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ABSTRACT

Evaluating generative models is challenging because standard metrics often fail
to reflect human preferences. Human evaluations are more reliable but costly and
noisy, as participants vary in expertise, attention, and diligence. Pairwise com-
parisons improve consistency, yet aggregating them into overall quality scores
requires careful modeling. Bradley-Terry-based methods update item scores from
comparisons, but existing approaches either ignore rater variability or lack conver-
gence guarantees, limiting robustness and interpretability. We introduce BBQ, a
Bayesian Bradley-Terry variant that explicitly models rater quality, downweight-
ing or removing unreliable participants, and provides guaranteed monotonic like-
lihood convergence through an Expectation-Maximization algorithm. Empirical
results show that BBQ achieves faster convergence, well-calibrated uncertainty
estimates, and more robust, interpretable rankings compared to baseline Bradley-
Terry models, even with noisy or crowdsourced raters. This framework enables
more reliable and cost-effective human evaluation of generative models.

1 INTRODUCTION

Evaluating generative models is challenging, particularly for large language models (LLMs) and
image generators, where standard metrics often fail to reflect human preferences. Metrics such
as BLEU (Papineni et al., 2002) and perplexity (Jelinek, 1998) for LLMs, or PSNR (Gonzalez,
2009), MS-SSIM (Wang et al., 2003), and FID (Heusel et al., 2017) for image models, provide
only limited insight into perceived quality (Mentzer et al., 2020; CLIC, 2025; Chiang et al., 2024).
As a result, human evaluations remain indispensable for establishing meaningful rankings between
models. Accordingly, leaderboards and comparative studies of large language models and Learned
Image Compression (LIC) methods place strong emphasis on human preference data.

However, human evaluations are expensive and time-consuming, making it crucial to design proto-
cols that are efficient while minimizing subjectivity and noise. In this context, pairwise comparisons,
in which participants choose between two items rather than providing absolute scores, represent an
effective and practical form of human evaluation (Zerman et al., 2018; Wang et al., 2023). They
are generally easier for participants and produce more consistent judgments. Collecting all pairwise
comparisons is infeasible because the number of pairs grows quadratically with the number of items.
With only a limited set of comparisons, simple statistics such as win rates are not sufficient to derive
overall quality scores, because a win rate depends on the quality of the items it is compared against.

To produce an overall ranking that can be displayed on leaderboards, pairwise comparisons must be
aggregated effectively. This motivates the development of robust and efficient aggregation methods.
The Bradley-Terry (BT) (Bradley & Terry, 1952) model addresses this problem by iteratively updat-
ing item scores based on comparison outcomes. It has become a standard approach for aggregating
pairwise judgments across domains.

Despite its usefulness, the standard Bradley–Terry model has several limitations in practice. There
are multiple algorithms for estimating BT parameters, including iterative scaling methods (Ford Jr,
1957), gradient descent, and the minorization maximization (MM) algorithm (Hunter, 2004). The
MM algorithm guarantees convergence to the global maximum for the basic BT model, whereas
gradient-based methods, which are closely related to the Elo rating system, are widely used in prac-
tice but provide no such guarantees (Hunter, 2004). For extended BT models that incorporate factors
such as home field advantage (Agresti, 2010), multiple comparisons (Plackett, 1975; Luce et al.,
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1959), or ties (Rao & Kupper, 1967), even MM algorithms may converge only to local optima
(Hunter, 2004). A further challenge is that human evaluations are inherently noisy: participants may
rush, guess, or lose focus, leading to uneven reliability across raters. If such variability is ignored,
unreliable raters can distort item scores and reduce ranking stability.

We propose a Bayesian Bradley–Terry variant that jointly models item quality and rater reliabil-
ity. To the best of our knowledge, no prior work combines the BT framework with a Bayesian
formulation that explicitly models rater quality and provides closed-form EM updates. Previous
approaches that account for noisy raters typically rely on gradient-based optimization without con-
vergence guarantees, whereas our method ensures stable convergence and yields interpretable pa-
rameters. The Bayesian framework addresses epistemic uncertainty, provides regularization, and
ensures stable convergence of the estimation procedure. To capture variability in participant behav-
ior, our method introduces rater-specific parameters that reflect how consistent or trustworthy each
participant is, allowing the model to adjust the influence of individual comparisons. We derive an
EM algorithm that efficiently estimates item and rater parameters via a latent-variable formulation,
guaranteeing monotonic likelihood improvement. This approach allows partially reliable raters to
contribute meaningful information while reducing the impact of inattentive or inconsistent partici-
pants. The Bayesian priors further regularize the estimates, preventing overfitting when many raters
and parameters are involved, and leading to stable and generalizable score estimates. By modeling
rater quality and adopting a Bayesian framework, our method also provides uncertainty estimates
for item scores, facilitating more interpretable rankings and robust comparisons across studies.

We demonstrate the effectiveness of our approach on human evaluation datasets for generative mod-
els, showing faster convergence, improved robustness to noisy comparisons, and more consistent
rankings compared to standard BT and naive aggregation methods. Beyond generative model eval-
uation, our framework can be applied to any scenario where noisy pairwise comparisons must be
converted into reliable global rankings. Overall, our work contributes to more cost-efficient, inter-
pretable, and reproducible human studies for evaluating AI-generated content.

2 RELATED WORK

Human studies often require ranking items. Presenting participants with a choice between two
items rather than a single item with a score increases sensitivity to subtle differences and reduces
variability in responses (Zerman et al., 2018; Wang et al., 2023). Consequently, many leaderboards
for machine learning models rely on pairwise comparisons. In such setups, participants indicate their
preference between two alternatives, and these preferences are then aggregated to produce overall
rankings. Notable examples include the Chatbot Arena (Chiang et al., 2024) and the CLIC image
compression challenge (CLIC, 2025), which use pairwise comparisons and combine them using
variants of the Bradley-Terry (BT) model.

The Bradley-Terry model (Bradley & Terry, 1952) was originally developed to rank competitors in
sports. It provides a probabilistic framework to estimate the likelihood that one item is preferred
over another. The model converts pairwise comparisons into a ranking, making it a cornerstone in
studies across games, consumer preferences, and other applications. Several extensions have been
proposed to broaden its applicability. For instance, the Plackett-Luce model generalizes the BT
framework from pairwise comparisons to rankings over multiple items (Plackett, 1975; Luce et al.,
1959), defining a probability distribution over permutations by multiplying successive BT probabil-
ities (Luce et al., 1959). Other modifications address specific contexts, such as modeling home-field
advantages (Agresti, 2010), incorporating ties (Rao & Kupper, 1967), or handling comparisons be-
tween groups instead of individuals (Huang et al., 2006).

Maximum likelihood estimation (MLE) is commonly used to infer the parameters of the basic BT
model. Zermelo (1929) introduced an iterative approach to compute these estimates, which has be-
come widely adopted. Later, Lange et al. (2000) demonstrated that this procedure is a particular case
of minorization-maximization (MM) algorithms, which iteratively optimize surrogate functions to
reach a local maximum of the likelihood. Hunter (2004) extended MM algorithms to generalized
BT models and established conditions guaranteeing convergence to the MLE. For the classical BT
model, the optimization is convex, ensuring convergence to the global optimum (Hunter, 2004).
However, for extensions such as home-field advantage, multiple comparisons, or ties, MM algo-
rithms may converge only to a local maximum (Hunter, 2004).
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Bayesian formulations of the BT model have been explored to incorporate prior knowledge and reg-
ularization (Adams, 2005; Guiver & Snelson, 2009; Caron & Doucet, 2012). Caron & Doucet (2012)
showed that MM algorithms can be interpreted as Expectation-Maximization (EM) procedures, en-
abling Bayesian inference via Gibbs sampling. This formulation provides tractable complete-data
likelihoods and ensures convergence of the resulting Markov Chain Monte Carlo methods. The
Bayesian perspective smooths posterior estimates, reducing susceptibility to local maxima, and al-
lows for uncertainty quantification in the estimated item skills.

Annotator quality models represent a critical extension addressing the assumption that all compar-
isons are equally reliable. In crowdsourced evaluations, participant quality can vary widely, moti-
vating approaches that explicitly account for annotator reliability (Chen et al., 2013). Chen et al.
(2013) proposed a Bayesian model that jointly estimates both item quality and rater reliability using
annotator-specific parameters. Their approach places Gaussian priors on item and rater parame-
ters, and incorporates scaling factors in the likelihood to modulate individual annotator influence.
They perform posterior inference using gradient-based optimization, which can be challenging in
high-dimensional spaces due to potential local optima. Moreover, gradient-based methods have
no guarantees of convergence. In contrast, our proposed EM-based method provides guaranteed
monotonic likelihood improvement. The Elo-based rater model developed by Google Research im-
plements a simplified version of this approach. It is widely used in the Challenge on Learned Image
Compression (CLIC) (CLIC, 2025) and related research (Mentzer et al., 2020; Ballé et al., 2025).

To the best of our knowledge, no prior work combines the Bradley–Terry model with a Bayesian
formulation that explicitly models rater quality while also providing closed-form EM updates. In
contrast to Chen et al. (2013), who use Gaussian priors and gradient-based optimization without
convergence guarantees, our approach leverages conjugate priors and an EM algorithm that ensures
monotonic likelihood improvement. Compared to the Elo-based rater model widely used in CLIC
(CLIC, 2025), which is a simplified heuristic relying on Elo-style updates, our method provides a
principled Bayesian treatment with uncertainty estimates and interpretable rater-quality parameters.

3 METHODOLOGY

3.1 BRADLEY-TERRY MODEL WITH RATER QUALITY

The objective of converting a set of noisy pairwise comparisons into a reliable ranking of items
is a fundamental problem in machine learning and statistics. Consider a set of K items that are
repeatedly compared with one another in pairs by a set of R raters. The data, which we denote as D,
consists of the outcomes of these comparisons. For two items i and j of this set, Bradley & Terry
(1952) suggested the following model:

P (i beats j) =
λi

λi + λj
(1)

where λk > 0 is a parameter associated with item k ∈ {1, 2, . . . ,K} that represents its skill rating.
This model provides a clear and interpretable way to infer item scores from a set of observed wins
and losses. However, it operates under the simplifying assumption that all comparisons are equally
reliable. In the context of human evaluation, this assumption is often violated. Participants may
exhibit varying levels of expertise, attention, or diligence, leading to unreliable and inconsistent
judgments.

To account for varying rater reliability, we introduce a rater-specific quality parameter qr ∈ [0, 1].
Intuitively, with probability qr, rater r makes an informed judgment following the Bradley-Terry
model. With probability 1−qr, the rater guesses randomly, as if flipping a fair coin between the two
items. This leads to the following mixture model for the probability that rater r ranks item i above
item j:

P (r ranks i above j) = qr

(
λi

λi + λj

)
+ (1− qr)

(
1

2

)
(2)
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The log-likelihood of the data is given by:

logP (D | λ, q) =
R∑

r=1

K∑
i=1

K∑
j=1
j ̸=i

[
wr,ij log

(
qr

λi

λi + λj
+ (1− qr)

1

2

)

+ (nr,ij − wr,ij) log

(
qr

λj

λi + λj
+ (1− qr)

1

2

)]
,

(3)

where nr,ij denotes the total number of comparisons between items i and j by rater r, and wr,ij

is the number of times rater r ranks item i above item j. There is no closed-form maximum like-
lihood estimator for this likelihood function, so the optimal parameters λ and q cannot be derived
analytically. While an iterative optimization method like gradient descent could be used, it offers
no guarantee of convergence. On the other hand, the Expectation–Maximization (EM) algorithm
avoids learning-rate tuning, and guarantees a monotonic increase of the observed-data likelihood
and convergence to a stationary point (Dempster et al., 1977).

3.2 THURSTONIAN INTERPRETATION

Following Caron & Doucet (2012), we interpret the Bradley-Terry model under a Thurstonian frame-
work (Diaconis, 1988). In this perspective, a comparison between items i and j is conceptualized as
a race, where each item has a random arrival time, Yi and Yj , respectively. These arrival times are
assumed to follow exponential distributions:

Yi ∼ E(λi), Yj ∼ E(λj), (4)
and the item with the smaller arrival time is declared the winner. This leads directly to the standard
Bradley-Terry probability:

P (i beats j) = P (Yi < Yj) =
λi

λi + λj
. (5)

For the EM algorithm, we introduce latent variables to simplify the complete-data likelihood. First,
we define an indicator variable

A
(c)
r,ij ∼ Bernoulli(qr), (6)

which denotes whether the c-th comparison of items i and j by rater r follows the Bradley-Terry
model. Using these indicators, we define the latent variable Zr,ij as the sum of the minimal arrival
times across the nr,ij comparisons by rater r:

Zr,ij =

nr,ij∑
c=1

A
(c)
r,ij min(Y

(c)
i , Y

(c)
j ). (7)

Conditioned on mr,ij =
∑nr,ij

c=1 A
(c)
r,ij , the variable Zr,ij follows a Gamma distribution,

Zr,ij

∣∣ mr,ij ∼ Γ
(
mr,ij , λi + λj

)
, (8)

where Γ(α, β) denotes the Gamma distribution with shape parameter α and inverse scale β. This
Gamma-distributed latent variable formulation allows for a tractable EM update while accounting
for rater-specific quality.

3.3 EXPECTATION-MAXIMIZATION UPDATES

The EM algorithm is an iterative method for finding maximum a posteriori (MAP) estimates for
our model parameters, λ and q, by treating the rater’s quality and the unobserved arrival times from
the Thurstonian interpretation as latent variables. The algorithm is guaranteed to converge to a
stationary point of the posterior distribution.

First, we specify prior distributions for the parameters. The item skills λk are assigned a Gamma
prior, λk ∼ Γ(a, b), which is a conjugate prior for the exponential distribution. Each rater’s quality
parameter, qr, is given a Beta prior, qr ∼ B(α, β).

The core of the EM algorithm is the iterative maximization of the expected complete-data log-
posterior, conditioned on the current parameter estimates (λ∗, q∗). The algorithm proceeds by alter-
nating between two steps until convergence:

4
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E-step: Expectation In the E-step, we compute the expected complete-data log-posterior, a func-
tion we denote as Q. This function represents the expected value of the log-posterior of all observed
and latent variables, given our observed data and the current parameter estimates from the previous
iteration. It is defined as:

Q(λ, q | λ∗, q∗) = EA,Z|D,λ∗,q∗

[
ℓc(λ, q;D,Z,A) + logP (λ) + logP (q)

]
. (9)

The complete-data log-likelihood, ℓc, is further broken down into three components.

ℓc(λ, q;D,Z,A) = logP (Z | D,A, λ, q) + logP (A | D,λ, q) + logP (D | λ, q). (10)

M-step: Maximization This step updates the model parameters by maximizing the Q function.
By leveraging the expected values from the E-step, the M-step transforms the original complex op-
timization problem into simpler, closed-form updates. The key quantity that is used in both updates
is the posterior probability that a given comparison from rater r follows the Bradley-Terry model.
This quantity, denoted as γ, represents the weight of a rater’s judgment based on how much it aligns
with the model’s current predictions. It is given by:

γ
(t−1)
r,ij =

q
(t−1)
r y

(t−1)
ij

q
(t−1)
r y

(t−1)
ij + (1− q

(t−1)
r ) 1

2

, (11)

where y(t−1)
ij =

λ
(t−1)
i

λ
(t−1)
i +λ

(t−1)
j

is the Bradley-Terry probability that item i beats item j. This posterior

probability γ represents our confidence that a comparison was meaningful rather than random, given
the current parameter estimates. Higher γ values indicate more trustworthy comparisons.

The new estimate for a rater’s quality, qr, is calculated as a weighted average. The numerator
sums up the ”effective number of wins” for that rater, where each win is weighted by the posterior
probability (γ) that it was a meaningful, non-random judgment. This is combined with the hyper-
parameters from the Beta prior to regularizing the estimate. The denominator normalizes this sum
by the total number of comparisons and prior parameters. This update intuitively increases a rater’s
quality score if their judgments frequently align with the model’s predictions. The update is given
by:

q(t)r =

∑K
i=1

∑K
j=i+1

[
wr,ij γ

(t−1)
r,ij + wr,ji γ

(t−1)
r,ji

]
+ (α− 1)

nr + α+ β − 2
, (12)

where nr is the total number of comparisons by rater r.

The new estimate for an item’s skill, λi, is a ratio that balances two key quantities. The numerator
is a sum of the ”effective wins” for item i across all raters, where each win is again weighted by
the rater’s quality (γ). This term essentially represents the total positive evidence for item i. The
denominator, on the other hand, accounts for the total comparisons item i was involved in, and acts
as a normalizing factor. These terms are also regularized by the Gamma prior hyperparameters. The
update is given by:

λ
(t)
i =

∑R
r=1

[∑K
j=1,j ̸=i wr,ij γ

(t−1)
r,ij

]
+ (a− 1)∑K

j=1,j ̸=i

[∑R
r=1

[
wr,ijγ

(t−1)
r,ij +wr,jiγ

(t−1)
r,ji

]
λ
(t−1)
i +λ

(t−1)
j

]
+ b

. (13)

The derivation of the Expectation Maximization algorithm is provided in Appendix B.

4 EXPERIMENTAL RESULTS

To evaluate the performance of our Bayesian Bradley-Terry model with rater Quality (BBQ), we
conduct a series of experiments comparing it against two baselines: Bayesian Bradley-Terry (Bayes-
BT) (Caron & Doucet, 2012) and a gradient descent-based BT model that incorporates rater quality
(Crowd-BT) (Chen et al., 2013). For Crowd-BT, we use the implementation provided by Google
Research (Google, 2025), which was employed both by CLIC (2025) and Ballé et al. (2025). The
hyperparameters used in our experiments can be found in Section C.
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We evaluate the performance of several Bradley–Terry (BT) variants across datasets, including
human preference benchmarks for large language models (HUMAINE (Team, 2025), MT-Bench
(Zheng et al., 2023)) and image compression (WD (Ballé et al., 2025), HiFiC (Mentzer et al., 2020),
ConHa (Aczel & Wattenhofer, 2024)), as well as a newly collected inhomogeneous rater quality
(IHQ) dataset from the CLIC2024 image test set (CLIC, 2025). To study the effect of rater quality,
we partition the IHQ dataset into two subsets: screened and unscreened. This setup enables analysis
of how low-quality, high-quality, and mixed comparisons affect model performance. Details of the
IHQ dataset creation are given in Section E, and a summary of all datasets, including comparisons,
raters, and items, is provided in Section D and Table 2.

Ground truth rankings are not available for real datasets. We first validated the models on simulated
datasets, where all methods recover the same ordering as the number of samples increases. For
crowd-sourced datasets, we approximate the ground truth by the ranking achieved on the whole
dataset. We validate that this provides a reasonable approximation of ordering for real-world datasets
by examining the top-1 item in each ranking. For all datasets except IHQ-unscreened, all three
models recover the same top-ranked item. For the IHQ-unscreened dataset, Crowd-BT and Bayes-
BT fail to identify the reference image as the highest-quality item, whereas BBQ succeeds.

A reliable aggregation method should reproduce the same ordering if the study is repeated. We
approximate this stability using bootstrapping, which provides an estimate of the variability in the
rankings. Details on the bootstrapping are described in Section F. Note that the WD and HiFiC
studies employed active selection of comparison pairs. HiFiC used a binary search strategy, while
WD selected pairs based on maximum information gain. For this reason, the bootstrapping results
on these two datasets should be interpreted with caution.

We evaluate performance using two metrics. Top-1 agreement is the fraction of bootstrapped sam-
ples that identify the same best item as the full dataset. Kendall’s Tau (τ ) measures ordinal correla-
tion between rankings (Kendall, 1938), with higher values indicating stable results. Top-1 agreement
is most relevant when the best model matters, while Kendall’s Tau assesses overall ranking stability.

4.1 PERFORMANCE ACROSS DATASETS

We compare models across datasets to assess their performance on ranking accuracy and stability.
Top-1 agreement and Kendall’s Tau are summarized in Table 1. Datasets with more comparisons per
model, such as MT-Bench, WD, and HiFiC, are generally easier. Interestingly, HUMAINE deviates
from this trend, highlighting that factors beyond the total number of comparisons, such as rater
consistency and diversity, can influence model performance.

Overall, BBQ demonstrates superior stability and robustness across datasets. It identifies the top-
performing item most frequently, being the shared best on three datasets. It recovers the overall
ranking most accurately on five out of eight datasets, ranking second on the remaining three.

The three datasets where BBQ ranks second in Kendall’s Tau consist of high quality, homogeneous
rater sets. On MT-Bench, all models perfectly recover the top item. The WD dataset, collected
by Ballé et al. (2025), includes only five raters, likely the paper’s authors, suggesting exceptionally
careful evaluation. In IHQ-screened, raters were explicitly filtered for quality. In such settings where
rater quality is consistently high, explicitly modeling rater reliability offers little advantage, and the
benefits of BBQ over simpler models are reduced.

Experiments on the IHQ dataset, considering both screened and unscreened rater subsets, reveal
a clear pattern. BBQ substantially outperforms Crowd-BT and Bayes-BT when low-quality raters
are present, as in CLIC-all and CLIC-unscreened. All three models achieve their best Top-1 accu-
racy when restricted to the screened subset, highlighting the importance of rater selection. While
Crowd-BT explicitly models rater quality, its performance drops noticeably on the full dataset, likely
because crowdsourced raters provide fewer than 40 comparisons each, which increases susceptibil-
ity to noisy annotations. In contrast, BBQ maintains strong performance even without screening,
with only a minor decrease in Top-1 accuracy, demonstrating robustness to low-quality raters.

Nonetheless, achieving uniformly high rater quality is challenging. Large-scale crowdsourcing in-
troduces variability, screening procedures are costly, and subjective factors may affect even diligent
annotators. In this context, BBQ provides a principled way to leverage partially reliable raters while
reducing the impact of noisy contributions.

6
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Table 1: Performance of different BT-based aggregation methods across several datasets. Top: Top-
1 agreement [%], Bottom: Kendall’s Tau. BBQ most frequently identifies the top-performing item
across all datasets, recovers the best overall ranking for more than half of the datasets, and ranks
second on the remaining datasets.

HUMAINE MT-Bench WD HiFiC ConHa IHQ

all scr. unscr.

Top-1 Agreement [%]

Crowd-BT 85.60 100.00 99.29 98.63 66.59 85.31 98.57 33.15
Bayes-BT 97.30 100.00 100.00 100.00 57.30 75.07 98.90 24.32
BBQ (ours) 97.50 100.00 100.00 100.00 77.12 99.32 99.80 61.92

Kendall’s Tau

Crowd-BT 0.9385 0.9743 0.9279 0.9366 0.9180 0.9245 0.9171 0.8482
Bayes-BT 0.9443 0.9569 0.9459 0.9293 0.9110 0.9240 0.9116 0.8507
BBQ (ours) 0.9463 0.9675 0.9359 0.9525 0.9265 0.9270 0.9132 0.8563
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Figure 1: Scaling behavior of Bradley–Terry variants (Crowd-BT (Caron & Doucet, 2012), Bayes-
BT (Chen et al., 2013), BBQ (ours)) on the IHQ-all dataset. Left: Performance vs. number of raters.
Right: Performance vs. number of comparisons per rater. Both Top-1 agreement and Kendall’s τ
improve noticeably with more raters or comparisons. While Top-1 agreement differentiates between
models, Kendall’s τ remains similar across models. Crowd-BT fails to converge with very few
raters, highlighting the EM algorithm’s advantage. Crowd-BT and BBQ perform similarly under
sparse data, but BBQ outperforms Bayes-BT as the number of raters or comparisons grows.

4.2 SCALING WITH RATERS AND COMPARISONS

As observed in Table 1, datasets with more comparisons per model generally yield better perfor-
mance. The number of comparisons can be increased in two ways: by adding more raters, or by
increasing the number of comparisons each rater performs.

Figure 1 illustrates the impact of both factors on the three BT variants. The left column shows per-
formance as a function of the number of raters (with the number of comparisons per rater fixed at the
maximum), while the right column shows performance as a function of the number of comparisons
per rater (with the number of raters fixed at the maximum). A clear difference in performance can
be observed in Top-1 accuracy, while Kendall’s τ remains similar across models. Crowd-BT fails to
converge with only one or two raters, highlighting the advantage of using the EM algorithm, which
provides convergence guarantees compared to gradient descent.
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Figure 2: Scatter plot of rater agreement with
the final ranking (x-axis) versus the predicted
rater quality (y-axis) for the IHQ datasets. Each
point corresponds to an individual rater. Trian-
gles denote the filtered dataset, and squares de-
note the unfiltered dataset.
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Figure 3: Average computation time in seconds
(log-scale) for three models measured on a sin-
gle bootstrapped sample across eight datasets.
While Crowd-BT can require substantial com-
putation time on some datasets, BBQ consis-
tently remains fast across all datasets.

Crowd-BT and BBQ perform similarly when the number of raters or comparisons per rater is small.
BBQ requires both multiple raters and multiple comparisons per rater to effectively distinguish be-
tween rater qualities. As the number of raters or comparisons per rater increases, BBQ increasingly
outperforms Bayes-BT. In contrast, Bayes-BT tends to underperform overall but can surpass Crowd-
BT when limited data per rater or a few number of raters are available, since Crowd-BT cannot
reliably estimate rater quality in such sparse settings.

4.3 RATER QUALITY

Figure 2 shows the relationship between agreement with the final ranking and predicted rater quality.
We observe a clear positive correlation: raters who agree more closely with the consensus ranking
are assigned higher quality by the model. For the filtered dataset, the Pearson correlation is r =
0.551 across 50 raters. For the unfiltered dataset, the correlation is stronger, with r = 0.724 across
62 raters.

As expected, the unscreened dataset contains several raters with both lower agreement and lower
predicted quality. Some raters in the IHQ-unscreened dataset even fall below the level of random
guessing (50% agreement), systematically disagreeing with the majority. This highlights the im-
portance of modeling rater quality when aggregating pairwise comparison data. BBQ successfully
identifies such raters and assigns them lower quality scores, thereby reducing their influence on the
final ranking and mitigating the noise they introduce.

4.4 COMPUTATIONAL EFFICIENCY

Figure 3 reports the average computation time in seconds required by each method to process a
single bootstrapped sample across different datasets. These timings provide a practical perspective
on the feasibility of the methods in real-world evaluation scenarios. BBQ consistently converges
within a few seconds on all datasets. Crowd-BT requires more time than BBQ across the board,
with particularly long runtimes on datasets with many comparisons, such as HUMAINE, where
convergence takes around 15 minutes. Bayes-BT converges slowly on the WD dataset, though on
other datasets it is slightly faster than BBQ. The efficiency of BBQ stems from the closed-form EM
updates derived in our method, which enable rapid convergence even on large datasets.

It is also important to note that Crowd-BT was highly optimized and implemented in C (Kernighan &
Ritchie, 1988), whereas BBQ was implemented using plain NumPy without specific optimizations.
This suggests that BBQ could be made even faster with a compiled or vectorized implementation.

8
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Consequently, BBQ is not only more robust and stable but also highly practical for large-scale human
preference studies or applications that require repeated bootstrapping. The combination of accuracy,
stability, and speed makes BBQ a compelling choice for real-world deployments.

4.5 CONFIDENCE INTERVALS

We evaluate how Crowd-BT, Bayes-BT, and BBQ estimate uncertainty in item rankings. In a con-
trolled simulation, raters provide pairwise comparisons of equally skilled items (H0). Each model
estimates skills and constructs uncertainty intervals to test for significant differences (Section G).
The resulting Type I error rates are shown in Figure 6. At the 99% confidence level, the expected
error rate is 1%. Crowd-BT and BBQ align closely, yielding slightly lower rates, while Bayes-
BT is more conservative at ∼0.1%. Thus, Crowd-BT and BBQ provide well-calibrated uncertainty
estimates, whereas Bayes-BT underestimates false positives.

5 LIMITATIONS

Although BBQ effectively models rater quality, its advantages diminish in settings where all raters
are uniformly reliable. In such homogeneous datasets, modeling variability provides little additional
benefit. Ensuring consistently high-quality raters, however, often requires substantial cost and effort,
which may not be feasible in large-scale studies. This tension highlights that BBQ is most useful in
realistic crowdsourced settings, but less so when evaluations are carefully curated.

Another limitation concerns the type of data the framework can handle. BBQ is currently restricted
to pairwise comparisons, whereas many human evaluation studies use ratings, rankings, or multi-
way inputs. Extending the model to handle these forms of feedback would broaden its applicability.

From a methodological perspective, our experiments rely on a limited number of bootstrapped com-
parisons. While this provides a practical measure of stability, larger-scale studies would be needed to
further validate robustness. Additionally, the model assumes independence across comparisons and
does not account for contextual or order effects, which may influence human judgments in practice.

Finally, although BBQ scales well computationally, extremely large numbers of items or raters could
still pose challenges without optimized or compiled implementations.

6 CONCLUSION

We introduced BBQ, a Bayesian Bradley-Terry model that jointly estimates item quality and rater
reliability. Our core contribution is the derivation of an Expectation-Maximization (EM) algorithm
that simultaneously estimates item skills and individual rater quality, effectively down-weighting or
removing the influence of unreliable participants. By explicitly modeling rater quality, the method
produces more stable and accurate rankings. The EM algorithm ensures rapid convergence and
monotonic likelihood improvement, addressing limitations of gradient-based approaches.

Across diverse datasets, BBQ consistently achieved high Top-1 agreement and superior Kendall’s
Tau, demonstrating both robustness and reliability. The model excels in scenarios with noisy or
crowdsourced raters, maintaining accuracy even when raters contribute few comparisons. BBQ is
particularly effective in large-scale settings where many raters are non-experts or vary widely in at-
tentiveness and diligence. Our results highlight that incorporating rater quality is especially crucial
when evaluation quality is heterogeneous or partially unreliable. Additionally, the Bayesian frame-
work provides principled uncertainty estimates for item scores, enabling interpretable comparisons
across studies. We further demonstrate that the model’s error bars are well-calibrated and can be
used to assess whether differences between items are statistically significant. Predicted rater quality
aligns with agreement to final rankings, validating the model’s ability to identify reliable evaluators.

Overall, BBQ advances human evaluation methodology by offering a practical, interpretable, and
generalizable approach to aggregate noisy pairwise comparisons. This work contributes a significant
step toward more cost-effective, interpretable, and reproducible human studies for evaluating AI-
generated content.

9
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REPRODUCIBILITY STATEMENT

The code used in our experiments is provided in the supplementary material, along with a detailed
README that explains how to set up the environment and run all bootstrapping experiments. The
supplementary material also includes all datasets used in our study, including the publicly available
datasets on which we ran our experiments. In addition, our newly collected dataset is included,
making it fully accessible for replication and further research. For the camera-ready version, we will
make both the code and all datasets publicly available. We also provide comprehensive descriptions
of the proposed model (Section 3), experimental setup (Section 4), hyperparameters (Section C),
and data collection procedures (Section E).

REFERENCES

Till Aczel and Roger Wattenhofer. Conditional hallucinations for image compression. arXiv preprint
arXiv:2410.19493, 2024.

Eldridge S Adams. Bayesian analysis of linear dominance hierarchies. Animal Behaviour, 69(5):
1191–1201, 2005.

Alan Agresti. Analysis of ordinal categorical data. John Wiley & Sons, 2010.
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A USAGE OF LLMS

During the preparation of this paper, we utilized large language models (LLMs) as supportive tools.
ChatGPT, Claude, Gemini, and Grammarly assisted with spellchecking, refining phrasing, and con-
densing text to enhance clarity and readability. Additionally, ChatGPT, Claude, and Cursor were
used for code analysis, completion, and the generation of visualizations to aid our development
workflow. These tools were employed solely as auxiliary aids, while all core research ideas, experi-
mental design, and interpretation of results were developed independently by the authors.

B BAYESIAN BT WITH RATER QUALITY DERIVATION

We consider R raters comparing K items. Each rater r has quality qr, meaning that with probability
qr they follow the Bradley–Terry model, and with probability 1 − qr they choose randomly. The
following is a standard EM (Dempster et al., 1977) derivation that incorporates these rater-specific
reliabilities into the Bayesian estimation framework.

B.1 MODEL DEFINITION

Notation:

• λ = (λ1, . . . , λK): skill parameters for the K items.

• q = (q1, . . . , qR): quality parameters for the R raters.

• Yi ∼ E(λi): latent arrival time associated with item i.

• A
(c)
r,ij ∼ Bernoulli(qr): indicator that the c-th comparison of pair (i, j) by rater r follows

the Bradley-Terry model.

• nr,ij : total number of comparisons of (i, j) by rater r.

• nij =
∑R

r=1 nr,ij : total number of comparisons of (i, j).

• wr,ij : number of times rater r ranked i above j.

• wij =
∑R

r=1 wr,ij : total number of times i was ranked above j.

• mr,ij =
∑nr,ij

c=1 A
(c)
r,ij : number of Bradley-Terry-model comparisons of (i, j) by rater r.

• mij =
∑R

r=1 mr,ij : total number of Bradley-Terry-model comparisons of (i, j).

• vr,ij =
∑wr,ij

c=1 A
(c)
r,ij : number of Bradley-Terry-model wins of i over j by rater r.

• vij =
∑R

r=1 vr,ij : total number of Bradley-Terry-model wins of i over j.

• Zr,ij =
∑nr,ij

c=1 A
(c)
r,ij min(Y

(c)
i , Y

(c)
j ): sum of minimal arrival times, with

Zr,ij

∣∣ mr,ij ∼ Γ(mr,ij , λi + λj) .

Bradley-Terry probability:

P (i beats j) =
λi

λi + λj
.

Mixture with rater quality:

P (r ranks i above j) = qr
λi

λi + λj
+ (1− qr)

1

2
.

Latent exponential view:

Yi ∼ E(λi), Yj ∼ E(λj), P (i beats j) = P (Yi < Yj).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 COMPLETE-DATA LOG-LIKELIHOOD

We need to compute:

ℓc(λ, q;D,Z,A) = logP (D,Z,A | λ, q)
= logP (Z | D,A, λ, q) + logP (A | D,λ, q) + logP (D | λ, q)

Log-Likelihood of P (Z | A, λ):

logP (Z | D,A, λ, q) =

K∑
i=1

K∑
j=i+1

[
mij log(λi + λj)− (λi + λj)zij

+(mij − 1) log zij − log Γ(mij)

]

Log-Likelihood of P (A | q):

logP (A | D,λ, q) =

R∑
r=1

K∑
i=1

K∑
j=i+1

[
mr,ij log qr + (nr,ij −mr,ij) log(1− qr)

]

Log-Likelihood of P (D | λ,A):

logP (D | λ, q) =
R∑

r=1

K∑
i=1

K∑
j=1
j ̸=i

[
vr,ij log

λi

λi + λj
+ (wr,ij − vr,ij) log

1

2

]

=

R∑
r=1

K∑
i=1

[vir log λi]

−
R∑

r=1

K∑
i=1

K∑
j=i+1

[(vr,ij + vr,ji) log (λi + λj) + (wr,ij + wr,ji − vr,ij − vr,ji) log 2]

=

K∑
i=1

[vi log λi]

−
K∑
i=1

K∑
j=i+1

[mij log (λi + λj) + (nij −mij) log 2]

13
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Complete-Data Log-Likelihood:
ℓc(λ, q;D,Z,A) = logP (Z | D,A, λ, q) + logP (A | D,λ, q) + logP (D | λ, q)

=

K∑
i=1

K∑
j=i+1

[
mij log(λi + λj)− (λi + λj)zij + (mij − 1) log zij − log Γ(mij)

]

+

R∑
r=1

K∑
i=1

K∑
j=i+1

[
mr,ij log qr + (nr,ij −mr,ij) log(1− qr)

]

+

K∑
i=1

[vi log λi]

−
K∑
i=1

K∑
j=i+1

[mij log (λi + λj) + (nij −mij) log 2]

=

K∑
i=1

K∑
j=i+1

[
(nij −mij) log 2− (λi + λj)zij + (mij − 1) log zij − log Γ(mij)

]

+

R∑
r=1

K∑
i=1

K∑
j=i+1

[
mr,ij log qr + (nr,ij −mr,ij) log(1− qr)

]

+

K∑
i=1

[vi log λi]

B.3 EXPECTATION STEP

We introduce conjugate priors: Gamma distribution λi ∼ Γ(a, b) for each item i, and Beta qr ∼
B(α, β) for each rater r.

The Q-function is the expectation of the complete-data log-posterior:
Q(λ, q | λ∗, q∗) = EA,Z|D,λ∗,q∗

[
ℓc(λ, q;D,Z,A) + logP (λ) + logP (q)

]
.

Posterior probability of a Bradley-Terry-consistent annotation:

P
(
A

(k)
r,ij = 1 | i ≻ j

)
=

P (i ≻ j | A = 1)P (A = 1)

P (i ≻ j | A = 1)P (A = 1) + P (i ≻ j | A = 0)P (A = 0)

=

( λ∗
i

λ∗
i +λ∗

j

)
q∗r( λ∗

i

λ∗
i +λ∗

j

)
q∗r + 1

2 (1− q∗r )
= γ∗

r,ij .

Expected sufficient statistics:
E[mr,ij ] = wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji

E[mij ] =

R∑
r=1

(wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)

E[vr,ij ] = wr,ij γ
∗
r,ij

E[vir] =
K∑

j,j ̸=i

wr,ij γ
∗
r,ij

E[vi] =
R∑

r=1

K∑
j,j ̸=i

wr,ij γ
∗
r,ij

E[zij ] =
∑R

r=1(wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)

λ∗
i + λ∗

j

.
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Expected complete-data log-posterior:

E[ℓc] =
K∑
i=1

K∑
j=i+1

[
− (λi + λj)

∑R
r=1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji)

λ∗
i + λ∗

j

]

+

R∑
r=1

K∑
i=1

K∑
j=i+1

[
(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji) log qr

+ (nr,ij − (wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)) log(1− qr)

]
+

K∑
i=1

K∑
j=1
j ̸=i

wr,ijγ
∗
r,ij log λi

+ const.

Priors contribute:

E[logP (λ)] =

K∑
i=1

[(a− 1) log λi − bλi] ,

E[logP (q)] =

R∑
r=1

[(α− 1) log qr + (β − 1) log(1− qr)] .

Final Q-function:

Q(λ, q | λ∗, q∗) =

K∑
i=1

K∑
j=i+1

[
− (λi + λj)

∑R
r=1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji)

λ∗
i + λ∗

j

]

+

R∑
r=1

K∑
i=1

K∑
j=i+1

[
(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji) log qr

+ (nr,ij − (wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)) log(1− qr)

]
+

K∑
i=1

K∑
j=1
j ̸=i

wr,ijγ
∗
r,ij log λi

+

K∑
i=1

[(a− 1) log λi − bλi]

+

R∑
r=1

[(α− 1) log qr + (β − 1) log(1− qr)]

+ const.

where

γ∗
r,ij =

q∗r
λ∗
i

λ∗
i + λ∗

j

q∗r
λ∗
i

λ∗
i + λ∗

j

+ (1− q∗r )
1
2

.

B.4 M-STEP

The M-step maximizes the Q-function w.r.t. the parameters (λ, q), holding the expectations com-
puted in the E-step fixed.
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Update for qr The update for each rater quality qr is obtained by maximizing Q with respect to
qr (including the Beta prior).

Q(q | λ∗, q∗) =

R∑
r=1

K∑
i=1

K∑
j=i+1

[
(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji) log qr

+ (nr,ij − (wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)) log(1− qr)

]
+ (α− 1) log qr + (β − 1) log(1− qr) + const.

∂Q

∂qr
=

K∑
i=1

K∑
j=i+1

[wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji

qr
−

nr,ij − (wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)

1− qr

]
+

α− 1

qr
− β − 1

1− qr

0
!
=

∑K
i=1

∑K
j=i+1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji) + (α− 1)

qr

−
∑K

i=1

∑K
j=i+1(nr,ij − (wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji)) + (β − 1)

1− qr

=⇒ (1− qr)

 K∑
i=1

K∑
j=i+1

(wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji) + (α− 1)


=⇒ qr

 K∑
i=1

K∑
j=i+1

(nr,ij − (wr,ijγ
∗
r,ij + wr,jiγ

∗
r,ji)) + (β − 1)


=⇒ qr =

∑K
i=1

∑K
j=i+1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji) + (α− 1)∑K

i=1

∑K
j=i+1(wr,ijγ∗

r,ij + wr,jiγ∗
r,ji + nr,ij − (wr,ijγ∗

r,ij + wr,jiγ∗
r,ji)) + (β + α− 2)

=⇒ q(t)r =

∑K
i=1

∑K
j=i+1(wr,ijγ

(t−1)
r,ij + wr,jiγ

(t−1)
r,ji ) + (α− 1)

nr + β + α− 2

where the last line gives the explicit update at iteration t.

Update for λi The update for each item skill λi is obtained by maximizing Q with respect to λi

(including the Gamma prior).

Q(λ | λ∗, q∗) =

K∑
i=1

K∑
j=i+1

−(λi + λj)

∑R
r=1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji)

λ∗
i + λ∗

j

+

R∑
r=1

K∑
i=1

K∑
j=1
j ̸=i

wr,ijγ
∗
r,ij log λi

+

K∑
i=1

[(a− 1) log λi − bλi] + const.
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∂Q

∂λi
= −

K∑
j ̸=i

∑R
r=1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji)

λ∗
i + λ∗

j

+

R∑
r=1

∑K
j ̸=i wr,ij γ

∗
r,ij

λi
+

a− 1

λi
− b

0
!
=

∑R
r=1

∑K
j ̸=i wr,ij γ

∗
r,ij + (a− 1)

λi
−

K∑
j ̸=i

∑R
r=1(wr,ijγ

∗
r,ij + wr,jiγ

∗
r,ji)

λ∗
i + λ∗

j

− b

=⇒ λ
(t)
i =

∑R
r=1

∑K
j ̸=i wr,ij γ

(t−1)
r,ij + (a− 1)∑K

j ̸=i

∑R
r=1(wr,ij γ

(t−1)
r,ij + wr,ji γ

(t−1)
r,ji )

λ
(t−1)
i + λ

(t−1)
j

+ b

γ
(t−1)
r,ij =

q
(t−1)
r

λ
(t−1)
i

λ
(t−1)
i + λ

(t−1)
j

q
(t−1)
r

λ
(t−1)
i

λ
(t−1)
i + λ

(t−1)
j

+ (1− q
(t−1)
r ) 1

2

where the last line gives the explicit update at iteration t.

C HYPERPARAMETERS

For Crowd-BT, we use the implementation of Google (2025) with the default hyperparameters.

The only hyperparameters in the Bayes-BT and BBQ models are the prior distribution parameters
and the stopping thresholds. For both Bayes-BT and BBQ, we consider the model converged when
no ELO score changes by more than 1 between two iterations. The ELO score can be calculated
from the skill parameter λ as:

ELO = log(skill) · ELO SCALE FACTOR. (14)

where we set the ELO SCALE FACTOR to 400.

We chose a gamma prior with shape 5 and rate 0.1 for the skill parameters in both Bayes-BT and
BBQ. For BBQ, the beta prior on the rater quality has α = 10 and β = 2.

D DATASETS

We evaluate our models on a diverse set of human preference datasets covering both language and
image domains. Table 2 provides an overview.

For natural language, we use the HUMAINE dataset (Team, 2025), a large-scale benchmark with
over 100k comparisons, and MT-Bench (Zheng et al., 2023), which provides model comparison
judgments from crowd workers on multi-turn dialogues.

For image compression, we consider three datasets: WD (Ballé et al., 2025), a dense expert-labeled
dataset with thousands of comparisons per rater; HiFiC (Mentzer et al., 2020), which evaluates
learned image codecs; and ConHa (Aczel & Wattenhofer, 2024), which focuses on conditional gen-
erative models. These datasets vary substantially in scale, number of raters, and rater expertise,
providing a broad testbed for robustness.

Finally, we introduce the inhomogeneous rater quality (IHQ) dataset, obtained from a user study on
the CLIC2024 (CLIC, 2025) data conducted via the Mabyduck platform. It contains two-alternative-
forced-choice (2AFC) judgments across 28 generative image compression models. To study the
impact of rater quality, we provide two subsets: (i) screened, where raters passed pre-screening
checks for attention and display quality, and (ii) unscreened, where all raters are included. The
screened subset represents higher-quality raters, whereas the unscreened subset better reflects the
noisy conditions typical of large-scale human evaluations.

This collection of datasets allows us to study both large-scale, relatively clean benchmarks and
smaller, noisier settings where modeling rater reliability is critical.
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Table 2: Summary of datasets used in our experiments. The IHQ dataset was collected by us on
the Mabyduck platform and includes both 2AFC and 3AFC settings. For this dataset, we provide
screened and unscreened subsets: screened subsets include only raters who passed pre-screening
tests for attention and display quality, ensuring higher reliability, while unscreened subsets include
all raters.

dataset # comparisons # raters # models comp/rater comp/model

HUMAINE (Team, 2025) 105,220 1,977 27 53.2 3897.0
MT-Bench (Zheng et al., 2023) 3,355 65 6 51.6 559.2

WD (Ballé et al., 2025) 16,659 5 30 3331.8 555.3
HiFiC (Mentzer et al., 2020) 5,220 20 9 261.0 580.0
ConHa (Aczel & Wattenhofer, 2024) 1,531 40 8 38.3 191.4
IHQ-all 4,074 112 28 36.4 145.5
IHQ-screened 2,012 50 28 40.2 71.9
IHQ-unscreened 2,062 62 28 33.3 73.6

Figure 4: Screenshot of the Mabyduck user study platform used for collecting pairwise comparisons.
A reference image is shown on the left, and the rater selects between two compressed images on the
right.

E USER STUDY PLATFORM

All pairwise comparisons on the CLIC2024 (CLIC, 2025) dataset were collected using the Maby-
duck platform (Ltd., 2025). A screenshot of the platform can be seen in Figure 4. The task asks:
“Which image looks more similar to the reference image?” Ties are not allowed, and all pairs were
selected uniformly at random.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: Four example images from the pre-screening process for raters. The first two are color
blindness tests, where raters must identify the number displayed in each pattern. The last two are
shape detection tests designed to evaluate sensitivity to low-contrast objects: one light gray shape
on a white background and one dark gray shape on a black background.

To study rater quality, we split the IHQ dataset into screened and unscreened subsets. Screened
raters passed pre-tests for color vision, display contrast, and sensitivity to subtle differences, and
completed training comparisons choosing the higher-quality image to reinforce evaluation criteria.

Figure 5 shows four example images from the pre-screening process. The first two are standard color
blindness tests, where raters must correctly identify the number shown in each pattern. The final two
images are shape detection tests designed to evaluate the raters’ sensitivity to low-contrast objects:
one features a light gray shape on a white background, and the other a dark gray shape on a black
background. These pre-screening tests help ensure that only raters with adequate visual capabilities
contribute to the screened subset.

F BOOTSTRAPPING DETAILS

Since both BBQ and Crowd-BT explicitly model rater quality, we perform bootstrapping over raters
rather than individual comparisons. This approach preserves each rater’s comparison distribution
and ensures a fair assessment of stability. For all datasets, we perform 10,000 bootstrap resamples
of raters, except for the HUMAINE dataset, where a single bootstrap iteration for Crowd-BT takes
approximately 15 minutes, as discussed in Section 4.4. On the HUMAINE dataset, we perform
1,000 resamples to reduce computation time.

G UNCERTAINTY ESTIMATION DETAILS

In addition to ranking items, estimating uncertainty is important to assess whether observed differ-
ences are statistically significant.

The Bayesian Bradley-Terry (Bayes-BT) and Bayesian Bradley-Terry with Quality (BBQ) models
quantify uncertainty via the posterior distribution over item skills. Each skill has a Gamma prior,
which is updated using the observed pairwise comparisons. Credible intervals derived from the
posterior are then converted to the Elo scale to facilitate comparison across items.

The classical Crowd-BT model, being non-Bayesian, estimates uncertainty using a frequentist ap-
proximation. Specifically, a second-order Taylor expansion around the maximum likelihood esti-
mate is employed. The Hessian of the log-likelihood is inverted to obtain the covariance matrix,
whose diagonal entries correspond to the variances of individual items. These variances are con-
verted to 99% confidence intervals via:

p99 =
√

diag(covariance) × kErfc0 01 ×
√
2 ≈

√
diag(covariance) × 3.29,

where the constants scale the standard deviation to match the 99% confidence level. Narrower
likelihood peaks yield smaller intervals, reflecting higher certainty, while flatter peaks produce larger
intervals, indicating greater uncertainty.
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Figure 6: Type I error rate as a function of the number of raters. The dashed line indicates the
expected error rate of 1%.

To evaluate how well these models estimate uncertainty, we conduct a controlled simulation experi-
ment. We generate trials with two items of equal skill (50–50 win probability) and simulate pairwise
comparison data using coin flips. For each trial, multiple raters (users) are simulated, and models
are applied to estimate Elo scores and their associated uncertainty.

Formally, the null hypothesis H0 states that the two items are equally strong. For each trial, we
compute the 99% confidence (or credible) interval for each item’s skill estimate. A model is said to
incorrectly reject H0 if the confidence intervals do not overlap, indicating a statistically significant
difference between items when none exists. The primary metric of interest is the frequency with
which each model incorrectly concludes that the items are different, i.e., the observed Type I error
rate.

We perform 10,000 trials, using 50 comparisons per rater, while varying the number of raters to
assess how uncertainty estimates scale with the amount of data. This setup allows us to estimate
the empirical Type I error rate for each model and compare it against the theoretical expectation of
1% at the 99% confidence level. As shown in Figure 6, Crowd-BT and BBQ exhibit Type I error
rates close to the expected 1%, indicating that their uncertainty estimates are well-calibrated. In
contrast, Bayes-BT is overly conservative, consistently producing lower error rates than expected,
which suggests its credible intervals are not as well-calibrated for significance testing.
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