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Abstract
Deep learning has proven to be a highly effective
problem-solving tool for object detection and im-
age segmentation across various domains such as
healthcare and autonomous driving. At the heart
of this performance lies neural architecture de-
sign which relies heavily on domain knowledge
and prior experience on the researchers’ behalf.
More recently, this process of finding the most op-
timal architectures, given an initial search space
of possible operations, was automated by Neural
Architecture Search (NAS). In this paper, we eval-
uate the robustness of one such algorithm known
as Efficient NAS (ENAS) against data agnostic
poisoning attacks on the original search space
with carefully designed ineffective operations. By
evaluating algorithm performance on the CIFAR-
10 dataset, we empirically demonstrate how our
novel search space poisoning (SSP) approach and
multiple-instance poisoning attacks exploit design
flaws in the ENAS controller to result in inflated
prediction error rates for child networks. Our
results provide insights into the challenges to sur-
mount in using NAS for more adversarially robust
architecture search.

1. Introduction
In the modern ecosystem, the problem of finding the most
optimal deep learning architectures has been a major fo-
cus of the machine learning community. With applications
ranging from speech recognition (Hinton et al., 2012) to
image segmentation (Krizhevsky et al., 2012), deep learning
has shown the potential to solve pressing issues in several
domains including healthcare (Wang et al., 2016; Piccialli
et al., 2021) and surveillance (Liu et al., 2016). However,
a major challenge is to find the best architecture design for
a given problem. This relies heavily on the researcher’s
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domain knowledge and involves large amounts of trial and
error. More recently, neural architecture search (NAS) algo-
rithms have automated this dynamic process of creating and
evaluating new architectures (Zoph & Le, 2016; Liu et al.,
2018b;a). These algorithms continually sample operations
from a predefined search space to construct architectures
that best optimize a performance metric over time, eventu-
ally converging to the best child architectures. This intuitive
idea greatly reduces human intervention by restricting hu-
man bias in architecture engineering to just the selection of
the predefined search space (Elsken et al., 2019).

Although NAS has the potential to revolutionize architecture
search across industry and research applications, human
selection of the search space also presents an open security
risk that needs to be evaluated before NAS can be deployed
in security-critical domains. Due to the heavy dependence of
NAS on the search space, poor search space selection either
due to human error or by an adversary has the potential to
severely impact the training dynamics of NAS. This can
alter or completely reverse the predictive performance of
even the most optimal final architectures derived from such
a procedure. In this paper, we validate these concerns by
evaluating the robustness of one such NAS algorithm known
as Efficient NAS (ENAS) (Pham et al., 2018) against data-
agnostic search space poisoning (SSP) attacks.

Related Work A comprehensive overview of NAS al-
gorithms can be found in Wistuba et al. (2019) and Elsken
et al. (2019), with Chakraborty et al. (2018) summarising
advances in adversarial machine learning including poison-
ing attacks. NAS algorithms have recently been employed
in healthcare and applied in various clinical settings for dis-
eases like COVID-19, cancer and cystic fibrosis (van der
Schaar, 2020). Furthermore, architectures derived from
NAS procedures have shown state of the art performance,
often outperforming manually created networks in seman-
tic segmentation (Chen et al., 2018), image classification
(Real et al., 2019; Zoph et al., 2018) and object detection
(Zoph et al., 2018). With rapid development of emerging
NAS methods, recent work by Lindauer & Hutter (2020)
has brought to light some pressing issues pertaining to the
lack of rigorous empirical evaluation of existing approaches.
Furthermore, while NAS has been studied to further de-
velop more adversarially robust networks through addition
of dense connections (Kotyan & Vargas, 2019; Guo et al.,
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2020), little work has been done in the past to assess the
adversarial robustness of NAS itself. Search phase analysis
has shown that computationally efficient algorithms such as
ENAS are worse at truly ranking child networks due to their
reliance on weight sharing (Yu et al., 2019), which can be
exploited in an adversarial context. Finally, most traditional
poisoning attacks involve injecting mislabeled examples in
the training data and have been executed against feature
selection methods (Xiao et al., 2015), support vector ma-
chines (Biggio et al., 2012) and neural networks (Yang et al.,
2017). To the authors’ knowledge, no study, has approached
poisoning in a data-agnostic manner, especially one that
involves poisoning the search space in NAS. In summary,
our main contributions through this paper are:

• We emphasize the conceptual significance of designing
adversarial poisoning attacks that leverage the original
search space and controller design in ENAS.

• We propose and develop the theory behind a novel
data-agnostic poisoning technique called search space
poisoning (SSP) alongside multiple-instance poisoning
attacks, as described in Section 3.

• Through our experiments on the CIFAR-10 dataset in
Section 4 we demonstrate how SSP results in child
networks with inflated prediction error rates (up to
∼ 80%).

2. Background
2.1. Efficient Neural Architecture Search (ENAS)

Search Space Consider the set A containing all possible
neural network architectures or child models that can be
generated. The ENAS search space is then represented as
a directed acyclic graph (DAG) denoted by G which is the
superposition of all child models in A.

1 2

3

4

5

6

Figure 1. ENAS search space represented as a DAG. Red arrows
represent one child model with input node 1 and outputs 4, 6
respectively.

Every node in Figure 2 represents local computations each
having its own parameters with edges representing the flow
of information between nodes. Sampled architectures are
sub-graphs of G with parameters being shared amongst child
models. Throughout this paper, we focus on the highly ef-
fective original ENAS search space as outlined in Pham
et al. (2018) denoted by Ŝ = {Identity, 3x3 Separable Con-
volution, 5x5 Separable Convolution, Max Pooling (3x3),
Average Pooling (3x3)}.

Search Strategy The ENAS controller is a predefined
long short term memory (LSTM) cell which autoregres-
sively samples decisions through softmax classifiers. The
central goal of the controller is to search for optimal archi-
tectures by generating a child model a ∈ G, feeding every
decision on the previous step as an input embedding into
the next step. Our main search strategy throughout this pa-
per will be macro search where the controller makes two
sampling decisions for every layer in the child network: (i)
connections to previous nodes for skip connections, and (ii)
operations to use from the search space.

Performance Estimation As outlined in Pham et al.
(2018), ENAS alternates between training the shared pa-
rameters ω of the child model m using stochastic gradient
descent (SGD), and parameters θ of the LSTM controller
using reinforcement learning (RL). First, keeping ω fixed,
θ is trained with REINFORCE (Williams, 1992) and Adam
optimizer (Kingma & Ba, 2014) to maximize the expected
reward Em∼π(m;θ)[R(m, ω)] (validation accuracy); and sec-
ond, keeping the controller’s policy π(m, θ) fixed, ω is up-
dated with SGD to minimize expected cross-entropy loss
Em∼π[L(m;ω)]. Note that different operations associated
with the same node in G have their own unique parameters.

2.2. Training Data Poisoning

Traditionally, training data poisoning is defined as the ad-
versarial contamination of the training set T ⊂ D by addi-
tion of an extraneous data point (xp, yp) which maximizes
prediction error across training and validation sets, while
significantly impacting loss minimization during training
(Xiao et al., 2015; Biggio et al., 2012; Muñoz-González
et al., 2017; Yang et al., 2017). It is assumed here that
the data is generated according to an underlying process
f : X 7→ Y , given a set D = {xi, yi}ni=1 of i.i.d samples
drawn from p(X,Y ), where X and Y are sets containing
feature vectors and corresponding target labels respectively.
While highly effective, existing poisoning techniques are
highly data dependent and operate under the assumption
that the attacker has access to training data. A more relaxed
assumption would be to decouple the attack modality from
training data and make it data agnostic, which is explored
in the subsequent section.

3. Search Space Poisoning (SSP)
3.1. General Framework

Motivated by the previously described notion of training
data poisoning, we introduce search space poisoning (SSP)
focused on contaminating the original ENAS search space.
The core idea behind SSP is to inject precisely designed
ineffective operations into the ENAS search space to maxi-
mize the frequency of poor architectures appearing during
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training. Our approach exploits the core functionality of
the ENAS controller to sample child networks from a large
computational graph of operations by introducing highly
ineffective local operations into the search space. On the
attacker’s behalf, this requires no a priori knowledge of the
problem domain or training dataset being used, making this
new approach more favourable than traditional poisoning
attacks. Formally, we describe a poisoned search space as
S := Ŝ ∪ P , where Ŝ denotes the original ENAS search
space operations and P denotes a non-empty set of poison-
ings where each poisoning is an ineffective operation. An
overview of the SSP approach can be observed Figure 2.

Poisoning Set (P)

Search Space (Ŝ) Search Strategy Performance Estimation

Architecture

Performance Metric

Ŝ∪P

Figure 2. Overview of Search Space Poisoning (SSP)

3.2. Multiple-Instance Poisoning Attacks

Over the course of training, the LSTM controller paired with
the RL search strategy in ENAS develops the ability to sam-
ple architectures with operations that most optimally reduce
the validation error. As a result, single-instance poisoning
attacks might not be as effective due to the tendency of the
ENAS controller to draw fewer child networks with the sin-
gle sub-optimal operation oP ∈ P over time. This behaviour
of ENAS results in the algorithm almost entirely discarding
networks with the singular oP as training progresses. To
circumvent this issue, we propose multiple-instance poison-
ing which essentially increases the likelihood of oP being
sampled from each poisoned search space. This is achieved
by increasing the frequency of sampling oP from S through
inclusion of multiple-instances of each oP from the poi-
soning multiset, so-called to allow for duplicate elements.
An instance factor q ∈ N>0 would represent instance mul-
tiplication of oP in the multiset q times. Henceforth, the
probabilities of sampling oŜ ∈ Ŝ and oP ∈ P , respectively,
are, Pr[oŜ ] := 1

|S|+q|P| < Pr[oP ] := q
|S|+q|P| . From this

result it is evident that under a multiple-instance poisoning
framework, the probability of sampling poisoned operations
is higher as compared to operations in Ŝ.

3.3. Crafting Poisoning Sets with Operations

Identity Operation The simplest way to attack the func-
tionality of ENAS is to inject non-operations within the
original search space which keep the input and outputs in-
tact. As a result, the controller will sample child models
with layers representing computations which preserve the
inputs, making the operation highly ineffective within a
network architecture. This goal is fulfilled by the identity
operation which has no numerical effect on the inputs with

a minimal computational cost. It should also be noted that,
the identity operation is not a skip connection. Therefore,
we define our first set of poisonings as P1 := {Identity}.

Transposed Convolutions As described earlier, amongst
other useful operations the original ENAS search space Ŝ
also contains 3x3 and 5x5 convolutional layers (separable
& non-seperable). With these settings under consideration,
a more practical way of poisoning the search space is to
reverse the effect of each of these convolutions. Given a
normal convolutional layer g and a transposed convolutional
layer h with the same parameters except for output channel
sizes, g and h are approximate inverses. We achieve our
goal of countering the effect of existing convolutions by
including transposed convolutions in the set of poisonings
resulting in our second poisoning set being P2 := {3x3
transposed convolution, 5x5 transposed convolution}.

Dropout Layer While dropout layers have historically
been shown to be useful in preventing neural networks from
over-fitting (Srivastava et al., 2014), a high dropout rate can
result in severe information loss leading to poor performance
of the overall network. This is because given a dropout
probability p ∈ [0, 1], dropout randomly zeroes out some
values from the input to de-correlate neurons during training.
We hypothesize that including such layers with high dropout
probability, such as p = 0.9, has the potential to contaminate
the search space with irreversible effects on the training
dynamics of ENAS. Therefore, our final poisoning set is
simply P3 := {Dropout(p = 0.9)}.

4. Experiments

Table 1. Summary of experimental search spaces.
POISONING SET SEARCH SPACE EXPERIMENT POISONING MULTISET

Pi Si q(Pi)
φ Ŝ Original ∅

1a 6(P1)

P1 = {Identity} S1 = Ŝ ∪ P1 1b 36(P1)
1c 120(P1)
1d 300(P1)
2a 1(P2)

P2 = {3x3 transposed convolution, S2 = Ŝ ∪ P2 2b 6(P2)
5x5 transposed convolution} 2c 20(P2)

2d 50(P2)
3a 6(P3)

P3 = {Dropout(p = 0.9)} S3 = Ŝ ∪ P3 3b 36(P3)
3c 120(P3)
3d 300(P3)
4a 1(P4)

P4 := P1 ∪ P2 ∪ P3 S4 = Ŝ ∪ P4 4b 6(P4)
4c 20(P4)
4d 50(P4)

To test the effectiveness of our proposed approach, we de-
signed experiments based on previously described methods
as outlined in Table 1. Each experiment involved training
ENAS on the CIFAR-10 dataset for 300 epochs on a cluster
equipped with an Intel Xeon E5-2620 and Nvidia TITAN
Xp GPU (hyperparameters used can be found in Appendix
A). Code used to run our experiments can be found here.
Across our experiments, errors increased consistently in re-

https://github.com/rusbridger/ENAS-Experiments
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Figure 3. Experimental results for each search space outlined in Table 1. First row represents moving average of the validation error per 20
epochs for 300 total epochs, and second row represents final validation and test errors in classification as a function of multiple operation
instances.

lation to the incremental addition of ineffective operations
as visualised in Figure 3. A table of final validation and test
errors can be found in Appendix B.

Identity Operation Figure 3(a) shows that instance-
multiplied identity operations increase the error consider-
ably. Experiments 1b, 1c, 1d have several identity opera-
tions and resulted in high errors, with the extreme 69.19%
in experiment 1d. In contrast, experiment 1a only has one
identity per original operation and only raised error slightly
to 27.28%. These results reinforce our hypothesis laid in
Section 3.2. Figure 3(e) shows that excessive poisonings
will result in diminishing returns.

Transposed Convolutions Instance-multiplying trans-
posed convolutions had mostly similar results of progres-
sively increasing error as seen in Figure 3(b). We note that
an instance factor of 50 (experiment 2d) results in an ex-
treme increase in error at 68.83%; similar behaviour was
observed in our other experiments but to a lesser degree.
Figure 3(f) further shows that between the first four experi-
ments, the increase in error slows down. However, the 100
transposed convolutions in experiment 2d show a staggering
28.36% increase in error.

Dropout Layer Instance-multiplying dropout operations
exhibited a similar pattern in validation to the previous op-
erations, but the poisoning seemed to inflate the errors to a
greater degree as seen in Figure 3(c). Figure 3(g) shows the
experiments progressively worsening in error with experi-
ment 3d hitting 83.69% validation and 82.07% test errors.
We also observe that adding further dropout, like 300, results
in smaller increases in error, like identity and unlike trans-
posed convolutions operations. Dropout’s pattern is similar
to identity, but its effect on ENAS is more detrimental.

Grouped Operations Graphing the validation error
shows a sharper increase in error, implying that mixing dif-
ferent ineffective operations is more detrimental to ENAS
than including several instances of the same operation. In
reviewing Figures 3(d) and 3(h), we note that the 20 group
poisonings in experiment 4c are about as effective as 300
identity or 100 transposed convolution operations (experi-
ments 1d, 2d), and more effective than 36 dropout operations
(experiment 3b). We also observe that experiments 4c, 4d
were very close in training and final errors; the final errors
were 65.55% and 64.64%, respectively. So by factor 20 in
experiment 4c, we have reached the poisoning saturation
point. In summary, grouping a variety of poisonings is more
efficient than multiplying the same poisoning.

5. Conclusion
NAS algorithms present an important opportunity for re-
searchers and industry leaders by enabling the automated
creation of optimal architectures. However, it is also im-
portant to evaluate obvious vulnerabilities in these systems
which can result in unforeseen model outcomes if not dealt
with beforehand. Consistent with the earlier findings in
Yu et al. (2019), our results highlight how the ENAS con-
troller’s dependence on parameter sharing leads to inaccu-
rate predictions. We successfully demonstrated how using
the same weights, although computationally cheap, com-
promises the functionality of ENAS when injected with
poor operations. SSP successfully leveraged the inability of
ENAS to alternate between weights shared across effective
and ineffective operations as shown in our experimental
results. These findings pave the way for machine learning
researchers to explore improvements to the search space and
controller design for more adversarially robust search.
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Appendix
A. Hyperparameters

Table 1. Summary of experiment hyperparameters
HYPERPARAMETER VALUE

search for macro
batch size 128
search for 300

seed 69
cutout 0

fixed arc False
child num layers 12
child out filters 36
child grad bound 5.0
child l2 reg 0.00025

child keep prob 0.9
child lr max 0.05
child lr min 0.0005
child lr T 10

controller lstm size 64
controller lstm num layers 1
controller entropy weight 0.0001
controller train every 1

controller num aggregate 20
controller train steps 50

controller lr 0.001
controller tanh constant 1.5
controller op tanh reduce 2.5
controller skip target 0.4
controller skip weight 0.8

controller bl dec 0.99
p (Dropout Rate) 0.9

B. Supplementary Results

Table 2. Final validation and test errors across experiments.
EXPERIMENT VAL ERROR TEST ERROR

Original 19.53 25.33
1a 22.32 27.28
1b 37.12 40.87
1c 58.67 55.29
1d 72.60 69.19
2a 20.95 24.25
2b 32.33 34.78
2c 33.99 37.05
2d 68.63 65.41
3a 27.94 34.68
3b 48.17 50.61
3c 73.63 73.70
3d 83.69 82.07
4a 25.60 31.81
4b 36.80 41.81
4c 69.05 65.55
4d 68.35 64.64


