0.035±0.002 0.029±0.003 0.035±0.006 0.044±0.008 0.013(↓ 0.016)
MCE 0.508±0.151 0.042(↓ 0.002) 0.093±0.029 0.084±0.009 0.101±0.026 0.044↑±0.003

AdaECE 0.240±0.106 - 0.029±0.004 0.035±0.006 0.044±0.008 0.012(↓ 0.017)

CIFAR-10 ResNet35
ECE 0.054±0.010 0.011±0.001 0.015±0.002 0.014±0.003 0.015±0.006 0.009(↓ 0.002)
MCE 0.300±0.085 0.255±0.102 0.121±0.026 0.077(↓ 0.030) 0.121±0.021 0.089↑±0.012

AdaECE 0.054±0.011 - 0.014±0.004 0.013±0.002 0.013±0.005 0.010(↓ 0.003)

SVHN ResNet18
ECE 0.021±0.006 0.016±0.002 0.009±0.003 0.007±0.002 0.010±0.003 0.005(↓ 0.002)
MCE 0.286±0.053 0.251(↓ 0.013) 0.313±0.052 0.313±0.069 0.315±0.080 0.264↑±0.084

AdaECE 0.021±0.006 - 0.010±0.003 0.009±0.002 0.013±0.005 0.006(↓ 0.003)

102 Flower ResNet50
ECE 0.101±0.018 0.084±0.012 0.086±0.011 0.093±0.015 0.075±0.009 0.033(↓ 0.042)
MCE 0.231±0.048 0.365±0.066 0.180±0.041 0.163±0.043 0.165±0.044 0.132(↓ 0.031)

AdaECE 0.100±0.017 - 0.089±0.012 0.098±0.019 0.079±0.011 0.031(↓ 0.048)

Tiny-ImageNet ResNet35
ECE 0.144±0.022 0.033±0.005 0.017±0.003 0.053±0.007 0.017±0.003 0.009(↓ 0.008)
MCE 0.236±0.052 0.055±0.016 0.035±0.010 0.093±0.021 0.030(↓ 0.005) 0.035↑±0.006

AdaECE 0.143±0.021 - 0.017±0.004 0.054±0.008 0.016±0.002 0.010(↓ 0.014)

VisDrone YOLOv3
ECE 0.112 ±0.011 0.079 ±0.008 0.082 ±0.007 0.091±0.015 0.074 ±0.010 0.044(↓ 0.030)
MCE 0.232 ±0.033 0.325 ±0.032 0.178 ±0.025 0.148 ±0.019 0.159 ±0.023 0.136(↓ 0.012)

AdaECE 0.113 ±0.012 - 0.085 ±0.008 0.092 ±0.017 0.078 ±0.011 0.046(↓ 0.032)

COCO YOLOv3
ECE 0.115 ±0.019 0.095 ±0.011 0.091 ±0.013 0.104 ±0.016 0.092 ±0.015 0.077(↓ 0.014)
MCE 0.224 ±0.025 0.158 ±0.025 0.158 ±0.027 0.165 ±0.028 0.164(↓ 0.001) 0.174 ±0.030

AdaECE 0.117 ±0.018 - 0.093 ±0.014 0.105 ±0.018 0.094 ±0.018 0.078(↓ 0.015)

images, 14,651 validation images, and 26,032 testing images. VisDrone contains 5471 training
images, 1548 validation images and 3190 testing images. COCO utilized 82,783 training, 40,504
validation, and 40,775 testing images. In all classification experiments, the learning rate, momentum
and weight clipping were set to 0.1, 0.9 and Norm=3, respectively. The learning rate decreased to
10% at 40% and 80% of the iterations, with weight decay set to 10−4 and a total of 200 iterations.
For Tiny-ImageNet, the learning rate was set to 0.01 with a batch size of 64. The number of bins in
all calibration metric are set to 10. P , I and D in our method are set to 1, 0.1, 1.

4.1 Calibration performance with other calibration methods

The experiments in this subsection aim to validate the efficacy of our proposed calibration method
against baseline calibration methods, which employs PID control of the gradient decay rate. We
compare our approach with other post-processing calibration methods, including Histogram Binning
[31], Temperature Scaling [10], Vector Scaling, and TS-AvUC [13]. The evaluation metrics employed
include ECE [29], MCE, and Adaptive Expected Calibration Error (AdaECE) [12]. The datasets
primarily consist of CIFAR-10/100, SVHN, 102 Flower, Tiny-ImageNet, VisDrone and COCO,
while the models predominantly belong to the VGG, ResNet and YOLO series. The comprehensive
experimental results are presented in Table 1. The results of the visualization of all methods in
ResNet35 on data CIFAR-100 for confidence histograms and reliability diagrams are presented in
Fig. 4.

The results presented in Table 1 demonstrate that all methods effectively enhance the calibration
of the model. However, post-processing calibration methods rely on an optimized independent
output-probability mapping, which doesn’t alter the optimization process of the original model itself.
Consequently, these methods can solely refine the probability distribution of the model output. Our
proposed method surpasses other calibration techniques in terms of overall ECE, MCE, and AdaECE.
Therefore, these experimental findings underscore the effectiveness of our approach in enhancing
model calibration by dynamically adjusting the gradient decay rate during the model optimization.
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Table 2: The calibration performance and accuracy of different objective functions. The best results
are in bold. Results are averaged over five runs with different seeds.

Methods Models CIFAR-10 CIFAR-100

ACC (%) ECE MCE AdaECE ACC (%) ECE MCE AdaECE

Softmax
ResNet18 93.7±0.39 0.041±0.010 0.281±0.076 0.042±0.013 73.6±0.29 0.160±0.026 0.344±0.048 0.160±0.026

ResNet35 93.9±0.39 0.054±0.015 0.300±0.083 0.054±0.016 73.8±0.30 0.172±0.022 0.351±0.077 0.172±0.023

VGG16 92.1±0.41 0.066±0.022 0.339±0.091 0.068±0.023 69.2±0.26 0.233±0.054 0.476±0.112 0.236±0.053

Cosface
ResNet18 93.9±0.45 0.053±0.011 0.352±0.072 0.055±0.013 74.2±0.51 0.185±0.046 0.501±0.162 0.183±0.050

ResNet35 95.6±0.42 0.048±0.012 0.317±0.095 0.049±0.011 74.6±0.38 0.181±0.065 0.488±0.127 0.178±0.063

VGG16 92.7±0.58 0.067±0.019 0.390±0.101 0.068±0.020 71.4±0.52 0.238±0.081 0.567±0.125 0.233±0.085

Center loss
ResNet18 94.5±0.41 0.038±0.009 0.337±0.075 0.040±0.008 74.1±0.30 0.082±0.013 0.222±0.071 0.085±0.015

ResNet35 95.5±0.51 0.043±0.010 0.280±0.099 0.045±0.012 74.2±0.31 0.098±0.031 0.250±0.096 0.101±0.030

VGG16 93.1±0.41 0.034±0.009 0.349±0.083 0.034±0.010 72.1±0.37 0.216±0.042 0.472±0.104 0.231±0.045

DCA
ResNet18 91.9±0.32 0.020±0.006 0.156±0.038 0.022±0.007 72.1±0.25 0.047±0.011 0.156±0.024 0.049±0.012

ResNet35 92.3±0.43 0.035±0.012 0.186±0.046 0.034±0.010 73.1±0.28 0.067±0.021 0.184±0.051 0.066±0.023

VGG16 90.7±0.28 0.027±0.008 0.255±0.078 0.027±0.008 70.9±0.37 0.133±0.028 0.269±0.059 0.141±0.032

Ours
ResNet18 95.0±0.41 0.007±0.002 0.078±0.021 0.008±0.001 74.3±0.43 0.006±0.002 0.068±0.018 0.007±0.002

ResNet35 95.6±0.51 0.009±0.002 0.089±0.012 0.010±0.003 75.4±0.39 0.011±0.003 0.063±0.011 0.014±0.002

VGG16 92.6±0.35 0.011±0.002 0.083±0.031 0.012±0.004 71.9±0.35 0.028±0.008 0.044±0.003 0.030±0.010

(a) P:0 I:0 D:0 (b) P:1 I:1 D:1 (c) P:1 I:2 D:1 (d) P:1 I:0.1 D:1 (e) P:1 I:0.01 D:1

(f) P:1 I:0.01 D:2 (g) P:1 I:0.5 D:0.1 (h) P:1 I:0.5 D:0.01 (i) P:0.5 I:0.5 D:0.1 (j) P:5 I:0.5 D:0.1

Figure 5: Accuracy and ECE of different PID settings with ResNet35 on CIFAR-100. The
preceding figures illustrate the testing accuracy and ECE outcomes in the model optimization.
Notably, the accuracy appears insensitive to the PID controller configuration. Nonetheless, excessive
settings of P , I , and D may compromise the stability of ECE during the model optimization.

4.2 Consistent optimization in supervised learning

Model accuracy and calibration are typically considered as two independent optimization metrics. In
the baseline optimization strategy employing cross-entropy as the loss function, the model calibration
tend to overfit earlier than the accuracy. To examine the impact of different optimization strategies on
model calibration characteristics, Table 2 illustrates these effects. Comparative algorithms such as
cosface [32], center loss [33], CE with DCA [34] and Softmax-based cross-entropy were utilized, and
their performance in accuracy and uncertainty estimation was observed. While cosface, center loss,
and our proposed approach, showed improvements in accuracy, the former two algorithms did not
consider model calibration, resulting in overconfident predictions. DCA regularity improves model
calibration but hurts accuracy. Conversely, our proposed PID-based method with variable gradient
decay rate ensures both model accuracy and calibration. This reaffirms the significant influence of
probability-dependent gradient decay rates on model calibration and overall performance.

4.3 Ablation experiments and analysis for PID controller

In the model optimization, both model optimization and gradient coefficient decay need consideration,
constituting a bi-level optimization problem. From a control system perspective, altering the gradient
decay rate modifies the dynamic characteristics of subsequent iterations in the model optimization.
However, its impact on model calibration may not be fully apparent in the immediate optimization
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Table 3: Different optimizer performance in ResNet35 on CIFAR-100. Results are averaged over
five runs with different seeds. Adam optimization compromises model accuracy when applied to a
dynamic optimization objective using a PID controller approach.

SGD Adam PID Controller Approach Gradient Compensation Accuracy ECE AdaECE
✓ - - - 73.8% 0.172 0.172
✓ - ✓ - 72.5% 0.022 0.023
- ✓ ✓ - 63.5% 0.023 0.024
✓ - ✓ ✓ 74.7% 0.012 0.013

results and may require more iterations for observation. Thus, viewed from this perspective, the
entire control system can be regarded as having a time lag, whereby the controlled variable β exhibits
a certain delay concerning the RCE. While it may be challenging to mathematically describe the
control system, the PID controller serves as a “black-box” controller, leveraging the integral and
differential variations of the error, proving highly effective. The ablation experiments are shown
in Fig. 5. We conclude that model calibration is robust to the choice of PID parameters; however,
setting the PID parameters too high can compromise the stability of ECE during model optimization.
Based on this, we selected PID settings of 1, 0.1, and 1 for the experiments presented above. On the
other hard, in Fig. 5, the accuracy curves with our method all exhibited a noticeable jitter, which
requires further investigation.

4.4 Ablation experiments of different optimizer

The motivation for proposing the adaptive learning rate for gradient compensation arises from the
observation that significant variations in gradient magnitude can negatively impact the model’s
optimization for classification error. A dynamic learning rate helps maintain a relatively stable
gradient magnitude. Additionally, the Adam optimizer aids in reducing gradient fluctuations. To
verify the novelty of our method, Table 3 presents the performance of various optimizers when
applied to our proposed PID controller-based calibration method.

Our experimental results indicate that Adam can indeed provide a more stable gradient and calibration
performance, particularly in conjunction with our PID controller approach for model calibration.
However, it is notable that Adam results in reduced accuracy, achieving only 63.5% on CIFAR-100
with ResNet35, significantly lower than the baseline accuracy of 73.8%. A key difference arises
in the baseline case handled by Adam. In our proposed PID controller method, which adjusts the
hyperparameter β during model calibration, the loss function is dynamic. While Adam retains
previous gradient information, this can conflict with the current gradient vector direction because the
optimization objective is dynamic. In contrast, our compensation method only modifies the learning
rate and retains gradient vector direction pertinent to the current loss function. This may explain why
the Adam optimizer does not yield better results.

5 Conclusion

The gradient decay rate plays a crucial role in shaping the calibration characteristics and uncertainty
distribution of deep learning throughout the dynamic optimization. Our results show a negative
correlation between the gradient decay rate with increasing instance-level probability and the overall
confidence distribution. This paper introduces a novel optimization approach aimed at regulating
the gradient decay rate hyperparameter β, via a PID controller. The goal is to achieve perfect
model calibration by monitoring the proposed relative calibration error of the validation set. Within
this control system framework as shown in Fig. 3, the probabilistic gradient decay rate serves as
the controlled variable, while a newly defined relative calibration error acts as the control system
output, mitigating both over-confidence and under-confidence in the model. Additionally, to address
fluctuations of gradient amplitude resulting from varying gradient decay rate, a new learning rate
compensation mechanism is employed. Empirical validation demonstrates that our proposed adaptive
gradient decay rate optimization strategy, facilitated by a PID controller, effectively enhances both
the accuracy and model calibration in deep learning, ensuring adequate calibration throughout the
supervised learning.
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A Appendix

A.1 Experiments compute resources

For experiments, we utilized compute resources featuring an NVIDIA A100 GPU with PCIe interface
and 40GB memory capacity, accompanied by PyTorch version 1.7.0 with CUDA version 11.0. The
computational backbone was supported by an Intel Xeon Gold 6278C processor.

A.2 Experiments for fixed gradient decay rate

More empirical results validating the relationship between gradient decay hyperparameter β and
model calibration are presented in Tab. 4, Tab. 5 and Tab. 6, while confidence histograms and relia-
bility diagrams are depicted in Figs. 6-9. These experiments consistently conclude that the gradient
decay rate β is negatively correlated with the overall confidence level of the model. Specifically,
when the value β is small, the gradient decay rate decreases, leading to higher overall confidence
in the model output and a greater likelihood of overconfident probabilistic output. Conversely, as
the value β increases, the gradient decay rate increases, resulting in lower overall confidence in the
model’s output and a higher probability of underfitting in the model’s probabilistic output distribution.
Although model accuracy appears somewhat linked to this hyperparameter, conclusive generalizations
from theoretical perspective cannot be drawn for the current experimental results.

Table 4: Model calibration of different gradient decay and post-processing calibration. The best
results are in bold. Results are averaged over five runs with different seeds. (bins = 10)

Dataset Model Metric Gradient decay factor β Vector Scaling Temp. Scaling
20 10 1 0.1

CIFAR-100 ResNet18 ECE 0.019±0.003 0.048±0.008 0.111±0.011 0.161±0.021 0.039±0.006 0.026±0.005

MCE 0.063±0.011 0.139±0.025 0.306±0.051 0.423±0.076 0.135±0.036 0.064±0.021

CIFAR-100 ResNet34 ECE 0.026±0.004 0.055±0.008 0.131±0.019 0.182±0.022 0.042±0.006 0.038±0.005

MCE 0.087±0.011 0.162±0.031 0.233±0.068 0.332±0.091 0.131±0.032 0.059±0.011

CIFAR-100 VGG16 ECE 0.122±0.009 0.163±0.011 0.207±0.031 0.226±0.033 0.030±0.008 0.022±0.005

MCE 0.317±0.021 0.378±0.051 0.499±0.088 0.556±0.093 0.523±0.109 0.041±0.011

CIFAR-10 ResNet18 ECE 0.021±0.004 0.025±0.006 0.036±0.010 0.042±0.011 0.011±0.003 0.015±0.003

MCE 0.591±0.153 0.268±0.095 0.295±0.068 0.355±0.111 0.051±0.012 0.089±0.009

Tiny-ImageNet ResNet34 ECE 0.014±0.002 0.036±0.005 0.089±0.011 0.226±0.056 0.017±0.006 0.019±0.004

MCE 0.035±0.005 0.069±0.009 0.166±0.021 0.382±0.079 0.036±0.010 0.063±0.013

Tiny-ImageNet ResNet50 ECE 0.041±0.007 0.013±0.002 0.104±0.021 0.188±0.032 0.023±0.004 0.027±0.003

MCE 0.082±0.011 0.044±0.009 0.149±0.020 0.377±0.045 0.039±0.011 0.067±0.016

(a) β = 50 (b) β = 20 (c) β = 10

(d) β = 5 (e) β = 1 (f) β = 0.1

Figure 6: Confidence histograms and reliability diagrams for gradient decay with ResNet18 on
CIFAR-10. (bins = 10)

13



(a) β = 50 (b) β = 20 (c) β = 10

(d) β = 5 (e) β = 1 (f) β = 0.1

Figure 7: Confidence histograms and reliability diagrams with ResNet34 on CIFAR-100. (bins = 10)

(a) β = 50 (b) β = 20 (c) β = 10

(d) β = 5 (e) β = 1 (f) β = 0.1

Figure 8: Confidence histograms and reliability diagrams for gradient decay with VGG16 on CIFAR-
100. (bins = 10)

(a) β = 20 (b) β = 10 (c) β = 5

(d) β = 1 (e) β = 0.1 (f) β = 0.01

Figure 9: Confidence histograms and reliability diagrams with ResNet50 on Tiny-ImageNet. (bins =
10)
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Table 5: The performance of ResNet34 on Tiny-ImageNet with different gradient decay. The best
results are in bold. Results are averaged over five runs with different seeds. (bins = 10)

Metric Gradient decay factor β

20 10 5 1 0.1 0.01

Top-1 Acc (%) 52.8 53.2 53.8 53.4 53.7 53.6
Top-5 Acc (%) 75.8 75.5 75.1 75.0 74.4 73.2

Training Acc (%) 88.6 88.5 89.7 90.3 90.9 90.5
ECE (bins = 10) 0.015 0.034 0.076 0.087 0.224 0.274
MCE (bins = 10) 0.036 0.065 0.151 0.176 0.406 0.518

Table 6: The performance of ResNet50 on Tiny-ImageNet with different gradient decay. The best
results are in bold. Results are averaged over five runs with different seeds. (bins = 10)

Metric Gradient decay factor β

20 10 5 1 0.1 0.01

Top-1 Acc (%) 55.9 56.0 56.4 56.3 56.4 56.2
Top-5 Acc (%) 77.7 78.0 77.3 76.6 76.0 74.9

Training Acc (%) 86.4 88.8 90.3 91.9 92.3 91.8
ECE (bins = 10) 0.045 0.014 0.046 0.114 0.203 0.249
MCE (bins = 10) 0.084 0.044 0.082 0.151 0.388 0.476

A.3 Limitations and future works

Our work currently lacks theoretical analysis. Although all experimental findings consistently
demonstrate the impact of gradient decay rate β on model calibration, we still require theoretical
frameworks to explain how the gradient decay rate affects the overall confidence distribution. Our
experiments indicate that large gradient decay rates result in similar confidence levels across samples,
while smaller rates yield more discriminatory levels. In essence, smaller decay rates enforce a
more stringent curriculum learning sequence, whereby increased confidence in difficult samples
only occurs after optimizing easier ones. Consequently, this leads to greater differentiation in final
confidence distribution of different samples. While these empirical observations are compelling, they
lack theoretical substantiation.

Methodologically, our current approach employs a PID controller to control gradient decay in opti-
mization. However, in practice, the effect of gradient decay rate adjustments on model calibration
requires a large number of epochs to manifest changes. Viewed from a control systems perspective,
this delay indicates a substantial time lag in the control object. However, as neural network optimiza-
tion processes defy mathematical description, designing effective controllers becomes inherently
challenging. Furthermore, our work also lacks comprehensive statistical analysis of the calibrated
outputs. Future research should address how alterations in the dynamic gradient decay rate impact
the internal optimization process.

Additionally, the temperature coefficient τ also impacts model calibration. The Softmax with small τ
disperses the inter-class distance by adjusting the probability output to focus more on hard negative
samples. Nevertheless, large τ can only smooth the output of all categories and cannot mine more
information from simple positive samples. On the contrary, small β makes the gradient decay slowly
so that easy positive samples can be sufficiently learned up to high confidence. An appropriate β can
mining more discriminative features on the whole. Similarly, large β only keeps the samples at the
same level of confidence and cannot extract more meaningful features from challenging samples. τ
and β improved the mining capability of Softmax in two different dimensions. The exploration of
optimizing the effects of both hyperparameters to improve model calibration represents a promising
approach.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Motivation and two technical contributions are articulated in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please find limitations and future works in Appendx A.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please find Train setting in Section 4 and Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is available in https://github.com/UHIF/PID_AGD. Please find
Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please find Train setting in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The descriptions of the figures are in the caption. All metrics are defined, such
as (1)-(2) or added relevant references.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please find Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is foundational research and does not deal with applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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