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ABSTRACT

Real-world graph datasets often consist of mixtures of populations, where graphs
are generated from multiple distinct underlying distributions. However, modern
representation learning approaches, such as graph contrastive learning (GCL) and
augmentation methods like Mixup, typically overlook this mixture structure. In
this work, we propose a unified framework that explicitly models data as a mixture
of underlying probabilistic graph generative models represented by graphons. To
characterize these graphons, we leverage graph moments (motif densities) to clus-
ter graphs arising from the same model. This enables us to disentangle the mix-
ture components and identify their distinct generative mechanisms. This model-
aware partitioning benefits two key graph learning tasks: 1) It enables a graphon-
mixture-aware mixup (GMAM), a data augmentation technique that interpolates
in a semantically valid space guided by the estimated graphons, instead of assum-
ing a single graphon per class. 2) For GCL, it enables model-adaptive and prin-
cipled augmentations. Additionally, by introducing a new model-aware objective,
our proposed approach (termed MGCL) improves negative sampling by restricting
negatives to graphs from other models. We establish a key theoretical guarantee:
a novel, tighter bound showing that graphs sampled from graphons with small
cut distance will have similar motif densities with high probability. Extensive ex-
periments on benchmark datasets demonstrate strong empirical performance. In
unsupervised learning, MGCL achieves state-of-the-art results, obtaining the top
average rank across eight datasets. In supervised learning, GMAM consistently
outperforms existing strategies, achieving new state-of-the-art accuracy in 6 out
of 7 datasets.

1 INTRODUCTION

Graphs provide a powerful framework for modeling complex relational data across diverse domains,
including social networks (Yang et al.,2021; |Kumar et al., 2022), bioinformatics (Balaji et al.,2022;
Zhang et al [2021; |Azizpour et al.| 2024), and wireless systems (Zhao et al.| |2023; |Olshevskyi
et al., [2025). A central goal in graph machine learning is to learn representations that capture the
underlying principles governing these networks for tasks like graph classification (Rey et al.| [2025).
Graphons, or graph limits, have emerged as a foundational tool for this, offering a continuous, non-
parametric generative model that describes the large-scale structure of graphs (Lovasz, |[2012; Borgs
et al., 2008). By representing the latent process from which graphs are sampled, graphons enable
principled analysis and data augmentation (Navarro & Segarra, |2022; |Han et al.| 2022)).

Given their utility, the accurate and efficient estimation of graphons (Chan & Airoldi, 2014} (Xu
et al.| 2021} Xia et al.}2023)) from observed network data is a central problem. This has spurred the
development of several modern estimation techniques. For instance, methods like Scalable Implicit
Graphon Learning (SIGL) leverage implicit neural representations and graph neural networks to
learn a continuous graphon at arbitrary resolutions from large-scale graphs (Azizpour et al., [2025).
Other recent work has shown that leveraging graph moments (subgraph counts) provides a com-
putationally efficient path to scalable graphon estimation (Ramezanpour et al., 2025). However, a
critical limitation of these approaches is that they are designed to estimate a single, unified graphon
for the observed set of graphs. This assumption falters in real-world settings, where datasets fre-
quently consist of a mixture of populations, with graphs generated from several distinct underlying
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distributions, and as a result, modeling a single graphon may not capture highly heterogeneous graph
data (Ramezanpour et al.| [2025)).

This limitation also extends to modern representation learning paradigms, which often overlook the
shared or distinct underlying models of different graphs. For example, graph augmentation tech-
niques such as G-mixup (Han et al.} [2022) assume a single graphon per class to serve as the latent
representation for mixing. However, graphs within the same class may arise from multiple genera-
tive processes, leading to heterogeneous latent spaces and semantically inconsistent augmentations.
Similarly, in graph contrastive learning (You et al.,2020;2021), each graph serves as an anchor, the
positive sample whose representation is being learned, while all other graphs in the batch are treated
as negatives. This neglects the possibility that some graphs originate from the same underlying
generative model, making them false negatives and hindering representation quality.

In this work, we introduce a unified framework that explicitly addresses this challenge by modeling
graph data as a mixture of underlying graphons. Our approach relies on the key insight that densi-
ties of motifs (empirical graph moments) serve as a powerful signature for the underlying generative
model (Borgs et al.| 2010). By leveraging these motif densities, we first partition the graph dataset
into coherent clusters, where each cluster corresponds to a distinct component of the graphon mix-
ture. This model-aware partitioning allows us to disentangle the generative mechanisms at play and
forms the foundation for more principled machine learning techniques. Building on foundational
results, we also establish a novel theoretical guarantee, showing that graphs sampled from graphons
with a small cut distance will, with high probability, have similar motif densities.

Our main contributions are threefold:

* We introduce a moment-based clustering method to partition heterogeneous graph datasets into
clusters, each corresponding to a distinct underlying graphon, providing an interpretable estima-
tion of graphon mixtures.

* For supervised settings, we propose a graphon mixture-aware mixup (GMAM) that identifies
multiple underlying generative models within each class of data and performs mixing based on
these models, ensuring semantically consistent augmented graphs.

* For unsupervised learning, we develop a moment-aware contrastive framework (MGCL) that
leverages graphon-specific augmentations and model-aware negative sampling to improve aug-
mentations and reduce false negatives.

2 PRELIMINARY

2.1 GRAPHON

A graphon is defined as a bounded, symmetric, and measurable function W : [0,1]? —
[0, 1] (Lovasz, |2012; |Avella-Medina et all 2018). By construction, a graphon acts as a generative
model for random graphs, allowing the sampling of graphs that exhibit similar structural properties.
To generate an undirected graph G with N nodes from a given graphon W, the process consists
of two main steps: (1) assigning each node a latent variable drawn uniformly at random from the
interval [0, 1], and (2) connecting each pair of nodes with a probability given by evaluating W at
their respective latent variable values. Formally, the steps are as follows:

n(i) ~ Uniform([0,1]), Vi=1,--- N, @))
A(Za.]) ~ Bernoulli (W(U(Z)JIU))) ) v Zv] = 17 e aNa

where the latent variables 1(i) € [0,1] are independently drawn for each node 7. The dis-
similarity between two graphons, W; and W5, is measured by the cut distance, denoted as
dew (W1, Wa) (Lovész, [2012).

Graphon estimation. The generative process in equation [T can also be viewed in reverse: given
a collection of graphs (represented by their adjacency matrix) D = {A;}M | that are sampled from
an unknown graphon W, estimate V. Several methods have been proposed for this task (Chan &
Airoldi, 20145 Airoldi et al.| 2013} [Xu et al.|[2021}; |Xia et al., 2023} |Azizpour et al.||2025; Ramezan-
pour et al., [2025). We focus on SIGL (Azizpour et al.| |[2025)), a resolution-free method that, in ad-
dition to estimating the graphon, also infers the latent variables m, making it particularly useful for
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model-driven augmentation. This method parameterizes the graphon using an implicit neural repre-
sentation (INR) (Sitzmann et al., [2020), a neural architecture defined as f(z,y) : [0,1]% — [0,1]
where the inputs are coordinates from [0, 1]? and the output approximates the graphon value W at a
particular position. More details of SIGL are provided in Appendix

Motif densities from graphons A graphon W provides the theoretical expectation for the density
of any subgraph, also known as a motif F. The non-induced homomorphism density, ¢(F, W),
counts all occurrences of a motif where at least the specified edges are present, regardless of any
additional edges that might exist between the motif’s vertices. The non-induced density is given as
follows

tE,W) :/[o IT woun) I dm- 2

k
A* Gjreer IEVF

The power of this framework lies in its connection to observable data; the theoretical value of
t(F,W) can be accurately estimated by the empirical motif counts found in a large graph sam-
pled from the graphon W (Lovasz| 2012). This makes motif densities a powerful tool for linking
continuous graphon models to discrete, real-world networks.

2.2  GRAPH MIxUP

Mixup (Zhang et al.} 2018 [Verma et al., 2019) has been successfully adapted to graphs in several
works (Han et al.| [2022; [Navarro & Segarral [2023). The key idea is to augment the dataset by
interpolating existing samples. In its standard form, mixup generates a new sample by linearly
combining two randomly chosen inputs and their labels:

Tnew = AT; + (1 - )\)xj7 Ynew = AY; + (1 - /\)ij 3)
where (x;,y;) and (z;,y;) are two samples with one-hot labels. In the graph domain, G-Mixup
extends this idea by operating at the level of graphons (Han et al.| 2022} Navarro & Segarra, [2023).

Given two classes, it first estimates their graphons, then interpolates between them, and finally
generates new graphs and labels from the mixed graphon:

Graphon estimation: Dy — Wg, D; — Wy, @)
Graphon mixup: Wz = AWg + (1 — \)W, %)
Graph generation: {I1,..., I} i G(K,Wz), (6)
Label mixup: yz = Ayg + (1 — N)yx. @)

2.3  GRAPH CONTRASTIVE LEARNING

GCL (Velickovic et al.,|2019; |You et al.,[2020;[2021; Suresh et al.,[2021)) aims to learn discriminative
node or graph-level embeddings in a self-supervised manner, without relying on explicit labels.
Given a collection of graphs {G; }Z_,, the goal of graph-level GCL is to train an encoder & (-) so that
it produces expressive representations or embeddings. The encoder outputs an embedding per graph
G, denoted by z; = Eg(Ay, X;), where z; € R*F InfoNCE-based methods are widely adopted
in this setting [You et al.| (2020); [Suresh et al.| (2021); [You et al.| (2021). These methods generate
an augmented view of the input graph through transformations such as edge perturbation, feature
masking, or subgraph sampling. Following this, let z; and z, denote the graph-level representations
of the original and augmented views, respectively. The InfoNCE loss is then used to bring z; and z;
(positive pair) closer in the embedding space while pushing them apart from representations of all
other graphs in the batch (z, for all t # ¢, i.e., negative samples). Formally, the parameters of the
encoder are achieved by minimizing the following loss function

exp(sim(z, z¢)/7) 1<
0, = —log D La=— > b (8)
ZtL/:Lﬂ# exp(sim(z;, Zy ) /T) L tz:;

3 METHODS

We first present our unified framework for estimating the multiple underlying data distributions of
graphs as a graphon mixture in Section[3.I} We then introduce novel methods that adapt and leverage
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Figure 1: Overview of the proposed framework. (a) Graphon mixture estimation via motif moment vectors,
(b) Graphon mixture—aware mixup for data augmentation, (c) Model-aware GCL leveraging graphon-informed
augmentations and model-aware contrastive loss.

these estimated graphons in the context of graph mixup and graph contrastive learning, as detailed
in Sections[3.2]and[3.3] respectively. An overview of these steps is shown in Figure[T] and a detailed
algorithm of these three steps is included in Appendix

3.1 GRAPHON MIXTURE ESTIMATION

The goal of this step, which is the core of our methodology, is to recover the multiple underlying
generative models of the data, represented as a set of graphons {W;}X . We assume that each
observed graph G in the dataset is sampled from one of these graphons, though the assignment is
unknown. Hence, the task reduces to identifying groups of graphs that are likely to originate from
the same underlying distribution, and subsequently estimating a representative graphon for each
group.

To formalize this idea, we leverage the concept of moment vectors. For a graphon W, its motif
densities provide expectations of subgraph counts (cf. equation . Let F = {Fy,...,F,,} denote a
fixed family of motifs. The moment vector of a graphon W with respect to F is defined as

o(W) = [H(F, W), t(Fy, W), ... t(Fn, W)] €R™, ©)

Similarly, for an observed graph G sampled from W, we compute its empirical moment vector
©(G) by normalizing motif counts in G. We present next a result to bound the difference between
the empirical moment vectors of two graphs.

Theorem 1 (Bounding Empirical Density Difference by Graphon Distance). Let G and G be n-
vertex graphs sampled from graphons Wy and W, respectively, where d (W1, Wa) < €. Let F be
a fixed family of motifs of bounded size. For any motif F' € F with k = v(F') vertices and e(F)
edges, and for any target failure probability n > 0, we have

1 14 o(F) [ 4
[t(F,G1) —t(F,G2)| < e(F)e  +2 ( 3 logﬁ + \/ﬁ 2log n), (10)

Graphon Difference

Sampling Error

with probability at least 1 — 21, where m = {%J The proof is provided in Appendix@

The bound in Equation equation[I0]on the total difference in empirical motif densities is comprised
of two components. The first term, the Graphon Difference, arises from the intrinsic structural
dissimilarity between the underlying graphons. The second term, the Sampling Error, represents a
novel, tighter concentration bound that quantifies the statistical uncertainty from the random graph
generation process. This novel bound offers a significant improvement over classical approaches
that can be derived from the literature (Lovaszl, 2012; [Borgs et al., |2008), as we demonstrate in
Appendix [B| where a full derivation and comparison are provided.

Theorem [I] reveals that if the underlying graphons Wy and W are close in cut distance, i.e., small
€, then their corresponding empirical moment vectors, 9(G1) and 0(G3), are also close with high
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probability. Alternatively, it also follows that if the moment vectors of two graphs G; and G2 are
observed to be significantly different, we can conclude with high confidence that they were gener-
ated from structurally different underlying graphons. Formally, if [t(F, G1) — t(F, G2)| is large for
some motif F', it implies that dey (W7, W) must also be large. By applying a union bound across all
motifs in the family F, this principle extends to the full moment vector: a large Euclidean distance
|19(G1) — 0(G2)||2 implies that G; and G2 likely originate from different graphon distributions.
This justifies the use of motif-based embeddings for graph clustering, as distinct generating pro-
cesses produce measurably distinct motif fingerprints. Further theoretical analyses are included in

Appendix

Based on the above theorem, we assign each graph G; a feature vector v; = 0(G;) € R™, and
collect them as {v;}Z_,. We then apply k-means clustering to these vectors in order to group graphs
according to their latent generative models. Let {C1, ..., Ck } denote the resulting clusters. Within
each cluster C}, the graphs share similar moment vectors, suggesting they arise from a common
graphon Wj. Then, we aim to estimate a graphon for each cluster of graphs. To mitigate boundary
effects (i.e., graphs near the edges of clusters that may not be well represented), we select the L
graphs closest to the cluster centroid in moment space. For each cluster C},, we estimate the under-
lying graphon W}, using these L graphs. Any graphon estimation algorithm can be applied; in our
implementation, we adopt SIGL (Azizpour et al.,2025)), which additionally provides the latent node
variables 1) alongside the graphon estimate. Finally, each graph G; in cluster CY, is associated with
the estimated graphon Wj,. This provides us with a graphon mixture model {W7, ..., Wx }, where
each observed graph is assigned to exactly one mixture component. To align with the dataset size,
we set K =logT.

In summary, we can view the overall pipeline as a mapping from a collection of graphs to a set of
estimated graphons together with an assignment function. Let D = {G1,Ga, ..., Gr} denote the

dataset of observed graphs. Our procedure outputs (i) a set of estimated graphons {Wl, cee WK}
and (ii) an assignment function

m:D—={1,...,K},
such that each graph G; is mapped to one of the estimated graphons VAVW(Gt). Equivalently, the
pipeline defines a function
®:D — ({Wi,...., Wk}, ), (11)

where ® encapsulates the steps of (i) computing empirical moment vectors, (ii) clustering in moment
space, and (iii) estimating graphons for each cluster.

3.2 GRAPHON MIXTURE-AWARE MIxXUrP (GMAM)

In this section, we describe how to leverage the graphon mixture for graph data augmentation under
the mixup framework. In contrast to existing G-mixup, which assumes a single graphon per class,
our approach disentangles the multiple generative models that may exist within each class. This
enables a more fine-grained and semantically valid interpolation strategy.

Consider a dataset of graphs with C classes, D = {(Gy,y:)}i_,, where y; € {1,...,C}. For each
class ¢, we first collect its subset of graphs

D; ={G |y =i} (12)

We then apply the operator ® from Section [3.1] to estimate the graphon mixture within each class.
Formally, this yields

(P(D’L) — ({Wi,la"'7Wi,Ki}a 77’&)7 (13)
where {Wi,l, ey WL; K, } denotes the mixture of graphons estimated for class 4, and 7; is the as-
signment of each graph in D; to its underlying graphon.
To perform GMAM, we first sample two graphs G, € D; and G}, € D, from classes ¢ # j. Instead
of directly interpolating their raw structure, we trace back to their associated graphons, Wi,m(ga)
and VAVij (Gy)- We then construct a mixed graphon

W = AW, ri(Ga) + (1 = NWiirsG)- (14)
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Finally, we generate a new graph G, ~ G(n, W) according to the stochastic sampling process
in equation|[I] where n is chosen to match the scale of the dataset. The associated label is interpolated
in the standard mixup fashion: y, = Ay; + (1 — A)y;, where y;,y; are one-hot encoded labels.

By disentangling class distributions into mixtures of graphons, we preserve finer semantic structures
during augmentation and avoid the unrealistic assumption that all graphs within a class share a single
generative model.

3.3 MODEL-AWARE GRAPH CONTRASTIVE LEARNING (MGCL)

We now extend the graphon mixture framework to contrastive learning. Given an unlabeled dataset
of graphs D = {G,}1_,, we first apply the operator ® (Section to obtain the graphon mixture

{Wl, RPN WK} along with the assignment 7 that maps each graph G; to its generating graphon

Wi (a,)- This mapping benefits contrastive learning in two key ways: (1) it enables a principled
graphon-aware augmentation strategy that generates meaningful positive pairs, and (2) it supports a
model-aware loss function.

Graphon-aware augmentation. For each cluster &, the estimated graphon W), characterizes the
generative distribution of graphs in that cluster. We use this distribution to design a graphon-
informed augmentation procedure. Given a graph G with adjacency matrix A, that belongs to clus-
ter C;, we randomly select a subset Fgej of % of all node pairs. For each selected pair (4, j) € Esel,
the corresponding adjacency entry is resampled according to the probability given by the cluster’s
graphon:

Af(la.]) ~ BernOUIli(WCt(manj))7 At(j? Z) = At(iaj)’ (15)
where 7;,m; € [0,1] denote the latent positions associated with nodes ¢ and j. For all pairs
(i,j) ¢ Es, we retain the original edges: A;(i,7) = A(4,7). Note that, to leverage graphons
for augmentation and edge resampling, we require the latent variables of the nodes (1) in order
to query the edge probabilities from the graphon. Since SIGL is specifically designed to estimate
graphons together with the latent node positions, we adopt SIGL (Azizpour et al.| [2025) for graphon
estimation. Nevertheless, other graphon estimation methods (Chatterjee, 2015; |(Chan & Airoldi,
2014) can also be employed, as they implicitly assign latent variables by sorting nodes according to
degree and using the degree as a proxy for the latent position.

This process injects structure-aware perturbations guided by the estimated generative model. Un-
like naive random perturbations, graphon-aware augmentation assigns edge-specific probabilities
informed by the graphon, producing more faithful augmented views. Passing the original graph
and its graphon-aware augmentation through the encoder &, with node features X, yields the corre-

sponding representations z; = E(A4, X¢) and z, = &y (At, X¢); see Section

Model-aware contrasting. We modify the InfoNCE objective (Oord et al., |2018)) to account for
graphon mixture assignments. Given a batch of L graphs, the loss for anchor ¢ and the overall loss
function is

exp(sim(zs,z) /T
f=log—— p(sim(z, 2;)/7) , La=1Y 4, (16)
> exp(sim(z¢, Zzy ) /7) t=1
t’:l,Ct/;éC,,

where sim(-,-) is a similarity measure (e.g., cosine), 7 is the temperature, and C} is the cluster
index of G. Unlike standard InfoNCE, which pushes a graph away from all other graphs (including
those with the same underlying model), our formulation only contrasts against graphs from different
graphons. The following result clarifies how our loss interpolates between model-level and instance-
level contrasting:

Theorem 2 (Lower bound of model-aware loss). For every graph t let my := |{k : C), # C}|, and
~Ct) = mit Eck 20, zy, be the centroid of negative samples from clusters other than Cy. Then,

z(

Inmy + sim(z, Z(ﬁct)) —sim(zg,z:) < . 17

The proof is provided in Appendix [C] This lower bound shows that by minimizing our loss func-
tion, each graph representation z, is contrasted against the centroid of unrelated models (smaller
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Figure 2: t-SNE embedding of graphs. Left: Varying size, n ~ U[75,300]. Right: Fixed size,
n = 200. Each color represents different graphon.
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values for sim(z;,z("C*))), rather than against the centroid of the entire dataset. Moreover, positive
samples z; are improved by using graphon-aware augmentations, which preserve the semantics of
the underlying generative process, while negatives are improved by excluding graphs from the same
mixture, reducing false negatives. As a result, the encoder learns to align each graph representation
with its generating model while scattering it away from other models. Thus, our method can be inter-
preted as contrasting each graph from the negative models rather than individual graphs and pushing
each graph toward its positive model, yielding representations that are both more discriminative and
semantically faithful.

4 EXPERIMENTS

We evaluate our proposed pipeline along three main directions. First, in Section[d.1] we test whether
clustering based on moment vectors can successfully separate graphs generated from different un-
derlying models. Next, in Sections [4.2] and 4.3] we assess the effectiveness of our mixture-aware
extensions: GMAM and MGCL, respectlvely A description of the datasets, baselines, experimental
setups, and hyperparameters for all three types of experiments is provided in Appendix

4.1 SYNTHETIC EXPERIMENT

To empirically validate the theoretical framework presented in Section [3.1] we conduct a synthetic
experiment designed to test the efficacy of moment vectors in distinguishing and clustering graphs
sampled from a mixture of different graphon distributions. The core hypothesis is that graphs gen-
erated from distinct graphons will exhibit measurably different motif densities, forming separable
clusters in the moment vector space.

Experimental setup. We generate a dataset composed of graphs sampled from a mixture of K = 7
distinct, predefined graphon models, {W}}9_ . These models, include a range of functional forms
to ensure structural diversity, generating graphs of varying density through models that are, for
example, linear or exponential in nature. For each graphon model W}, we sample a collection of
graphs, creating a dataset where the ground-truth generating model for each graph is known.

To analyze the impact of graph size on the concentration

of empirical moments around their theoretical means (cf. Method  Varying Fixed

Theorem|[T)), we structure our experiment into two distinct Theory 814 829
scenarios: (i) Varying size, where n is drawn uniformly gICI\II\I ggg gg;
from [75,300] (as in SIGL (Azizpour et al., [2025) and ‘ ‘
— . Graph2Vec  28.6 62.0
Momer}tNet (Ramezanpour et al., 2.025)); and (ii) Fixed DeepWalk 25.7 28.9
size, with n = 200. For each scenario, we generate a bal- Spectral 229 21.7
anced dataset with an equal number of graphs from each MBC (our) 80.0 793

of the seven graphon classes. For each sampled graph, we  Table 1: Clustering accuracy (in %) with
compute its empirical moment vector using the densities  different embeddings.

of all connected motifs with up to 4 nodes, resulting in feature vectors of size 9. We then apply
the clustering algorithm introduced in Section [3.1]to cluster these vectors and measure the accuracy
by comparing the assignments to the ground-truth labels. This directly tests the ability of moment
vectors to partition a mixture of graphs generated from different underlying models.
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Table 2: Classification accuracy (%) of different mixup methods compared with GMAM across multiple
datasets. The top performing method is boldfaced, and the second best is underlined. *: Result not available.

Dataset IMDB-B IMDB-M REDD-B REDD-M5 REDD-M12 COLLAB AIDS
Vanilla 71.30+4.36  48.80+2.54  89.15+2.47  53.17£2.26 49.95+0.98 79.39+1.24 98.00+1.20
DropEdge 70.50+3.80  48.73+4.08  87.45+391  54.11+1.94 49.77£0.76 78.32+1.31 92.87+1.45
DropNode 72.00+£6.97  45.67+2.59  88.60+2.52  53.97%2.11 49.95+1.70 80.0141.66 96.25+1.24
SubMix 71.70+£6.20  49.80+4.01 90.45+1.93 54274292  42.58+12.30 80.1140.75 96.18+1.33
M-Mixup 72.00+5.14  48.67+5.32  87.70+2.50  52.85+1.03 49.81£0.80 77.00£2.20 *
S-Mixup 73.40+6.26  50.13+4.34  90.55+2.11 55.19+£1.99 49.51£1.59 * *
G-Mixup 72.40+5.64  49.93+2.82  90.20+2.84  54.33+1.99 49.7240.48 79.05+1.25 97.8£0.90
SIGL 73.95+2.64 50.70+1.41  91.93+0.94  55.82+1.35 49.73£0.62 80.15+0.60 97.93+0.96
MomentMixup | 74.30£2.70  50.95+£1.93  91.80+£1.20  56.09+1.62 49.83+1.01 79.75+£ 0.59  98.50+0.60
GMAM 74.45+1.15 51.03+1.63  92.25+0.82  56.46+0.95 50.18+0.50 80.25+0.52 98.2040.51

Results. To visualize the structure of the moment vector space, we use t-SNE to project the 9-
dimensional moment vectors into a 2D plane, as shown in Figure[2] In these plots, each point repre-
sents a graph sampled from one of seven graphon distributions, and the stars denote the ground-truth
moment vectors v(W},) for each underlying graphon Wy.. The visualizations empirically confirm our
theoretical framework. According to Theorem([I] the distance between the empirical moment vectors
of two sampled graphs, 9(G1) and 9(G>), is influenced by two primary factors, namely the distance
between their underlying graphons, d.. (W1, W2), and a sampling error term which decreases as the
number of nodes n grows. In the varying size scenario (Figure 2a)), the higher variance in graph
sizes leads to more diffuse clusters, as smaller graphs introduce larger sampling errors. Conversely,
in the fixed size scenario with n = 200 (Figure2[b)), the empirical vectors concentrate more tightly
around their respective ground-truth means, forming more distinct and separable clusters. The sep-
aration between clusters is determined by the distance between their underlying graphons. Table [6]
(Appendix [E)) reports the pairwise Gromov—Wasserstein (GW) distances, used here as a practical
proxy for the cut distance since the latter can be relaxed to the GW distance of step functions (Xu
et al., [2021). As expected, graphons 2 and 3 have a very small GW distance of 0.024, reflected in
the overlap of their green and red clusters, while graphons with larger distances, such as 0 and 4
(0.530), yield well-separated clusters.

Quantitatively, our clustering performance is reported in Table [I| The Theory-Based accuracy is
computed by assigning each graph to the cluster of the nearest ground-truth moment vector in Eu-
clidean space, providing an upper bound on performance. Other methods apply k-means clustering
on the embeddings obtained by different methods. Our proposed method, MBC (moment-based
clustering), achieves accuracies of 0.800 and 0.793 for the varying and fixed size settings, respec-
tively, outperforming all other embedding methods and closely approaching the theory-based scores
of 0.814 and 0.829. This demonstrates that moment vectors provide a robust foundation for cluster-
ing graphs generated from different underlying distributions. The higher accuracy in the fixed-size
setting directly reflects the tighter cluster formations observed in the t-SNE visualization, further
validating the concentration properties outlined in our theory. Further details of different embedding
methods are provided in Appendix [E.5]

4.2 GMAM

In this section, we evaluate the effectiveness of our proposed mixture-aware graph mixup method in
Section on seven real-world datasets from the TUDatasets benchmark (Morris et al., [2020).
These include two bioinformatics datasets (PROTEINS, AIDS), one molecular dataset (NCI1),
and four social network datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI-5K). We compare against a broad range of augmentations and state-of-the-art mixup vari-
ants. Full details on baselines are provided in Appendix [E]

For fairness, we adopt the same GNN structure (depth and architecture) across all methods, along
with identical training hyperparameters. All steps of graphon mixture estimation and the subsequent
mixup augmentation are performed strictly within the training set The augmentation ratio (i.e., the
proportion of generated graphs added to training) is also fixed consistently across methods. Table 2]
reports the results. Our method consistently improves performance across multiple datasets, achiev-
ing the highest accuracy on five of eight benchmarks, ranking second on two others, and third on the
remaining one. These results demonstrate that incorporating mixture-aware graphon models leads
to more effective augmentations by disentangling multiple generative patterns within each class.
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Table 3: Unsupervised representation learning classification accuracy (%) on TU datasets. A.R
denotes the average rank of the results. The top performing method is boldfaced, and the second
best is underlined.

Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R.
InfoGraph | 7620 £1.0 7444 +£03  7285+1.8  89.01 1.1 70.65 £1.1 82.50 £1.4  53.46+1.0 73.03+09 | 7.37
GraphCL 771.87+04  7439+04  78.62+04 86.80+13 71.36%l.1 89.53 £0.8 5599 £0.3  71.14+04 | 6.25
MVGRL 76.64 £0.3  74.02+03 7520 +04  7540+7.8 73.104+0.6 82.00 £1.10 51.87 £0.6  63.60 £4.2 | 9.12
JOAO 78.07 £0.5 7455 +04 7732405 8735+£1.0 69.50+£0.3 8529+13  55.74+0.6  70.21 £3.1 | 7.75
JOAOV2 7836 £0.5  74.07 £1.1 77.40 £1.1 87.67 £0.8  69.33 £0.3 8642 +14  56.03+0.3  70.83 £0.3 | 6.87
AD-GCL 73.904+0.8 7330405 75.80+09 8870 £19  72.004+0.6  90.10+0.9  54.30+03  70.20£0.7 | 7.50
AutoGCL 78.32£0.5  69.73£04  75.754+0.6  85.15%I1.1 7140 £0.7  86.60 £1.5  55.71+£0.2  72.00 £0.4 | 7.25
sinGRACE | 79.10 £0.4  75.30 0.1 77.40 £1.1 89.00 £1.3  71.70 £0.8  89.50 £0.9  55.90 +0.3  71.30 £0.8 | 4.37
RGCL 78.10 £1.0  75.00+0.4  78.90 £0.5  87.70 £1.0  71.004+0.7  90.30 £0.6  56.40 £0.4  71.90 £0.9 | 4.25
DRGCL 78.70 £0.4  7520+0.6 7840407 89.50+0.6  70.60 £0.8  90.80 £0.3  56.30+0.2  72.00 £0.5 | 3.37
MGCL 79.18 £0.48 75.54 £0.31 79.07 £0.24 90.03 £1.32 72.22+0.72 9046 +0.14 56.08 +£0.24 72.28 +0.52 | 1.62

Thus, our method provides more semantically faithful interpolations, which translate into stronger
downstream performance.

4.3 MGCL

Setup. We compare MGCL with a variety of state-of-the-art GCL baselines. The full set of com-
peting methods is detailed in Appendix[E] We evaluate on eight datasets from the TUDataset (Morris
et al., 2020) collection. The experiments follow the linear evaluation protocol (Peng et al., |2020),
where models are first trained in an unsupervised manner, and the resulting embeddings are sub-
sequently used for downstream tasks. We adopt the evaluation protocol from (Sun et al., [2020),
performing 10-fold cross-validation on each dataset. The resulting graph-level embeddings are used
to train an SVM classifier, and we report the average performance across the folds. To summarize
performance, we assign a rank to each method based on its performance on each dataset, and the
average rank (A.R.) is then computed as the mean of these ranks across all datasets.

Results. As shown in Table 8] MGCL achieves strong performance across a wide range of graph-
level benchmarks from the TUDataset collection (Morris et al., 2020). MGCL ranks first on five
out of eight datasets and second on two of the other datasets. For the IMDB-B dataset, Info-
Graph performs best, suggesting that augmentation-based strategies may be less effective for this
particular benchmark. Nonetheless, MGCL outperforms other augmentation-based methods, such
as GraphCL and JOAO, and more recent, powerful methods such as DRGCL and simGRACE. Most
notably, MGCL obtains the lowest average rank (A.R.) of 1.62, outperforming all competing base-
lines. These results highlight MGCL’s ability to learn generalizable and transferable graph-level
representations. Further experiments on the effectiveness of our model-aware loss function are in-
cluded in Appendix [} where we observe that clustering indeed reduces the false negative rate.

5 CONCLUSION

We proposed a unified framework for inferring mixtures of underlying generative models (graphons)
from observed graphs. Instead of assuming a single distribution per dataset, our approach disentan-
gles multiple generative models and leverages this structure for downstream learning. We developed
three components: (i) graphon mixture estimation via motif moment vectors clustering, theoretically
supported by concentration guarantees for moments, (i) GMAM, a graphon mixture-aware mixup
for model-level data augmentation, and (iii) MGCL, a contrastive learning framework combining
graphon-informed augmentations with a model-aware loss. Empirically, we showed that moment-
based clustering recovers ground-truth models, GMAM achieves state-of-the-art results on seven
benchmarks, and MGCL reduces false negatives and yields more semantically faithful representa-
tions. While our framework is effective, its performance may be influenced by factors such as graph
size. For smaller graphs in particular, higher sampling variance in motif counts can cause their em-
beddings to deviate from their theoretical means, making it challenging to reliably identify their true
underlying generative distribution. Future work could extend this framework to use more expressive
generative models (e.g., higher-order kernels). Additionally, the strong separability of motif embed-
dings suggests a promising avenue for graph-level anomaly detection, where graphs that are outliers
in the moment space could be identified as originating from anomalous generative processes.
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REPRODUCIBILITY STATEMENT

The model architectures, training hyperparameters, and experimental settings are detailed in Sec-
tion 4] with additional implementation information provided in Appendix [E} Proofs of the theoreti-
cal results are given in Sections[3.T|and[3.3] with all assumptions stated explicitly in Appendices[B.1]
and |C| Dataset statistics are also reported in Appendix |[E| Finally, the source code and scripts are
included in the supplementary materials, along with instructions to reproduce all experiments and
results.

REFERENCES

Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel approximation of a
graphon: Theory and consistent estimation. Advances in Neural Inf. Process. Syst. (NIPS), 26,
2013.

Marco Avella-Medina, Francesca Parise, Michael T Schaub, and Santiago Segarra. Centrality mea-
sures for graphons: Accounting for uncertainty in networks. IEEE Trans. Netw. Sci. Eng., 7(1):
520-537, 2018.

Ali Azizpour, Advait Balaji, Todd J Treangen, and Santiago Segarra. Graph-based self-supervised
learning for repeat detection in metagenomic assembly. Genome research, 34(9):1468—1476,
2024.

Ali Azizpour, Nicolas Zilberstein, and Santiago Segarra. Scalable implicit graphon learning. In Int.
Conf. on Artif. Intell. and Stat., 2025.

Advait Balaji, Nicolae Sapoval, Charlie Seto, RA Leo Elworth, Yilei Fu, Michael G Nute, Tor
Savidge, Santiago Segarra, and Todd J Treangen. KOMB: K-core based de novo characterization
of copy number variation in microbiomes. Comput. Struct. Biotechnol. J., 20:3208-3222, 2022.

C. Borgs, J.T. Chayes, L. Lovész, V.T. S6s, and K. Vesztergombi. Convergent sequences of dense
graphs i: Subgraph frequencies, metric properties and testing. Advances in Mathematics, 219(6):
1801-1851, 2008. ISSN 0001-8708.

Christian Borgs, Jennifer Chayes, and Laszl6 Lovdsz. Moments of two-variable functions and the
uniqueness of graph limits. Geometric and Functional Analysis, 19(6):1597-1619, March 2010.
ISSN 1420-8970.

Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph mod-
els. In Intl. Conf. on Machine Learning (ICML), pp. 208-216. PMLR, 2014.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. Ann. Stat., 43(1):
177-214, 2015.

Wengqi Feng, Xiang Zhang, Zhenyu Chen, Yuxiao Dong, and Jie Han. Graph random neural networks
for semi-supervised learning on graphs. In Advances in Neural Inf. Process. Syst. (NIPS), 2020.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-Mixup: Graph Data Augmentation for
Graph Classification. In Proceedings of the 39th International Conference on Machine Learning
(ICML), volume 162 of Proceedings of Machine Learning Research, pp. 8450-8465. PMLR, 17—
23 Jul 2022.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In Intl. Conf. on Machine Learning (ICML), pp. 4116—4126. PMLR, 2020.

TomaZ Hocevar and Janez DemSar. A combinatorial approach to graphlet counting. Bioinformatics,
30(4):559-565, 12 2014. ISSN 1367-4803.

Qirui Ji, Jiangmeng Li, Jie Hu, Rui Wang, Changwen Zheng, and Fanjiang Xu. Rethinking dimen-

sional rationale in graph contrastive learning from causal perspective. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 12810-12820, 2024.

10



Under review as a conference paper at ICLR 2026

Diederik P Kingma. Adam: A method for stochastic optimization. Intl. Conf. Learn. Repr. (ICLR),
2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, and Bhawani Sankar Panda. Influence maximiza-
tion in social networks using graph embedding and graph neural network. Information Sciences,
607:1617-1636, 2022.

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning

Research, pp. 13052-13065. PMLR, 17-23 Jul 2022.

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft align-
ments. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 21335-21349. PMLR, 23-29
Jul 2023.

Laszl6 Lovasz. Large networks and graph limits, volume 60. American Mathematical Soc., 2012.

Facundo Mémoli. Gromov—Wasserstein distances and the metric approach to object matching.
Found. Comput. Math., 11:417-487, 2011.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs, 2017.

Madeline Navarro and Santiago Segarra. Joint network topology inference via a shared graphon
model. IEEE Transactions on Signal Processing, 70:5549-5563, 2022.

Madeline Navarro and Santiago Segarra. Graphmad: Graph mixup for data augmentation using data-
driven convex clustering. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1-5, 2023.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In
T. Dietterich, S. Becker, and Z. Ghahramani (eds.), Advances in Neural Information Processing
Systems, volume 14. MIT Press, 2001.

Rostyslav Olshevskyi, Zhongyuan Zhao, Kevin Chan, Gunjan Verma, Ananthram Swami, and San-
tiago Segarra. Fully distributed online training of graph neural networks in networked systems. In
2025 IEEE International Conference on Machine Learning for Communication and Networking
(ICMLCN), pp. 1-6. IEEE, 2025.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In Proc.
The Web Conf., pp. 259-270, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’14, pp. 701-710. ACM, August 2014.

Reza Ramezanpour, Victor M. Tenorio, Antonio G. Marques, Ashutosh Sabharwal, and Santiago
Segarra. A few moments please: Scalable graphon learning via moment matching, 2025.

11



Under review as a conference paper at ICLR 2026

Samuel Rey, Madeline Navarro, Victor M. Tenorio, Santiago Segarra, and Antonio G. Marques. Re-
designing graph filter-based gnns to relax the homophily assumption. In 2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, 2025.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Inf. Process.
Syst. (NIPS), 33:7462-7473, 2020.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. Intl. Conf.
Learn. Repr. (ICLR), 2020.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. Advances in Neural Inf. Process. Syst. (NIPS), 34:15920-15933, 2021.

Petar Velickovi¢, William Fedus, William L Hamilton, Pietro Li0, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. Intl. Conf. Learn. Repr. (ICLR), 2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, loannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In Intl. Conf. on Machine Learning (ICML), pp. 6438—-6447. PMLR, 2019.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, WWW °21, pp. 3663-3674, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM web conference
2022, pp. 1070-1079, 2022.

Xinyue Xia, Gal Mishne, and Yusu Wang. Implicit graphon neural representation. Int. Conf. on
Artif. Intell. and Stat., pp. 10619-10634, 2023.

Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via structured
gromov-wasserstein barycenters. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 10505-10513, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? Intl. Conf. Learn. Repr. (ICLR), 2019.

Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, and Philip S Yu. Consisrec: Enhancing
gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th

international ACM SIGIR conference on Research and development in information retrieval, pp.
2141-2145, 2021.

Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Automated
graph contrastive learning via learnable view generators. In Proceedings of the AAAI conference
on artificial intelligence, volume 36, pp. 8892-8900, 2022.

Jaemin Yoo, Sooyeon Shim, and U Kang. Model-agnostic augmentation for accurate graph classifi-
cation. In Proceedings of the ACM Web Conference 2022, pp. 1281-1291, 2022.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Inf. Process. Syst. (NIPS), 33:5812—
5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In Intl. Conf. on Machine Learning (ICML), pp. 12121-12132. PMLR, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018.

12



Under review as a conference paper at ICLR 2026

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021.

Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago Segarra. Link
scheduling using graph neural networks. /EEE Trans. Wireless Commun., 22(6):3997-4012, 2023.

13



=

W

wn

=N

®

o

(S

12

13

14

—

5

Under review as a conference paper at ICLR 2026

A ALGORITHMS

We present the three core algorithms that constitute our framework. The first, Algorithm |1} details
the operator ® for estimating a graphon mixture model from a graph dataset by clustering graphs
based on their motif densities. The subsequent algorithms leverage this estimated mixture for down-
stream tasks: Algorithm [2| introduces a novel mixup-based data augmentation strategy (GMAM)
that interpolates between the generative graphon models, while Algorithm [3|presents a model-aware
contrastive learning method (MGCL) that uses the mixture for both principled data augmentation
and a more effective negative sampling strategy.

Algorithm 1: Graphon Mixture Estimation (Operator ®)

Input : Graph dataset D = {G,}1_,; motif family F = {F}, ..., F,,}; #clusters K = log T}
per-cluster refinement size L; graphon estimator (e.g., SIGL).
Output: Estimated graphons {W7, ..., Wk }; assignment 7 : D — {1,..., K}.
fort=1to T do
| Compute empirical motif densities o(G) € R™ over F.
Let V < [0(G1),...,0(Gr)]T € RT*m,
Run k-means on V' with K clusters to obtain clusters {C1, ..., Ck } and centroids

(it isch
Define assignment 7(G) <= argmingeqi,.. gy [0(Gt) — p |2

for k =1to K do
L Select L graphs in Cj, closest to jij in moment space: S C Cy.

Estimate cluster graphon Wi using Sy, (e.g., via SIGL), and obtain latent positions {7;}.

return {1}/ | and 7.

Algorithm 2: Graphon Mixture-Aware Mixup (GMAM)

Input : Labeled graphs D = {(Gy,y:)} 1, y: € {1,...,C}; operator ® (Alg.|1) run per
class; mixing coefficient distribution A ~ Uniform(0, 0.2); target node count n;
augmentation ratio r € (0, 1].

Output: Augmented set D = {(Gf\m)7 yf\m)) M_ of size M = [rT].

m=1

Partition data by class: D; = {G; | ys =i} fori=1,...,C.
fori =1to C do

L ({Wi,h ey Wi,Ki},ﬂ'i) <— @(Dz)
M« [rT], D+ @.
for m = 1to M do
Sample distinct classes 7 # j; sample graphs G, € D;, Gy € D;.
Identify graphons: Wi,a — T/Vq;m(ga), Wj,b — ij(gb).
Sample A ~ Uniform(0,0.2) and set Wy < AW; o 4 (1 — \)W; .
Sample latent positions uy, . .., U, S Uniform[0, 1].
for1 <p<qg<ndo

L Draw Ay (p, q) ~ Bernoulli(W) (uy, uq)) and set Ax(gq, p) + Ax(p, @)

Construct G E\m) from A, (and optional node features).
Set y(;"’) — Ae; + (1 — ) e; (one-hot e;).

D« DU{(G,y™)1.

return 5.
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Algorithm 3: Model-Aware Graph Contrastive Learning (MGCL)

Input : Unlabeled graphs D = {G;}]_,; shared encoder Ey; operator ® (Alg. ; temperature
7; batch size L; augmentation rate 7%.
Output: Trained encoder parameters 6.

({W1,..., Wk}, ) < ®(D) to obtain cluster assignments C; < 7(Gy).

for epoch=1,2,... do
Shuffle D and partition into mini-batches B of size L.
for batch B = {G}£_, do

foreach G, in B do
Let A; (adjacency) and X, (features) be inputs.
// Graphon—-aware augmentation using cluster graphon WCt
Sample a subset Fg of 7% node pairs.
foreach (i, j) € Ey. do

L Draw Ay (i, j) ~ Bernoulli W, (n:,1;)); set A (j,4) < Ai(4, ).
Set At(zvj) «— At(laj) for all (ZaJ) ¢ Esel-
| Compute embeddings z; < Eg( Ay, X¢) and Z; <+ &p (/L, Xy).

// Model-aware InfoNCE: negatives only from different
clusters

Initialize Lyaten < 0.

fort =1to L do
Define negative index set Ny < {t' € {1,..., L} | Cy # C,}.
if \; = & then

L continue (skip or resample batch).
0, « —log exp(sim.(zt, ét)~/7)
> exp(sim(z¢, 2y ) /T)
t'eEN
L »Cbatch — »Cbatch + gt-
Ebatch — ‘Cbatch/‘{t :-/\[t # @}‘
| Update 6 via gradient step on Lyagch-
return 6.

A.1 COMPLEXITY ANALYSIS OF ALGORITHM ]
The overall time complexity Tg of the algorithm is the sum of its three constituent stages: motif

counting, k-means clustering, and per-cluster graphon estimation. The combined complexity is
given by:

Ty = O | T(emaxdmax + Nmaxdory) +1-T -mlogT + L - N, -n2, logT

Motif Counting k-means Graphon Estimation

Each term in this expression corresponds to a distinct phase of the algorithm. The first term,
O(T (emax@max + Mmaxdo a5 ) ) TEpresents the cost of computing the densities for all 9 motifs of size
4 across 7" graphs, using an efficient graphlet counting algorithm like ORCA (Hocevar & Demsar,
2014). While this term’s theoretical worst-case for dense graphs is O(T - ng,.. ), making it the
apparent bottleneck, our own empirical analysis demonstrates a practical runtime that scales closer
to cubic, O(T - n3 ). This significant practical speed-up is due to an extremely small leading

constant (c ~ 2.97 x 107®), a key finding that underpins our method’s efficiency (Ramezanpour
et al., [2025).

The second term, O(I - T - mlogT), is the standard and well-established complexity for k-means
clustering (e.g., via Lloyd’s algorithm), which partitions the 7" motif vectors in R into K = logT'

clusters over [ iterations. Finally, the third term, O(L- N, -n2,, log T), accounts for the per-cluster
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refinement stage. Here, a powerful graphon estimator, such as SIGL (Azizpour et all [2025), is
executed for each of the K clusters on a representative subset of L graphs, requiring N, training
epochs.

In conclusion, while the theoretical complexity suggests motif counting is the most expensive step,
its low empirical constant makes the entire pipeline computationally feasible and scalable. This
practical efficiency allows our method to effectively operate on many smaller, subsampled graphs,
which is a core aspect of its design.

B TECHNICAL PROOFS

This appendix provides the proof for Theorem|I]and compares our novel error bound to the classical
approach.

B.1 PROOF OF THEOREM[I]

The proof relies on bounding the difference between the empirical densities using the triangle in-
equality:

[t(F,G1) — t(F,Ga)| < [t(F,W1) — t(F, Wa)| + |[t(F, G1) — t(F, W) |+ |t(F, G3) — t(F, W)]|.

Graphon Difference Sampling Error 1 Sampling Error 2

The Graphon Difference term is bounded by the Counting Lemma (cf. Theorem 10.23 in|Lovasz
(2012)):
[t(F, W1) — t(F, W2)| < e(F)deu(W1, Wa) < e(F)e.

The Sampling Error terms, [¢(F, G;) — t(F, W;)|, are bounded using a novel two-stage analysis
that separates the randomness from vertex selection and edge realization. This approach yields a
tighter bound than classical single-stage methods. We decompose the total sampling error into two
components:

[H(E,G) = t(F,W)| < [i(F; X) = t(F,W)| +|t(F,G) — {(F; X))

Vertex Noise Edge Noise

where tA(F; X)) is the conditional expectation of the density given the sampled vertex labels X =
(X1,...,X,). The following two lemmas bound the vertex and edge noise, respectively.

Lemma 1 (Bounding Vertex Noise). Let m = |n/k|. For any §, > 0,
Pr [[t(F; X) — t(F,W)| > 6,] < 2exp(—2m67).
Lemma 2 (Bounding Edge Noise). Conditioned on the vertex labels X = (X;)I_, for any 6. > 0,

n(n — 2
Pr[|t(F.G) — {(F; X)| > 6. | X] < 2eXp< <26(Fl)25> .

Combined Bound To obtain the total sampling error for one graph, [t(F,G;) — t(F, W;)|, with
a target failure probability 7), we allocate 7)/2 to each noise source (vertex and edge). Inverting the
bounds in the lemmas above, we set:

T 1 e(F) 4
0y =4/—1log— and ¢, = ——=—4/2log —.
\ 2m 85, -1 VB

The total sampling error for one graph is bounded by §5; = J,, + . with probability at least 1 — 7.

Applying this to both sampling error terms (|¢t(F, G1) — ¢(F, Wy)| and [t(F, G2) — t(F, W>)|) and
using a union bound, we get the final result in Theorem [T] with probability at least 1 — 2:

It(F, G1) —t(F, G2)| < e(F)e+2(6,+3.) = e(F)e+2 (, /% log% + \/% \/2log i) .

16



Under review as a conference paper at ICLR 2026

B.2 COMPARISON WITH THE CLASSICAL BOUND

To highlight the improvement offered by our two-stage approach, we now present the classical
single-stage bound and compare them.

B.2.1 THE CLASSICAL SINGLE-STAGE BOUND

The standard approach (cf. Lemma 4.4 in |Borgs et al.| (2008))) treats the empirical motif density
t(F, Q) as a complex function of n random variables and applies McDiarmid’s inequality directly.
This results in the following concentration result.

Lemma 3 (Classical Concentration of Motif Densities). Let F be a fixed graph with k = v(F)
vertices. Let G be an n-vertex graph sampled from a graphon W. Then for any § > 0,

n 2
Pr([t(F,G) —t(F,W)| > 6] < 2exp <—4k52> .

The limitation of this approach is that changing a single vertex can alter many edge probabilities,
leading to a loose bound with a factor of k2 in the exponent.

B.2.2 ASYMPTOTIC COMPARISON

We now compare the sampling error from the classical approach with our novel bound. For a total
failure probability 7:

* Classical Bound: Inverting the bound in Lemma 3] yields:

1 2
531‘1(77) = 2k4/—log —
n n

* Novel Bound: Approximating m = n/k and n(n — 1) ~ n?, we have:

520 ) = (g + @ﬂ) s

The crucial difference lies in their dependence on the motif size, k. The classical bound 5§1d scales
linearly with k (O(k)), whereas the dominant term in our novel bound 02°% scales with the square
root of k (O(\/E)). As vk grows much more slowly than %, our novel bound is substantially tighter
for larger motifs.

B.2.3 NUMERICAL VALIDATION

We validate this theoretical improvement by computing both bounds for all motifs with up to 4
vertices (k < 4), for graph sizes n from 50 to 1000, at a 95% confidence level (n = 0.05). The
results are visualized in Figure 3] The novel bound is uniformly tighter than the classical bound
across all tested motifs.

C PROOF OF THEOREM

Notation. Letz; = £(A;, X;) denote the embedding of graph ¢ obtained by applying the encoder
£ to its adjacency matrix A; and feature matrix X;. Let sim(u,v) be cosine similarity and define

O(u,v) = M For an anchor graph ¢, write the set of all negatives in standard InfoNCE as
Ne={ke{1,...,L}\ {t} }, and the cluster-restricted negatives in our case as N; = { k € N :
Cy # Cy }, where C; is the cluster of graph 4. For brevity, let s, = 6(z,z},) and 55, = 0(z, Z1)
where z} and Zz; are the embedding of the positive sample obtained from a random and graphon-
consistent augmentation, respectively. The standard InfoNCE loss for graph ¢ is defined as

exp(0(2, 21))

: 18
> ke, exp(si) 1o

linfonce(t) = —log
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Comparison of Classical vs. Refined Error Bounds for Various Motifs
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Figure 3: Comparison of the total error bounds (24,) for the classical (solid blue) and novel (dashed
orange) approaches. The novel bound is consistently tighter, with the gap widening for motifs with

more vertices (k), confirming its superior O(\/E) scaling.

Our proposed cluster-restricted loss is defined as

log exp(6(z¢,Zt))

gcu%ert - —.
Tust ( ) Zkeﬁt exp(sk)

Using the natural logarithm and separating the positive-pair term, we can rewrite:

Cnfonce(t) = —0(z¢,2;) + In Z e™ |
keN;

Ecluster(t) = —Q(Zt,it) + In Z eg’“
keN:

Proposition 1 (Lower bound for the cluster-restricted loss). Let

gcluster(t) = —H(Zt, 2t) + In Z €xXp (e(ztv Z;c))’
keJ\7¢

18
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where N = {k#1t:Cr#Cy}and my = |/\~ft\ Then, for every anchor t,

3 1
Cosier() > —0(z4,2¢) + o 2,\:7 0(z¢,2,) + Inmy. (22)
keN

Proof. By definition,

In Z exp(6(z¢,z,)) = Inmy +1n<7711t Z exp(Q(Zt,z%)))

k?e./\7t k€/\7t

Applying Jensen’s inequality to the convex exponential function yields

1
In Z exp(e(zt,zﬁc)) > Inms + p Z 0(zy, 2},).-
kEN: keN:

Substituting into the definition of £¢juser(t) gives the claimed lower bound. L]
Proposition 2 (Lower bound for the standard InfoNCE loss). Let
Ciponce(t) = —0(z¢,z;) + In Z exp(0(zs,2y,)),
kENt

where Ny = { k # t } and ny = |N¢| = N — 1. Define the negative-center score

— 1

0_; = — Z 0(z4,2},).

" keN

Then, for every anchor t,

Cponce(t) > —0(zy,zy) + 0_; + lnn,. (23)

Proof. Apply Jensen’s inequality to the convex exponential:

In Z ef02) — Inp, +1n<n% Z ee(z"zk)) > Inng + n% Z 0(z¢,2),) = Inng +0_4.
keN: keN: kEN:

Substitute into the definition of /1,¢oncE(t) to obtain equation O

As a result, as discussed in Section [3.3]and shown by the above proofs together with Proposition 2,
minimizing our refined loss function pushes each graph away from the centroid of graphs generated
by other models, whereas the standard InfoNCE loss uses all graphs and pushes it away from the
centroid of the entire dataset.

D GRAPHON ESTIMATION

Here we expalin the details of SIGL. The goal is to estimate an unknown graphon w : [0, 1] — [0, 1],
given a set of graphs D = {A;}M, sampled from it. Since using the Gromov-Wasserstein
(GW) Mémoli (2011) distance is computationally infeasible for large graphs, the SIGL frame-
work |Azizpour et al.|(2025) proposes a scalable three-step procedure:

Step 1: Sorting nodes via latent variable estimation To align all graphs to a common node

ordering (which is crucial for consistent estimation), SIGL estimates latent variables 7, = {7, };-*,

for each graph G, using a Graph Neural Network (GNN):
ﬁt = G¢, (At) S./vt)7 where Yt ~ N(O, 1)

An auxiliary graphon hg, modeled by an Implicit Neural Representation (INR) maps pairs of latent
variables to edge probabilities:

he, (0:(2), (7)) ~ As(i, 1)
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The latent variables and auxiliary graphon are jointly trained by minimizing the mean squared error

to get ¢ = {1 U ¢a}:

M
Z% > (AL 5) = hoy (1), 70 (5)))?
t=1 "t 45=1

A sorting permutation 7 is defined based on the learned latent variables:

Ne(7(1)) > Ne(7(2)) > -+ = (7 ()

In a nutshell, this permutation sorts the latent variables from 0 to 1. The graphs are reordered
accordingly to produce sorted adjacency matrices A;.

Step 2: Histogram Approximation For each sorted graph A, a histogram H, € R**¥ is com-
puted using average pooling with window size h:

h h
1
7?22 (i — D)h+ 51, (j — 1)h + s2)

This results in a new dataset Z = {I:It}tj\il, providing discrete, noisy views of the unknown graphon
w.

Step 3: Training the Graphon INR The final step constructs a supervised dataset C from all
histograms, where each point corresponds to a coordinate-value triple:

c—{(g é @jo:uje{L”thte{L”wAﬂ}

A second INR structure fy : [0,1]% — [0, 1] is then trained to regress the graphon values by mini-
mizing the MSE:

LO) = > (folz.y)—2)°

(z,y,2)€C
This scalable approach enables two things: 1) the estimation of a continuous graphon w using large-

scale graph data without relying on costly combinatorial metrics like the GW distance, and 2) the
estimation of the latent variables given an input graphs, i.e., an inverse mapping W=!: A — 7.

E EXPERIMENTAL DETAILS.

E.1 GROUND TRUTH GRAPHONS

In Table[d] we provide the mathematical definition of the graphon used in Section[d]for the synthetic
experiments.

Table 4: Ground truth graphons.

w(z,y)

Yy

exp(—(2"7 +3°7)

1@ Y+ I+ V)

3(z+y)

(1 +exp(=2(2* +3%))) "

(1 + exp(— max{z, y}* — min{z, y}")) "’
exp(—max{z, y}* ™)

ANk W= O

20



Under review as a conference paper at ICLR 2026

E.2 HYPER-PARAMETERS

Graphon estimation The hyperparameters used to estimate the graphon with SIGL across its three
steps, as described in the previous section, are as follows for both mixup and graph level tasks. We
use the Adam optimizer [Kingma|(2015) with a learning rate of i = 0.01 for both Step 1 and Step 3,
running for 40 and 20 epochs, respectively. In Step 1, the batch size is set to 1 graph, while in Step
3, each batch includes 1024 data points from C. In Step 1, the GNN, g4, comprises two consecutive
graph convolutional layers, each followed by a ReLU activation function. All convolutional layers
use 8 hidden channels. The INR structures in Step 1 (hg,) and Step 3 (fs) each have 3 layers with
20 hidden units per layer and use a default frequency of 10 for the sin(.) activation function.

Mixup To ensure a fair comparison, we use the same hyperparameters for model training and the
same architecture across vanilla models and other baselines. Also, we conduct the experiments using
the same hyperparameter values as in |Han et al.| (2022). For graph classification tasks, we employ
the Adam optimizer with an initial learning rate of 0.01, which is halved every 100 epochs over a
total of 800 epochs. The batch size is set to 128. The dataset is split into training, validation, and
test sets in a 7:1:2 ratio. The best test epoch is selected based on validation performance, and test
accuracy is reported over eight runs with the same seed used in|Han et al.| (2022).

We generate 20% more graphs for training. The graphons are estimated from the training graphs,
and we use different A values in the range [0.1, 0.2] to control the strength of mixing in the generated
synthetic graphs. For graphon estimation using SIGL and IGNR, we use 20% of the training data
per class to estimate the graphon. The new graphs are generated with the average number of nodes
as defined for the primary G-Mixup case, which is identified as the optimal size. All methods are
evaluated using the same random seeds.

MGCL To train the encoder £, we follow the configuration from GraphCL |You et al.|(2020). We
use the Adam optimizer with a learning rate of [r = 0.001, training the encoder for 20 epochs. The
encoder is implemented as a 3-layer GIN Xu et al.|[(2019) network, with each layer consisting of
32 hidden units followed by a ReLU activation. A final linear projection head maps the output to
a 32-dimensional graph-level representation. For a fair comparison, we set the resampling ratio to
r = 20%, consistent with other methods. All methods are evaluated using the same random seeds.

E.3 DATASET DETAILS

In Table E], we report the statistics of all datasets from TUDataset (Morris et al., |2020) used in our
real-world experiments.

Table 5: Benchmark datasets statistics.

Biochemical Molecules Social Networks
Statistic NCI1 PROTEINS DD MUTAG AIDS | COLLAB RDT-B RDT-M5K IMDB-B
#Graphs 4,110 1,113 1,178 188 2,000 5,000 2,000 4,999 1,000
Avg. #Nodes | 29.87 39.06 284.32 17.93 15.69 74.5 429.6 508.8 19.8
Avg. #Edges | 32.30 72.82 715.66 19.79 16.20 | 2457.78  497.75 594.87 96.53
#Classes 2 2 2 2 2 3 2 5 2

Note that several graph-level datasets lack explicit node attributes. In such cases, one-hot encoding
of node degrees is commonly used to construct node features.

E.4 BASELINE MODELS.
Here we have a small description of the baselines used mixup and GCL experiments.

Mixup baselines.

* Vanilla, a baseline with no augmentation;
* DropEdge (Rong et al.l 2019)), which uniformly removes a fraction of edges;
* DropNode (Feng et al.,2020), which randomly drops a portion of nodes;
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| 1 2 3 4 5 6
0] 0133 0265 0264 0530 0418 0271
1 0.180  0.189 0433 0308 0.173
2 0024 0270 0175 0.1
3 0275 0.190  0.126
4 0.139 0284
5 0.162

Table 6: Pairwise GW distances between groundtruth graphons.

Subgraph (You et al., [2020), which extracts random-walk-based subgraphs;
M-Mixup (Wang et al.,|2021)), which linearly interpolates graph-level representations;
SubMix (Yoo et al.,[2022), which mixes random subgraphs of graph pairs;

G-Mixup (Han et al,, 2022), which performs class-level graph Mixup by interpolating
graphons from different classes;

S-Mixup (Ling et al.}2023)), which employs soft alignment for graph interpolation;

SIGL (Azizpour et al., 2025), which replaces the original graphon estimator in G-Mixup
with SIGL; and

MomentMixup (Ramezanpour et al., [2025), which mixes motif moment vectors and gener-
ates new samples from the mixed vector.

GCL baselines.

InfoGraph [Sun et al.| (2020): A variant of DGI (Velickovi¢ et al., |2019) that maximizes
mutual information between graph-level and substructure representations at multiple scales.

GraphCL |You et al.[(2020): Learns representations via predefined augmentations such as
edge perturbation, node dropping, and attribute masking.

MVGRL Hassani & Khasahmadi| (2020): Performs contrastive learning between structural
views, e.g., adjacency and diffusion representations.

JOAO [You et al| (2021)): Uses min-max optimization to adaptively select augmentations
during training.

Ad-GCL [Suresh et al.| (2021): An adversarial training—based GCL framework that intro-
duces an edge-perturbation process designed as an attack to improve robustness.

AutoGCL |Yin et al.| (2022): Employs learnable view generators with auto-augmentation
for adaptive, label-preserving samples.

SimGRACE [Xia et al.|(2022): Replaces graph augmentations with encoder-level noise to
enforce consistency.

RGCLLi et al.|(2022): Generates rationale-aware views by identifying substructures most
relevant for discrimination.

DRGCL J1 et al.[(2024): Learns dimensional rationales and applies bi-level meta-learning
to mitigate confounding noise.

E.5 GRAPH EMBEDDING BASELINE DETAILS

This section provides further details on the baseline graph embedding methods used for comparison
in the synthetic clustering experiment (Section [d.T).

GW distance of ground truth graphons.

Baseline Methods. We compare our moment vectors against five widely-used graph representa-
tion methods. For methods that produce node-level embeddings (GCN, GIN, DeepWalk, Spectral),
we obtain a graph-level embedding by applying a global mean-pooling operation over all node em-
beddings in the graph. The target embedding dimension for all baselines was set to 32.
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Figure 4: Effect of clustering on TFR across different datasets.

* Moment Embedding (Ours): This is our proposed method, where each graph is repre-
sented by a 9-dimensional vector of its empirical motif densities for all connected motifs
up to 4 nodes.

* Graph Convolutional Network (GCN): A popular Graph Neural Network (GNN) archi-
tecture that learns node representations by iteratively aggregating feature information from
local neighborhoods Kipf & Welling| (2017). As our clustering task is unsupervised, the
GCN is not trained; we use a randomly initialized network to generate embeddings. This
standard approach tests the intrinsic structural representation power of the architecture it-
self.

* Graph Isomorphism Network (GIN): A powerful GNN model proven to be as discrim-
inative as the Weisfeiler-Leman test for graph isomorphism |Xu et al.| (2019). Similar to
our use of GCN, the GIN model’s weights are kept random, allowing it to serve as an
unsupervised feature extractor without training on downstream labels.

* Graph2Vec: An unsupervised whole-graph embedding method inspired by natural lan-
guage processing. It treats graphs as documents and rooted subgraphs as ”words,” learning
representations that capture structural similarities between graphs Narayanan et al.|(2017)).

* DeepWalk: A pioneering node embedding technique that learns latent representations by
applying language modeling techniques (Skip-Gram) to sequences of nodes generated from
truncated random walks on the graph |Perozzi et al.| (2014)).

* Spectral Embedding: A classical approach that utilizes the eigenvectors of the graph’s
Laplacian matrix. The first few non-trivial eigenvectors form a low-dimensional represen-
tation of the nodes, capturing the graph’s global connectivity structure |Ng et al.[(2001).

E.6 COMPUTE RESOURCES

All experiments were conducted on a server running Ubuntu 20.04.6 LTS, equipped with an AMD
EPYC 7742 64-Core Processor and an NVIDIA A100-SXM4-80GB GPU with 80GB of memory.
For model development, we utilized PyTorch version 1.13.1, along with PyTorch Geometric version
2.3.1, which also served as the source for all datasets used in our study.

F ADDITIONAL EXPERIMENTS.

False negative reduction. To evaluate the effect of clustering on the rate of false negatives, we
define the True Negative to False Negative Ratio (TFR).

To compute this metric, in each data batch, we examine the negative samples relative to a graph
1. Among these, the negative samples that share the same class as graph ¢ are considered false
negatives, while those with a different class are treated as true negatives. Mathematically, TFR

: _ 1 B [ TN ()] .
is defined as TFR = 5> .~ a1 IZNGTT Note that in InfoNCE-based methods, all graphs
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in the batch except graph i itself are treated as negative samples. However, in MGCL, the set
of negative samples is smaller, as we exclude graphs from the same cluster as ¢. Although this
reduced set naturally results in fewer false negatives, computing the relative ratio of true negatives
to false negatives (TFR) ensures a fair comparison across methods. We compute the TFR for each
graph in the batch and then average it across all graphs in the dataset. As shown in Figure {4} this
metric increases across all datasets compared to the baseline (which represents all InfoNCE-based
methods). This also provides evidence that motif-based clustering helps uncover the true underlying
structure of the data.

F.1 ABLATION STUDY ON NUMBER OF MOTIFS

To justify our choice of using motifs up to 4 nodes (a 9-dimensional feature vector) in the main
experiment, we conduct an ablation study to analyze the effect of the number of motifs on clustering
performance. We extend the experimental setup from Section 4.1|by computing densities for all 30
connected motifs with up to 5 nodes. We then iteratively evaluate the clustering accuracy of our
methods by using an increasing number of motifs.

The results for the first 15 motifs are presented in Table[/| A clear trend emerges: accuracy rises
sharply with the inclusion of the first few motifs, but then exhibits a long plateau of nearly constant
performance. This indicates that some motifs are significantly more important for classification than
others. A particularly notable increase occurs between £ = 8 and k¥ = 9 motifs in the Varying
size setting, where accuracy jumps from 80.0% to 81.4% and then flatlines. This specific jump
highlights the discriminative power of the 9th motif (the 4-cycle) and suggests that this initial set of
motifs captures the most critical structural differences between the graphon families.

This study confirms that the initial 9 motifs provide the vast majority of the useful information. The
minimal performance gain from adding more motifs (from & = 10 to £ = 15 and beyond) does not
justify the increased computational cost. This validates our use of the 9-dimensional moment vector
in the main paper as an effective and efficient choice.

Table 7: Results of the ablation study for the first 15 motifs. Clustering accuracy (%) is shown for
K-Means and Theory-Based methods across two dataset settings. The performance largely saturates
after k = 9.

# Motifs Varying Size Accuracy (%) Fixed Size Accuracy (%)
(k) K-Means Theory-Based K-Means Theory-Based

1 70.0 74.3 74.7 74.7
2 67.1 77.1 74.7 76.9
3 78.6 80.0 79.1 82.3
4 78.6 80.0 79.1 82.7
5 78.6 80.0 79.1 82.9
6 78.6 80.0 79.1 83.0
7 78.6 80.0 79.1 83.0
8 78.6 80.0 79.1 83.0
9 80.0 81.4 79.4 83.6
10 80.0 81.4 79.4 83.6
11 80.0 81.4 79.4 83.6
12 80.0 81.4 79.4 83.6
13 80.0 81.4 79.4 83.6
14 80.0 81.4 79.4 83.6
15 80.0 81.4 79.4 83.6

F.2 ABLATION STUDY ON NUMBER OF CLUSTERS.

As mentioned in the Methods section, in order to match the size of the data, we use K = log T for
the operator ®. Here we evaluate this number on three datasets with within the MGCL framework.
In this section, we vary the number of clusters to evaluate its impact on overall performance.

We vary the number of clusters from 1 to 10. For each value, we repeat the MGCL experiment
across the same 10 trials using identical data partitions and report the average accuracy.
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Figure 5: Effect of the number of clusters on MGCL performance.

The results are presented in Figure [5 for the MUTAG, and IMDB-BINARY datasets. A key obser-
vation is that using a single cluster—i.e., estimating one graphon for the entire dataset—leads to a
drop in performance across all three datasets. In the IMDB-BINARY dataset, using 8 clusters yields
better performance than the default setting of 7 clusters. However, using between 6 and 8 clusters
consistently results in an average accuracy above 72.0%, suggesting that this range reasonably ap-
proximates the number of underlying models. A similar trend is observed in the PROTEINS dataset,
where 9 clusters yield better performance than 8. For the MUTAG dataset, the highest average ac-
curacy is achieved with the default setting of 6 clusters. These findings highlight that estimating
multiple models improves performance. Still, the number of clusters remains a hyperparameter that
should be tuned based on the dataset’s characteristics, such as its variability and heterogeneity.

F.3 UNDERLYING MODELS

In Figure[6] we present the estimated graphons for the COLLAB and IMDB-BINARY datasets, each
corresponding to a cluster identified by our framework in an unsupervised manner. For instance, the
estimated graphons display diverse structural patterns for COLLAB: Cluster 8 exhibits a block-like
structure similar to a two-community stochastic block model (SBM) with an imbalanced size ratio,
Clusters 2 and 6 display nearly uniform connectivity, suggesting dense or complete graph structures,
and Cluster 10 reveals a heavy-tailed pattern indicative of power-law behavior. Although some
similarities exist among certain models, the overall variability emphasizes the presence of multiple
distinct generative mechanisms within the dataset. This heterogeneity demonstrates the limitations

of using a single fixed or random augmentation strategy, as commonly adopted in existing GCL and
Mixup methods.

d JfRNEDE s

(a) IMDB-BINARY

D B0

(b) COLLAB

Figure 6: Cluster-specific estimated graphons in the COLLAB and IMDB-BINARY dataset, revealing diverse
structures.

Furthermore, when estimating models within each class for mixup applications, we observe diverse
graphons both within and across classes, as illustrated in Figure [7]
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(b) COLLAB

Figure 7: Cluster-specific estimated graphons in the COLLAB and IMDB-BINARY dataset within each class,
revealing diverse structures.
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