000 JOINT LEARNING MULTIRC: TIME SERIES FOR 001 PREDICTION DETECTION 002 ANOMALY AND WITH 003 MULTI-SCALE RECONSTRUCTIVE CONTRAST 004

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

Paper under double-blind review

ABSTRACT

Many methods have been proposed for unsupervised time series anomaly detection. Despite some progress, research on predicting future anomalies is still relatively scarce. Predicting anomalies is particularly challenging due to the diverse reaction time and the lack of labeled data. To address these challenges, we propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection, with multi-scale structure and adaptive dominant period mask to deal with the diverse reaction time. MultiRC also generates negative samples to provide essential training momentum for the anomaly prediction tasks and prevent model degradation. We evaluate seven benchmark datasets from different fields. For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods. The code is available at https://anonymous.4open.science/status/MultiRC-CCE6.

1 INTRODUCTION

With the advancement of Internet of things (IoT), an increase number of sensors are utilized in industrial facilities to collect data in the form of continuous time series, which realizes the monitoring of system status (Li et al., 2021a). The anomaly detection technology (Li et al., 2021b; Wen et al., 2022; Chen et al., 2021a) has been widely used, which locates system malfunctions by identifying anomalies in historical data (Figure 1a). Effectively detecting anomalies helps pinpoint the sources of faults and prevent the spread of malfunctions. However, anomaly detection can only identify issues after they have occurred, which cannot meet the need for preventive maintenance timely.

034 As a new practical problem, anomaly prediction aims to predict whether an anomaly will occur in 035 the future by capturing the fluctuations at the current time. In IoT, anomaly prediction can prevent full-scale failures. Previous works (Yin et al., 2022; You et al., 2024) assume and have observed 037 that anomalies in production often do not occur suddenly but evolve gradually. Different kinds 038 of fluctuations exist before the real anomalies, where data change from normal to abnormal. As shown in Figure 1b, the yellow period exhibits fluctuation patterns beginning distinct from the past, indicating the occurrence of possible future anomalies. The time interval of fluctuations is called 040 reaction time, and such fluctuations are called precursor signals of future anomalies (Jhin et al., 041 2023). Following previous works (Yin et al., 2022), we predict future anomalies by identifying 042 precursor signals, and emphasize that anomalies without precursor signals are unpredictable. 043

Due to the costs and rarity of anomalies, anomaly labels are difficult to obtain. To solve this, anomaly detection is often modeled with self-supervised (*reconstructive* (Zhou et al., 2024) or *contrastive* (Yang et al., 2023)) learning. Reconstruction methods expect normal points to be accurately reconstructed, while anomalies exhibit large reconstruction errors. Contrastive approaches promote similarity in the representations of positive sample pairs. Despite the effectiveness of existing works in anomaly detection, these methods cannot be directly and effectively extended to anomaly prediction, as shown in the following challenges.

Challenge 1: Different anomalies may occur rapidly or slowly, thus resulting in reaction time with varying lengths. Reconstruction methods focus on reconstructing individual data points which struggle to capture gradual reaction time (Li et al., 2022; Audibert et al., 2020; Zhang et al., 2022a). Contrastive learning methods compare time series segments based on fixed time lengths which struggle

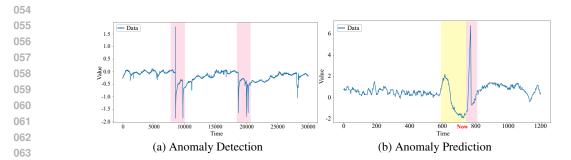


Figure 1: (a) Anomaly detection on historical data. (b) Yellow period indicates the precursors where anomalies have not happened yet, and the pink period indicates future anomalies. Anomaly prediction forecasts if anomalies will occur in the future given current data.

to capture varying reaction time. Further, variates in the time series have different semantics, resulting in existence of distinct reaction time for different variates. Existing methods cannot identify fluctuations with such varying reaction time for different variates adaptively.

071 **Challenge 2:** Without labeled anomalies as negative samples, existing self-supervised methods 072 will degrade into a trivial model (Ruff et al., 2018) that cannot learn meaningful information. For 073 contrastive approaches, the absence of negative samples will lead to the learned features falling into a single mode where all features seem similar (Chen & He, 2021), thus failing to identify fluctuations. 074 For reconstruction methods, a large model will degrade into identity transformation and a small 075 model cannot learn complex temporal patterns (Wang et al., 2024), thus failing to assess the accurate 076 magnitude of the fluctuations. Anomaly prediction requires not only identifying fluctuations but 077 also assessing the magnitude of these fluctuations to predict the probability of future anomalies. Therefore, the existing methods fail to learn meaningful information for anomaly prediction. 079

In this work, we propose joint learning for time series anomaly prediction and detection with **multi**scale reconstructive contrast (MultiRC), where a dual branch with joint reconstructive and con-081 trastive learning is built upon a multi-scale structure. For Challenge 1, our novel multi-scale structure adaptively recognizes the varying reaction time for different variates with adaptive dominant 083 period mask. Meanwhile, we exploit an asymmetric encoder-decoder to fuse cross-scale informa-084 tion. For **Challenge 2**, we incorporate controlled generative strategies to construct diverse precursors 085 as negative samples to prevent model degradation, instead of only generating positive samples by data augmentation as in the existing contrastive methods (Woo et al., 2022; Zhang et al., 2022b). 087 Specifically, our contrastive learning judges whether there are fluctuations by learning to distinguish 088 positive and negative samples, while reconstruction learning assesses the magnitude of these fluctuations via learning to minimize the reconstruction errors for positive samples. Moreover, we provide a novel anomaly measurement for joint learning of anomaly prediction and detection, which helps 090 anomaly prediction by detecting the degree of fluctuations in reaction time. 091

Our contributions are summarized as follows:

- A novel multi-scale structure is proposed to both reconstructive and contrastive learning, to adaptively recognize varying reaction time for different variates with adaptive dominant period mask.
- We propose controlled generative strategies to prevent model degradation and propose joint learning of anomaly prediction and detection with reconstructive contrast.
- For both anomaly prediction and anomaly detection tasks, MultiRC achieves state-of-the-art results across seven benchmark datasets.
- 101 102 103

094

095

096

098

099

100

067

2 RELATED WORK

Multi-scale Learning. Some multi-scale methods have been proposed for time series model ing (Chen et al., 2021b; Shen et al., 2020; Challu et al., 2022). THOC (Shen et al., 2020) learn
 multi-scale representations through different skip connections in RNN for each time point, but it
 cannot capture gradual change for continuous time intervals. DGHL (Challu et al., 2022) maps time
 series windows to hierarchical latent spaces, but it cannot capture cross-scale information from win-

dows of different lengths. Besides, none of these methods can adaptively recognize different scales or fuse multi-scale information for anomaly prediction.

Time Series Anomaly Detection. As a problem of practical significance, time series anomaly 111 detection has remained a focal point in the fields of machine learning and data mining. Over recent 112 years, researchers have used reconstruction paradigm (Su et al., 2019; Xu et al., 2021; Wang et al., 113 2024) or contrastive learning paradigm (Yang et al., 2023; Jhin et al., 2023) to delve into deeper 114 data representations and patterns. In the reconstructive paradigm, OmniAnomaly (Su et al., 2019) 115 captures the normal patterns of multivariate time series by learning their robust representations. 116 Anomaly Transformer (Xu et al., 2021) proposes a minimax strategy that combines reconstruction 117 loss to amplify the difference between normal and abnormal. $D^{3}R$ (Wang et al., 2024) combines 118 decomposition and noise diffusion to directly reconstruct corrupted data. However, these studies either operate on a singular scale or perform indiscriminate reconstruction across the entire input 119 range, limiting their flexibility and adaptability in extracting anomaly signals. 120

121 In the contrastive learning paradigm, DCdetector (Yang et al., 2023) introduces a dual-branch at-122 tention structure to learn a permutation invariant representation. However, it only focuses on rela-123 tionships between positive samples, which greatly limits its performance in anomaly prediction tasks 124 that require explicit anomaly labels. PAD (Jhin et al., 2023) directly uses resampling to generate arti-125 ficial anomaly patterns during data preprocessing. This simple approach fails to adequately simulate the fluctuations of anomaly precursors. Although numerous contrastive paradigms (Yue et al., 2022; 126 Lee et al., 2023; Zhang et al., 2022b; He et al., 2020) have been proposed in the field of time series 127 analysis, they often merely treat the majority of time series segments as negative samples, which 128 constrains the potential of contrastive learning to precisely identify anomalous patterns. We extract 129 timing information at multiple scales to adapt to changes in reaction time. Furthermore, the model 130 identifies fluctuations and amplitude of fluctuations through contrastive learning and reconstruction. 131 Appendix B shows the architecture comparison of three approaches. 132

132

3 METHODOLOGY

134 135 136

Problem Definition. We denote the time series $\mathbf{X} \in \mathbb{R}^{T \times c}$ of length T, where each $\mathbf{x}_t \in \mathbb{R}^c$ is the observation at time t and c is the dimension of multivariate, such as the number of different sensors. The reaction time is a time interval [t - r, t] with length r, where there are fluctuations in data $\mathbf{X}_{t-r:t}$ called the precursor, and there are real anomalies in future data $\mathbf{X}_{t+1:t+f}$. Data begin to change from normal to abnormal during the reaction time. The greater the degree of fluctuations, the higher the probability of future anomalies occurring. We emphasize that the anomalies without reaction time are unpredictable (Yin et al., 2022; Jhin et al., 2023).

For time series anomaly detection tasks, it takes the input **X** and outputs a vector $\mathbf{y} \in \mathbb{R}^{T}$ by sliding widows where $\mathbf{y}_{t} \in \{0, 1\}$ and 1 indicates an anomaly. For anomaly prediction, given a current time t and the historical sub-sequence $\mathbf{X}_{t-h:t}$ of length h, the model outputs a probability score $\hat{\mathbf{p}}_{t}$, which indicates whether there is precursor in $\mathbf{X}_{t-h:t}$ or not and whether the future sub-sequence $\mathbf{X}_{t+1:t+f}$ will be anomalous, where $f \geq 1$ is the length of the look-forward window.

- 148
- 149 150 3.1 Overall framework
- 150 151

MultiRC consists of four modules (Figure 2). Input sequence processing normalizes the input mul-152 tivariate time series through instance normalization and then uses channel-independence to split the 153 input into univariate sequences. In Figure 2 we take one univariate sequence \mathbf{x} as an example, and the 154 other univariate sequences are modeled similarly. The multi-scale structure uses adaptive dominant 155 period mask to adaptively recognizes varying reaction time for different variates, and then segments 156 univariate sequences into patches of varying granularities. Masked time series reconstruction ex-157 ploits asymmetric encoder-decoder to fuse multi-scale information and then evaluate the amplitude 158 of fluctuations. Generative-based contrastive learning uses controlled strategies to construct neg-159 ative samples to prevent model degradation. The encoder learns representations for distinguishing positive and negative samples, thus better judging the existence of fluctuation in the reaction time. 160 Our encoder backbone consists of Transformer blocks (Vaswani et al., 2017) to extract temporal 161 features from time series data.

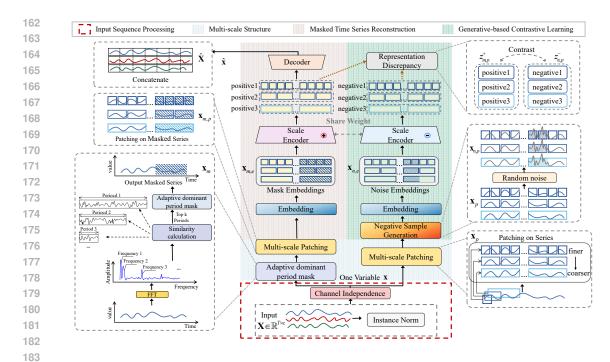


Figure 2: The overall architecture of MultiRC.

Overall, contrastive learning is used to judge the existence of fluctuation and reconstruction is used to assess the magnitude of the fluctuation, which both help indicate the probability of future anomalies. The anomaly score comprises the reconstruction error and the discrepancy between the representations of the positive samples.

190 3.2 MULTI-SCALE STRUCTURE

185

186

187

188

189

209 210

The assumption of the existence of reaction time (Yin et al., 2022; Jhin et al., 2023), where time series begin to change from normal to abnormal, ensures anomaly prediction. However, the duration of reaction time varies across different varieties and timestamps. To solve this, at each current time t, we explore the most dominant periods q_t for each univariate sequence in the frequency domain.

196 Specifically, the multi-scale structure contains *adaptive dominant period mask* and *multi-scale* 197 *patching*. *Adaptive dominant period mask* takes each univariate sequence x as input and produces its 198 masked sequence x_m . Intuitively, one variate with longer periodic changes is more likely to evolve 199 gradually while one variate with shorter periodic changes is more likely to evolve rapidly. Thus, we 200 capture and mask with the most dominant periods for each variate to estimate the reaction time.

Multi-scale patching takes as input x and x_m in the dual branch, respectively. For masked time series reconstruction, x_m is fed into multi-scale patching; for generative-based contrastive learning, x is fed in. The multi-scale patching produces patched sequences $\{x_{m,p}\}_{p=1}^{a}$ and $\{x_p\}_{p=1}^{a}$ with different scales. This multi-scale patching is independent of the dominant period mask, which helps to simultaneously capture features from time intervals of different scales, thereby accommodating the varying reaction time that is inconsistent with the dominant periods.

Adaptive Dominant Period Mask. To capture the patterns of dominant periods, we first extract the
 periodic information in the frequency domain using Fast Fourier Transform (FFT) as follows:

$$\mathbf{A} = \operatorname{Amp}\left(\operatorname{FFT}(\mathbf{x})\right) \tag{1}$$

where $FFT(\cdot)$ and $Amp(\cdot)$ denote the FFT and the calculation of all amplitude values, and **A** represents the amplitude of each frequency. It is known in FFT that the frequency with larger amplitudes represents the more dominant period (Zhou et al., 2022). Thus, we calculate the frequencybased similarity between the historical univariate sub-sequences before the current time t to select the most dominant periods for each variate. We use subscript i and j to represent different historical univariate sub-sequences before the current time t, e.g. $A_i = Amp(FFT(\mathbf{x}_{t-h:t}))$ and 216 $\mathbf{A}_j = \operatorname{Amp}\left(\operatorname{FFT}(\mathbf{x}_{t-h-1:t-h-1})\right)$, and their frequency-based similarity is:

$$S_{i,j} = \frac{\mathbf{A}_i \cdot \mathbf{A}_j}{\|\mathbf{A}_i\|_2 \|\mathbf{A}_j\|_2} \tag{2}$$

(3)

Then we select the top-k frequencies from the highest similarities:

225

226

227

232

246

248

218 219 220

221

Specifically, $\mathbf{f} = \{f_1, \dots, f_k\} \in \mathbb{R}^{k \times 1}$ is the top-k dominant frequencies occurred most before the current time. The top-k frequencies correspond to k dominant period lengths $\mathbf{r} = \{r_1, \dots, r_k\} \in \mathbb{R}^{k \times 1}$ where $r_k = \frac{1}{f_k}$. The dominant periods are used to estimate the reaction time.

 $i_{max}, j_{max} = \operatorname*{arg\,max}_{i,j} (S_{i,j}), \ \mathbf{f} = \operatorname*{arg\,Top-}k (\mathbf{A}_{i_{max}}, \mathbf{A}_{j_{max}}).$

The normal data can be reconstructed well and the fluctuations are hard to reconstruct (You et al., 2024; Campos et al., 2022). Thus, we focus on the reconstruction errors mainly during the reaction time to assess the magnitude of the fluctuations for anomaly prediction. We mask each univariate sequence \mathbf{x} with adaptive mask length r, and r is randomly sampled from \mathbf{r} :

$$\mathbf{x}_m = \mathbf{M} \odot \mathbf{x} \tag{4}$$

where $\|\mathbf{M}\|_1 = r$ and $\mathbf{M} = \{0, 0, \dots, 1, \dots, 1\} \in [0, 1]^T$ denotes the mask matrix near the current time with adaptive mask length, and \odot indicates element-wise multiplication. Thus, we obtain the masked time series sequence \mathbf{x}_m where each variate has varying mask lengths to estimate the reaction time.

237 **Multi-scale Patching.** Take the masked sequence \mathbf{x}_m of the univariate sequence \mathbf{x} as an example. 238 We segment \mathbf{x}_m into patches with multi-scale to enhance hierarchical information. Concretely, we 239 obtain a kinds of patch-based sequences from fine to coarse granularity upon \mathbf{x}_m , where a represents 240 the number of granularities. The multi-scale scaling process first generates a patch sequence $x_1 \in$ 241 $\mathbb{R}^{N_1 \times P_1}$, where P_1 is the finest granularity patch size and N_1 is the number of patches. For the 242 *i*-th scale, $1 < i \leq a$, we concatenate two adjacent patches from the (i - 1)-th scale, and obtain 243 sequence of the *i*-th scale containing N_i patches with patch size P_i . By continuously grouping, 244 we obtain a sequences $\{\mathbf{x}_{m,p}\}_{p=1}^{a}$ with different scales. Similarly, we obtain $\{\mathbf{x}_{p}\}_{p=1}^{a}$ from the 245 unmasked sequence, used for the contrastive branch.

247 3.3 MASKED TIME SERIES RECONSTRUCTION

To accurately assess the magnitude of fluctuations during the reaction time, we perform reconstruction on the dominant periods masked time series. This module is composed of asymmetric encoder-decoder architecture (as in the pink background section in Figure 2). The scale encoder is implemented based on the temporal transformer, and the output yields representations of positive sample pairs $\mathbf{z}_a^+ \in \mathbb{R}^{N_a \times d_{model}}$, where d_{model} denotes the hidden state dimensions. The decoder reconstructs inputs of different scales using lightweight MLP to fuse multi-scale information, and outputs formatted as $\hat{\mathbf{x}} \in \mathbb{R}^{T \times 1}$.

Scale Encoder. There are *a* encoder blocks, corresponding to patch sequences $\{\mathbf{x}_{m,p}\}_{p=1}^{a}$ at different scales passed through. The scale encoder is implemented based on the Transformer block. First, the embedded representation $\mathbf{x}_{m,e}$ is obtained via the embedding layer from each $\mathbf{x}_{m,p}$. Then, $\mathbf{x}_{m,e}$ is fed into multi-head self-attention layers, and the representations of different patches with different scales are units to learn temporal features across different time intervals. The scale encoder provides features $\{\mathbf{z}_{p}^{+}\}_{p=1}^{a}$ for both reconstruction and contrastive learning.

Reconstruction Learning. We concatenate the features $\{\mathbf{z}_p^+\}_{p=1}^a$ and use the MLP-based decoder to learn cross-scale information for reconstruction. The reconstruction result can be obtained by:

$$\hat{\mathbf{x}} = \text{Decoder}(\{\mathbf{z}_p^+\}_{p=1}^a) \tag{5}$$

MultiRC minimizes the mean squared error (MSE) loss. The losses across all channels are averaged to get the overall reconstruction loss \mathcal{L}_{Rec} :

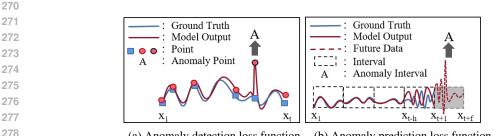
268

262

263 264

265

$$\mathcal{L}_{\text{Rec}} = \frac{1}{c} \sum_{i=1}^{c} \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2$$
(6)



(a) Anomaly detection loss function (b) Anomaly prediction loss function

Figure 3: Design specific loss functions for different tasks. $\mathbf{x}_{1:t}$ represents the historical time series, $\mathbf{x}_{t-h:t}$ represents the reaction time, and $\mathbf{x}_{t+1:t+f}$ denotes the size of the look-forward time window. 281 In anomaly detection, significant loss differences indicate anomalies. In anomaly prediction, large fluctuations in loss during the reaction time suggest a high likelihood of future anomalies. 283

284

279

3.4 **GENERATIVE-BASED CONTRASTIVE LEARNING**

287 We introduce controlled generative strategies to construct diverse precursors as negative samples to prevent model degradation and better distinguish fluctuations. Multi-scale views from the masked 288 time series reconstruction module are used as positive samples, while hard negative samples are 289 generated through controlled noise pollution. The generative design of negative samples targets the 290 need to avoid degradation and better judge fluctuations. 291

Negative sample generation. For multi-scale patch sequences x_p , we apply different noise pollu-293 tion strategies to generate negative samples $x_{n,p}$. Different types of fluctuations are generated and the details are shown in Appendix D. The embedded representation $\mathbf{x}_{n,e}$ is obtained via the embedding layer from the generated negative samples $x_{n,p}$. The encoder backbone is shared with the 295 masked time series reconstruction module. Specifically, the generated data is fed into the backbone 296 network to derive the hard negative sample representations $\mathbf{z}_p^- \in \mathbb{R}^{N_p \times d_{\text{model}}}$ where $1 \le p \le a$. 297

298 **Representation discrepancy.** In anomaly prediction, we design an interval-wise contrastive loss function (Figure 3b). Three views are used as an example. Apply mean pooling to the various views 299 generated by the scale encoder to obtain interval-level representations for each channel. Use the 300 interval representations from the same channel *i* as positive pairs $\mathbf{z}_{1[i]}^{pre}$, $\mathbf{z}_{2[i]}^{pre}$, $\mathbf{z}_{3[i]}^{pre}$. Similarly, use 301 three views as an example. The hard negative samples \mathbf{z}_{neg1}^{pre} , \mathbf{z}_{neg2}^{pre} , \mathbf{z}_{neg3}^{pre} and the representations 302 from other channels are taken as negative pairs. The loss calculation $\mathcal{L}_{con}^{inter}$ defined as:

$$\mathcal{L}_{\rm con}^{inter}(\mathbf{z}_{1}^{pre}) = -\frac{1}{c} \sum_{i=1}^{c} \log \left(\frac{\exp(\mathbf{z}_{1[i]}^{pre} \cdot \mathbf{z}_{2[i]}^{pre}) + \exp(\mathbf{z}_{1[i]}^{pre} \cdot \mathbf{z}_{3[i]}^{pre})}{\sum_{i \neq j} \sum_{k=1}^{3} \exp(\mathbf{z}_{1[i]}^{pre} \cdot \mathbf{z}_{k[j]}^{pre}) + \sum_{i} \exp(\mathbf{z}_{1[i]}^{pre} \cdot \mathbf{z}_{neg1}^{pre})} \right)$$
(7)

308 310

313 314 315

319 320 321

307

where $\exp(\mathbf{z}_{1[i]}^{pre} \cdot \mathbf{z}_{2[i]}^{pre})$ represents the inner product of the interval representations of \mathbf{z}_1^{pre} and \mathbf{z}_2^{pre} . 311 312 The overall contrastive objectives defined as follows, H is the total number of different views:

$$\mathcal{L}_{Con} = \frac{1}{H} \sum_{i=1}^{H} \mathcal{L}_{con}^{inter}(\mathbf{z}_i^{pre})$$
(8)

316 For the anomaly detection task, we design a point-wise contrastive loss function (Figure 3a). Before 317 calculating the loss, the outputs of encoders remain the dependence between each time point through 318 additional upsampling:

$$\mathbf{z}^{det} = Upsampling(\mathbf{z}_{\xi(i,l_{\text{orig}},l_{\text{new}})}), \quad \xi(i,l_{\text{orig}},l_{\text{new}}) = \left\lfloor \frac{i \times l_{\text{orig}}}{l_{\text{new}}} \right\rfloor$$
(9)

where $i \in \{0, 1, \dots, l_{new} - 1\}$ is the time index after upsampling. [.] is the floor function. z stands 322 for \mathbf{z}_p^+ or \mathbf{z}_p^- . l_{orig} is the original length, that is, the number of time points in each patch. l_{new} is the 323 target length, which is the size of the window size.

Representations of different views at the same time point *i* are treated as positive pairs $\mathbf{z}_{1[i]}^{det}, \mathbf{z}_{2[i]}^{det}, \mathbf{z}_{3[i]}^{det}$. $\mathbf{z}_{3[i]}^{det}$. Negative pairs include: representations between different time points within the same view, the representation of any time point in \mathbf{z}_{1}^{det} compared with all time points in \mathbf{z}_{2}^{det} and \mathbf{z}_{3}^{det} except that point, and the representation of any time point in the hard negative sample $\mathbf{z}_{neg1}^{det}, \mathbf{z}_{neg2}^{det}, \mathbf{z}_{neg3}^{det}$. The loss calculation $\mathcal{L}_{con}^{point}$ defined as:

$$\mathcal{L}_{\text{con}}^{point}(\mathbf{z}_{1}^{det}) = -\frac{1}{T} \sum_{i=1}^{T} \log \left(\frac{\exp(\mathbf{z}_{1[i]}^{det} \cdot \mathbf{z}_{2[i]}^{det}) + \exp(\mathbf{z}_{1[i]}^{det} \cdot \mathbf{z}_{3[i]}^{det})}{\sum_{u \neq i} \sum_{k=1}^{3} \exp(\mathbf{z}_{1[i]}^{det} \cdot \mathbf{z}_{k[u]}^{det}) + \sum_{i} \exp(\mathbf{z}_{1[i]}^{det} \cdot \mathbf{z}_{neg1}^{det})} \right)$$
(10)

In summary, the various designs of the contrastive loss enable the same fundamental algorithm to be flexibly applied to different task requirements, enhancing the practicality of the model.

3.5 JOINT OPTIMIZATION

324

325

326

327 328

337

338 339

340 341

342

343

344

345

346 347

348 349

350

351

352

353 354

355

356

357

358

359 360

361 362 As previously mentioned, reconstruction and contrastive learning are interconnected. Reconstruction loss focuses on extracting key features from locally masked time series data. Contrastive loss effectively learn overall trends and patterns over time intervals. Let λ be the weights that balance loss terms, the overall loss function is given:

$$\mathcal{L} = \lambda_{\rm Con} \mathcal{L}_{\rm Con} + \lambda_{\rm Rec} \mathcal{L}_{\rm Rec} \tag{11}$$

3.6 MODEL INFERENCE

During the inference phase, labeled negative sampled construction is not needed. The anomaly score is composed of the MSE between the input and the reconstructed output, as well as the representational distance between positive sample pairs, which can be determined using metrics such as Euclidean distance. The final anomaly score f(x) is as follows:

$$f(x) = MSE(\hat{\mathbf{X}}, \mathbf{X}) + Dist(\mathbf{z}_p^+, \mathbf{z}_j^+)_{p \neq j, p, j=1,..,a}$$
(12)

which is a point-wise anomaly score. With a threshold (Wang et al., 2024), we can determine whether a point is abnormal. For anomaly prediction, the probability score $\hat{\mathbf{p}}_t$ is the averaged anomaly score from the look-back window. Apply a threshold (Yang et al., 2023), we can convert $\hat{\mathbf{p}}_t$ into a binary labels, if $\hat{\mathbf{p}}_t \ge \mu$, the future sub-sequence being anomaly.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

364 Datasets. We evaluated MultiRC on seven real-world datasets: (1) MSL (Mars Science Laboratory 365 rover) (Hundman et al., 2018) includes operational data from multiple sensors on the Mars rover. 366 (2) SMAP (Soil Moisture Active Passive satellite) (Hundman et al., 2018) provides soil moisture in-367 formation collected from satellite sensors. (3) SMD (Server Machine Dataset) (Su et al., 2019) is a 368 large-scale dataset collected over five weeks from a large Internet company. (4) PSM (Pooled Server 369 Metrics) (Abdulaal et al., 2021) comprises data collected from eBay's application server nodes. (5) SWaT (Secure Water Treatment) (Li et al., 2019) is a dataset for security research in water treat-370 ment systems. (6) NIPS-TS-SWAN (Lai et al., 2021) is a comprehensive multivariate time series 371 benchmark extracted from solar photospheric vector magnetograms. (7) NIPS-TS-GECCO (Re-372 hbach et al., 2018) covers data collected from multiple sensors in a drinking water supply system. 373 The training and validation data were split in an 8:2 ratio. Additional details on the datasets can be 374 found in Appendix A.1. 375

Baselines. We compare our method with PAD (Jhin et al., 2023). We also modify unsupervised anomaly detection methods into anomaly prediction methods following PAD, including the reconstruction-based methods: CAE-Ensemble (Campos et al., 2022), GANomaly (Du et al., 2021),

		MSL			SMAP			SMD			PSM			SWaT		Average
Method	Р	R	F1	P	R	F1	Р	R	F1	P	R	F1	Р	R	F1	F1
DAGMM	13.94	17.04	15.33	11.91	22.00	15.51	14.74	15.37	15.05	39.27	36.14	37.64	82.14	61.72	70.48	30.80
Iforst	13.82	17.11	15.29	11.79	18.67	14.45	15.25	18.28	16.63	39.39	38.82	39.10	75.39	62.22	68.17	30.72
Deep SVDD	12.94	16.04	14.32	11.77	17.09	13.94	14.99	15.78	15.37	36.63	36.30	36.46	81.29	61.95	70.31	30.08
A.T.	14.62	12.42	13.43	11.40	22.80	15.20	10.52	19.42	13.65	30.56	34.64	32.47	75.00	60.50	66.97	28.34
DCdetector	2.35	3.46	2.80	8.04	11.30	9.40	3.71	9.03	5.26	28.97	12.05	17.02	46.45	36.36	40.79	15.05
PAD	14.37	13.22	13.77	15.19	34.41	21.08	11.23	18.76	14.05	31.23	33.05	32.11	74.83	59.09	55.04	27.21
Omni	13.66	21.66	16.75	11.90	23.39	15.77	16.22	18.19	17.15	39.45	40.88	40.15	85.73	58.57	69.59	31.88
GANomaly	15.36	17.30	16.27	12.18	23.41	16.02	15.06	21.39	17.68	37.02	43.06	39.81	83.99	59.77	69.84	31.92
CAE-Ensemble	20.35	18.27	19.26	15.88	26.68	19.91	18.41	19.51	18.94	40.18	41.99	41.07	88.61	59.90	71.48	34.13
$D^{3}R$	19.99	20.32	20.15	15.73	26.89	19.85	15.78	19.33	17.38	40.73	42.21	41.46	84.13	61.85	71.29	34.02
MultiRC	14.74	69.84	24.34	16.59	47.11	24.53	19.99	23.27	21.51	36.77	65.30	47.05	99.38	60.29	75.05	38.4

Table 1: Anomaly prediction results for the five real-world datasets. Superior performance is indicated by higher metric values, with the top F1 scores emphasized in bold.

OmniAnomaly (Su et al., 2019), Anomaly Transformer (A.T.) (Xu et al., 2021), D³R (Wang et al., 391 2024); the contrastive learning methods: DCdetector (Yang et al., 2023), PAD (Jhin et al., 2023); 392 the classic methods: IForest (Liu et al., 2008); the density-estimation method: DAGMM (Zong 393 et al., 2018); the clustering-based method: Deep SVDD (Ruff et al., 2018). We have used all base-394 lines with their official or open-source versions. Additional details on the baselines can be found in 395 Appendix A.2. 396

397 Evaluation criteria. We use the metrics Precision(P), Recall(R), and F1-score(F1) for comprehensive comparison (Su et al., 2019). In anomaly prediction tasks, we predict future window anoma-398 lies (Jhin et al., 2023), for which we use classic metrics. With respect to anomaly detection tasks, we 399 detect point anomaly as previous works (Wang et al., 2024). As pointed out in (Kim et al., 2022), the 400 point adjustment strategy commonly used in previous works (Song et al., 2024; Yang et al., 2023; 401 Zhao et al., 2020; Xu et al., 2021) is unreasonable. This strategy assumes that if one anomaly is 402 correctly detected within a continuous anomalous segment, then all points in that segment are con-403 sidered correctly detected. The recently proposed affiliation-based P/R/F1 (Huet et al., 2022; Wang 404 et al., 2024) provides a reasonable evaluation for anomaly detection in time series, so we employ 405 this for comparison.

406 407

408

378

379

380

390

4.2 MAIN RESULTS

409 Tables 1 and Table 2 respectively present the performance comparison of the model in anomaly 410 prediction and detection tasks. As indicated by the tables, on all five real-world datasets, MultiRC surpasses the adversary algorithms, achieving the best F1 and Aff-F1 performance, thereby con-411 firming its effectiveness. Performance comparisons on the NIPS-TS-SWAN and NIPS-TS-GECCO 412 datasets are presented in Appendices F and G. The visualization results of anomaly prediction are 413 presented in Appendix E. 414

415

Anomaly prediction. MultiRC has achieved improvements of 4.19% (from 20.15 to 24.34), 416 4.68% (from 19.85 to 24.53), 2.57% (from 18.94 to 21.51), 5.59% (from 41.46 to 47.05), and 3.57% 417 (from 71.48 to 75.05) on the MSL, SMAP, SMD, PSM and SWaT datasets, respectively. 418

Traditional machine learning methods, such as IForest, often underperform in generalization because 419 they do not take into account the continuity and complexity of time series data. Despite being based 420 on contrastive learning, the performance of DCdetector is not satisfactory. This is because it focuses 421 only on positive samples, resulting in severely limited performance in anomaly prediction tasks 422 that require label support from negative samples. Compared to the previous state-of-the-art model, 423 $D^{3}R$, MultiRC significantly improves the F1 scores on benchmark datasets. In our model, multi-424 scale mask reconstruction and multi-noise contrastive paradigm are combined. MultiRC takes into 425 account the periodic variations in time series and further enhances hierarchical information through 426 a multi-scale structure, which facilitates the identification of different reaction time. The encoder 427 outputs are simultaneously used for both reconstruction and contrastive tasks, making the learned 428 feature representations more meaningful. These designs address the shortcomings of previous work 429 and maintain outstanding performance across different datasets. Furthermore, the performance on the PSM and SWaT datasets is significantly better than on other datasets, likely because anomaly 430 prediction requires the model to detect precursor signals. In some datasets, these precursors are less 431 apparent, thereby limiting the model performance.

		MSL			SMAP			SMD			PSM			SWaT		Average
Method	Aff-P	Aff-R	Aff-F1	Aff-F1												
DAGMM	4.07	92.11	68.14	50.75	96.38	66.49	63.57	70.83	67.00	68.22	70.50	69.34	59.42	92.36	72.32	68.65
IForest	53.87	94.58	68.65	41.12	68.91	51.51	71.94	94.27	81.61	69.66	88.79	78.07	53.03	99.95	69.30	69.82
Deep SVDD	49.88	98.87	65.73	42.67	68.23	51.94	65.84	80.43	72.58	58.32	60.11	59.95	55.73	97.34	70.77	64.19
A.T.	51.04	95.36	66.49	56.91	96.69	71.65	54.08	97.07	66.42	54.26	82.18	65.37	53.63	98.27	69.39	67.86
DCdetector	55.94	95.53	70.56	53.12	98.37	68.99	50.93	95.57	66.45	54.72	86.36	66.99	53.25	98.12	69.03	68.40
PAD	56.33	82.21	68.15	41.67	64.52	53.94	59.54	67.66	63.71	68.45	57.72	59.21	54.73	92.35	68.06	62.61
Omni	51.23	99.40	67.61	52.74	98.51	68.70	79.09	75.77	77.40	69.20	80.79	74.55	62.76	82.82	71.41	71.93
GANomaly	56.36	98.27	68.01	56.44	97.62	72.52	73.46	83.25	74.20	55.31	98.34	75.11	59.93	81.52	70.24	72.01
CAE-Ensemble	54.99	93.93	69.37	62.32	64.72	63.50	73.05	83.61	77.97	73.17	73.66	73.42	62.10	82.90	71.01	71.05
D ³ R	66.85	90.83	77.02	61.76	92.55	74.09	64.87	97.93	78.02	73.32	88.71	80.29	60.14	97.57	74.39	76.76
MultiRC	67.94	93.03	78.53	66.66	89.94	76.57	75.36	94.85	83.99	73.36	93.13	82.08	62.52	97.26	76.12	79.45

Table 2: Experimental results for the anomaly detection on five time-series datasets. The best Aff-F1 scores are highlighted in bold.

Anomaly detection. As can be seen from the Table 2, MultiRC also achieves optimal performance in the exception detection tasks. This is 1.51%-5.97% higher on average than previous SOTA methods. Additionally, many previous studies were evaluated through point adjustment, leading to a false boom. Metrics based on affiliation offer a more objective and reasonable assessment for various methods, resulting in lower scores for past approaches. Overall, MultiRC not only effectively detects anomalies within complex data but also assists in predicting future anomalies.

4.3 ABLATION STUDIES

In order to verify the effectiveness and necessity of our designs, we conduct ablation studies focusing on key components of our model design: the multi-scale structure, the masked time series reconstruction and the generative-based contrastive learning.

Table 3: Results of anomaly prediction ablation studies. The best scores are highlighted in bold.

	MultiRC		w/o multi-scale		w/o adaptive mask		w/o reconstruction		w/o contrastive		w/o generation							
Dataset	Р	R	F1	P	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
MSL	14.74	69.84	24.34	11.50	53.89	18.96	14.72	58.32	23.51	7.69	34.19	12.56	11.62	51.85	18.99	12.62	55.52	20.56
SMAP	16.59	47.11	24.53	15.48	31.76	20.82	14.94	39.95	21.75	14.94	26.92	19.22	16.63	40.41	23.56	16.37	40.05	23.24
PSM	36.77	65.30	47.05	42.39	50.27	46.00	35.84	62.00	45.42	28.54	35.60	31.68	36.33	65.17	46.65	37.03	63.79	46.86

Table 4: Ablation	results of anomaly	v detection.	The best scores	are highlighted in bold.

	MultiRC			w/o multi-scale			w/o adaptive mask		w/o reconstruction		w/o contrastive		w/o generation					
Dataset	Aff-P	Aff-R	Aff-F1	Aff-P	Aff-R	Aff-F1	Aff-P	Aff-R	Aff-F1	Aff-P	Aff-R	Aff-F1	Aff-P	Aff-R	Aff-F1	Aff-P	Aff-R	Aff-F1
MSL	67.94	93.03	78.53	65.87	93.57	77.31	67.48	90.32	77.25	44.65	44.09	44.37	67.01	93.08	77.92	67.37	93.09	78.17
SMAP	66.66	89.94	76.57	64.28	90.34	75.11	66.41	88.31	75.81	53.74	76.61	63.17	65.39	90.07	75.77	65.65	86.16	74.52
PSM	73.36	93.13	82.08	76.15	80.59	78.31	72.29	90.38	80.33	52.94	69.90	60.25	73.22	92.43	81.71	73.53	92.74	82.03

In Table 3, we introduce our ablation experimental results for the anomaly prediction. We attempted to remove the multi-scale structure (w/o multi-scale), using only a single-scale sequence. Replace the adaptively adjusted mask scale with a fully random mask (w/o adaptive mask). We also remove the masked reconstruction module (w/o reconstruction), the contrastive learning module (w/o contrastive), and the noise generation variants (w/o generated samples).

The results show that performance decreased across all datasets after removing the multi-scale framework. Notably, some datasets experienced a significant drop in performance, which is due to the different levels of dependence on the multi-scale framework caused by varying response time lengths. The random mask led to a marked decrease in performance, indicating that adjusting the mask scale based on frequency and periodicity is beneficial for identifying different response times. Removing the masked reconstruction module or contrastive learning leads to the lack of ability to effectively identify fluctuations and magnitude, thus not maintaining the best performance on all datasets. The sample generation strategy has led to significant improvements (3.78%, from 20.56 to 24.34). This emphasizes the importance of hard negative samples in enhancing the ability to avoid degradation.

In the ablation studies for anomaly detection, we define the ablation model in exactly the same manner, results are shown in Table 4. This further substantiates the importance of each component to the overall efficacy of the model.

489 490 491

492

493

494

495

496

497

498

499

517 518

519

520

521

522

523

524

526 527

528 529 530

531

532

4.4 DISCUSSION AND ANALYSIS

Analysis of reaction time. For reaction time, we conducted an analysis of window size performance on three datasets, as shown in Figure 4. This study follows the methodologies mentioned in the literature (Schmidl et al., 2022; Wenig et al., 2022), adjusting the sliding window size. The results indicate that PSM achieves optimal performance within a small window size (16), suggesting a shorter reaction time and significant fluctuations within this dataset. In contrast, MSL and SMAP are evident over a longer time span (64), indicating a relatively long reaction time. This disparity underscores the necessity of adopting the Multi-scale structure to accommodate varying lengths of reaction time needs.

500 Hyperparameter analysis. The hyperparameters 501 that might influence the performance of MultiRC in-502 clude the hidden state dimension, batch size, and 503 patch size. To analyze their impact on the results, 504 we conducted a hyperparameter sensitivity analysis 505 on the MSL, SMAP and PSM datasets. The find-506 ings are presented in Figure 5. This figure primarily depicts the results for anomaly prediction tasks. 507 For the hyperparameter results of anomaly detection, 508 see the Appendix G. Figure 5a demonstrates the per-509 formance across different sizes of the latent space, 510 as the performance of many deep neural networks is 511 affected by d_{model} . Figure 5b displays the outcomes 512

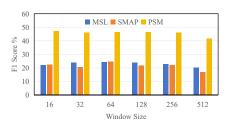


Figure 4: Performance of different datasets under different window sizes.

for MultiRC when trained with various batch sizes. Figure 5c displays the model performance at different patch sizes. The experimental results show that the performance of the model remains relatively stable in different patch size combinations. A more detailed comparison and analysis regarding multi-scale patch size can be found in Appendix C.

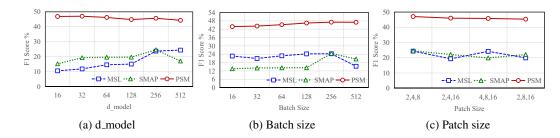


Figure 5: Parameter sensitivity studies of main hyper-parameters in MultiRC.

5 CONCLUSION

We propose MultiRC, a multi-scale reconstructive contrast for time series anomaly prediction and detection tasks. Our multi-scale structure enables the model to adapt to precursor signals of varying reaction times. In addition, sample generation is used to construct hard negative samples to prevent model degradation, where our model learns more meaningful representations to better identify fluctuations with contrastive learning and evaluate the amplitude of fluctuations with reconstruction learning. Experimental results demonstrate that MultiRC surpasses existing works in both anomaly prediction and detection tasks. Our framework breaks through the limitations of traditional anomaly detection, enhancing the capability to predict future anomalies.

540 **Reproducibility Statement**

541 542

In this work, we have made every effort to ensure reproducibility. Reproducing the results would be 543 straightforward and require minimal additional effort, ensuring high reproducibility. In the anony-544 mous repository link we provide, you will find the code and evaluation datasets, which are welldocumented and easily accessible. Within the code files, we provide instructions to facilitate running 546 and reproducing our experimental results. In Methodology 3, from input to output, we provide a detailed description of our method, including model structure, model training, and anomaly criterion. 547 548 In Appendix A.3, we summarize all the default hyper-parameters, including noise ratio, learning rate, etc. 549

550 551

552

554

556

558

559

563

565

566

571

576

580

581

582

583

REFERENCES

- Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous 553 multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 2485–2494, 2021. 555
 - Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 3395–3404, 2020.
- David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang, and Christian S. 560 Jensen. Unsupervised time series outlier detection with diversity-driven convolutional ensembles. 561 PVLDB, 15(3):611-623, 2022. 562
 - Cristian I Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. Deep generative model with hierarchical latent factors for time series anomaly detection. In International Conference on Artificial Intelligence and Statistics, pp. 1643–1654. PMLR, 2022.
- 567 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 568 15750–15758. Computer Vision Foundation / IEEE, 2021. 569
- 570 Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning graph structures with transformer for multivariate time-series anomaly detection in iot. IEEE Internet 572 of Things Journal, 9(12):9179-9189, 2021a. 573
- 574 Zipeng Chen, Qianli Ma, and Zhenxi Lin. Time-aware multi-scale rnns for time series modeling. In 575 *IJCAI*, pp. 2285–2291, 2021b.
- Bowen Du, Xuanxuan Sun, Junchen Ye, Ke Cheng, Jingyuan Wang, and Leilei Sun. Gan-based 577 anomaly detection for multivariate time series using polluted training set. IEEE Transactions on 578 *Knowledge and Data Engineering*, 35(12):12208–12219, 2021. 579
 - Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9729–9738, 2020.
- Alexis Huet, Jose Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly detec-584 tion algorithms. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery 585 and Data Mining, pp. 635-645, 2022. 586
- Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. 588 Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Pro-589 ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data 590 mining, pp. 387-395, 2018. 591
- Sheo Yon Jhin, Jaehoon Lee, and Noseong Park. Precursor-of-anomaly detection for irregular time 592 series. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 917-929, 2023.

603

610

628

- Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous
 evaluation of time-series anomaly detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 7194–7201, 2022.
- Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
 time series outlier detection: Definitions and benchmarks. In *Thirty-fifth conference on neural information processing systems datasets and benchmarks track (round 1)*, 2021.
- Seunghan Lee, Taeyoung Park, and Kibok Lee. Soft contrastive learning for time series. *arXiv preprint arXiv:2312.16424*, 2023.
- Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan: Multi-variate anomaly detection for time series data with generative adversarial networks. In *International conference on artificial neural networks*, pp. 703–716. Springer, 2019.
- Longyuan Li, Junchi Yan, Qingsong Wen, Yaohui Jin, and Xiaokang Yang. Learning robust deep
 state space for unsupervised anomaly detection in contaminated time-series. *IEEE Transactions on Knowledge and Data Engineering*, 2022.
- Xing Li, Qiquan Shi, Gang Hu, Lei Chen, Hui Mao, Yiyuan Yang, Mingxuan Yuan, Jia Zeng, and
 Zhuo Cheng. Block access pattern discovery via compressed full tensor transformer. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pp. 957–966, 2021a.
- Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 3220–3230, 2021b.
- Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international conference on data mining, pp. 413–422. IEEE, 2008.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
- Frederik Rehbach, Steffen Moritz, Sowmya Chandrasekaran, Margarita Rebolledo, Martina Friese, and Thomas Bartz-Beielstein. Gecco 2018 industrial challenge: Monitoring of drinking-water quality. *Accessed: Feb*, 19:2019, 2018.
- Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International conference on machine learning*, pp. 4393–4402. PMLR, 2018.
- Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a
 comprehensive evaluation. *Proceedings of the VLDB Endowment*, 15(9):1779–1797, 2022.
- Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical one-class network. *Advances in Neural Information Processing Systems*, 33:13016–13026, 2020.
- Junho Song, Keonwoo Kim, Jeonglyul Oh, and Sungzoon Cho. Memto: Memory-guided trans former for multivariate time series anomaly detection. *Advances in Neural Information Process- ing Systems*, 36, 2024.
- Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2828–2837, 2019.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

648 649 650	Chengsen Wang, Zirui Zhuang, Qi Qi, Jingyu Wang, Xingyu Wang, Haifeng Sun, and Jianxin Liao. Drift doesn't matter: Dynamic decomposition with diffusion reconstruction for unstable multi- variate time series anomaly detection. <i>Advances in Neural Information Processing Systems</i> , 36,
651 652	2024.
652 653 654 655	Qingsong Wen, Linxiao Yang, Tian Zhou, and Liang Sun. Robust time series analysis and appli- cations: An industrial perspective. In <i>Proceedings of the 28th ACM SIGKDD Conference on</i> <i>Knowledge Discovery and Data Mining</i> , pp. 4836–4837, 2022.
656 657 658	Phillip Wenig, Sebastian Schmidl, and Thorsten Papenbrock. Timeeval: A benchmarking toolkit for time series anomaly detection algorithms. <i>Proceedings of the VLDB Endowment</i> , 15(12): 3678–3681, 2022.
659 660 661 662	Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive learning of disentangled seasonal-trend representations for time series forecasting. <i>arXiv preprint arXiv:2202.01575</i> , 2022.
663 664	Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly detection with association discrepancy. <i>arXiv preprint arXiv:2110.02642</i> , 2021.
665 666 667 668	Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. Dcdetector: Dual attention contrastive representation learning for time series anomaly detection. In <i>Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining</i> , pp. 3033–3045, 2023.
669 670	Xiao-Xia Yin, Yuan Miao, Yanchun Zhang, et al. Time series based data explorer and stream analysis for anomaly prediction. <i>Wireless Communications and Mobile Computing</i> , 2022, 2022.
671 672	Jiang You, Arben Cela, René Natowicz, Jacob Ouanounou, and Patrick Siarry. Anomaly prediction: A novel approach with explicit delay and horizon. <i>arXiv preprint arXiv:2408.04377</i> , 2024.
673 674 675 676	Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. Ts2vec: Towards universal representation of time series. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , pp. 8980–8987, 2022.
677 678	Weiqi Zhang, Chen Zhang, and Fugee Tsung. Grelen: Multivariate time series anomaly detection from the perspective of graph relational learning. In <i>IJCAI</i> , pp. 2390–2397, 2022a.
679 680 681 682	Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised con- trastive pre-training for time series via time-frequency consistency. <i>Advances in Neural Informa-</i> <i>tion Processing Systems</i> , 35:3988–4003, 2022b.
683 684 685 686	Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention network. In <i>2020 IEEE International Conference on Data Mining (ICDM)</i> , pp. 841–850. IEEE, 2020.
687 688 689 690	Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In <i>International conference on machine learning</i> , pp. 27268–27286. PMLR, 2022.
691 692	Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained lm. <i>Advances in neural information processing systems</i> , 36, 2024.
693 694 695 696	Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In <i>International conference on learning representations</i> , 2018.

A TRAINING DETAILS

A.1 DATASETS

In our study, we represent the number of samples in the training set, validation set, and test set with the labels "Train", "Valid", and "Test", respectively. The 'Dim' column indicates the dimension size of the data for each dataset. Additionally, the 'AR' (anomaly ratio) column denotes the proportion of anomalies within the entire dataset.

Table 5: Details of original datasets.

Datasets	Domain	Train	Valid	Test	Dim	AR (%)
MSL	Spacecraft	46,653	11,664	73,729	55	10.5
SMAP	Spacecraft	108,146	27,037	427,617	25	12.8
SWaT	Water treatment	396,000	99,000	449,919	51	5.78
NIPS-TS-SWAN	Space Weather	48,000	12,000	60,000	38	23.8
NIPS-TS-GECCO	Water treatment	55,408	13,852	69,261	9	1.25
SMD	Server Machine	566,724	141,681	708,420	38	4.2
PSM	Server Machine	105,984	26,497	87,841	25	27.8

A.2 BASELINES

- CAE-Ensemble (Campos et al., 2022) proposed CNN-based autoencoder and diversitydriven ensemble learning method to improve the accuracy and efficiency of anomaly detection.
- GANomaly (Du et al., 2021) adopts the network structure of Encoder1-Decoder-Encoder2, and introduces the idea of adversary-training to provide unsupervised learning scheme for anomaly detection.
- OmniAnomaly (Su et al., 2019) further extends the LSTM-VAE model to capture temporal dependencies in the context of random variates, using reconstruction probabilities for detection.
- Anomaly Transformer(Xu et al., 2021) focuses on the relationship between adjacent points and designs a minimax strategy to amplify normal-anomaly resoluteness of association differences.
- D³R(Wang et al., 2024) performs unsupervised anomaly detection on unstable data by decomposing it into stable and trend components, directly reconstructing the data after it has been corrupted by noise.
- DCdetector (Yang et al., 2023) proposes a contrastive learning-based dual-branch attention structure without considering reconstruction errors. This structure is designed to learn a permutation invariant representation that enlarges the representation differences between normal points and anomalies.
- IForest (Liu et al., 2008) directly describes the degree of distance between points and regions to find abnormal points.
- PAD (Jhin et al., 2023) presents a neural controlled differential equation-based neural network to solve both anomaly detection and Precursor-of-Anomaly (PoA) detection tasks.
- DAGMM (Zong et al., 2018) is a deep automatic coding Gaussian mixture model comprises a compression network and an estimation network. Each network measures information necessary for the anomaly detection.
- Deep SVDD (Ruff et al., 2018) finds an optimal hypersphere in a feature space trained using a neural network. Normal data points are concentrated as much as possible within the hypersphere. Points that are far from the center of the sphere are considered anomalies.

A.3 IMPLEMENTATION

In our experiments, we set the blocks of the Transformer to 3. We select different sliding window
size options for different datasets. For the contrastive branch, we set the noise ratio to 50% for
generating samples across different scale sequences. The prediction window size is uniformly set to
4 following previous works (Jhin et al., 2023; Yin et al., 2022). Early stopping with the patience of
3 epochs is employed using the validation loss. We use the Adam optimizer with a learning rate of
1e-5. All experiments in this work are conducted using Python 3.9 and PyTorch 1.13 (Paszke et al.,
2019), and executed on CUDA 12.0, NVIDIA Tesla-A800 GPU hardware.

764 765

766 767

780

B COMPARISON WITH MAINSTREAM METHODS

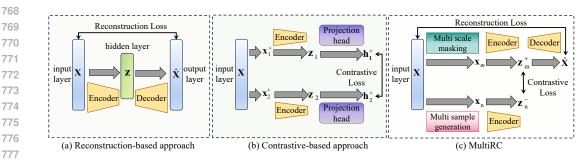


Figure 6: Architecture comparison of three approaches. $\mathbf{h_1^+}$, $\mathbf{h_2^+}$, $\mathbf{z_m^+}$ are positive samples, $\mathbf{z_n^-}$ is negative samples.

781 In time series anomaly detection, reconstruction-based methods(Figure 6) train models to accu-782 rately reconstruct normal samples, while those that cannot be accurately reconstructed are consid-783 ered anomalies. This approach is popular because of its ability to combine with multiple machine 784 learning or deep learning models to effectively capture complex dependencies in time series and 785 provide intuitive explanations for anomaly detection. However, they usually do not pay attention to the trend of changes in the data over a period of time, resulting in insensitive recognition of abnor-786 mal precursor signals. In addition, it is often difficult to strike a balance between the complexity of 787 the model and the ability to reconstruct it, too simple models can not capture the time dependence, 788 and too complex models tend to lose the ability to distinguish abnormal data. This makes it more 789 difficult to learn a model that is flexible enough to capture time series fluctuations while maintaining 790 good reconstruction performance. 791

In recent years, contrastive representative learning has emerged in the field of anomaly detection, 792 which can detect anomalies without the need for high-quality reconstruction models. The key idea 793 is that normal data has strong correlation with other data, while abnormal data has weak correlation 794 with each other. However, due to the lack of negative sample labels, the features learned by such methods will fall into a single pattern, resulting in the inability to recognize temporal fluctuations. 796 MultiRC establishes a dual-branch with joint reconstructive and contrastive learning upon a multi-797 scale structure, adaptively recognizing varying reaction times for different variables through the 798 adaptive dominant period mask. Additionally, hard negative samples are constructed to prevent 799 model degradation. The rich representation learned by the model is conducive to capturing the 800 fluctuations of the time series and the degree of fluctuations, ensuring the effect of the prediction.

801 802

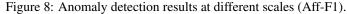
803

C SCALES ANALYSIS

Multi-scale approaches have a unique impact on anomaly prediction problems, particularly concerning reaction times of varying lengths. The prediction and detection performances at different scales are shown in Figure 7 and Figure 8, respectively.

First, a single scale is suitable for specific ranges of reaction times but has limited performance.
Second, the dependency on different scales varies across datasets. Using the PSM dataset as an example, the performance decline is greater when using the 2,8 or 4,8 scale combinations compared

Figure 7: Anomaly prediction results at different scales (F1).



to the 2,4 scale combination. This indicates that shorter time scales are more suitable for anomaly prediction in this dataset. Moreover, more scales are not necessarily better. When the gap between the smallest and largest scales becomes too large, it increases the difficulty of contrastive learning.

D SAMPLE GENERATION

Sample generation methods include amplitude magnification or reduction by some factor (scale), reducing resolution (compress), mirroring on the mean value (horizontal axis) (hmirror), tempo-ral displacement by a fixed constant (shift), adding Gaussian white noise (noise), and reversal on the time axis (vmirror). To better reflect real-world conditions, the noise magnitude is randomly selected. The abnormal prediction results under different generation methods are shown in the Figure 9.

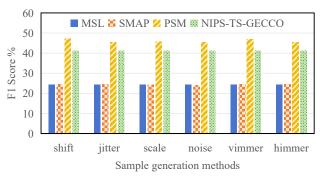


Figure 9: F1 scores for six sample generation methods.

Taking scale as an example, by a given probability, each original data point is randomly magnified or reduced, causing positive and negative samples to vary in scale at different points. The data after noise addition is:

$$\mathbf{x}_{n,p} = \mathbf{x}_p \cdot (\sigma_p \cdot s_p + 1) \tag{13}$$

where s_p represents the random factor generated for scale p, and σ_p is the coefficient controlling the noise intensity. The random factor is sampled from a standard normal distribution to ensure it is

Table 6: Anomaly prediction results for the NIPS-TS datasets. All results are in %.

Method	Dataset	ACC	Р	R	F1	AUC
	A.T.	58.19	52.90	39.77	45.50	52.98
	DCdetector	74.83	21.04	10.94	14.40	50.58
NIPS-TS-SWAN	CAE-Ensemble	58.57	56.33	44.25	49.56	64.81
	D^3R	58.38	54.96	44.81	49.37	63.87
	MultiRC	61.75	71.28	55.22	62.23	66.82
	A.T.	89.41	43.62	27.92	34.05	50.39
	DCdetector	97.21	1.76	3.46	2.33	50.79
NIPS-TS-GECCO	CAE-Ensemble	97.71	51.67	29.92	37.90	52.94
	D^3R	98.01	51.24	30.91	38.56	53.09
	MultiRC	99.10	82.89	27.39	41.17	53.35

Table 7: Experimental results for the anomaly detection on NIPS-TS datasets, are presented in percentages.

Method	Dataset	ACC	Aff-P	Aff-R	Aff-F1	AUC
	A.T.	63.89	48.12	25.89	33.67	44.74
	DCdetector	66.54	44.47	8.61	14.42	43.46
NIPS-TS-SWAN	D^3R	68.83	68.73	31.49	43.19	37.31
	MultiRC	67.84	63.28	41.74	50.30	59.48
	A.T.	95.82	50.39	88.68	64.27	51.60
	DCdetector	97.50	52.07	90.79	66.18	45.38
NIPS-TS-GECCO	D^3R	98.90	77.83	79.56	78.68	80.72
	MultiRC	97.67	71.68	97.71	82.70	93.11

suitable for all patches at scale *p*:

$$s_p \sim \mathcal{N}(0, 1) \tag{14}$$

Between different scales, s_p is sampled independently to ensure that each scale uses a distinct random factor. This design strategy enables the model to focus on common features at the same scale.

E VISUAL ANALYSIS

We visualize the anomaly prediction of MultiRC on the PSM dataset in Figure 10. The model raises warnings by identifying anomaly precursors (pink regions) before the actual anomalies (red regions) occur. This shows that MultiRC is effective in predicting whether future anomalies will occur.

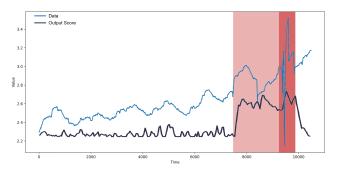


Figure 10: Visualization of the anomaly prediction on the PSM dataset. MultiRC can output larger
 scores to identify the anomaly precursors that predict the future time series are more likely to be
 abnormal.

F ADDITIONAL PREDICTION RESULTS

917 We further evaluate MultiRC performance on the NIPS-TS-SWAN and NIPS-TS-GECCO datasets (Table 6), which contain a broader variety of anomaly types. Even in these more complex anomaly

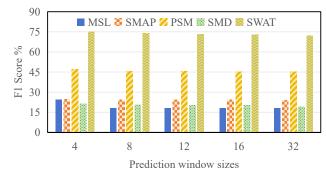


Figure 11: F1 score results for different prediction window sizes.

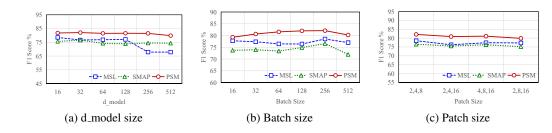


Figure 12: For anomaly detection task, parameter sensitivity studies of main hyper-parameters.

environments, MultiRC consistently exhibits superior performance on most metrics when compared to well-performing baseline methods.

To analyze the impact of the prediction distance on the results, we conduct experiments with different prediction window sizes. The results are shown in Figure 11. As the prediction distance increases, the difficulty of prediction gradually rises, which directly leads to a decline in model performance. This phenomenon is in line with expectations, when the prediction window is smaller, meaning the prediction distance is shorter, the fluctuations in reaction time are more closely related to future sub-sequences. However, as the prediction window expands, the model needs to consider data changes and potential dynamic patterns over a longer period, requiring the model to have stronger generalization capabilities and the ability to capture long-term dependencies.

G ADDITIONAL DETECTION RESULTS

Table 7 presents a performance comparison between MultiRC and other well-performing baseline methods on the NIPS-TS-SWAN and NIPS-TS-GECCO datasets. Despite the two datasets have the highest (23.68% in NIPS-TS-SWAN) and lowest (1.25% in NIPS-TS-GECCO) anomaly ratio, our model consistently demonstrates good performance across these challenging conditions. On the NIPS-TS-SWAN dataset, our model surpasses the best baseline model by 7.11% in the key metric Aff-F1 (from 43.19 to 50.30). On the NIPS-TS-GECCO dataset, it shows a more significant improvement of 4.02% (from 78.68 to 82.70).

We also study the parameter sensitivity of MultiRC in anomaly detection tasks. Figure 12a shows the
performance at different latent space dimensions. Figure 12b also displays the model performance
under different batch sizes. The model works well with larger batch sizes. In this study, the design
of multiple patch sizes is a crucial element. For our primary evaluation, the patch sizes are typically
set to combinations of 2, 4, 8. The results displayed in Figure 12c demonstrate that MultiRC exhibits
stable performance across various patch size combinations.