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ABSTRACT

Many methods have been proposed for unsupervised time series anomaly detec-
tion. Despite some progress, research on predicting future anomalies is still rela-
tively scarce. Predicting anomalies is particularly challenging due to the diverse
reaction time and the lack of labeled data. To address these challenges, we pro-
pose MultiRC to integrate reconstructive and contrastive learning for joint learn-
ing of anomaly prediction and detection, with multi-scale structure and adaptive
dominant period mask to deal with the diverse reaction time. MultiRC also gen-
erates negative samples to provide essential training momentum for the anomaly
prediction tasks and prevent model degradation. We evaluate seven benchmark
datasets from different fields. For both anomaly prediction and detection tasks,
MultiRC outperforms existing state-of-the-art methods. The code is available at
https://anonymous.4open.science/status/MultiRC-CCE6.

1 INTRODUCTION

With the advancement of Internet of things (IoT), an increase number of sensors are utilized in in-
dustrial facilities to collect data in the form of continuous time series, which realizes the monitoring
of system status (Li et al., 2021a). The anomaly detection technology (Li et al., 2021b; Wen et al.,
2022; Chen et al., 2021a) has been widely used, which locates system malfunctions by identifying
anomalies in historical data (Figure 1a). Effectively detecting anomalies helps pinpoint the sources
of faults and prevent the spread of malfunctions. However, anomaly detection can only identify
issues after they have occurred, which cannot meet the need for preventive maintenance timely.

As a new practical problem, anomaly prediction aims to predict whether an anomaly will occur in
the future by capturing the fluctuations at the current time. In IoT, anomaly prediction can prevent
full-scale failures. Previous works (Yin et al., 2022; You et al., 2024) assume and have observed
that anomalies in production often do not occur suddenly but evolve gradually. Different kinds
of fluctuations exist before the real anomalies, where data change from normal to abnormal. As
shown in Figure 1b, the yellow period exhibits fluctuation patterns beginning distinct from the past,
indicating the occurrence of possible future anomalies. The time interval of fluctuations is called
reaction time, and such fluctuations are called precursor signals of future anomalies (Jhin et al.,
2023). Following previous works (Yin et al., 2022), we predict future anomalies by identifying
precursor signals, and emphasize that anomalies without precursor signals are unpredictable.

Due to the costs and rarity of anomalies, anomaly labels are difficult to obtain. To solve this,
anomaly detection is often modeled with self-supervised (reconstructive (Zhou et al., 2024) or con-
trastive (Yang et al., 2023)) learning. Reconstruction methods expect normal points to be accurately
reconstructed, while anomalies exhibit large reconstruction errors. Contrastive approaches promote
similarity in the representations of positive sample pairs. Despite the effectiveness of existing works
in anomaly detection, these methods cannot be directly and effectively extended to anomaly predic-
tion, as shown in the following challenges.

Challenge 1: Different anomalies may occur rapidly or slowly, thus resulting in reaction time with
varying lengths. Reconstruction methods focus on reconstructing individual data points which strug-
gle to capture gradual reaction time (Li et al., 2022; Audibert et al., 2020; Zhang et al., 2022a). Con-
trastive learning methods compare time series segments based on fixed time lengths which struggle

1

https://anonymous.4open.science/status/MultiRC-CCE6


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Time

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Va
lu
e

Data

(a) Anomaly Detection

0 200 400 1000 1200

6

4

0

-2
600

2

Time

Va
lu
e

Data

Now 800

(b) Anomaly Prediction

Figure 1: (a) Anomaly detection on historical data. (b) Yellow period indicates the precursors
where anomalies have not happened yet, and the pink period indicates future anomalies. Anomaly
prediction forecasts if anomalies will occur in the future given current data.

to capture varying reaction time. Further, variates in the time series have different semantics, re-
sulting in existence of distinct reaction time for different variates. Existing methods cannot identify
fluctuations with such varying reaction time for different variates adaptively.

Challenge 2: Without labeled anomalies as negative samples, existing self-supervised methods
will degrade into a trivial model (Ruff et al., 2018) that cannot learn meaningful information. For
contrastive approaches, the absence of negative samples will lead to the learned features falling into a
single mode where all features seem similar (Chen & He, 2021), thus failing to identify fluctuations.
For reconstruction methods, a large model will degrade into identity transformation and a small
model cannot learn complex temporal patterns (Wang et al., 2024), thus failing to assess the accurate
magnitude of the fluctuations. Anomaly prediction requires not only identifying fluctuations but
also assessing the magnitude of these fluctuations to predict the probability of future anomalies.
Therefore, the existing methods fail to learn meaningful information for anomaly prediction.

In this work, we propose joint learning for time series anomaly prediction and detection with multi-
scale reconstructive contrast (MultiRC), where a dual branch with joint reconstructive and con-
trastive learning is built upon a multi-scale structure. For Challenge 1, our novel multi-scale struc-
ture adaptively recognizes the varying reaction time for different variates with adaptive dominant
period mask. Meanwhile, we exploit an asymmetric encoder-decoder to fuse cross-scale informa-
tion. For Challenge 2, we incorporate controlled generative strategies to construct diverse precursors
as negative samples to prevent model degradation, instead of only generating positive samples by
data augmentation as in the existing contrastive methods (Woo et al., 2022; Zhang et al., 2022b).
Specifically, our contrastive learning judges whether there are fluctuations by learning to distinguish
positive and negative samples, while reconstruction learning assesses the magnitude of these fluctu-
ations via learning to minimize the reconstruction errors for positive samples. Moreover, we provide
a novel anomaly measurement for joint learning of anomaly prediction and detection, which helps
anomaly prediction by detecting the degree of fluctuations in reaction time.

Our contributions are summarized as follows:

• A novel multi-scale structure is proposed to both reconstructive and contrastive learning, to adap-
tively recognize varying reaction time for different variates with adaptive dominant period mask.

• We propose controlled generative strategies to prevent model degradation and propose joint learn-
ing of anomaly prediction and detection with reconstructive contrast.

• For both anomaly prediction and anomaly detection tasks, MultiRC achieves state-of-the-art re-
sults across seven benchmark datasets.

2 RELATED WORK

Multi-scale Learning. Some multi-scale methods have been proposed for time series model-
ing (Chen et al., 2021b; Shen et al., 2020; Challu et al., 2022). THOC (Shen et al., 2020) learn
multi-scale representations through different skip connections in RNN for each time point, but it
cannot capture gradual change for continuous time intervals. DGHL (Challu et al., 2022) maps time
series windows to hierarchical latent spaces, but it cannot capture cross-scale information from win-
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dows of different lengths. Besides, none of these methods can adaptively recognize different scales
or fuse multi-scale information for anomaly prediction.

Time Series Anomaly Detection. As a problem of practical significance, time series anomaly
detection has remained a focal point in the fields of machine learning and data mining. Over recent
years, researchers have used reconstruction paradigm (Su et al., 2019; Xu et al., 2021; Wang et al.,
2024) or contrastive learning paradigm (Yang et al., 2023; Jhin et al., 2023) to delve into deeper
data representations and patterns. In the reconstructive paradigm, OmniAnomaly (Su et al., 2019)
captures the normal patterns of multivariate time series by learning their robust representations.
Anomaly Transformer (Xu et al., 2021) proposes a minimax strategy that combines reconstruction
loss to amplify the difference between normal and abnormal. D3R (Wang et al., 2024) combines
decomposition and noise diffusion to directly reconstruct corrupted data. However, these studies
either operate on a singular scale or perform indiscriminate reconstruction across the entire input
range, limiting their flexibility and adaptability in extracting anomaly signals.

In the contrastive learning paradigm, DCdetector (Yang et al., 2023) introduces a dual-branch at-
tention structure to learn a permutation invariant representation. However, it only focuses on rela-
tionships between positive samples, which greatly limits its performance in anomaly prediction tasks
that require explicit anomaly labels. PAD (Jhin et al., 2023) directly uses resampling to generate arti-
ficial anomaly patterns during data preprocessing. This simple approach fails to adequately simulate
the fluctuations of anomaly precursors. Although numerous contrastive paradigms (Yue et al., 2022;
Lee et al., 2023; Zhang et al., 2022b; He et al., 2020) have been proposed in the field of time series
analysis, they often merely treat the majority of time series segments as negative samples, which
constrains the potential of contrastive learning to precisely identify anomalous patterns. We extract
timing information at multiple scales to adapt to changes in reaction time. Furthermore, the model
identifies fluctuations and amplitude of fluctuations through contrastive learning and reconstruction.
Appendix B shows the architecture comparison of three approaches.

3 METHODOLOGY

Problem Definition. We denote the time series X ∈ RT×c of length T , where each xt ∈ Rc is
the observation at time t and c is the dimension of multivariate, such as the number of different
sensors. The reaction time is a time interval [t − r, t] with length r, where there are fluctuations in
data Xt−r:t called the precursor, and there are real anomalies in future data Xt+1:t+f . Data begin
to change from normal to abnormal during the reaction time. The greater the degree of fluctuations,
the higher the probability of future anomalies occurring. We emphasize that the anomalies without
reaction time are unpredictable (Yin et al., 2022; Jhin et al., 2023).

For time series anomaly detection tasks, it takes the input X and outputs a vector y ∈ RT by sliding
widows where yt ∈ {0, 1} and 1 indicates an anomaly. For anomaly prediction, given a current
time t and the historical sub-sequence Xt−h:t of length h, the model outputs a probability score p̂t,
which indicates whether there is precursor in Xt−h:t or not and whether the future sub-sequence
Xt+1:t+f will be anomalous, where f ≥ 1 is the length of the look-forward window.

3.1 OVERALL FRAMEWORK

MultiRC consists of four modules (Figure 2). Input sequence processing normalizes the input mul-
tivariate time series through instance normalization and then uses channel-independence to split the
input into univariate sequences. In Figure 2 we take one univariate sequence x as an example, and the
other univariate sequences are modeled similarly. The multi-scale structure uses adaptive dominant
period mask to adaptively recognizes varying reaction time for different variates, and then segments
univariate sequences into patches of varying granularities. Masked time series reconstruction ex-
ploits asymmetric encoder-decoder to fuse multi-scale information and then evaluate the amplitude
of fluctuations. Generative-based contrastive learning uses controlled strategies to construct neg-
ative samples to prevent model degradation. The encoder learns representations for distinguishing
positive and negative samples, thus better judging the existence of fluctuation in the reaction time.
Our encoder backbone consists of Transformer blocks (Vaswani et al., 2017) to extract temporal
features from time series data.
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Figure 2: The overall architecture of MultiRC.

Overall, contrastive learning is used to judge the existence of fluctuation and reconstruction is used to
assess the magnitude of the fluctuation, which both help indicate the probability of future anomalies.
The anomaly score comprises the reconstruction error and the discrepancy between the representa-
tions of the positive samples.

3.2 MULTI-SCALE STRUCTURE

The assumption of the existence of reaction time (Yin et al., 2022; Jhin et al., 2023), where time
series begin to change from normal to abnormal, ensures anomaly prediction. However, the duration
of reaction time varies across different varieties and timestamps. To solve this, at each current time
t, we explore the most dominant periods qt for each univariate sequence in the frequency domain.

Specifically, the multi-scale structure contains adaptive dominant period mask and multi-scale
patching. Adaptive dominant period mask takes each univariate sequence x as input and produces its
masked sequence xm. Intuitively, one variate with longer periodic changes is more likely to evolve
gradually while one variate with shorter periodic changes is more likely to evolve rapidly. Thus, we
capture and mask with the most dominant periods for each variate to estimate the reaction time.

Multi-scale patching takes as input x and xm in the dual branch, respectively. For masked time
series reconstruction, xm is fed into multi-scale patching; for generative-based contrastive learning,
x is fed in. The multi-scale patching produces patched sequences {xm,p}ap=1 and {xp}ap=1 with
different scales. This multi-scale patching is independent of the dominant period mask, which helps
to simultaneously capture features from time intervals of different scales, thereby accommodating
the varying reaction time that is inconsistent with the dominant periods.

Adaptive Dominant Period Mask. To capture the patterns of dominant periods, we first extract the
periodic information in the frequency domain using Fast Fourier Transform (FFT) as follows:

A = Amp (FFT(x)) (1)

where FFT(·) and Amp(·) denote the FFT and the calculation of all amplitude values, and A
represents the amplitude of each frequency. It is known in FFT that the frequency with larger am-
plitudes represents the more dominant period (Zhou et al., 2022). Thus, we calculate the frequency-
based similarity between the historical univariate sub-sequences before the current time t to select
the most dominant periods for each variate. We use subscript i and j to represent different his-
torical univariate sub-sequences before the current time t, e.g. Ai = Amp (FFT(xt−h:t)) and
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Aj = Amp (FFT(xt−h−1:t−h−1)), and their frequency-based similarity is:

Si,j =
Ai ·Aj

∥Ai∥2∥Aj∥2
(2)

Then we select the top-k frequencies from the highest similarities:

imax, jmax = argmax
i,j

(
Si,j

)
, f = arg Top-k

(
Aimax

,Ajmax

)
. (3)

Specifically, f = {f1, · · · , fk} ∈ Rk×1 is the top-k dominant frequencies occurred most before the
current time. The top-k frequencies correspond to k dominant period lengths r = {r1, · · · , rk} ∈
Rk×1 where rk = 1

fk
. The dominant periods are used to estimate the reaction time.

The normal data can be reconstructed well and the fluctuations are hard to reconstruct (You et al.,
2024; Campos et al., 2022). Thus, we focus on the reconstruction errors mainly during the reaction
time to assess the magnitude of the fluctuations for anomaly prediction. We mask each univariate
sequence x with adaptive mask length r, and r is randomly sampled from r:

xm = M⊙ x (4)

where ∥M∥1 = r and M = {0, 0, · · · , 1, · · · , 1} ∈ [0, 1]T denotes the mask matrix near the current
time with adaptive mask length, and ⊙ indicates element-wise multiplication. Thus, we obtain
the masked time series sequence xm where each variate has varying mask lengths to estimate the
reaction time.

Multi-scale Patching. Take the masked sequence xm of the univariate sequence x as an example.
We segment xm into patches with multi-scale to enhance hierarchical information. Concretely, we
obtain a kinds of patch-based sequences from fine to coarse granularity upon xm, where a represents
the number of granularities. The multi-scale scaling process first generates a patch sequence x1 ∈
RN1×P1 , where P1 is the finest granularity patch size and N1 is the number of patches. For the
i-th scale, 1 < i ≤ a, we concatenate two adjacent patches from the (i − 1)-th scale, and obtain
sequence of the i-th scale containing Ni patches with patch size Pi. By continuously grouping,
we obtain a sequences {xm,p}ap=1 with different scales. Similarly, we obtain {xp}ap=1 from the
unmasked sequence, used for the contrastive branch.

3.3 MASKED TIME SERIES RECONSTRUCTION

To accurately assess the magnitude of fluctuations during the reaction time, we perform recon-
struction on the dominant periods masked time series. This module is composed of asymmetric
encoder-decoder architecture (as in the pink background section in Figure 2). The scale encoder is
implemented based on the temporal transformer, and the output yields representations of positive
sample pairs z+a ∈ RNa×dmodel , where dmodel denotes the hidden state dimensions. The decoder
reconstructs inputs of different scales using lightweight MLP to fuse multi-scale information, and
outputs formatted as x̂ ∈ RT×1.

Scale Encoder. There are a encoder blocks, corresponding to patch sequences {xm,p}ap=1 at differ-
ent scales passed through. The scale encoder is implemented based on the Transformer block. First,
the embedded representation xm,e is obtained via the embedding layer from each xm,p. Then, xm,e

is fed into multi-head self-attention layers, and the representations of different patches with different
scales are units to learn temporal features across different time intervals. The scale encoder provides
features {z+p }ap=1 for both reconstruction and contrastive learning.

Reconstruction Learning. We concatenate the features {z+p }ap=1 and use the MLP-based decoder
to learn cross-scale information for reconstruction. The reconstruction result can be obtained by:

x̂ = Decoder({z+p }ap=1) (5)

MultiRC minimizes the mean squared error (MSE) loss. The losses across all channels are averaged
to get the overall reconstruction loss LRec:

LRec =
1

c

c∑
i=1

∥x− x̂∥22 (6)
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(a) Anomaly detection loss function (b) Anomaly prediction loss function

Figure 3: Design specific loss functions for different tasks. x1:t represents the historical time series,
xt−h:t represents the reaction time, and xt+1:t+f denotes the size of the look-forward time window.
In anomaly detection, significant loss differences indicate anomalies. In anomaly prediction, large
fluctuations in loss during the reaction time suggest a high likelihood of future anomalies.

3.4 GENERATIVE-BASED CONTRASTIVE LEARNING

We introduce controlled generative strategies to construct diverse precursors as negative samples to
prevent model degradation and better distinguish fluctuations. Multi-scale views from the masked
time series reconstruction module are used as positive samples, while hard negative samples are
generated through controlled noise pollution. The generative design of negative samples targets the
need to avoid degradation and better judge fluctuations.

Negative sample generation. For multi-scale patch sequences xp, we apply different noise pollu-
tion strategies to generate negative samples xn,p. Different types of fluctuations are generated and
the details are shown in Appendix D. The embedded representation xn,e is obtained via the em-
bedding layer from the generated negative samples xn,p. The encoder backbone is shared with the
masked time series reconstruction module. Specifically, the generated data is fed into the backbone
network to derive the hard negative sample representations z−p ∈ RNp×dmodel where 1 ≤ p ≤ a.

Representation discrepancy. In anomaly prediction, we design an interval-wise contrastive loss
function (Figure 3b). Three views are used as an example. Apply mean pooling to the various views
generated by the scale encoder to obtain interval-level representations for each channel. Use the
interval representations from the same channel i as positive pairs zpre1[i] , z

pre
2[i] , z

pre
3[i] . Similarly, use

three views as an example. The hard negative samples zpreneg1, zpreneg2, zpreneg3 and the representations
from other channels are taken as negative pairs. The loss calculation Linter

con defined as:

Linter
con (zpre1 ) = −1

c

c∑
i=1

log


exp(zpre1[i] · z

pre
2[i]) + exp(zpre1[i] · z

pre
3[i])∑

i̸=j

3∑
k=1

exp(zpre1[i] · z
pre
k[j]) +

∑
i

exp(zpre1[i] · z
pre
neg1)

 (7)

where exp(zpre1[i] · z
pre
2[i]) represents the inner product of the interval representations of zpre1 and zpre2 .

The overall contrastive objectives defined as follows, H is the total number of different views:

LCon =
1

H

H∑
i=1

Linter
con (zprei ) (8)

For the anomaly detection task, we design a point-wise contrastive loss function (Figure 3a). Before
calculating the loss, the outputs of encoders remain the dependence between each time point through
additional upsampling:

zdet = Upsampling(zξ(i,lorig,lnew)), ξ(i, lorig, lnew) =

⌊
i× lorig
lnew

⌋
(9)

where i ∈ {0, 1, · · · , lnew − 1} is the time index after upsampling. ⌊.⌋ is the floor function. z stands
for z+p or z−p . lorig is the original length, that is, the number of time points in each patch. lnew is the
target length, which is the size of the window size.
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Representations of different views at the same time point i are treated as positive pairs zdet1[i], z
det
2[i],

zdet3[i]. Negative pairs include: representations between different time points within the same view,
the representation of any time point in zdet1 compared with all time points in zdet2 and zdet3 except
that point, and the representation of any time point in the hard negative sample zdetneg1, zdetneg2, zdetneg3.
The loss calculation Lpoint

con defined as:

Lpoint
con (zdet1 ) = − 1

T

T∑
i=1

log


exp(zdet1[i] · z

det
2[i]) + exp(zdet1[i] · z

det
3[i])∑

u̸=i

3∑
k=1

exp(zdet1[i] · z
det
k[u]) +

∑
i

exp(zdet1[i] · z
det
neg1)

 (10)

In summary, the various designs of the contrastive loss enable the same fundamental algorithm to be
flexibly applied to different task requirements, enhancing the practicality of the model.

3.5 JOINT OPTIMIZATION

As previously mentioned, reconstruction and contrastive learning are interconnected. Reconstruc-
tion loss focuses on extracting key features from locally masked time series data. Contrastive loss
effectively learn overall trends and patterns over time intervals. Let λ be the weights that balance
loss terms, the overall loss function is given:

L = λConLCon + λRecLRec (11)

3.6 MODEL INFERENCE

During the inference phase, labeled negative sampled construction is not needed. The anomaly
score is composed of the MSE between the input and the reconstructed output, as well as the repre-
sentational distance between positive sample pairs, which can be determined using metrics such as
Euclidean distance. The final anomaly score f(x) is as follows:

f(x) = MSE (X̂,X) +Dist(z+p , z
+
j )p ̸=j,p,j=1,..,a (12)

which is a point-wise anomaly score. With a threshold (Wang et al., 2024), we can determine
whether a point is abnormal. For anomaly prediction, the probability score p̂t is the averaged
anomaly score from the look-back window. Apply a threshold (Yang et al., 2023), we can con-
vert p̂t into a binary labels, if p̂t ≥ µ, the future sub-sequence being anomaly.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluated MultiRC on seven real-world datasets: (1) MSL (Mars Science Laboratory
rover) (Hundman et al., 2018) includes operational data from multiple sensors on the Mars rover.
(2) SMAP (Soil Moisture Active Passive satellite) (Hundman et al., 2018) provides soil moisture in-
formation collected from satellite sensors. (3) SMD (Server Machine Dataset) (Su et al., 2019) is a
large-scale dataset collected over five weeks from a large Internet company. (4) PSM (Pooled Server
Metrics) (Abdulaal et al., 2021) comprises data collected from eBay’s application server nodes. (5)
SWaT (Secure Water Treatment) (Li et al., 2019) is a dataset for security research in water treat-
ment systems. (6) NIPS-TS-SWAN (Lai et al., 2021) is a comprehensive multivariate time series
benchmark extracted from solar photospheric vector magnetograms. (7) NIPS-TS-GECCO (Re-
hbach et al., 2018) covers data collected from multiple sensors in a drinking water supply system.
The training and validation data were split in an 8:2 ratio. Additional details on the datasets can be
found in Appendix A.1.

Baselines. We compare our method with PAD (Jhin et al., 2023). We also modify unsuper-
vised anomaly detection methods into anomaly prediction methods following PAD, including the
reconstruction-based methods: CAE-Ensemble (Campos et al., 2022), GANomaly (Du et al., 2021),

7
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Table 1: Anomaly prediction results for the five real-world datasets. Superior performance is indi-
cated by higher metric values, with the top F1 scores emphasized in bold.

MSL SMAP SMD PSM SWaT Average

Method P R F1 P R F1 P R F1 P R F1 P R F1 F1

DAGMM 13.94 17.04 15.33 11.91 22.00 15.51 14.74 15.37 15.05 39.27 36.14 37.64 82.14 61.72 70.48 30.80
Iforst 13.82 17.11 15.29 11.79 18.67 14.45 15.25 18.28 16.63 39.39 38.82 39.10 75.39 62.22 68.17 30.72
Deep SVDD 12.94 16.04 14.32 11.77 17.09 13.94 14.99 15.78 15.37 36.63 36.30 36.46 81.29 61.95 70.31 30.08
A.T. 14.62 12.42 13.43 11.40 22.80 15.20 10.52 19.42 13.65 30.56 34.64 32.47 75.00 60.50 66.97 28.34
DCdetector 2.35 3.46 2.80 8.04 11.30 9.40 3.71 9.03 5.26 28.97 12.05 17.02 46.45 36.36 40.79 15.05
PAD 14.37 13.22 13.77 15.19 34.41 21.08 11.23 18.76 14.05 31.23 33.05 32.11 74.83 59.09 55.04 27.21
Omni 13.66 21.66 16.75 11.90 23.39 15.77 16.22 18.19 17.15 39.45 40.88 40.15 85.73 58.57 69.59 31.88
GANomaly 15.36 17.30 16.27 12.18 23.41 16.02 15.06 21.39 17.68 37.02 43.06 39.81 83.99 59.77 69.84 31.92
CAE-Ensemble 20.35 18.27 19.26 15.88 26.68 19.91 18.41 19.51 18.94 40.18 41.99 41.07 88.61 59.90 71.48 34.13
D3R 19.99 20.32 20.15 15.73 26.89 19.85 15.78 19.33 17.38 40.73 42.21 41.46 84.13 61.85 71.29 34.02
MultiRC 14.74 69.84 24.34 16.59 47.11 24.53 19.99 23.27 21.51 36.77 65.30 47.05 99.38 60.29 75.05 38.49

OmniAnomaly (Su et al., 2019), Anomaly Transformer (A.T.) (Xu et al., 2021), D3R (Wang et al.,
2024); the contrastive learning methods: DCdetector (Yang et al., 2023), PAD (Jhin et al., 2023);
the classic methods: IForest (Liu et al., 2008); the density-estimation method: DAGMM (Zong
et al., 2018); the clustering-based method: Deep SVDD (Ruff et al., 2018). We have used all base-
lines with their official or open-source versions. Additional details on the baselines can be found in
Appendix A.2.

Evaluation criteria. We use the metrics Precision(P), Recall(R), and F1-score(F1) for comprehen-
sive comparison (Su et al., 2019). In anomaly prediction tasks, we predict future window anoma-
lies (Jhin et al., 2023), for which we use classic metrics. With respect to anomaly detection tasks, we
detect point anomaly as previous works (Wang et al., 2024). As pointed out in (Kim et al., 2022), the
point adjustment strategy commonly used in previous works (Song et al., 2024; Yang et al., 2023;
Zhao et al., 2020; Xu et al., 2021) is unreasonable. This strategy assumes that if one anomaly is
correctly detected within a continuous anomalous segment, then all points in that segment are con-
sidered correctly detected. The recently proposed affiliation-based P/R/F1 (Huet et al., 2022; Wang
et al., 2024) provides a reasonable evaluation for anomaly detection in time series, so we employ
this for comparison.

4.2 MAIN RESULTS

Tables 1 and Table 2 respectively present the performance comparison of the model in anomaly
prediction and detection tasks. As indicated by the tables, on all five real-world datasets, MultiRC
surpasses the adversary algorithms, achieving the best F1 and Aff-F1 performance, thereby con-
firming its effectiveness. Performance comparisons on the NIPS-TS-SWAN and NIPS-TS-GECCO
datasets are presented in Appendices F and G. The visualization results of anomaly prediction are
presented in Appendix E.

Anomaly prediction. MultiRC has achieved improvements of 4.19% (from 20.15 to 24.34),
4.68% (from 19.85 to 24.53), 2.57% (from 18.94 to 21.51), 5.59% (from 41.46 to 47.05), and 3.57%
(from 71.48 to 75.05) on the MSL, SMAP, SMD, PSM and SWaT datasets, respectively.

Traditional machine learning methods, such as IForest, often underperform in generalization because
they do not take into account the continuity and complexity of time series data. Despite being based
on contrastive learning, the performance of DCdetector is not satisfactory. This is because it focuses
only on positive samples, resulting in severely limited performance in anomaly prediction tasks
that require label support from negative samples. Compared to the previous state-of-the-art model,
D3R, MultiRC significantly improves the F1 scores on benchmark datasets. In our model, multi-
scale mask reconstruction and multi-noise contrastive paradigm are combined. MultiRC takes into
account the periodic variations in time series and further enhances hierarchical information through
a multi-scale structure, which facilitates the identification of different reaction time. The encoder
outputs are simultaneously used for both reconstruction and contrastive tasks, making the learned
feature representations more meaningful. These designs address the shortcomings of previous work
and maintain outstanding performance across different datasets. Furthermore, the performance on
the PSM and SWaT datasets is significantly better than on other datasets, likely because anomaly
prediction requires the model to detect precursor signals. In some datasets, these precursors are less
apparent, thereby limiting the model performance.
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Table 2: Experimental results for the anomaly detection on five time-series datasets. The best Aff-F1
scores are highlighted in bold.

MSL SMAP SMD PSM SWaT Average

Method Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-F1

DAGMM 4.07 92.11 68.14 50.75 96.38 66.49 63.57 70.83 67.00 68.22 70.50 69.34 59.42 92.36 72.32 68.65
IForest 53.87 94.58 68.65 41.12 68.91 51.51 71.94 94.27 81.61 69.66 88.79 78.07 53.03 99.95 69.30 69.82
Deep SVDD 49.88 98.87 65.73 42.67 68.23 51.94 65.84 80.43 72.58 58.32 60.11 59.95 55.73 97.34 70.77 64.19
A.T. 51.04 95.36 66.49 56.91 96.69 71.65 54.08 97.07 66.42 54.26 82.18 65.37 53.63 98.27 69.39 67.86
DCdetector 55.94 95.53 70.56 53.12 98.37 68.99 50.93 95.57 66.45 54.72 86.36 66.99 53.25 98.12 69.03 68.40
PAD 56.33 82.21 68.15 41.67 64.52 53.94 59.54 67.66 63.71 68.45 57.72 59.21 54.73 92.35 68.06 62.61
Omni 51.23 99.40 67.61 52.74 98.51 68.70 79.09 75.77 77.40 69.20 80.79 74.55 62.76 82.82 71.41 71.93
GANomaly 56.36 98.27 68.01 56.44 97.62 72.52 73.46 83.25 74.20 55.31 98.34 75.11 59.93 81.52 70.24 72.01
CAE-Ensemble 54.99 93.93 69.37 62.32 64.72 63.50 73.05 83.61 77.97 73.17 73.66 73.42 62.10 82.90 71.01 71.05
D3R 66.85 90.83 77.02 61.76 92.55 74.09 64.87 97.93 78.02 73.32 88.71 80.29 60.14 97.57 74.39 76.76
MultiRC 67.94 93.03 78.53 66.66 89.94 76.57 75.36 94.85 83.99 73.36 93.13 82.08 62.52 97.26 76.12 79.45

Anomaly detection. As can be seen from the Table 2, MultiRC also achieves optimal performance
in the exception detection tasks. This is 1.51%-5.97% higher on average than previous SOTA meth-
ods. Additionally, many previous studies were evaluated through point adjustment, leading to a
false boom. Metrics based on affiliation offer a more objective and reasonable assessment for var-
ious methods, resulting in lower scores for past approaches. Overall, MultiRC not only effectively
detects anomalies within complex data but also assists in predicting future anomalies.

4.3 ABLATION STUDIES

In order to verify the effectiveness and necessity of our designs, we conduct ablation studies fo-
cusing on key components of our model design: the multi-scale structure, the masked time series
reconstruction and the generative-based contrastive learning.

Table 3: Results of anomaly prediction ablation studies. The best scores are highlighted in bold.

MultiRC w/o
multi-scale

w/o
adaptive mask

w/o
reconstruction

w/o
contrastive

w/o
generation

Dataset P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

MSL 14.74 69.84 24.34 11.50 53.89 18.96 14.72 58.32 23.51 7.69 34.19 12.56 11.62 51.85 18.99 12.62 55.52 20.56
SMAP 16.59 47.11 24.53 15.48 31.76 20.82 14.94 39.95 21.75 14.94 26.92 19.22 16.63 40.41 23.56 16.37 40.05 23.24
PSM 36.77 65.30 47.05 42.39 50.27 46.00 35.84 62.00 45.42 28.54 35.60 31.68 36.33 65.17 46.65 37.03 63.79 46.86

Table 4: Ablation results of anomaly detection. The best scores are highlighted in bold.

MultiRC w/o
multi-scale

w/o
adaptive mask

w/o
reconstruction

w/o
contrastive

w/o
generation

Dataset Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1 Aff-P Aff-R Aff-F1

MSL 67.94 93.03 78.53 65.87 93.57 77.31 67.48 90.32 77.25 44.65 44.09 44.37 67.01 93.08 77.92 67.37 93.09 78.17
SMAP 66.66 89.94 76.57 64.28 90.34 75.11 66.41 88.31 75.81 53.74 76.61 63.17 65.39 90.07 75.77 65.65 86.16 74.52
PSM 73.36 93.13 82.08 76.15 80.59 78.31 72.29 90.38 80.33 52.94 69.90 60.25 73.22 92.43 81.71 73.53 92.74 82.03

In Table 3, we introduce our ablation experimental results for the anomaly prediction. We attempted
to remove the multi-scale structure (w/o multi-scale), using only a single-scale sequence. Replace
the adaptively adjusted mask scale with a fully random mask (w/o adaptive mask). We also re-
move the masked reconstruction module (w/o reconstruction), the contrastive learning module (w/o
contrastive), and the noise generation variants (w/o generated samples).

The results show that performance decreased across all datasets after removing the multi-scale
framework. Notably, some datasets experienced a significant drop in performance, which is due
to the different levels of dependence on the multi-scale framework caused by varying response time
lengths. The random mask led to a marked decrease in performance, indicating that adjusting the
mask scale based on frequency and periodicity is beneficial for identifying different response times.
Removing the masked reconstruction module or contrastive learning leads to the lack of ability to
effectively identify fluctuations and magnitude, thus not maintaining the best performance on all
datasets. The sample generation strategy has led to significant improvements (3.78%, from 20.56 to
24.34). This emphasizes the importance of hard negative samples in enhancing the ability to avoid
degradation.
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In the ablation studies for anomaly detection, we define the ablation model in exactly the same
manner, results are shown in Table 4. This further substantiates the importance of each component
to the overall efficacy of the model.

4.4 DISCUSSION AND ANALYSIS

Analysis of reaction time. For reaction time, we conducted an analysis of window size performance
on three datasets, as shown in Figure 4. This study follows the methodologies mentioned in the
literature (Schmidl et al., 2022; Wenig et al., 2022), adjusting the sliding window size. The results
indicate that PSM achieves optimal performance within a small window size (16), suggesting a
shorter reaction time and significant fluctuations within this dataset. In contrast, MSL and SMAP
are evident over a longer time span (64), indicating a relatively long reaction time. This disparity
underscores the necessity of adopting the Multi-scale structure to accommodate varying lengths of
reaction time needs.
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Figure 4: Performance of different datasets
under different window sizes.

Hyperparameter analysis. The hyperparameters
that might influence the performance of MultiRC in-
clude the hidden state dimension, batch size, and
patch size. To analyze their impact on the results,
we conducted a hyperparameter sensitivity analysis
on the MSL, SMAP and PSM datasets. The find-
ings are presented in Figure 5. This figure primar-
ily depicts the results for anomaly prediction tasks.
For the hyperparameter results of anomaly detection,
see the Appendix G. Figure 5a demonstrates the per-
formance across different sizes of the latent space,
as the performance of many deep neural networks is
affected by dmodel. Figure 5b displays the outcomes
for MultiRC when trained with various batch sizes. Figure 5c displays the model performance at
different patch sizes. The experimental results show that the performance of the model remains
relatively stable in different patch size combinations. A more detailed comparison and analysis
regarding multi-scale patch size can be found in Appendix C.
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Figure 5: Parameter sensitivity studies of main hyper-parameters in MultiRC.

5 CONCLUSION

We propose MultiRC, a multi-scale reconstructive contrast for time series anomaly prediction and
detection tasks. Our multi-scale structure enables the model to adapt to precursor signals of varying
reaction times. In addition, sample generation is used to construct hard negative samples to pre-
vent model degradation, where our model learns more meaningful representations to better identify
fluctuations with contrastive learning and evaluate the amplitude of fluctuations with reconstruction
learning. Experimental results demonstrate that MultiRC surpasses existing works in both anomaly
prediction and detection tasks. Our framework breaks through the limitations of traditional anomaly
detection, enhancing the capability to predict future anomalies.
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REPRODUCIBILITY STATEMENT

In this work, we have made every effort to ensure reproducibility. Reproducing the results would be
straightforward and require minimal additional effort, ensuring high reproducibility. In the anony-
mous repository link we provide, you will find the code and evaluation datasets, which are well-
documented and easily accessible. Within the code files, we provide instructions to facilitate running
and reproducing our experimental results. In Methodology 3, from input to output, we provide a de-
tailed description of our method, including model structure, model training, and anomaly criterion.
In Appendix A.3, we summarize all the default hyper-parameters, including noise ratio, learning
rate, etc.
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A TRAINING DETAILS

A.1 DATASETS

In our study, we represent the number of samples in the training set, validation set, and test set with
the labels ”Train”, ”Valid”, and ”Test”, respectively. The ’Dim’ column indicates the dimension size
of the data for each dataset. Additionally, the ’AR’ (anomaly ratio) column denotes the proportion
of anomalies within the entire dataset.

Table 5: Details of original datasets.

Datasets Domain Train Valid Test Dim AR (%)

MSL Spacecraft 46,653 11,664 73,729 55 10.5
SMAP Spacecraft 108,146 27,037 427,617 25 12.8
SWaT Water treatment 396,000 99,000 449,919 51 5.78
NIPS-TS-SWAN Space Weather 48,000 12,000 60,000 38 23.8
NIPS-TS-GECCO Water treatment 55,408 13,852 69,261 9 1.25
SMD Server Machine 566,724 141,681 708,420 38 4.2
PSM Server Machine 105,984 26,497 87,841 25 27.8

A.2 BASELINES

• CAE-Ensemble (Campos et al., 2022) proposed CNN-based autoencoder and diversity-
driven ensemble learning method to improve the accuracy and efficiency of anomaly detec-
tion.

• GANomaly (Du et al., 2021) adopts the network structure of Encoder1-Decoder-Encoder2,
and introduces the idea of adversary-training to provide unsupervised learning scheme for
anomaly detection.

• OmniAnomaly (Su et al., 2019) further extends the LSTM-VAE model to capture tempo-
ral dependencies in the context of random variates, using reconstruction probabilities for
detection.

• Anomaly Transformer(Xu et al., 2021) focuses on the relationship between adjacent points
and designs a minimax strategy to amplify normal-anomaly resoluteness of association
differences.

• D3R(Wang et al., 2024) performs unsupervised anomaly detection on unstable data by
decomposing it into stable and trend components, directly reconstructing the data after it
has been corrupted by noise.

• DCdetector (Yang et al., 2023) proposes a contrastive learning-based dual-branch attention
structure without considering reconstruction errors. This structure is designed to learn a
permutation invariant representation that enlarges the representation differences between
normal points and anomalies.

• IForest (Liu et al., 2008) directly describes the degree of distance between points and re-
gions to find abnormal points.

• PAD (Jhin et al., 2023) presents a neural controlled differential equation-based neural net-
work to solve both anomaly detection and Precursor-of-Anomaly (PoA) detection tasks.

• DAGMM (Zong et al., 2018) is a deep automatic coding Gaussian mixture model comprises
a compression network and an estimation network. Each network measures information
necessary for the anomaly detection.

• Deep SVDD (Ruff et al., 2018) finds an optimal hypersphere in a feature space trained
using a neural network. Normal data points are concentrated as much as possible within
the hypersphere. Points that are far from the center of the sphere are considered anomalies.
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A.3 IMPLEMENTATION

In our experiments, we set the blocks of the Transformer to 3. We select different sliding window
size options for different datasets. For the contrastive branch, we set the noise ratio to 50% for
generating samples across different scale sequences. The prediction window size is uniformly set to
4 following previous works (Jhin et al., 2023; Yin et al., 2022). Early stopping with the patience of
3 epochs is employed using the validation loss. We use the Adam optimizer with a learning rate of
1e-5. All experiments in this work are conducted using Python 3.9 and PyTorch 1.13 (Paszke et al.,
2019), and executed on CUDA 12.0, NVIDIA Tesla-A800 GPU hardware.

B COMPARISON WITH MAINSTREAM METHODS

(a) Reconstruction-based approach

Reconstruction Loss

(b) Contrastive-based approach (c) MultiRC
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Figure 6: Architecture comparison of three approaches. h+
1 , h+

2 , z+m are positive samples, z−n is
negative samples.

In time series anomaly detection, reconstruction-based methods(Figure 6) train models to accu-
rately reconstruct normal samples, while those that cannot be accurately reconstructed are consid-
ered anomalies. This approach is popular because of its ability to combine with multiple machine
learning or deep learning models to effectively capture complex dependencies in time series and
provide intuitive explanations for anomaly detection. However, they usually do not pay attention to
the trend of changes in the data over a period of time, resulting in insensitive recognition of abnor-
mal precursor signals. In addition, it is often difficult to strike a balance between the complexity of
the model and the ability to reconstruct it, too simple models can not capture the time dependence,
and too complex models tend to lose the ability to distinguish abnormal data. This makes it more
difficult to learn a model that is flexible enough to capture time series fluctuations while maintaining
good reconstruction performance.

In recent years, contrastive representative learning has emerged in the field of anomaly detection,
which can detect anomalies without the need for high-quality reconstruction models. The key idea
is that normal data has strong correlation with other data, while abnormal data has weak correlation
with each other. However, due to the lack of negative sample labels, the features learned by such
methods will fall into a single pattern, resulting in the inability to recognize temporal fluctuations.
MultiRC establishes a dual-branch with joint reconstructive and contrastive learning upon a multi-
scale structure, adaptively recognizing varying reaction times for different variables through the
adaptive dominant period mask. Additionally, hard negative samples are constructed to prevent
model degradation. The rich representation learned by the model is conducive to capturing the
fluctuations of the time series and the degree of fluctuations, ensuring the effect of the prediction.

C SCALES ANALYSIS

Multi-scale approaches have a unique impact on anomaly prediction problems, particularly concern-
ing reaction times of varying lengths. The prediction and detection performances at different scales
are shown in Figure 7 and Figure 8, respectively.

First, a single scale is suitable for specific ranges of reaction times but has limited performance.
Second, the dependency on different scales varies across datasets. Using the PSM dataset as an
example, the performance decline is greater when using the 2,8 or 4,8 scale combinations compared

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0

10

20

30

40

50

2 4 8 16 2,4 2,8 4,8 2,4,8 2,4,8,16

F1
 S

co
re

 %

Patch Size

MSL SMAP PSM

Figure 7: Anomaly prediction results at different scales (F1).
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Figure 8: Anomaly detection results at different scales (Aff-F1).

to the 2,4 scale combination. This indicates that shorter time scales are more suitable for anomaly
prediction in this dataset. Moreover, more scales are not necessarily better. When the gap between
the smallest and largest scales becomes too large, it increases the difficulty of contrastive learning.

D SAMPLE GENERATION

Sample generation methods include amplitude magnification or reduction by some factor (scale),
reducing resolution (compress), mirroring on the mean value (horizontal axis) (hmirror), tempo-
ral displacement by a fixed constant (shift), adding Gaussian white noise (noise), and reversal on
the time axis (vmirror). To better reflect real-world conditions, the noise magnitude is randomly
selected. The abnormal prediction results under different generation methods are shown in the Fig-
ure 9.
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Figure 9: F1 scores for six sample generation methods.

Taking scale as an example, by a given probability, each original data point is randomly magnified
or reduced, causing positive and negative samples to vary in scale at different points. The data after
noise addition is:

xn,p = xp · (σp · sp + 1) (13)

where sp represents the random factor generated for scale p, and σp is the coefficient controlling
the noise intensity. The random factor is sampled from a standard normal distribution to ensure it is
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Table 6: Anomaly prediction results for the NIPS-TS datasets. All results are in %.

Method Dataset ACC P R F1 AUC

NIPS-TS-SWAN

A.T. 58.19 52.90 39.77 45.50 52.98
DCdetector 74.83 21.04 10.94 14.40 50.58

CAE-Ensemble 58.57 56.33 44.25 49.56 64.81
D3R 58.38 54.96 44.81 49.37 63.87

MultiRC 61.75 71.28 55.22 62.23 66.82

NIPS-TS-GECCO

A.T. 89.41 43.62 27.92 34.05 50.39
DCdetector 97.21 1.76 3.46 2.33 50.79

CAE-Ensemble 97.71 51.67 29.92 37.90 52.94
D3R 98.01 51.24 30.91 38.56 53.09

MultiRC 99.10 82.89 27.39 41.17 53.35

Table 7: Experimental results for the anomaly detection on NIPS-TS datasets, are presented in
percentages.

Method Dataset ACC Aff-P Aff-R Aff-F1 AUC

NIPS-TS-SWAN

A.T. 63.89 48.12 25.89 33.67 44.74
DCdetector 66.54 44.47 8.61 14.42 43.46

D3R 68.83 68.73 31.49 43.19 37.31
MultiRC 67.84 63.28 41.74 50.30 59.48

NIPS-TS-GECCO

A.T. 95.82 50.39 88.68 64.27 51.60
DCdetector 97.50 52.07 90.79 66.18 45.38

D3R 98.90 77.83 79.56 78.68 80.72
MultiRC 97.67 71.68 97.71 82.70 93.11

suitable for all patches at scale p:
sp ∼ N (0, 1) (14)

Between different scales, sp is sampled independently to ensure that each scale uses a distinct ran-
dom factor. This design strategy enables the model to focus on common features at the same scale.

E VISUAL ANALYSIS

We visualize the anomaly prediction of MultiRC on the PSM dataset in Figure 10. The model raises
warnings by identifying anomaly precursors (pink regions) before the actual anomalies (red regions)
occur. This shows that MultiRC is effective in predicting whether future anomalies will occur.

Figure 10: Visualization of the anomaly prediction on the PSM dataset. MultiRC can output larger
scores to identify the anomaly precursors that predict the future time series are more likely to be
abnormal.

F ADDITIONAL PREDICTION RESULTS

We further evaluate MultiRC performance on the NIPS-TS-SWAN and NIPS-TS-GECCO datasets
(Table 6), which contain a broader variety of anomaly types. Even in these more complex anomaly
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Figure 11: F1 score results for different prediction window sizes.
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Figure 12: For anomaly detection task, parameter sensitivity studies of main hyper-parameters.

environments, MultiRC consistently exhibits superior performance on most metrics when compared
to well-performing baseline methods.

To analyze the impact of the prediction distance on the results, we conduct experiments with dif-
ferent prediction window sizes. The results are shown in Figure 11. As the prediction distance
increases, the difficulty of prediction gradually rises, which directly leads to a decline in model per-
formance. This phenomenon is in line with expectations, when the prediction window is smaller,
meaning the prediction distance is shorter, the fluctuations in reaction time are more closely related
to future sub-sequences. However, as the prediction window expands, the model needs to con-
sider data changes and potential dynamic patterns over a longer period, requiring the model to have
stronger generalization capabilities and the ability to capture long-term dependencies.

G ADDITIONAL DETECTION RESULTS

Table 7 presents a performance comparison between MultiRC and other well-performing baseline
methods on the NIPS-TS-SWAN and NIPS-TS-GECCO datasets. Despite the two datasets have
the highest (23.68% in NIPS-TS-SWAN) and lowest (1.25% in NIPS-TS-GECCO) anomaly ratio,
our model consistently demonstrates good performance across these challenging conditions. On
the NIPS-TS-SWAN dataset, our model surpasses the best baseline model by 7.11% in the key
metric Aff-F1 (from 43.19 to 50.30). On the NIPS-TS-GECCO dataset, it shows a more significant
improvement of 4.02% (from 78.68 to 82.70).

We also study the parameter sensitivity of MultiRC in anomaly detection tasks. Figure 12a shows the
performance at different latent space dimensions. Figure 12b also displays the model performance
under different batch sizes. The model works well with larger batch sizes. In this study, the design
of multiple patch sizes is a crucial element. For our primary evaluation, the patch sizes are typically
set to combinations of 2, 4, 8. The results displayed in Figure 12c demonstrate that MultiRC exhibits
stable performance across various patch size combinations.
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