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ABSTRACT

Knowledge-intensive tasks, such as open-domain question answering (QA), require
access to a large amount of world or domain knowledge. A common approach
for knowledge-intensive tasks is to employ a retrieve-then-read pipeline that first
retrieves a handful of relevant contextual documents from an external corpus such
as Wikipedia and then predicts an answer conditioned on the retrieved documents.
In this paper, we present a novel perspective for solving knowledge-intensive tasks
by replacing document retrievers with large language model generators. We call
our method generate-then-read (GENREAD), which first prompts a large language
model to generate contextual documents based on a given question, and then
reads the generated documents to produce the final answer. Furthermore, we
propose a novel clustering-based prompting method that selects distinct prompts,
in order to generate diverse documents that cover different perspectives, leading to
better recall over acceptable answers. We conduct extensive experiments on three
different knowledge-intensive tasks, including open-domain QA, fact checking, and
dialogue system. Notably, GENREAD achieves 71.6 and 54.4 exact match scores on
TriviaQA and WebQ, significantly outperforming the state-of-the-art retrieve-then-
read pipeline DPR-FiD by +4.0 and +3.9, without retrieving any documents from
any external knowledge source. Lastly, we demonstrate the model performance can
be further improved by combining retrieval and generation. Our code and generated
documents can be found at https://github.com/wyu97/GenRead.

1 INTRODUCTION

Knowledge-intensive tasks, such as open-domain question answering (QA) and fact checking, require
access to a large amount of world or domain knowledge (Petroni et al., 2021). These tasks are
even challenging for humans without access to an external knowledge source such as Wikipedia.
A common thread of existing methods for knowledge-intensive tasks employ a retrieve-then-read
pipeline that first retrieves a handful of relevant contextual documents from Wikipedia and then
conditions the prediction of the answer on these documents along with the question (Karpukhin et al.,
2020; Lewis et al., 2020; Izacard & Grave, 2021). Nevertheless, these methods mainly suffer from
three drawbacks. First, candidate documents for retrieval are chunked (e.g., 100 words) and fixed, so
the retrieved documents might contain noisy information that is irrelevant to the question. Second, the
representations of questions and documents are typically obtained independently in modern two-tower
dense retrieval models (Karpukhin et al., 2020), leading to only shallow interactions captured between
them (Khattab et al., 2021). Third, document retrieval over a large corpus requires the retriever model
to first encode all candidate documents and store representations for each document. These two
operations limit the parameters of dense retrievers and the size of embedding vectors, and thus cannot
enjoy the world knowledge or deduction capabilities of large language models (Levine et al., 2022).

§ Unless otherwise specified, we use the text-davinci-002 version of InstructGPT in our experiments.
* Work done during internship at Microsoft Cognitive Service Research group.
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In this paper, we propose to leverage large language models, such as InstructGPT (Ouyang et al.,
2022), to directly generate contextual documents for a given question, instead of retrieving relevant
documents from an external corpus, such as Wikipedia. Our approach has two main advantages. First,
we show that generated contextual documents contain the correct answer more often than the top
retrieved documents. We believe this is because large language models generate contextual documents
by performing deep token-level cross-attention between all the question and document contents,
resulting in generated documents that are more specific to the question than retrieved documents.
Second, we show that our approach significantly outperforms directly generating answers from large
language models despite not incorporating any new external information. This is mainly because
the task of generating document-level contexts is close to the objective of causal language modeling
pre-training, so the world knowledge stored in the model parameters can be better utilized.

We show, on multiple datasets, that generated documents are more likely to contain correct answers
than the top retrieved documents. Notably, in dense retrieval methods, as more documents are
retrieved, the recall of documents containing the correct answer increases (Karpukhin et al., 2020).
However, the recall performance does not scale as well with generated documents because even with
sampling methods, generated documents tend to contain duplicate information. In order to improve
the recall performance of generated documents, we propose a novel clustering-based prompt method.
We synthesize a prompt with in-context demonstrations of question-document pairs sampled from
diverse clusters. These prompts result in generated documents that cover different perspectives of the
question and improve the scaling of performance as more documents are generated per question.

In contrast to the retrieve-then-read pipeline, our method is essentially a generate-then-read pipeline.
Specifically, it first prompts a large language model to generate contextual documents based on a
given question, and then reads the generated document to produce the final answer. The reader can
still be a large model (e.g., InstructGPT (Ouyang et al., 2022)) used under a zero-shot setting, or a
small one (e.g., FiD (Izacard & Grave, 2021)) fine-tuned with generated documents on the training
split of the target dataset. We evaluate our proposed method on three different knowledge-intensive
tasks and demonstrate its effectiveness on both zero-shot and supervised settings.

Overall, our main contributions can be summarized as follows:

1. We propose a novel generate-then-read pipeline for solving knowledge-intensive tasks, i.e.,
replacing the process of retrieving documents from Wikipedia or searching for related documents on
Google, by prompting a large language model to generate relevant contextual documents.

2. We propose a novel clustering-based prompting approach to generate multiple diverse contextual
documents that increases the likelihood of covering the correct answer. We demonstrate this approach
can significantly improve performance on end QA and other downstream tasks.

3. We conduct extensive experiments with three knowledge-intensive NLP tasks under both zero-
shot and supervised settings. Notably, our method can match or even outperform retrieve-then-read
pipeline methods, without retrieving any documents from any external knowledge source.

2 RELATED WORK

KNOWLEDGE-INTENSIVE NLP VIA RETRIEVE-THEN-READ PIPELINE. Mainstream methods
for solving knowledge-intensive NLP tasks employ a retrieve-then-read model pipeline. Given a
question, this model first leverages a retriever over a large evidence corpus (e.g. Wikipedia) to
fetch a set of relevant documents that may contain the answer. A reader is then used to peruse the
retrieved documents and predict an answer. Recent follow-up work has mainly focused on improving
the retriever (Karpukhin et al., 2020; Qu et al., 2021; Sachan et al., 2022) or the reader (Izacard
& Grave, 2021; Cheng et al., 2021; Yu et al., 2022), or training the system end-to-end (Lewis
et al., 2020; Singh et al., 2021). Early retrieval methods mainly employed sparse retrievers, such as
BM25 (Chen et al., 2017). Recently, ORQA (Lee et al., 2019) and DPR (Karpukhin et al., 2020) have
revolutionized the field by utilizing dense contextualized vectors for document indexing, leading to
superior performance to traditional approaches. We propose an alternative approach which forgoes
retrieval, instead extracting the knowledge from the model parameters of a large language model.
We show that our approach is can be combine with dense retrievers to outperform both methods
independently. Our method can also be combined with any reader mechanism, allowing generated
context documents to be plugged into any current knowledge-intensive NLP pipelines.

GENERATOR AS RETRIEVER FOR OBTAINING CONTEXTUAL DOCUMENTS. Recent works have
investigated using auto-regressive language models to generate identifier strings for documents, as an
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intermediate target for retrievals, such as entity names (De Cao et al., 2020) or distinctive n-grams that
can be mapped to full passages (Bevilacqua et al., 2022). However, one needs to create the identifiers,
hence the structure was not thoroughly evaluated on a large-scale benchmark (Bevilacqua et al., 2022).
Other works have demonstrated that the knowledge stored in the parameters of pre-trained language
models could be “retrieved” to some extent by directly generating text (Petroni et al., 2019; Roberts
et al., 2020). However, the previous work only used generation for query expansion (Mao et al., 2021),
which did not exploit the potential of directly generating contextual documents for open-domain
questions. Different from the above approaches that aimed to train a generator model to produce
contextual document identifiers (which is still using the original Wikipedia text) or provide data
augmentation to retrievers, our work directly generates contextual documents for given questions.

NLP MODELS ENHANCED BY LARGE LANGUAGE MODEL OUTPUTS. A line of recent work
has shown that relevant knowledge can be elicited from large language models, especially for those
domains that lack appropriate knowledge bases with sufficient coverage (Liu et al., 2022b; Fang et al.,
2022). For example, Liu et al. (2022b) proposed leveraging GPT-3 to generate relevant contexts, then
providing the contexts as additional input when answering a commonsense question. Another line of
work focused on prompting a large language model to generate a series of intermediate reasoning
steps, often referred to as chain-of-thought (Wei et al., 2022b; Kojima et al., 2022; Li et al., 2022).
The prompt consists of an instruction (e.g., Let’s think step by step!), a few demonstrations that are
fixed for each task, and a new-question placeholder. The demonstrations are human-written, and
each consists of a question in the style of the task and a series of intermediate reasoning steps that is
helpful for answering the question. Our work does not require any human annotation, but adds to this
line of work of leveraging model generated text to guide further generations. In our case, we apply
this approach to knowledge-intensive tasks, which have not been explored by previous work.

3 PROPOSED METHOD

In this section, we present details of our proposed novel generate-then-read (GENREAD) pipeline for
solving various knowledge-intensive tasks. Specifically, it first prompts a large language model to
generate contextual documents with respect to a given query, then reads the generated documents
to predict the final answer. The reader can either be a large model (e.g., InstructGPT) used for the
zero-shot setting, or a small one (e.g., FiD) fine-tuned with generated documents on the training split
of the target dataset. We introduce the zero-shot setting in §3.1 and supervised setting in §3.2.

3.1 ZERO-SHOT SETTING

Under the zero-shot setting, there is no training data — neither questions nor contextual documents.
When tested on the open-domain QA task, most existing large language models directly encode the
given question and predict the answer (Brown et al., 2020; Du et al., 2022; Chowdhery et al., 2022).
Specifically, the question g, associated with some text prompt, is input to the model, which then
generates the answer, denoted as p(a|q, 6), where 6 represents the pre-trained model parameters. In
practice, the maximum a posteriori estimation (MAP) is the final answer, i.e., & = arg max, p(a|q, ).
However, this way of directly asking large language models to output answers often leads to poor
performance, as it leaves a considerable amount of additional world knowledge unexploited (Levine
et al., 2022). On the contrary, the zero-shot retrieve-then-read pipeline first uses an off-the-shelf
retriever to fetch relevant documents from an external knowledge source such as Wikipedia, then
asks the large language model to read the documents and predict the answer.

In this work, we improve the performance by introducing an additional auxiliary generated document
variable d, and then extend the model to have the form p(a|q) = >, p(ald;, ¢)p(di|g). In practice,
we cannot sum over all possible documents d. Therefore, the most common approach is to compute
the MAP estimate d = arg max p(d) using beam search, and then to approximate the sum over d
with this single value. This two step approach, we label it as a generate-then-read pipeline.

STEP1: GENERATE. In this step, we first prompt a large language model (e.g., InstructGPT (Ouyang
et al., 2022)) to generate documents based on the given question. For example, the input to the
language model could be “Generate a background document to answer the given question. {question
placeholder}”. We can use any decoding strategy (e.g., greedy decoding, beam search), but we used
greedy decoding throughout the zero-shot experiments for simplicity and reproducibility.



Published as a conference paper at ICLR 2023

« generate document d, with p, using a large language model.
! Using a reader (e.g., FiD), with g and the diverse documents {d,, d;, ..., dx}, find answers a.

PTTTTITmmmsmesomsoe-o-o--oooo- + Initial d: Generated d: Generated d:
1 Step 1: Get one document d for each ! - — . N P
I - ; - - [ Monsanto is a multinational Monsanto Company is an Ame- Monsanto is a multinational
1 question q via retrieval or generation. ! ; ° : o N ) X
! | agrochemical and agricultural rican multinational agrochemical || agricultural biotechnology
! d 1 biotechnology corporation ... It || and agricultural biotechnology corporation. ... The company
! Question | Document | Cluster | | | is one of the world's leading corporation ... It is a leading also manufactures other
! [ q d—— = [} producers of roundup, a gly- producer of genetically engi- agricultural chemicals, such
— 1 L. e (A
! What does Gex Aoy c ' phosate herbicide. (63 words) || neered seed and ... (70 words) as insecticides ... (36 words)
| Monsanto i e S S Guieinieieky Attt
| own? (WebQ) ' ! Step 3: Given question q for training or inference,
? ; ] I
! 9ej dej ¢ 1| iforeachclusterce (1..k}:
'
! 1
! i
: Il
! I
! I
! '

l
i

| ) ; i

1+ sample {q.;,d;},j = 1..n, whose cluster id is c; !

. create PrOMPt Po = “Got; dogs i s Gens don™ * seed (also correct) !

tep 2: Get embeddings, and H |
luster them by K-means. | 1

o w

Figure 1: An overall framework of clustering-based prompting method. It leverages distinct question-
document pairs sampled from each embedding cluster as in-context demonstrations to prompt a large
language model to generate diverse documents, then read the documents to predict an answer.

STEP 2: READ. In the second step, we use generated sentence d along with the input question to
produce the final answer from the large language model. This is actually the same setting as “zero-
shot” reading comprehension, as widely studied in existing works (Brown et al., 2020; Lazaridou
et al., 2022). We choose appropriate prompts from P3 (Bach et al., 2022), such as “Refer to the
passage below and answer the following question. Passage: {background placeholder} Question:
{question placeholder}”. Finally, the language model is fed the prompted text to generate an answer.

3.2 SUPERVISED SETTING

Although large language models demonstrate impressive performance on zero-shot learning abilities,
their performance still lag behind the supervised setting. Therefore, we also explore how the generated
documents from large language models can benefit the supervised setting. As directly fine-tuning
large language models on downstream datasets could be prohibitively expensive, we leverage a small
reader model such as FiD to peruse the generated documents under the supervised setting.

Under the supervised setting, scaling the size of retrieved documents can lead to better perfor-
mance (Karpukhin et al., 2020; Izacard & Grave, 2021). This is mainly because retrieving more
documents can cover more relevant information and knowledge, i.e., a higher recall score. Nev-
ertheless, asking a large language model to generate multiple high-quality contextual documents
is a challenging task. Dense retrieval methods can fetch multiple documents covering different
perspectives of the answer. Compared to dense retrievers, simply prompting a large language model
to generate multiple contextual documents often leads to low knowledge coverage, since the contents
generated by multiple decoding passes from the same input tend to be similar. Sampling decoding
methods, such as nucleus sampling' (Holtzman et al., 2020) can diversify the generation process to
some extent, but the knowledge content of generated texts still tends to be highly repetitive when
used to generate documents for a given question. We further propose two novel solutions, including
diverse human prompts and clustering-based prompts, which will be elaborated on in this section.

3.2.1 DIVERSE HUMAN PROMPTS

In order to avoid similar token distributions under a single prompt, we ask human annotators to
provide different prompts, in order to make the generated document diverse. This method is simple,
but can effectively vary the token distribution during generation. In the experiments, we empirically
found this method can bring improvement to the retrieval performance (Figure 2). However, this
method suffers from two drawbacks. On one hand, it requires human annotators to write different
prompts, which cannot be easily generalized to different knowledge-intensive tasks. On the other
hand, different large language models might be sensitive to different prompt words, which might
cause a set of good prompt words not work on a different large language model.

3.2.2 CLUSTERING-BASED PROMPTS

To increase knowledge coverage in generated documents, we propose a novel clustering-based prompt
method. It first clusters the representations of a set of documents into K classes (/{ = 2 in Figure

"We treated nucleus sampling as a baseline to generate multiple documents, in which we set p = .95.
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Open-domain QA Fact Checking Dialogue System
NQ TriviaQA WebQ FEVER FM2 WoW (F1/R-L)

*with retriever, AND directly trained on these datasets
DPR + InstructGPT* | 29.1 53.8 20.2 798 659 15.4 13.7

Models

*with retriever, BUT NOT trained on these datasets

BM25 + InstructGPT 19.7 52.2 15.8 78.7 65.2 15.7 13.7
Contriever + InstructGPT | 18.0 51.3 16.6 80.4  66.6 15.5 14.0
Google + InstructGPT 28.8 58.8 20.4 829 66.0 14.8 13.2

*without retriever, and not using external documents

Previous SOTA methods 24.7! 56.7° 19.0! - - - -
InstructGPT (no docs.) 20.9 57.5 18.6 776 594 154 13.8
GENREAD (InstructGPT) | 28.0 59.0 24.6 804 655 158 142

Table 1: Zero-shot open-domain QA performance. Our proposed GENREAD with the InstructGPT
reader (named GENREAD (InstructGPT)) can significantly outperform the original InstructGPT,
achieving new state-of-the-art performance on three open-domain QA benchmarks (previous SoTA:
!GLaM (Du et al., 2022), 2FLAN (Wei et al., 2021)) under this setting without using any external
document. Our GENREAD can achieve comparable or even better performance than zero-shot
retrieve-then-read models that use a retriever or search engine to first obtain contextual documents.
To ensure reproducibility, we use greedy search in decoding. All prompts used are shown in the §B.1.

1), where the number of classes is equal to the number of documents that need to be generated
in the end. Next, it randomly selects n question-document pairs (n = 5 in Figure 1) from each
cluster. Lastly, a large language model presents the different n question-document pairs as in-context
demonstrations for generating documents to a given question. In this way, large language models
are based on different distributions of examples, hence resulting in generated documents covering
different perspectives. We show this in Figure 1 and illustrate the details of each step as follows.

STEP 1: GET ONE INITIAL DOCUMENT PER QUESTION. Similar to the zero-shot setting, we first
ask a large language model to generate one contextual document d for each question ¢ € Q, where Q
is the set of questions in the training split. Alternatively, we can use an unsupervised retriever (e.g.,

BM25) to obtain a document from Wikipedia. We now have a question-document pair set {¢;, d; } Lgll

STEP 2: ENCODE EACH DOCUMENT, DO K-MEANS CLUSTERING. We then use a large language
model (i.e., GPT-3) to encode each question-document pair, i.e., ¢; = GPT-3([¢;, d;]), resulting in a
12,288-dimensional vector per document. Then, we use K-means to cluster all embedding vectors
{el}‘zg‘1 into K sets, so each question-document pair is assigned a unique cluster id ¢ € {1, ..., K'}.
We vary the number of K in the experiments, which will be illustrated in Figure 2.

STEP 3: SAMPLE AND GENERATE K DOCUMENTS. Lastly, we sample n question-document pairs
from each cluster ¢, denoted as {qc1, de1; Ge2, de2; -5 Gen, den }» in Which n is a hyperparameterz.
Then, the n sampled question-document pairs from the same cluster serve as in-context demonstrations
for the large language model to generate a contextual document. For example, the input to the
large language model could be “{q¢.; placeholder} {d.; placeholder} ... {g., placeholder} {d.,
placeholder} {input question placeholder}”. By enumerating the sampled documents in these K
clusters, we can finally get K -generated documents. By conditioning on different sampled in-context
demonstrations collected from different clusters, the large language model has been biased for
different perspectives. Although these different perspectives exist in a latent manner, we empirically
show it works well in practice, by comparing it with sampling methods, diverse human prompts
(Figure 2 and Table 2) and randomly sampling n pairs from the entire dataset (Table 11).

4 EXPERIMENTS

In this section, we conduct comprehensive experiments on three knowledge-intensive NLP tasks,
including open-domain QA (NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017) and
WebQ (Berant et al., 2013)), fact checking (FEVER (Thorne et al., 2018) and FM2 (Eisenschlos
et al., 2021)) and open-domain dialogue system (WoW (Dinan et al., 2019)). More detailed dataset

’In the experiments, we set n = 5 and found increasing n does not bring extra improvement.
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Figure 2: Recall @K on test sets, measured as the percentage of top-K documents that contain the
answer. Our proposed clustering-based prompting method can outperform DPR and Google search,
also two variants of using LLLMs to generate documents. Exact numbers are reported in Table 5.

information can be found in Appendix A.l. To evaluate the model performance, we use exact
match (EM) score for evaluating open-domain QA (Zhu et al., 2021). An answer is considered
correct if and only if its normalized form has a match in the acceptable answer list. We also employ
Recall@K (R@K) as an intermediate evaluation metric, measured as the percentage of top-K retrieved
or generated documents that contain the answer. This metric is commonly used in evaluations of
previous works (Karpukhin et al., 2020; Izacard & Grave, 2020; Sachan et al., 2022). For other
knowledge-intensive tasks, we follow the KILT benchmark (Petroni et al., 2021) to use accuracy
(ACC) for fact checking and F1 / Rouge-L (R-L) score for open-domain dialogue system.

4.1 ZERO-SHOT SETTING EXPERIMENTS

We first compare our proposed GENREAD approach with various large language models proposed
in recent years, including GPT-3 (Brown et al., 2020), Gopher (Rae et al., 2021), FLAN (Wei et al.,
2021), GLaM (Du et al., 2022), Chinchilla (Hoffmann et al., 2022), PaLM (Chowdhery et al., 2022)
and InstructGPT (Ouyang et al., 2022). Due to the space limitation, we only put the best performance
on each dataset in Table 1, in which the line is called previous SoTA methods. In addition, their
corresponding model parameters and performance are listed in Table 9 in Appendix. All of these
baseline methods use the same input formats, i.e., [prompt words; question].

GENREAD is based on InstructGPT with 175B parameters. In order to fully evaluate the effec-
tiveness of our proposed method, we also compare with InstructGPT augmented with retrieved
documents from Wikipedia or Google search. The baseline methods (1) BM25 / Contriever + In-
structGPT; (2) Google + InstructGPT; (3) DPR + InstructGPT have the same input format as our
GENREAD , i.e., [prompt words; contextual document; question]. BM25 is a traditional sparse
retrieval method. Contriever (Izacard et al., 2022a) is a state-of-the-art unsupervised dense retrieval
model. DPR (Karpukhin et al., 2020) is a supervised dense retrieval model directly trained on NQ,
TriviaQA and WebQ datasets. We note that comparing with above three methods is challenging
because our method only relies on the large language model itself, without using any external corpus.

4.1.1 EXPERIMENTAL RESULTS

In the experiments, we use InstructGPT as our backbone model. As shown in Table 1, compared
with state-of-the-art large language models, our proposed GENREAD with the InstructGPT reader
improves its performance by generating contextual documents and conditioning on the generated
documents, even though no new data is introduced, and the generator and reader have the exact
same parameters. Specifically, GENREAD can improve the EM score by +6.9 on three open-domain
QA benchmarks, compared to the original InstructGPT. We also make a similar observation on fact
checking and open-domain dialogue system. Our proposed GENREAD can consistently outperform
the baseline InstructGPT model without retrieving any contextual documents.

To further validate the effectiveness of GENREAD , we compare against zero-shot retrieve-then-read
pipeline models, which first use a retrieval model or the Google search engine to get a relevant
contextual document, then use InstructGPT to read the texts and produce the final answer. As shown
in Table 1, GENREAD can achieve on-par performance with zero-shot retrieve-then-read pipeline
models on the NQ and FM2 datasets, and outperform them on all other benchmarks. The knowledge
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Models #reader  #docu- | TriviaQA  WebQ NQ Avg.
parameters = ments open test open test open test
*baselines with retrieving from Wikipedia; all numbers reported by existing papers
DPR (Karpukhin et al., 2020) 110M 100 56.8 41.1 415 465
RAG (Lewis et al., 2020) 400M 10 56.1 45.2 445  48.6
FiD (Izacard & Grave, 2021) 770M 100 67.6 50.5 514 565
*baselines with retrieving from Wikipedia or Google; all numbers from our experiments
FiD-1 (DPR, Wikipedia) 770M 10 61.9 48.1 46.7 52.2
FiD-x1 (DPR, Wikipedia) 3B 10 66.3 50.8 50.1 55.7
FiD-xI (Google search) 3B 10 70.1 53.6 450 562
*our proposed method by leveraging a large language model to generate documents
GENREAD (FiD-1) (sampling) 770M 10 67.8 51.5 40.3 53.2
GENREAD (FiD-1) (clustering) 770M 10 70.2 53.3 435 55.6
GENREAD (FiD-x1) (sampling) 3B 10 69.6 52.6 426 549
GENREAD (FiD-x]) (clustering) 3B 10 71.6 54.4 45.6 57.1
F merge retrieved documents with generated documents 74.3 56.2 54.0 615

Table 2: Supervised open-domain QA performance. By only using generated documents from In-
structGPT, our GENREAD with FiD reader (named GENREAD (FiD)) can achieve better performance
than baseline methods on TriviaQA and WebQ. Through our detailed analysis of NQ, we found the
performance gap mainly due to the temporality issue, which will be elaborated in §A.8.

learned by the large language models can be retrieved via autoregressive text generation. Without
seeing any examples from these datasets, GENREAD can outperform using the supervised retrieval
model (i.e., DPR) to recover relevant contextual documents.

4.2 SUPERVISED SETTING EXPERIMENTS

We compare our proposed GENREAD with refrieve-then-read models, including DPR (Karpukhin
et al., 2020), RAG (Lewis et al., 2020), and FiD (Izacard & Grave, 2021). In addition, we compared
with obtaining relevant documents from the internet using the Google search engine.

4.2.1 EXPERIMENTAL SETUP

For our proposed method, we replace the retriever with a large language model to directly generate
contextual documents. In the experiments, we use InstructGPT (Ouyang et al., 2022). After contextual
documents are retrieved or generated, we employ a FiD reader with 770M parameter models (i.e.,
FiD-1) and 3B parameter models (i.e., FiD-x]) that are fine-tuned on the training split of target datasets.
We note that we only use 10 documents during reading for the following reasons.

Why do we choose to use only 10 documents instead of 100 when reading ?

As noted in Section 6.2 in DPR (Karpukhin et al., 2020) and Figure 3 in FiD (Izacard & Grave, 2021),
increasing the number of documents can lead to better model performance and achieve state-of-the-art
when using 100 documents. However, there are two major drawbacks to using 100 documents during
the reading step. First, the operation is very expensive, leading to a significant increase in memory
consumption and training time. As reported by Izacard & Grave (2021), the training process requires
64 Tesla V100 32GB running for around one day. Second, generating documents by using a large
language model is slow and expensive, so only using 10 documents can be a significant cost saving
in our method. Therefore, in our experiments, we choose to use 10 documents during the reading
process. When using FiD-770M (i.e., FiD-large), the training process can be easily performed even
on a single Tesla V100 32GB GPU. Meanwhile, when only using 10 documents, we can also increase
the size of FiD model from 770M to 3B, which takes about the same amount of GPU memory as
using 100 documents on a 770M model, but at the same time significantly shortens the training time.
We note that training T5-3B model needs a bigger cluster such as 8 Tesla V100 or A100 GPUs.

4.2.2 EXPERIMENTAL RESULTS ON OPEN-DOMAIN QA

We first use Recall@K to compare the retrieval accuracy of different models. As shown in Figure 2,
GENREAD can significantly outperform DPR and Google search for under 10 retrieved or generated
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Figure 3: Combining DPR retrieved documents and large language model (LLM) generated docu-
ments can achieve significantly better performance than using DPR retrieved documents only. For a
fair comparison, instead of adding LLM generated documents to the model, we replace 10 documents
retrieved by DPR with 10 documents generated by LLM so the total number of documents is the same.
In this experiment, we use FiD-1 (i.e., FiD-large) as the reader model because when the documents
scale to more than 20, FiD-xl (i.e., FiD-3B) causes out-of-memory issues on A100 GPUs.

documents. Compared to different GENREAD variants, including nucleus sampling, human written
prompts, and clustering-based prompts, clustering-based prompts achieve the best performance. At
the same time, we notice that the language model inevitably has the problem that the slope of the
curve decreases as the number of generated documents increases. On one hand, this is due to the
similarity of token distributions when large language models generate multiple documents. On the
other hand, due to the shallow interaction characteristics of the dense retrieval model itself, the
retrieved documents might not be completely relevant to the given question, so that the increase in
recall might come from false positive documents, as also mentioned by Sachan et al. (2022).

As shown in Table 2, we can first observe the FiD model performs the best among all baseline models.
Using FiD-x1 with only 10 documents achieves comparable performance with using FiD-1 with 100
documents. The average gap is less than 1% on three benchmarks. Compared with both close-book
models and Wikipedia-based retrieve-then-read pipelines, our proposed GENREAD can achieve
state-of-the-art performance. Furthermore, compared with using sampling methods to generate
documents, the clustering-based prompt method can improve the EM score by +2.2 on average. This
indicates that the clustering-based prompt method is effectively increasing the knowledge coverage
of generated documents, and also leading to better downstream QA performance. We also show
that GENREAD can outperform Google search on all benchmarks. We observe both our method and
Google search perform worse than DPR, mainly due to the significant portion of time-dependent
questions in the dataset, which is described in the following analysis.

4.2.3 EXPERIMENTAL RESULTS ON OTHER TASKS

We demonstrate the experimental re-
sults in Table 3. Under the supervised =~ Models FEA\C]ER FAI\C/ICZ F\IN/OX L
setting, GENREAD can achieve on ’ :

par performance on the fact checking RAG (Lewis et al., 2020) 863 71.1|13.1/11.6
task and superior performance on the FiD (Izacard & Grave, 2021.) 90.2 77.6|17.5/16.1
dialogue system task, indicating that ~GENREAD (FiD-xl) (sampling) | 89.0  76.3/18.9/16.7
large language model can be seen as  GENREAD (FiD-xI) (clustering) | 89.6  77.8 119.1/16.8
F merge two source docs. 91.8 78.9(20.1/17.9

a strong knowledge generator.

The main reason that GENREAD per- Table 3: Supervised performance on fact checking (FEVER

forms worse than the dense retriever and FM2) and open-domain dialogue system (WoW).

for fact checking is that the task provides sufficient semantic information to reach strong performance
on this binary decision task. So, there is a smaller semantic gap between the given factual statement
and contextual documents than that of question and document pairs in open-domain QA, which is an
easier retrieval setting for modern dense retrieval methods that are mainly based on vector similarity.

4.3 OBSERVATIONS AND EXPERIMENTAL ANALYSIS

4.3.1 COMPLEMENTARITY OF GENERATED AND RETRIEVED DOCUMENTS

Generated documents can be combined with retrieved documents to outperform both. Even with a very
large number of retrieved documents, including few samples of generated knowledge leads to large
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improvements. As shown in Table 2, merging retrieved documents with generated documents can
achieve state-of-the-art performance compared to all baseline methods listed in the table. Specifically,
it can improve +5.7 averagely on three open-domain QA benchmarks compared to DPR alone, and
improve +4.4 averagely compared to the large language model alone.

4.3.2 COVERAGE ANALYSIS OVER ALL POSSIBLE ANSWERS

The improvement in open-domain QA performance is due to the fact that correct answers are
included more frequently in the generated text Recall@K is the most commonly used met-
ric in existing works to measure the retrieval performance, which computes the percentage of
top-K retrieved or generated documents that contain any possible answer at least once. than
in the retrieved documents. However, as many questions contain multiple correct answers,
recall@K cannot fully reflect the diversity of generated or retrieved documents. Each ques-
tion in the WebQ has 2.39 correct answers, 1.79 correct answers in NQ and 14.02 (includ-
ing all entity alias) in the TriviaQA. NQ and WebQ do not include alias names in the labels.

In this section, we also
demonstrate the answer

coverage performance of  Documents obtained by | NQ Tr1v1aQA . WebQ
different models in Table 5. - w.alias w/oalias -
Answer coverage measures ~ BM25 (Robertson et al., 2009) [48.4 17.1 63.8 41.2
the percentage of the num-  Google search engine’ 579 189 72.0 54.2

ber of answers that are con-  DPR (Karpukhin et al., 2020) |67.9 17.9 67.3 58.8
tained in the documents = GENREAD (nucleus sampling) |56.6 19.6 74.5 59.8
over all possible answers. ~GENREAD (10 human prompts) | 57.4  20.1 74.8 61.1
Coverage analysis showed =~ GENREAD (clustering prompts) | 61.7  20.4 76.5 62.1
that generated text tends
to have lower coverage
than retrieved documents
because generated documents tends to have little diversity compared to retrieved documents. To
improve coverage, we propose GENREAD with clustering, where we include examples in the prompt
from different clusters of the training data to elicit more diverse generations.

Table 4: Answer coverage (%) over 10 retrieved or generated docu-
ments. Case studies are provided in Tables 16-19 in Appendix.

5 EPILOGUE

CONCLUSION. In this paper, we present a novel perspective for solving knowledge-intensive tasks by
replacing the dense retrieval models with large language model generators. We call it generate-then-
read, which first prompts a large language model to generate contextual documents, then read the
generated document to infer the final answer. Notably, without retrieving any documents, it reaches
71.6 and 54.4 exact match scores on TriviaQA and WebQ, significantly outperforming the current
retrieval-reader model DPR-FiD, as well as on other two knowledge-intensive tasks.

LIMITATION AND FUTURE WORK. Despite the strong performance on the presented datasets, our
approach is limited in its ability to update knowledge state and adapt to new domains. A major feature
of retrieve-then-read is the ability to swap in new documents when new information is learned, such
as temporally more recent documents, or adding in documents from a new domain to quickly adapt to
a new downstream task. Our approach relies on a large language model to contain all this knowledge
and adding new knowledge would likely require some retraining. Future work will explore how
to efficiently incorporate new knowledge into our generate-then-read method. Besides, generated
documents might suffer from hallucination error, resulting in incorrect predictions. We demonstrated
case study in Table 15. Consideration in combination with recent approaches (Creswell & Shanahan,
2022) to boost generative faithfulness is a also direction worthy of future research.
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ETHICS STATEMENT

Large language models have a wide range of beneficial applications for society, but they also have
potentially harmful applications. Previous work has shown various forms of bias, such as racial
and gender bias, in large language models like GPT-3, even after explicit efforts to reduce toxic
language (Chan, 2022). The importance of addressing these societal harms is acknowledged by
OpenAl themselves in their 2020 paper introducing GPT-3 (Brown et al., 2020), which stated “we
focus on two primary issues: the potential for deliberate misuse of language models like GPT-3 ...
and issues of bias, fairness, and representation within models like GPT-3.” on page 34.

The goal of this paper is to utilize knowledge stored in the parameters of large language models
to answer open-domain questions and solve knowledge-intensive tasks. Unlike retrieve-then-read
where an external corpus can be curated to be trustworthy, the use of a model to generate contextual
documents may further permeate existing biases in common models. First, our work shows that
generated documents suffer from challenges of stale information from outdated documents used
for training. Second, we show that generated documents tend to be less diverse, potentially biasing
answers towards more common entities and terms from the training data. Finally, we conducted
experiments on only three large language models. It is possible that some of our conclusions or
observations may not necessarily hold for other models trained with different data or objectives.

Regarding ethical solutions, future work includes (i) further exploring potential bias and intentional
or unintentional harm that may result from using generated contextual documents; (ii) better aligning
language models with user intent to generate less biased contents and fewer fabricated facts.
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A APPENDIX

Datasets ‘ Splits Train  Valid Test Test labels
.. . open domain 78,785 8,837 11,313 public

TriviaQA (Joshi etal., 2017) 1 Coyine dia split 7,993 public

WebQ (Berant et al., 2013) open domain 3,478 300 2,032 public

NQ (Kwiatkowski et al., 2019) | open domain 79,168 8,757 3,610 public
FEVER (Thorne et al., 2018) kilt challenge 104,966 10,444 10,100 hidden
FM2 (Eisenschlos et al., 2021) | official split 10,149 1169 1380 public
WoW (Dinan et al., 2019) kilt challenge 63,734 3,054 2944 hidden

Table 5: Datasets splits and statistics. For FEVER and WoW, labels in the test are hidden, so the
model performance should be evaluated at https://ai.facebook.com/tools/kilt/.

A.1 DATASETS AND SPLITS

— TRIVIAQA (TQA) (Joshi et al., 2017) contains a set of trivia questions with answers that were
originally scraped from trivia and quiz-league websites.

— WEBQUESTIONS (WebQ) (Berant et al., 2013) consists of questions selected using Google Suggest
API, where the answers are entities in Freebase.

— NATURAL QUESTIONS (NQ) (Kwiatkowski et al., 2019) were mined from real Google search
queries and the answers are spans in Wikipedia articles identified by human annotators.

We explore the same train / dev / test splits for the open-domain QA setting as used by Izacard &
Grave (2021); Karpukhin et al. (2020). For TriviaQA, GPT-3 / GLaM / PaLLM (Brown et al., 2020;
Du et al., 2022; Chowdhery et al., 2022) evaluate on the Wikipedia dev set of 7,993 examples, so we
ran an additional evaluation on that dev set in order to compare with their performance.

— FEVER (Thorne et al., 2018) is one of the largest datasets for fact checking that requires retrieving
evidence from external corpus to support if a statement is supported or refuted.

—FooL ME TWICE (FM2) (Eisenschlos et al., 2021) is a challenging fact checking dataset collected by
gamification. Players write challenging claims either entailed or refuted by evidence from Wikipedia.
They are then tasked to spot the refuted claim among a group.

— WIZARD OF WIKIPEDIA (WoW) (Dinan et al., 2019) is an open-domain dialogue task for training
agents that can converse knowledgeably about open-domain topics. One speaker in the conversation
must ground their utterances in a specific knowledge sentence from a Wikipedia page.

We use the same train / dev / test splits in KILT challenge (Petroni et al., 2021) for the FEVER
and WoW datasets. Their test labels are hidden, so the performance can only be evaluated through
https://ai.facebook.com/tools/kilt. For FM2, we use its official dataset splits.

A.2 IMPLEMENTATION DETAILS

We use T5-770M (Raffel et al., 2020) and T5-3B as our backbone models to implement FiD (Izacard
& Grave, 2021). We use AdamW as the optimizer, with 2,000 warm-up steps. We set the dropout
probability to 0.1 and weight decay to 0.01. We use one A100 for running T5-770M and set the batch
size of 16. We use 8 A100 for running T5-3B and set the per GPU batch as 2, leading to the total
batch size as 16. We searched different learning rates, ranging from 5e-6 to 4e-5, and we found 3e-5
to 6e-5 performed the best under the T5-3B setting and 5e-5 to 1e-4 performed the best under the
T5-770M setting. We refer to more individual implementation details in Table 6.

We implement other baseline methods by using repositories:

—BM25: https://github.com/castorini/pyserini
—DPR: https://github.com/facebookresearch/DPR
— Contriever: https://github.com/facebookresearch/contriever
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Settings / Datasets ‘ NQ  TriviaQA WebQ FEVER FM2 WoW
Peak learning rate le-4 le-4 le-4 le-4 le-4 Se-5
Total batch size 64 64 64 64 64 16
Total training steps 15,000 10,000 10,000 10,000 10,000 20,000
Best validation steps 6,000 500 8,500 5,000 6,000 20,000
Validation performance | 43.27 69.47 60.33  88.97 73,57 18.60
Best validation = test | 43.50 70.22 53.33  87.25 7421 1849
Peak learning rate 5e-5 6e-5 3e-5 Se-5 5e-5 3e-5
Total batch size 16 16 16 16 16 8
Total training steps 20,000 15,000 15,000 15,000 15,000 20,000
Best validation steps 14,000 8,500 11,500 10,000 6,000 16,500
Validation performance | 44.83 70.61 61.00 90.53 7630 19.12
Best validation = test | 45.55 71.55 5436 89.58 7778 18.87

Table 6: Hyperparaters settings and validation performance for open-domain QA (numbers reported
in Table 2), fact checking and dialogue system (numbers reported in Table 3). The upper part numbers
are from GENREAD (FiD-1) and the lower part numbers are from GENREAD (FiD-xl).

A.3 REPRODUCIBILITY VIA OPEN SOURCE LARGE LANGUAGE MODELS

We note that reproducing experiments on
the OpenAl API, though publicly available,
costs money. For this reason, we further add
an evaluation on two open-source large lan-
guage models OPT (Zhang et al., 2022) and
Codex (OpenAl, 2022). As shown in Table
7, OPT performed worse than InstructGPT,
but still achieved comparable performance
with DPR; OpenAl Codex achieved the best

Documents obtained by | TriviaQA WebQ

DPR (Karpukhin et al., 2020) 66.3 50.8
OPT (Zhang et al., 2022) 62.1 51.8
InstructGPT (Ouyang et al., 2022)  71.3 54.5
Codex (OpenAl, 2022) 72.6 55.4

Table 7: Exact match (EM) score with using DPR and
different open-source large language models such as

performance on both TriviaQA and WebQ.

OPT and Codex to generate contextual documents.

A.4 SCALING WITH NUMBER OF LARGE LANGUAGE MODEL PARAMETERS

Figure 4 shows the scaling of performance with In-
structGPT generator parameters, including Ada-150M,
Babbage-1.3B, Curie-6.7B and Davinci-175B. We note
that for both FiD and our GENREAD , we use the
FiD-x1 with 10 input documents either retrieved from
Wikipedia or generated by InstructGPT. The perfor-
mance of both TriviaQA and WebQ continues to im-
prove as the generator model parameters increase, as
does the slope. Only with the largest size InstructGPT,
GENREAD can outperform the DPR-FiD. This indi-
cates using large language model to generate contextual
documents is an “emergent ability” of scaling, which
is not present in smaller models but is only present in
larger language models (Wei et al., 2022a).
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A.5 READABILITY ANALYSIS OF RETRIEVED AND GENERATED DOCUMENTS

After we manually compare some re- . .
trieved documents from DPR and gen- Documents obtained by | ‘ NQ TriviaQA WebQ
erated documents from InstructGPT, DPR (Karpukhin et al., 2020) |63.1 80.2 63.3
we observe that the readability of dif-  GENREAD (nucleus sampling) |58.7  83.7 63.8

ferent documents, when they contain  GENREAD (clustering prompts) | 64.0  86.8  66.7
the correct answer string, is different.
In other words, documents containing Table 8: Readability study on retrieved documents and gen-
answers might also contain noisy in- erated documents. See detailed analysis in §A.5.

formation that is irrelevant to the question, which could affect both the model and human reading.

In order to further validate the readability of retrieved documents and generated documents, we
extracted a subset of data examples from NQ, TriviaQA and WebQ datasets, in which both retrieved
and generated documents contain the correct answer. As shown in Table 8, when both retrieved and
generated documents contain the correct answer, the FiD reader can produce more correct answers
when reading the generated documents from large language models (e.g., InstructGPT).

We also provide some case studies in Tables 16-19. For example, in Table 18, the question is
“What city was Zeus the patron god of?”. The first document retrieved by DPR is “Like the other
Panhellenic Games, the ancient Olympic Games were a religious festival, held at the sanctuary of
Zeus at Olympia.”. Although it contains the correct answer, it is hard to infer the answer “Olympia”
from it. On the contrary, InstructGPT generates the document ‘“Zeus was the patron god of the city of
Olympia, which was located in the northwestern Peloponnese region of Greece. Olympia was the
site of the Olympic Games, held every four years in honor of Zeus.”, which is much easier to read.

A.6 ADDITIONAL NUMBERS FOR TABLES IN THE MAIN PAPER

— Table 9 contains additional evaluation results for Table 1. It demonstrates zero-shot open-domain
QA performance, compared to recent large language model.

— Figure 5 contains additional retrieval performance evaluation for Figure 3 of experiments on
combining DPR retrieved documents and large language model generated document.

— Table 10 contains additional retrieval performance evaluated by Recall @K of baselines and different
GENREAD variants. Some numbers in the table overlaps with those in Figure 2.
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# total NQ TriviaQA WebQ
Models o
parameters open test open test wiki split open test

GPT-3 (Brown et al., 2020) 175B 14.6 49.2 64.3 14.4
Gopher (Rae et al., 2021) 280B 10.1 43.5 52.8 -
FLAN (Wei et al., 2021) 137B 20.7 56.7 68.1 -
GLaM (Du et al., 2022) 64B 21.5 - 68.0 19.0
Chinchilla (Hoffmann et al., 2022) 70B 16.6 554 67.0 -
PalLM (Chowdhery et al., 2022) 540B 21.2 - 76.9 10.9
InstructGPT (Ouyang et al., 2022) 175B 19.5 57.4 68.5 199
GENREAD (InstructGPT) 175B 28.2 59.3 70.3 24.8

Table 9: Additional numbers for Table 1. Zero-shot open-domain QA performance, compared
to recent large language models. All models in the table do not leverage any external corpus for
document retrieval. Compared to InstructGPT, our proposed GENREAD can improve the EM score
by +6.9 on average. GENREAD can achieve state-of-the-art performance on open test sets.
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Figure 5: Additional retrieval performance evaluation for Figure 3 of experiments on combining DPR
retrieved documents and large language model generated documents. Merging documents from two
sources achieved significantly better performance than using DPR retrieved documents only.

Models TriviaQA WebQ NQ
R@1 R@10 R@20 ‘ R@l1 R@10 R@20 ‘ R@l R@10 R@20

BM25 (Robertson et al., 2009) | 46.2 71.7 764 |19.1 51.8 626 |22.8 556 639
Contriever (Izacard et al., 2022a)| 34.0 679 743 | 182 557 657 |[18.8 548 65.1
DPR (Karpukhin et al., 2020) 532 753 79.0 [ 454 705 752 |446 745 795
Google Search engine API 50.0 78.8 - 40.0 65.6 - 355 675 -
GENREAD (nucleus, p=.95) 65.1 81.6 838 [495 714 744 |40.1 662 70.6
GENREAD (10 human prompts) | 65.5 81.8 - 50.8 727 - 40.5 66.9 -
GENREAD (clustering prompts) | 69.6 829 85.1 |54.5 733 754 [48.0 709 745

Table 10: Retrieval performance evaluated by Recall @K of baselines and different GENREAD variants.
Some numbers in the table overlaps with those in Figure 2. The table aims to show the performance
of more methods, and to provide accurate recall numbers for future research comparisons.

TriviaQA WebQ NQ
R@10 EM R@10 EM R@10 EM
Sample 5 documents from entire data 81.5 709 725 533 692 442
Sample 5 documents from each cluster | 82.7  71.8 733 544 70.6 453

Table 11: Ablation study on the strategy of sampling documents as in-context demonstrations.
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A.7 DISCUSSION ON INFERENCE COST OF DPR AND INSTRUCTGPT

We now compare the costs of using DPR and InstructGPT to retrieve or generate contextual documents.
We consider DPR using the BERT-base (Devlin et al., 2019) version with 110M parameters and
InstructGPT using its largest version with 175B parameters. For simplicity, we use the FLOPs-per-
token estimates for Transformer-based language models, which is introduced by Kaplan et al. (2020).
It should be noted that FLOPs are not a direct measure of real-world computing costs, as latency,
power consumption, and other costs can vary widely based on other factors (Liu et al., 2022a).

For the DPR model, all Wikipedia documents (around 21M) only need to be encoded once. Therefore,
as the number of input questions increases, the marginal computational cost gradually decreases.
For fair comparison, we first use DPR to encode all 21M Wikipedia documents once. Encoding all
Wikipedia documents requires 110e6 (BERT-base parameters) x 21e6 (total number of documents)
% 100 (tokens per document) = 2.3e17 FLOPs. When the embedding of all candidate documents are
produced, retrieving documents for a given question requires 110e6 (BERT-base parameters) x 20
(tokens per question) +21e6 (total number of documents) x (768 + 768 — 1) = 3.2e10 FLOPs.

For InstructGPT, it requires 175e9 (InstructGPT parameters) x 10 (number of documents) x 55
(generated tokens per document) = 9.6e13 FLOPs to generate 10 documents for a given question.

Therefore, the equation for the total cost Yppr.cost to retrieve 10 documents using DPR versus the
number of input questions X is: Yppr.cost = 3-2e10X + 2.3e17. Besides, the equation for the total
cost YGpr3.cost to generate 10 documents using InstructGPT versus the number of input questions X
18: YGPT3-cost = 9.6€13X. When Yppr.cost = YGPT3-costs X ~ 2473. In conclusion, if the number of
input questions is less than 2473, the total cost of InstructGPT is lower than the DPR; if the number
of input questions is greater than 2473, the total cost of InstructGPT exceeds the DPR.

A.8 ERROR ANALYSIS AND CASE STUDIES ON THE NQ DATASET

As stated in Zhang & Choi (2021), NQ contains a significant proportion, roughly 16.5%, of questions
that have time-dependent answers. Similarly, [zacard et al. (2022b) observed using the latest version
of Wikipedia (12 /2021) could lead to 4.4 drops of the EM score, compared to the Wikipedia version
(12 /2018) that the NQ questions are created from. We provide case studies in Table 13 in Appendix.

We did case studies of 100 examples from the NQ dataset. The results are shown in Table 12. Among
these 100 examples, we found that 29 examples have data collection and annotation mistakes, mainly
including the temporal question issue (13 /29) and the incomplete answer issue (16 / 29). A typical
temporal-dependent question is that no specific time condition is provided. For example, “Who won
the MVP for the National League?” could have different answers in different years. In 2017, the
MVP is Giancarlo Stanton, and in 2018, the MVP is Christian Yelich. Besides, some answer labels
provided in the NQ dataset are not complete. For example, person names in the NQ dataset usually
consist of first, middle, and last names, but most names in the generated documents are first and last
names. For the question “who played lionel in as time goes by?”, the labeled answer is “Geoffrey
Dyson Palmer”. DPR-FiD produces “Geoffrey Dyson Palmer” but GENREAD produces “Geoffrey
Palmer”, both of which should be considered correct. More examples are provided in Table 14.

Besides, GENREAD produced correct answers for 49 questions. Among the 22 incorrect predictions,
12 of them could be classified as retrieval errors (i.e., step-I error) and 12 as reading errors (i.e.,
step-1I error). In all cases of retrieval errors, none of the generated documents contain the correct
answer. In all cases of reading errors, at least one generated document contains the correct answer
but the reader model failed to infer the correct answer from the documents..
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Correct
prediction
(49%)

- Query: Who got the first Nobel Prize in Physics?

- Document: The first Nobel Prize in Physics was awarded
in 1901 to Wilhelm Conrad Rontgen for his discovery of
the remarkable rays subsequently named after him.

- Predicted answer: Wilhelm Conrad Rontgen

- Correct answer: Wilhelm Conrad Rontgen

Good
Q&A
(71%)

Wrong
retrieval
(12%)

Hallucinations
(8%)

- Query: Who died in the first episode of Stranger Things?
- Document: In the first episode of Stranger Things, the
character Will Byers dies. He is killed by Demogorgon,

a monster from the Upside Down.

- Predicted answer: Will Byers

- Correct answer: Benny Hammond

No hit
answers
(4%)

- Query: When was coffee first made into a drink?

- Document: The history of coffee goes back to the 10th

century, with coffee trees native to Ethiopia. The earliest
substantiated evidence of either coffee drinking or know-
ledge of coffee tree is from sixth century AD in Ethiopia.
- Predicted answer: the 10th century

- Correct answer: the 15th century

Wrong
reading
(10%)

- Query: When is the fourth movie of the Divergent

series coming out?

- Document: The fourth movie in the Divergent series was
originally scheduled to be released in June 2017, but was
delayed indefinitely.

- Predicted answer: June 2017

- Correct answer: never made

Temporal
questions
(13%)

Bad
Q&A

- Query: Who won the MVP for the National League?

- Document: In 2017, the National League MVP was won
by Giancarlo Stanton of the Miami Marlins. In 2018, the
National League MVP was won by Christian Yelich of the
Milwaukee Brewers.

- Predicted answer: Christian Yelich

- Correct answer: Giancarlo Stanton

(29%)

Incomplete
answers

(16%)

- Query: Where do the greasers live in the Outsiders?

- Document: The Outsiders is a novel by S.E. Hinton. It is
about a gang of greasers in Oklahoma in the 1960s. The
National League MVP was won by Christian Yelich of the
Milwaukee Brewers.

- Predicted answer: Oklahoma

- Correct answer: Tulsa, Oklahoma

Table 12: Case study on 100 GENREAD predictions in the NQ dataset. Among 100 examples, there
are 49 correct predictions, i.e., EM = 49%. We further categorized 51 incorrect predictions of our
GENREAD, including errors caused by data collection and annotation, and errors caused by model
prediction. In addition, we provide more case studies in Tables 13-15 (Table 13 for the temporal
question issue; Table 14 for the incomplete answer issue; Table 15 for the hallucination issue).
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Original question ‘ NQ labels ‘ Correct labels

Q: When is the last time the philadelphia won the superbowl? ‘ Super Bowl LII; 2017 ‘ 2018; February 4, 2018
DPR: 2017 X; Google search: 2018 ¢/; GENREAD : February 4, 2018 v/

Q: Who has the most big ten championships in football? ‘ Michigan ‘ Ohio State
DPR: Michigan X; Google search: Ohio State ¢/; GENREAD : Ohio State v/

Pittsburgh Steelers;
New England Patriots
DPR: Pittsburgh Steelers ¢/; Google search: New England Patriots ¢/; GENREAD : New England Patriots v/

Q: Who has the most super bowls in nfl history? Pittsburgh Steelers

Q: How many casinos are in atlantic city new jersey? ‘ 11; eleven ‘ 9; nine
DPR: eleven X; Google search: nine ; GENREAD : nine v/
Q: When did the us not go to the olympics? \ 1980 \ 1980; 1984

DPR: 1980 ¢/; Google search: 1980 and 1984 ¢/; GENREAD : 1984 v/

Q: Largest cities in the world by population? ‘ Beijing ‘ Tokyo
DPR: Beijing X; Google search: Tokyo v'; GENREAD : Tokyo ¢/

Q: Who has most followers on instagram in world? ‘ Selena Gomez ‘ Cristiano Ronaldo
DPR: Instagram X; Google search: Cristiano Ronaldo ¥/; GENREAD : Cristiano Ronaldo v/

Q: Who is the no. 1 ranked tennis player in the world? ‘ Rafael Nadal ‘ Novak Djokovic
DPR: Rafael Nadal X; Google search: Novak Djokovic ¢/; GENREAD : Novak Djokovic v/

Table 13: Case studies of temporality issues of the NQ dataset. All these questions are drawn from
Zhang & Choi (2021), which contains a subset of NQ data examples with time-dependent questions.

Original question ‘ DPR-FiD predictions ‘ GENREAD predictions

Q: Who played lionel in as time goes by? ‘ Geoffrey Dyson Palmer ‘ Geoffrey Palmer
Explanation: The labeled answer is “Geoffrey Dyson Palmer”, however, “Geoffrey Palmer” is also correct.
DPR retrieved documents: Geoffrey Dyson Palmer, (born 4 June 1927) is an English actor known for

his roles in British television sitcoms playing Jimmy Anderson in “The Fall and Rise of Reginald Perrin”,
Ben Parkinson in “Butterflies” and Lionel Hardcastle in “As Time Goes By”. His film appearances include
“A Fish Called Wanda”, “The Madness of King George”, “Mrs. Brown”, and “Tomorrow Never Dies”.
GPT generated documents: As Time Goes By is a British sitcom that aired on BBC One from 1992 to
2005. The show starred Geoffrey Palmer and Judi Dench as Lionel and Jean Pargetter, a middle-aged couple

who reunite after many years apart. Lionel was played by Palmer, who was also a writer on the show.

Q: How many cracker barrels in the united states? ‘ 645 ‘ over 630
Explanation: The labled answer is “639” or “over 600", so “over 630" is also a reasonable answer.

Q: Where do the greasers live in the outsiders? Tulsa, Oklahoma ‘ Oklahoma
Explanation: The labled answer is “Tulsa, Oklahoma”, but “Oklahoma” is also a correct answer.

DPR retrieved documents: The movie received mostly positive reviews from critics, and performed well
at the box office, grossing 33 million on a 10 million budget. In Tulsa, Oklahoma, greasers are a gang of
tough, low-income working-class teens. They include Ponyboy Curtis and his two older brothers, Sodapop
and Darrel, as well as Johnny.

GPT generated documents: The Outsiders is a novel by S.E. Hinton. It is about a gang of greasers in
Oklahoma in the 1960s. The greasers are from the poor side of town and constantly in trouble with the law.

Q: Where are unipolar neurons found in spinal cord? ‘ the granule region ‘ dorsal root ganglia
Explanation: The labled answer is “the distal dorsal root”, but the output “dorsal root ganglia” is the same.

Table 14: Case studies of the incomplete answers issue of the NQ dataset. Since the labels in NQ are
spans identified from Wikipedia passages, it is easier for DPR-FiD to predict correct answers.
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Question: Who wrote the first declaration of human rights? Answer: Cyrus Cylinder

Generated document: The first declaration of human rights was the Virginia Declaration of Rights,
which was written by George Mason in 1776.

Retrieved document: John Peters Humphrey, OC (April 30, 1905 - 2013 March 14, 1995) was a
Canadian legal scholar, jurist, and human rights advocate. He is most famous as the author of the first
draft of the Universal Declaration of Human Rights. ... ... (Wikipedia page: John Peters Humphrey)
Golden Wikipedia evidence:

- George Mason’s writings, including substantial portions of the Fairfax Resolves of 1774, the Virginia
Declaration of Rights of 1776, and his Objections to this Constitution of Government (1787) opposing
ratification, have exercised a significant influence on American political thought and events. Mason
prepared the first draft of the Virginia Declaration of Rights in 1776, and his words formed much of
the text adopted by the final Revolutionary Virginia Convention. (Wikipedia page: George Mason)
- The Cyrus Cylinder was dubbed the “first declaration of human rights” by the pre-Revolution Iranian
government, a reading prominently advanced by Shah Mohammed Reza Pahlavi, in a 1967 book, The
White Revolution of Iran. (Wikipedia page: Cyrus Cylinder)

Hallucination: In GPT generated documents, first declaration of human rights was considered as
Virginia Declaration of Rights, which is factually incorrect. This error might occur because Wikipedia
page of George Mason contains similar descriptions, causing the model to confuse their meanings.
Model predictions: DPR-FiD John Peters Humphrey; GENREAD George Mason

Question: Who died in the first episode of stranger things Answer: Benny or Barb

Generated document: In the first episode of Stranger Things, the character Will Byers dies. He is
killed by the Demogorgon, a monster from the Upside Down.

Retrieved document: ... ... was the character of Barb, the nerdy friend and classmate of Nancy who
is taken and killed by the monster early in the season. According to actress Shannon Purser, Barb
wasn’t supposed to be a big deal; and the Duffer Brothers had not gone into great detail about the
character since the focus was on finding Will. ... ... (Wikipedia page: Stranger Things)

Golden Wikipedia evidence:

One area of focus from these fans was the character of Barb, the nerdy friend and classmate of Nancy
who is taken and killed by the monster early in the season. According to actress Shannon Purser,
Barb wasn’t supposed to be a big deal; and the Duffer Brothers had not gone into great detail about
the character since the focus was on finding Will. ... ... (Wikipedia page: Stranger Things)

The owner, Benny, learns from a tattoo of ”011” on her arm that her name is Eleven. Brenner,
monitoring the phone lines, sends agents to the diner after Benny calls social services. The agents kill
Benny, but Eleven manages to escape using telekinetic abilities. Joyce’s phone short circuits after
receiving a mysterious phone call that she believes is from Will. While searching for Will in the
woods, Mike, Dustin and Lucas come across Eleven. (Wikipedia page: Stranger Things)
Hallucination: In GPT generated documents, Will Byers is said to be dead, which is actually incorrect.
Will Byers is actually a fake deaths in season 1 and he is still alive at the end of the season.

Model predictions: DPR-FiD Barb; GENREAD Will

Question: Who played the judge in good will hunting? Answer: James P. Flynn

Generated document: The character of the Judge in Good Will Hunting was played by actor Robert
Sean Leonard. Leonard is best known for his role as Dr. James Wilson in the television series House.
Retrieved document: Janitor could show such facility with matrices applied this way. Good Will
Hunting Good Will Hunting is a 1997 American drama film, directed by Gus Van Sant, and starring
Robin Williams, Matt Damon, Ben Affleck, ... ... (Wikipedia page: Good Will Hunting)

Golden Wikipedia evidence:

- James P. Flynn appeared in many films shot in the New England area. Flynn was cast as a judge in
the Boston-based film Good Will Hunting in 1997. Later, he acted in the 1999 film The Cider House
Rules and What’s the Worst That Could Happen? in 2001. (Wikipedia page: James P. Flynn)

- Cast: James P. Flynn as Judge George H. Malone (Wikipedia page: Good Will Hunting)
Hallucination: In GPT generated documents, Robert Sean Leonard is considered as a judge in Good
Will Hunting, which is factually incorrect. This error leads to wrong answer prediction.

Model predictions: DPR-FiD Stellan Skarsgrd; GENREAD Alan Arkin

Table 15: Case studies of hallucination errors in InstructGPT generated documents. The documents
contain contents that contradict to the facts and world knowledge, resulting in wrong predictions.
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Query: What type of music did Mozart composed?
Answers: opera, classical music, art song, chamber music, ballet

DPR #1: The following is a list of surviving works that Mozart composed for performance at gatherings
of Masons. The story and music of his opera “The Magic Flute” is also considered to have strong
Masonic influences. The following is a partial list of family members, patrons, and colleagues who were
Masons. Mozart’s grandfather Johann Georg, a bookbinder, was raised among the extended Mozart family
in Augsburg, in the house of Johann’s own grandfather David Mozart. David and his children were
distinguished architects and master ... (Wikipedia id: 10988168 — “Mozart and Freemasonry”)

DPR #2: Progressively, and in large part at the hands of Mozart himself, the contrapuntal complexities
of the late Baroque emerged once more, moderated and disciplined by new forms, and adapted to a new
aesthetic and social milieu. Mozart was a versatile composer, and wrote in every major genre, including
symphony, opera, the solo concerto, chamber music including string quartet and string quintet, and the
piano sonata. These forms were not new, but Mozart advanced their technical sophistication and emotional
reach. He almost single-handedly developed and popularized the Classical piano concerto. He wrote a
great deal ... (Wikipedia id: 451968 — “Wolfgang Amadeus Mozart”)

Among top-10 retrieved documents: opera: 2 times chamber music: 1 time

GPT nucleus #1: Mozart was a prolific composer and wrote in many different genres. He composed
symphonies, operas, concertos, chamber music, and more. Many of his works are considered some of the
greatest ever written in those genres.

GPT nucleus #2: Mozart composed a variety of music, including operas, symphonies, chamber music,
concertos, and sonatas. His early works were influenced by the music of Haydn and Bach, and his later
works show the influence of the French and Italian composers of his time. Mozart’s music is characterized
by its beauty, elegance, and precision, and he is considered one of the greatest composers of all time.

GPT nucleus #3: Mozart composed a wide variety of music, including operas, symphonies, concertos,
solo pieces, and chamber music. He also wrote a number of religious works, including masses and motets.

Among top-10 generated documents: chamber music: 9 times

GPT cluster #1: Mozart found work in Vienna as a piano teacher and composer for opera and other works.
There he met a fellow Mason, Joseph Haydn, who was to become an important mentor. Mozart married
Constanze Weber in 1782; their marriage is thought to have been happy, in contrast to his earlier unhappy
arranged marriage to his cousin, Maria Anna NannerlMozart. Mozart composed more than 600 works,
including works widely.

GPT cluster #2: Mozart was a prolific composer, and wrote in a wide variety of genres. He composed
over 600 works, including operas, symphonies, concertos, solo works, and chamber music. His operas
include The Marriage of Figaro, Don Giovanni, and Cosi fan tutte. His symphonies include the well-known
Symphony No. 40 in G minor, and his concertos include the Piano Concerto No. 21 in C major, known as
the Elvira Madiganconcerto.

GPT cluster #3: Mozart was a prolific composer who wrote music in a wide variety of genres. He is best
known for his work in the classical genre, which includes such works as his Symphony No. 40 in G minor
and his piano concertos. He also wrote operas, including The Marriage of Figaro and The Magic Flute. In
addition to his work in classical music, Mozart also composed works in the popular genre, such as his Eine
kleine Nachtmusik.

Among top-10 generated documents: opera: 2 times chamber music: 7 times classical music: 1 time

Table 16: Case study of retrieved documents and generated documents from language models (1/4).
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Query: What does Monsanto own?
Answers: agricultural chemicals, seed, agriculture, chemical industry

DPR #1: In September 2016, Monsanto agreed to be acquired by Bayer for US$66 billion. In an effort to
receive regulatory clearance for the deal, Bayer announced the sale of significant portions of its current
agriculture businesses, including its seed and herbicide businesses, to BASF. The deal was approved by
the European Union on March 21, 2018, and approved in the United States on May 29, 2018. The sale
closed on June 7, 2018; Bayer announced its intent to discontinue the Monsanto name, with the combined
company operating solely under the Bayer brand. ... (Wikipedia id: 935126 — “Monsanto”)

DPR #2: Behind it all is of course an evil corporation: Monsanto. GMO conspiracy theories GMO
conspiracy theories are conspiracy theories related to the production and sale of genetically modified crops
and genetically modified food (also referred to as genetically modified organisms or “GMOs”). These
conspiracy theories include claims that agribusinesses, especially Monsanto, have suppressed data showing
that GMOs cause harm, deliberately cause food shortages to promote the use of GM food, or have co-opted
government agencies ... (Wikipedia id: 19304897 — “GMO conspiracy theories”)

Among top-10 retrieved documents: agriculture: 1 time seed: 2 times

GPT nucleus #1: Monsanto is an American agricultural biotechnology corporation founded in 1901. It is
headquartered in Creve Coeur, Missouri. Monsanto is a leading producer of genetically engineered seed
and Roundup, a glyphosate-based herbicide.

GPT nucleus #2: Monsanto is a multinational agrochemical and agricultural biotechnology corporation
headquartered in Creve Coeur, Missouri. It is one of the world’s leading producers of Roundup, a glyphosate-
based herbicide. The company also manufactures genetically engineered seed and Roundup Ready crops,
including corn, soybeans, and cotton. As of 2018, Monsanto is the world’s largest producer of glyphosate.
In 2018, Bayer acquired Monsanto for $63 billion.

Among top-10 generated documents: seed: 6 times

GPT cluster #1: Monsanto Company is an American multinational agrochemical and agricultural biotech-
nology corporation headquartered in Creve Coeur, St. Louis, Missouri. It is a leading producer of
genetically engineered (GE) seed and of the herbicide glyphosate, which it markets under the Roundup
brand. Founded in 1901 by John Francis Queeny, Monsanto spent most of the 20th century as a chemical
company, becoming one of the world’s leading manufacturers of plastics, resins, and other chemicals.
GPT cluster #2: Monsanto is a biotechnology and agriculture company that specializes in genetically
modified organisms (GMOs). The company owns a number of patents on GMOs, and it produces a range
of products that contain GMOs, including herbicides, pesticides, and seeds.

GPT cluster #3: Monsanto is a multinational agricultural biotechnology corporation. It is one of the
world’s leading producers of genetically engineered seed and Roundup, a glyphosate-based herbicide. The
company also manufactures other agricultural chemicals, such as insecticides and fungicides.

Among top-10 generated documents: agriculture: 2 times seed: 5 times agricultural chemicals: 1 time

Table 17: Case study of retrieved documents and generated documents from language models (2/4).
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Query: What city was Zeus the patron god of?
Answers: Olympia, Elis

DPR #1: Many were specific only to a particular deity or city-state. For example, the festival of Lykaia was
celebrated in Arcadia in Greece, which was dedicated to the pastoral god Pan. Like the other Panhellenic
Games, the ancient Olympic Games were a religious festival, held at the sanctuary of Zeus at Olympia.
Other festivals centred on Greek theatre, of which the Dionysia in Athens was the most important. More
typical festivals featured a procession, large sacrifices and a feast to eat the offerings, and many included
entertainments and customs such as visiting friends, wearing fancy dress and unusual behaviour in the ...
(Wikipedia id: 1945872 — “Ancient Greek religion™)

DPR #2: Theatre of Dionysus The Theatre of Dionysus Eleuthereus is a major theatre in Athens, considered
to be the world’s first theatre, built at the foot of the Athenian Acropolis. Dedicated to Dionysus, the god
of plays and wine (among other things), the theatre could seat as many as 17,000 people with excellent
acoustics, making it an ideal location for ancient Athens’ biggest theatrical celebration, the Dionysia. It was
the first theatre ever built, cut into the southern cliff face of the Acropolis, and supposedly the birthplace
of Greek tragedy. The remains of a restored and redesigned Roman version can still ... (Wikipedia id:
3732515 — “Theatre of Dionysus”™)

Among top-10 retrieved documents: Olympia: 1 time

GPT nucleus #1: Zeus was the patron god of the city of Olympia in Greece.

GPT nucleus #2: The city of Olympia in Greece was the site of the ancient Olympics, and it was also the
home of Zeus, the patron god of the Olympics.

Among top-10 generated documents: Olympia: 6 times

GPT cluster #1: Zeus was the patron god of the city of Olympia, which was located in the northwestern
Peloponnese region of Greece. Olympia was the site of the Olympic Games, which were held every four
years in honor of Zeus.

GPT cluster #2: Zeus was the patron god of the city of Olympia. Olympia was a sanctuary of ancient
Greece in Elis on the Peloponnesos peninsula, in south-western Greece. The sanctuary was known as the
Panhellenic Sanctuary of Zeus, and the altar of Zeus was located in the Temple of Zeus. The Olympic
Games were held in Olympia every four years from 776 BC to 393 AD.

GPT cluster #3: Zeus was the patron god of the city of Olympia.
Among top-10 generated documents: Olympia: 9 times Elis: 1 time

Table 18: Case study of retrieved documents and generated documents from language models (3/4).
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Query: What is the collection of the districts to the east of the Jordan River?
Answers: Jordan, Golan Heights

DPR #1: Water politics in the Jordan River basin Water politics in the Jordan River basin refers to political
issues of water within the Jordan River drainage basin, including competing claims and water usage, and
issues of riparian rights of surface water along transnational rivers, as well as the availability and usage of
ground water. Water resources in the region are scarce, and these issues directly affect the five political
subdivisions (Israel, the West Bank, Lebanon, Syria and Jordan) located within and bordering the basin,
which were created since the collapse, , during World War I, of the former single controlling entity, the ...
(Wikipedia id: 12822413 — “Water politics in the Jordan River basin”)

DPR #2: Jordan’s western border follows the bottom of the rift. Although an earthquake-prone region, no
severe shocks had been recorded for several centuries. By far the greatest part of the East Bank is desert,
displaying the land forms and other features associated with great aridity. Most of this land is part of the
Syrian Desert and northern Arabian Desert. There are broad expanses of sand and dunes, particularly in
the south and southeast, together with salt flats. Occasional jumbles of sandstone hills or low mountains
support only meager and stunted vegetation that ... (Wikipedia id: 210052 — “Geography of Jordan™)

Among top-10 retrieved documents: Jordan: 8 times

GPT nucleus #1: The collection of the districts to the east of the Jordan River is known as the West Bank.
The West Bank is a landlocked territory situated in Western Asia. It is bordered by Jordan to the east, Egypt
to the southwest, and Israel to the west and north.

GPT nucleus #2: The collection of the districts to the east of the Jordan River is the West Bank. The West
Bank is a landlocked territory near the Mediterranean coast of Western Asia, bordered by Lebanon to the
north, Syria to the northeast, Jordan to the east, and Egypt to the southwest. It is the smaller of two political
entities that comprise the Palestinian territories, the other being the Gaza Strip.

Among top-10 generated documents: Jordan: 10 times

GPT cluster #1: The collection of the districts to the east of the Jordan River is known as the West Bank.
The West Bank is a landlocked territory situated in Western Asia. It is bordered by Jordan to the east, Egypt
to the southwest, and Israel to the west and north.

GPT cluster #2: The Jordan River is a major river in the Middle East, the source of which is in the northern
part of Israel. The river flows southward through Israel and then Jordan, emptying into the Dead Sea. East
of the river is the collection of districts known as the East Bank.

GPT cluster #3: There is no single answer to this question as the east bank of the Jordan River is home to
a number of different districts and regions, each with its own unique history, culture, and customs. However,
some of the more well-known districts on the east bank include the West Bank, the Gaza Strip, and the
Golan Heights.

Among top-10 generated documents: Jordan: 10 times Golan Heights: 2 times

Table 19: Case study of retrieved documents and generated documents from language models (4/4).
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B PROMPTS CHOICES

B.1 ZERO-SHOT LEARNING PROMPTS (FOR TABLE 1)

B.1.1 PROMPTS FOR "INSTRUCTGPT (NO DOCS.)”

We observed the prompts (i.e., “Q: {query}\n\nA:") used in GPT-3 paper (Brown et al., 2020)
perform poorly on its text-davinci-002 version. Therefore, we experimented with multiple prompts
and found the following two prompts work best on open-domain QA datasets.

— (1) “{query}\n\nThe answer is” (no space between {query} and \n)
—(2) “{query} \n\n The answer is” (performance reported in Table 1)

For fact checking and dialogue system, we used the following prompts.
— Fact Checking “{claim} \n\n Is the claim true or false?”

— Open-domain Dialogue System “{query} \n\n”

B.1.2 PROMPTS FOR BACKGROUND GENERATION (STEP-1)

— Open-domain Question Answering “Generate a background document from Wikipedia to answer
the given question. \n\n {query} \n\n”

— Fact checking “Generate a background document from Wikipedia to support or refute the statement.
\n\n Statement: {claim} \n\n”

— Open-domain Dialogue System “Generate a background document from Wikipedia to answer the
given question. \n\n {utterance} \n\n”

B.1.3 PROMPTS FOR READING COMPREHENSION (STEP-2)

We collected the prompt from P3 (Bach et al., 2022), which includes over 2,000 open-source
prompts for roughly 170 datasets. For zero-shot QA, we experimented with three different reading
comprehension prompts. We reported the performance for each prompt in Table 20.

— (1) “Refer to the passage below and answer the following question with just a few words. Passage:
{background} \n\n Question: {query} \n\n The answer is”

— (2) “Passage: {background} \n\n Question: {query} \n\n Referring to the passage above, the
correct answer (just one entity) to the given question is”

—(3) “Refer to the passage below and answer the following question with just one entity. \n\n Passage:
background \n\n Question: query \n\n The answer is”

For fact checking and dialogue system, we chose the simplest prompt from P3.
— Fact Checking “{background} \n\n claim: {claim} \n\n Is the claim true or false?”

— Open-domain Dialogue System “{background} \n\n utterance \n\n”

B.2 HUMAN PROMPT ANNOTATIONS (FOR SECTION 3.2.1)

In order to get a better prompt for large language models to generate better contextual documents, we
asked 30 students in the computer science department to write different prompts. We first constructed
a small validation set with 200 examples by combining 50 random question-answer pairs from NQ,
100 random pairs from TriviaQA and 50 random pairs from WebQ. When an annotator wrote down a
prompt, our system can immediately evaluate the prompt by using the validation set and return the
performance to the annotator. Then, the annotator can modify the previous prompt until the recall
performance reaches a threshold, which is set as 50 in our experiments. Finally, we got 29 prompts
from human annotators due to two of them are the same. We used the top-10 prompts (shown in
Table 21 and Table 22) in the human prompt setting, as described in §3.2.1.
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NQ TriviaQA WebQ
H @ @) avg.| (1) 2) 3) avg.| (1) (2) 3) ave

*with retriever, AND directly trained on these datasets
DPR + InstructGPT*  [28.8 28.5 29.9 29.1]56.0 50.1 55.3 53.8]18.9 21.7 20.1 20.2

Models

*with retriever, BUT NOT trained on these datasets

BM25 + InstructGPT 20.1 18.4 20.5 19.7|54.2 49.0 534 52.2(14.9 16.6 16.0 15.8
Contriever + InstructGPT | 18.3 16.5 19.1 18.0|53.1 48.5 52.4 51.3|149 182 16.8 16.6
Google + InstructGPT 29.1 29.3 27.8 28.8/60.3 57.5 58.7 58.8/19.5 21.8 19.9 204

*without retriever, and not using external documents
GENREAD (InstructGPT) | 27.0 28.7 28.2 28.0(58.5 59.3 59.3 59.0|22.7 26.4 24.8 24.6

Table 20: Zero-shot QA performance under different prompts. The prompts are listed in §B.1.

No. Prompts Validation
#1 Generate a background document from Wikipedia to answer the given question. 66.0
#2  Provide a background document from Wikipedia to answer the given question. 65.0
#3  Generate a background document from web to answer the given question. 64.0
#4  Generate a Wikipedia document to support the given question. 63.5
#5  Provide a background document for the given question. 63.0
#06  Prepare a background document to support the given question. 63.0
#7  To support the given question, prepare a background document. 62.5
#8  Create a background document that supports the given question. 61.5
#9  Retrieve a document from Wikipedia to answer the given question. 60.5
#10 Retrieve a Wikipedia article to address the posed question. 59.5

Table 21: Top-10 human prompts, evaluated on merged validation set of NQ, TriviaQA and WebQ.

Prompt No. ‘ Validation ‘ NQ WebQ  TriviaQA  Avg.
#1 (Generate ...) 66.0 459 51.9 68.7 55.5
#2 (Provide ...) 65.0 439 51.0 68.3 54.4
#3 (Generate ...) 64.0 44.0 50.6 67.7 54.2
#4 (Generate ...) 63.5 43.2 51.2 67.5 54.0
#5 (Provide ...) 63.0 43.6 50.3 67.9 54.0
#6 (Prepare ...) 63.0 43.5 50.5 67.7 54.0
#7 (To support ...) 62.5 43.5 50.3 67.5 53.8
#8 (Create ...) 61.5 42.7 50.2 66.8 53.3
#9 (Retrieve ...) 60.5 41.6 49.0 68.2 53.0
#10 (Retrieve ...) 59.5 40.7 49.5 67.7 52.7

Table 22: Performance on NQ, TriviaQA and WebQ test sets of top-10 human prompts.
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