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ABSTRACT

3D object classification is a crucial problem due to its significant practical relevance in
many fields, including computer vision, robotics, and autonomous driving. Although deep
learning methods applied to point clouds sampled on CAD models of the objects and/or
captured by LiDAR or RGBD cameras have achieved remarkable success in recent years,
achieving high classification accuracy remains a challenging problem due to the unordered
point clouds and their irregularity and noise. To this end, we propose a novel state-of-the-art
(SOTA) 3D object classification technique that combines topological data analysis with
various image filtration techniques to classify objects when they are represented using point
clouds. We transform every point cloud into a voxelized binary 3D image to extract distin-
guishing topological features. Next, we train a lightweight one-dimensional Convolutional
Neural Network (1D CNN) using the extracted feature set from the training dataset. Our
framework, TACO-Net, sets a new state-of-the-art by achieving 99.05% and 99.52% ac-
curacy on the widely used synthetic benchmarks ModelNet40 and ModelNet10, and further
demonstrates its robustness on the large-scale real-world OmniObject3D dataset. When
tested with ten different kinds of corrupted ModelNet40 inputs, the proposed TACO-Net
demonstrates strong resiliency overall.

1 INTRODUCTION

H0, H1, H2

airplane?

bathtub?

xbox?

Figure 1: An airplane point cloud (from ModelNet40) is converted into a 3D binary image, which is then
transformed into a set of 3D grayscale images (just one is shown) using different filtration techniques. Every
grayscale image admits a separate cubical persistence. A feature vector of length 36 is obtained for every
persistence. The vectors are then concatenated to form the final feature vector for the plane. The feature
vectors are finally trained using a 1D CNN for object classification.

Semantic object recognition is one of the most fundamental capabilities that modern-day autonomous systems,
such as robots and cars, demand to operate in dynamic real-world environments. Given an input point cloud,
the objective is to classify the input into one of the known categories Maturana & Scherer (2015); Qi et al.
(2017a); Wu et al. (2015). Such object classification is critical in numerous real-world applications, including
autonomous driving, robotics, augmented reality, and 3D scene understanding. In recent years, deep learning
techniques have achieved remarkable success in the 3D object classification task by using various modes
of inputs such as voxels Maturana & Scherer (2015), multi-views Kanezaki et al. (2019), and raw point
clouds Qi et al. (2017a), to name a few.
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Unlike 2D images, point clouds provide rich geometric and spatial information in three dimensions, enabling
more precise object recognition in complex environments Sarker et al. (2024). Further, unlike 2D images,
point clouds enable a mobile robot, for example, to recognize objects in various ambient light and weather
conditions efficiently. However, point cloud-based object classification remains challenging due to the
unstructured and sparse nature of point cloud data, which lacks a regular grid structure and often suffers from
noise, occlusion, and varying point densities Ben-Shabat et al. (2018); Sun et al. (2022); Uy et al. (2019).
Furthermore, the permutation invariance of points and the need to capture both local and global geometric
features add layers of complexity to model design Zhao et al. (2022). These factors demand innovative
methodologies that effectively learn from unordered and irregular 3D geometric data, driving continued
research and development in this field.

Most of the existing approaches use a deep machine learning framework where the input is either a set of
pictures of the object, a raw set of points, or volumetric shape of the object Su et al. (2015); Feng et al. (2018);
Kanezaki et al. (2019); Qi et al. (2017a;b); Qian et al. (2022); Maturana & Scherer (2015). Unlike these, we
take a novel approach where the n-element point clouds sampled from the 3D objects (both from training
and test sets) are transformed into voxelized 3D binary images to extract features from it using topological
data analysis (TDA) via cubical persistence (defined in Section 2). We deploy a 1D CNN, trained using the
topological feature vectors obtained for the 3D objects from the training set for the class prediction task. See
Fig. 1 for an overview of our approach. Although TDA has a direct connection with shapes, surprisingly,
TDA has not been successfully used for large-scale 3D object classification. Similar to the challenges
associated with designing deep learning models using existing network layers, finding an effective TDA
pipeline presents a challenge. First, we test the proposed topological data analysis-based object classification
framework, named TACO-Net, on ModelNet40 and ModelNet10 datasets. Our experiments show that we
achieve SOTA accuracy for both these datasets. Furthermore, we have chosen ten common corruptions to
test the robustness of TACO-Net. The corrupted dataset is tested on the model trained with the uncorrupted
ModelNet40 dataset. Two different levels of corruption have been used in our experiments. Results show
that the proposed TACO-Net yields high accuracy for all but one corruption type at a low level while
achieving moderate accuracy with highly corrupted test data. Further, when tested on a real-world dataset,
namely OmniObject3D Wu et al. (2023), TACO-Net again achieved the highest accuracy. To show the
generalizability of TACO-Net, we tested it on two 3D medical object datasets, namely VesselMNIST3D Yang
et al. (2020) and AdrenalMNIST3D Yang et al. (2023), where TACO-Net surpassed the highest accuracies
and F1-scores of numerous existing techniques such as PointNet Qi et al. (2017a), PointNet++ Qi et al.
(2017b), and DGCNN Wang et al. (2019), among others. The main contributions of our paper are as follows.
• To the best of our knowledge, this is the first work that uses TDA through cubical persistence to extract

features from input point clouds before learning those features using a 1D CNN.
• Our proposed novel TACO-Net framework achieves higher overall accuracies in both 10 and 40-class

variations of the ModelNet dataset - thereby providing a new SOTA performance.
• Results show that TACO-Net is robust against common types of point cloud corruptions while being easily

generalizable to various real-world 3D object datasets.

Related Work. Three main types of approaches are prevalent in the 3D object classification literature:
voxel-based, multi-view imaging-based, and raw point-based Sarker et al. (2024). Many hybrid methods
combine one or more of the above-mentioned techniques. In voxel-based methods, features of the volumetric
representation of input point clouds are learned and classified Maturana & Scherer (2015). One of the earliest
approaches in this direction is 3D Shapenets Wu et al. (2015). Although the objects to be classified are in
3D, taking 2D pictures of them from various angles and classifying those 2D pictures instead has gained
attention through MVCNN by Su et al. Su et al. (2015), where they used 80 pictures of each 3D object.
GVCNN Feng et al. (2018) improved upon MVCNN by using only 8 images. MHBN Yu et al. (2018), on
the other hand, used only 6 views of the object, but managed to achieve high mean class accuracy. Usually,
convolutional neural networks are used for these 2D image classification techniques. In Ma et al. (2018), the
authors have used a recurrent neural module along with CNNs. Hypergraph learning has been highly effective
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for object classification, as shown in Feng et al. (2019). One of the highest accuracy yielding approaches,
RotationNet Kanezaki et al. (2019), also uses multiple views of the objects, albeit these are unsupervised
viewpoints. Point-based approaches are most popular - they take raw point clouds as inputs and learns from
their unstructured format, which makes them robust against corruption Qi et al. (2017a;b); Li et al. (2018b).
One of the pioneering works in this direction is PointNet Qi et al. (2017a). PointNet++ Qi et al. (2017b)
improved upon PointNet by capturing local geometric structures. Transformer-based learning strategies have
received attention as well Zhao et al. (2021). Graph neural networks have been successful in classifying point
cloud objects Wang et al. (2019); Mohammadi et al. (2021). Unlike these, our novel methodology extracts
topological features, which are learned by a 1D CNN for object classification and achieves SOTA accuracy.

This paper uses TDA features extracted from the point clouds for object classification. Such a TDA-
based approach has been previously used for MNIST data classification Garin & Tauzin (2019). TDA has
recently been used to solve a diverse range of problems, such as in medical imaging Singh et al. (2023),
biomedicine Skaf & Laubenbacher (2022), oncology Bukkuri et al. (2021), and cybersecurity Akcora et al.
(2020).

2 DESCRIPTION OF TACO-NET

We transform every train and test point cloud P into a 3D binary image, where every active voxel (represented
using a 1) contains at least one point from P . Our experiments determine a suitable value for the voxel size
of the 3D images. The primary purpose of converting point clouds to 3D binary images is to use different 3D
grayscale image filtration techniques to extract distinguishing topological information about the point clouds
through their corresponding 3D grayscale images, using TDA. In what follows, we present an overview of the
theoretical underpinnings of TDA, leveraged to develop TACO-Net.

Filtration types Garin & Tauzin (2019). Let B : I ⊆ Z3 → {0, 1} be a 3D binary image, where every
p ∈ I is a voxel. A voxel is activated if its value is 1; otherwise, it is deactivated. A grayscale filtration
converts B into a grayscale 3D image G : I ⊆ Z3 → R. Such filtrations can highlight different topological
features in the binary image, even visually. We briefly describe the six kinds of filtrations used in TACO-Net
to obtain a set of grayscale 3D images for every 3D binary image (constructed for every point cloud) for
extracting topological feature vectors. Owing to the difference in the filtration functions, every filtration tends
to highlight different features of B. Refer to Fig. 2 for an illustration.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: A 2048-element point cloud of a car from ModelNet40 is shown in (a) and its 3D binary image
with voxel size 0.05 in (b). The grayscale images obtained after height using v : (−1, 0, 0), radial using
c : (4, 4, 10), density, dilation, erosion, and signed distance filtrations, are shown in (c), (d), (e), (f), (g), (h),
respectively. Hotter voxels have higher grayscale values. For brevity, voxels outside the shape are not shown;
consequently, (f), (g), and (h) appear almost the same.

Height filtration. It needs a direction vector v in 3-space. Every activated voxel p ∈ B is assigned a grayscale
value that equals the distance between p and the hyperplane defined by v. Every deactivated voxel is assigned
the maximum distance between any voxel of B and the hyperplane defined by v, plus one. For TACO-Net,
we have considered the 26 direction vectors in {{0, 1,−1}3} \ {(0, 0, 0)}.

Radial filtration. A reference voxel c, called center, is supplied. Every activated voxel p ∈ B is assigned the
distance between p and c. The deactivated voxels are assigned the maximum distance between c and any
voxel, plus one. For TACO-Net, 27 centers c1, c2, . . . , c27 have been considered, chosen as the 27 vertices
of a 3× 3× 3 grid ΞB inside B. We note that C1 := [c1, . . . , c9] belong to the first vertical slice of ΞB having
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the lowest x-coordinate, C2 := [c10, . . . , c18] the median, and C3 := [c19, . . . , c27] the highest. The centers
are sorted lexicographically in every Ci. Refer to Fig. 3 for an example.

The strength of our 26 height directions is that directional height filtrations discretize the Persistent Homology
Transform Turner et al. (2014), which is injective on a broad class of shapes; hence, in principle, the family of
height persistence diagrams determines the underlying shape with high accuracy, as shown later empirically.
Our cube-symmetric set of 26 directions provides an efficient spherical sampling that harmonizes with cubical
complexes, producing salient and stable topological events that differ across object categories. By the stability
of persistent homology, these diagrams are robust to noise. Complementing height with a set of 27 radial
filtrations, from carefully placed centers, and the following four filtrations, injects information about interior
organization, yielding consistent gains. This is corroborated by the high accuracy numbers obtained for shape
classification (see Sec. 3).

Figure 3: The 27 radial centers are
shown for an airplane 3D binary im-
age. For ModelNet40 and Mod-
elNet10, we have used the centers
c1, . . . , c18, as shown in blue.

Density filtration. Every voxel p ∈ B is assigned a grayscale value
equal to the number of activated voxels within a ball centered at p
having radius r. We fixed r to 1 in our experiments.

Dilation filtration. Every voxel p ∈ B is assigned a grayscale value
equal to the smallest Manhattan distance to an activated voxel in B.
Consequently, active voxels are assigned a 0 grayscale value.

Erosion filtration. It does the opposite of the dilation filtration. The
dilation filtration is applied to the binary image B′, obtained from B
by changing activated voxels to deactivated and deactivated ones to
activated. Deactivated voxels are assigned a 0 grayscale value.

Signed distance filtration. For every activated voxel p ∈ B, its
grayscale value is the minimum Manhattan distance between p and
any deactivated voxel in B minus 1. For every deactivated voxel, its
grayscale value is the negative of the minimum Manhattan distance between p and any activated voxel in B.

TDA Chazal & Michel (2021); Wasserman (2018) can extract topological information and geometric patterns
from datasets using algebraic topology. Persistent homology Edelsbrunner et al. (2002); Zomorodian &
Carlsson (2004) is a popular tool in TDA, applied to obtain different kinds of topological feature vectors
of point clouds. It helps to understand the shape of a point cloud by tracking the birth and death of various
topological features (different from feature vectors), such as connected components, holes, and higher-
dimensional voids that persist at different scales during an iterative process known as filtration (distinct from
the six types of filtration mentioned above). A series of nested geometric structures is obtained at various
scales during filtration. The topological features that persist (survive) across several iterations of a filtration,
inside various sequences of such nested structures, can be used as topological descriptors to compute different
topological feature vectors of a point cloud. For a comprehensive overview on persistent homology and
various filtration techniques, we urge interested readers to refer to Chazal & Michel (2021); Edelsbrunner
et al. (2002); Wasserman (2018); Zomorodian & Carlsson (2004). We use cubical homology and persistence
meant for extracting topological information from cubical complexes.

Cubical homology and persistence. Kaczynski et al. (2006); Wagner et al. (2011) A finite cubical complex
in 3-space is a union of points, line segments, squares, 3D cubes, aligned on the grid Z3. We leverage cubical
homology, a variant of persistent homology meant for cubical complexes, to obtain topological feature vectors
of grayscale 3D images, which are obtained from 3D binary images, constructed for every point cloud. Any
grayscale 3D image can be perceived as a cubical complex K, where every voxel (a pixel in 3D) is a cube
with an intensity value. The voxels, square faces of voxels, edges, and vertices are 3, 2, 1, 0-cube, respectively.
Hence, cubical homology can be applied directly to 3D grayscale images because of their natural grid-like
structures. During filtration, the voxels are added in order of increasing intensity, forming a sequence of
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nested cubical subcomplexes. Starting with the lowest voxel intensity, all voxels with intensity at most t are
added to the current cubical complex along with their faces, edges, and vertices, where t is the current voxel
intensity being considered. A cubical complex obtained at step i is a subcomplex of the complex obtained at
step i+ 1. Thus, we get a sequence of nested subcomplexes K0 ⊆ K1 ⊆ . . . ⊆ Km. Every Ki is called a
sublevel set of K, the cubical complex built from a given 3D image, since Ki ⊆ K. As voxels are added, the
topological features, connected components of voxels (homology group H0), tunnels or loops (homology
group H1), and enclosed cavities (homology group H2), take birth or die. Every birth and death of a feature
introduces a new birth-death pair in the cubical persistence, a multiset of points in R× (R ∪ {+∞}), where
every pair (b, d) in the multiset denotes the birth of a topological feature at time b and its death at time d.
Long-surviving features are likely the significant features that can be used in classification tasks. Persistence,
represented using a 2D scatter plot, is known as a persistence diagram (refer to Fig. 1). In a persistence
diagram, every birth-death pair corresponds to a point in the diagram. The cubical persistence of a cubical
complex is its topological signature. Next, we discuss the topological vectorization methods used here.

Persistent entropy. Chintakunta et al. (2015) Given a cubical persistence, X = {(bi, di)}, its persistent
entropy, denoted by ρ(X), is a real number defined by as, ρ(X) = −

∑
i pi log(pi), where pi = di−bi

ℓ(X) ,
and ℓ(X) =

∑
i(di − bi). Having its roots in information theory, it gives an intuitive sense of disorder or

complexity in the topological structure. We note that 3 real numbers are obtained for the 3 homology groups,
H0, H1, and H2.

Amplitude. Introduced in Garin & Tauzin (2019), amplitude of a cubical persistence is defined as its distance
to the empty persistence (devoid of birth-death pairs). It is used to compare two cubical persistences, obtained
from two different 3D grayscale images. TACO-Net uses five types of amplitudes with varied parameters.
Out of the five, two are metric-based (the Wasserstein and Bottleneck distances), and the remaining three are
kernel-based (Betti curve, persistence landscape, and heat). For the Betti curve, and persistence landscape, the
diagrams are sampled using 100 filtration values, whereas for the heat kernel, 20 are used. Let X = {(bi, di)}
be a cubical persistence. For an insight into the different kinds of amplitudes used, we recommend that the
reader refer to the Appendix.

p-Wasserstein Tauzin et al. (2021). The half-lifetime of a pair (bi, di) ∈ X is defined as di−bi
2 . The

Wasserstein amplitude of order p, denoted by W (X, p), is defined as the Lp norm of the vector of half-
lifetimes of the birth-death pairs in X . Hence, W (X, p) = (

∑
i

(
di−bi

2

)p
)1/p. For TACO-Net, we have

used p = 1, 2. We obtain 6 real numbers for this metric, since there are 3 homology groups and 2 values of p.

Bottleneck Tauzin et al. (2021). The Bottleneck amplitude is denoted by B(X) = W (X,∞). We obtain 3
real numbers for this metric due to the three homology groups.

f(bi,di)(x) =


0 if x /∈ (bi, di)

x− bi if x ∈ (bi,
bi+di

2 ]

−x+ di if x ∈ ( bi+di

2 , di)

(1)Betti curve. Tauzin et al. (2021) The Betti curve of
X is the function BC : R → N, such that BC(s)
gives the number of birth-pairs in X that contains s
when every pair (bi, di) in X is treated as an interval.
Two amplitudes are obtained using the L1 and L2 norms. We obtain 6 real numbers for this metric, since
there are three homology groups and two norms.

Landscape Bubenik & Dłotko (2017); Bubenik et al. (2015). For a birth-death pair (bi, di) ∈ X , let
f(bi,di) : R → [0,∞], be a piecewise linear function given in Eq. 1. The persistence landscape of X
is the sequence of functions λk : R → [0,∞], k = 1, 2, 3, . . . where λk(x) is the k-th largest value of
{f(bi,di)(x)}i. Further, λk(x) is set to 0 if the k-th largest value does not exist. The parameter k is called the
layer. For TACO-Net, we have used k = 1, 2. Four amplitudes are obtained using L1 and L2 norms for both
the values of k. We get 12 real numbers for this metric, since there are three homology groups, two norms,
and two distinct values of k.
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Heat kernel Reininghaus et al. (2015). Gaussians of standard deviation σ are placed over every point in X
and a negative Gaussian of σ on the mirror point across the diagonal line in the persistence diagram. Thus, a
real-valued function is obtained on R2. For TACO-Net, we have used σ = 0.15. We get 6 real numbers for
this metric, since there are three homology groups and two norms, L1, L2.

Hence, for a given 3D grayscale image, obtained by using a filtration, we get a feature vector of length
3 + 33 = 36, wherein 3 numbers are obtained using persistent entropy and the remaining 33 using amplitude.

Feature selection and generation. Refer to Fig. 5 in Appendix for an illustration. Let P be a point cloud
describing some 3D object. We convert P into a voxelized 3D binary image B such that every active voxel
contains at least one point from P . The volume of B is roughly equal to that of the axis-parallel bounding
box of P . We run 57 filtrations on B yielding a set of 57 grayscale images. Out of 57 filtrations, there
are 26 height filtrations for the 26 direction vectors in {{0, 1,−1}3} \ {(0, 0, 0)}; 27 radial filtrations for
the 27 centers c1, . . . , c27, as described in Section 2; one each for the four types: density, dilation, erosion,
and signed distance. As explained before, we extract 36 features from a grayscale image. Hence, due to
the 57 filtrations used, which resulted in 57 binary images, the length of the final feature vector for P is
57 · 36 = 2052. However, our experiments found that depending on the dataset, we must discard some of the
radial filtrations from the initial 27 centers, as shown in Fig. 3 to achieve the highest possible accuracy.

I
n
p
u
t
V
e
c
. Conv1D

BatchNorm

ReLU

Conv1D

BatchNorm

ReLU

Conv1D

BatchNorm

ReLU

FC

Softmax

Classification

Figure 4: The architecture of the 1D CNN used in TACO-Net. Convolutional layers process the input feature
vector before final classification via fully connected (FC) and softmax layers.

Table 1: Parameters and values

Parameters Values

Max. training epoch 1000
Loss stop threshold 0.005

Learning rate 0.001
Minibatch size 128

Optimizer Adam
Voxel size 0.05

Classification using a 1D CNN. We use a lightweight 1D CNN deep
neural network to classify the features extracted from the point clouds
of the objects. In recent years, 1D CNN has been used extensively for
such feature and sequence classification with high success Kiranyaz
et al. (2021). Our network has three 1D CNN layers, each followed by
batch normalization and ReLU layers. The three CNN layers after the
input have filter sizes of 3, 5, and 7 respectively, whereas the number
of filters in the first two layers is 128 and 64, respectively. In the third
CNN layer, the filters are set to the class count for ModelNet40 and
ModelNet10 datasets and 32 for the VesselMNIST3D and AdrenalM-
NIST3D datasets. After the three consecutive 1D CNN layers, we have a fully connected layer of size equal
to the number of classes. Next, the classification is done by applying a softmax function on the outputs of the
fully connected layer. Refer to Fig. 4. The time taken for classification is O(n+ v3 + v/ρ3), where n is the
size of the point cloud, v is the number of voxels in B, and ρ is the voxel-size used. See Appendix for a proof.

3 EXPERIMENTS

Settings. We have used six datasets to validate the efficacy of TACO-Netand they are ModelNet10/40
(by far the most popular benchmark for this problem), OmniObject3D (a real-world dataset consisting of
190 classes), ScanObjectNN (a real-world noisy dataset with 15 classes), and two real-world binary medical
datasets for further generalizability, namely VesselMNIST3D and AdrenalMNIST3D. More details about
these datasets are provided in the Appendix (Sec. 4.3.1). Our proposed TACO-Nethas achieved SOTA
accuracy in five out of these six test datasets.

6
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We have implemented all TDA-related portions of TACO-Net in Python using the giotto-tda pack-
age Tauzin et al. (2021). The experiments were run on a machine equipped with an Intel i9-12900K
processor, 32-GB of main memory, and a NVIDIA RTX 3060 GPU. For all the datasets, we evaluate the
performance on two main metrics: overall accuracy (OA - average accuracy % across all test cases) and mean
class accuracy (mAcc - mean accuracy % across all classes). These are the most common evaluation metrics
in object classification. For VesselMNIST3D, we also present the F1-score metric due to imbalance.

For ModelNet40, we have found the vector length 1728 to be the optimum in terms of OA. The exact number
of filtrations that corresponds to this length is 48, out of which 26 are height, one each from the four types:
density, dilation, erosion, and signed distance, and 18 are radial corresponding to the 18 centers c1, . . . , c18,
as described in Section 2 and shown in Fig. 3. Therefore, all the results presented below are with 1728-length
feature vectors. We have used the same vector length input for ModelNet10 as well. The optimum length
for VesselMNIST is 1152 using the two centers c1, c2, and for AdrenalMNIST it is 1584 using c1, . . . , c14.
Other relevant parameters and their values for TDA-related experiments are mentioned in Section 2.

We used MATLAB to implement the 1D CNN. We stopped our training early if the training loss had reached
0.005. Each configuration has been trained 5 times, and the average results are presented in the paper
unless specified otherwise. The learnable parameters for ModelNet40, ModelNet10, VesselMNIST, and
AdrenalMNIST are 0.72M, 0.71M, 0.50M, 0.66M, respectively. The parameters used in our experiments and
their values are listed in Table 1.

3.1 RESULTS

ModelNet10/40. First, we present the results of testing TACO-Net on ModelNet40 and 10 datasets. To
begin with, we first illustrate the empirical reason behind choosing 18 radial filtration centers along with
DEDS and height filters for the ModelNet40 dataset. This result is presented in Fig. 8(a). As can be seen,
with feature vector length 1728, i.e., 18 radial filtration filters, the OA is the highest. Although with the
different other feature lengths, the OA is close, but lower than the one with length = 1728. Next, we have
tested TACO-Net with different voxel sizes to create the 3D binary image from the given point cloud. We
have noticed that with a voxel size 0.05, the OA is the highest. With 0.03 and 0.07, the accuracy values
decrease to 98.61 (OA), 96.96 (mAcc), and 98.30 (OA) and 96.16 (mAcc), respectively.

Next, the benchmark results for both 40- and 10-class variants of the ModelNet dataset are presented in Tables
3 and 4 (in the Appendix), respectively. These results prove that our proposed TACO-Net framework achieves
state-of-the-art OA and mAcc accuracies for both these datasets. Notably, TACO-Net achieves 1.68% higher
OA than RotationNet, the current highest OA-achieving method on the ModelNet40 dataset. Further,
TACO-Net comprehensively outperformed the recent transformer-based models, e.g., PointMamba Liang
et al. (2024) and PointGPT Chen et al. (2023), among others. Our macro-averaged precision-recall curve (Fig.
8(b)) stays tightly clustered near (1, 1), showcasing near-perfect precision and recall across every class. This
level of consistency, even on minority classes, sets a new bar for robust, balanced multi-class performance.
Fig. 9 (refer to Appendix) shows the confusion matrix found with the best saved model.

Similarly, TACO-Net outperforms RotationNet in OA on the ModelNet10 dataset. Given the lower number
of classes available, it was expected that the proposed TACO-Net framework would achieve higher accuracies
in ModelNet10 than in ModelNet40. Not only was TACO-Net successful in meeting that expectation, it
yielded 99.52% OA and mAcc values. Most importantly, to the best of our knowledge, ours is the first
approach to push the classification accuracy beyond 99% on both ModelNet40 and ModelNet10. Altogether,
these results make this research work groundbreaking.

Real-world Datasets. To further validate real-world applicability, we evaluate TACO-Net on OmniOb-
ject3D Wu et al. (2023), a challenging benchmark featuring thousands of everyday objects captured under
realistic conditions. Despite its complexity and large class diversity, TACO-Net delivers the highest accuracy
of 58.90%, decisively outperforming heavyweight baselines including CurveNet, PointNet, PointNet++, and
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PCT: Point cloud transformer (see Table 5). We next evaluate TACO-Net on ScanObjectNN (OBJ_BG
variant), a notoriously challenging real-world benchmark characterized by heavy occlusions and background
clutter-conditions where many point-based methods struggle Uy et al. (2019). While not setting a new record,
TACO-Net achieves an impressive 93.94% overall accuracy, surpassing widely adopted baselines such as
PointNet Qi et al. (2017a) (73.3), SpiderCNN Xu et al. (2018) (77.1), PointNet++ Qi et al. (2017b) (82.3),
DGCNN Wang et al. (2019) (82.8), and even edging out advanced models like GDANet Xu et al. (2021)
(87.0), PointBERT Yu et al. (2022) (87.43), and PointGPT Chen et al. (2023) (93.39). This result underscores
TACO-Net’s ability to remain highly competitive against transformer and graph-based architectures in highly
cluttered, real-world scenarios.

Real-world Medical Data. For VesselMNIST Yang et al. (2020), we compared against some of the current
SOTA benchmarks for this dataset as shown in Table 6. When compared against the benchmarks presented in
Yang et al. (2020), TACO-Net performed better in terms of both F1 and mAcc. For example, the previous
highest F1-score of 0.90 for VesselMNIST was achieved by PointNet++ and PointCNN, whereas our mean
F1-score is 0.94 - an improvement of 4.44%. Similarly, for the mAcc metric, our average result is 95.28%,
whereas the prior best was 93.52 achieved by PointNet++ - an improvement of 1.88%.

For the AdrenalMNIST dataset, we used the benchmark provided in Yang et al. (2023) as our baseline. The
comparison results are presented in Table 7. The authors in Yang et al. (2023) have used different variations of
ResNet along with medical image-specific variants such as ACS Yang et al. (2021). Our proposed TACO-Net
outperformed all these benchmarks in the OA metric, as shown in the table. Notably, for the VesselMNIST3D
dataset, the difference in OA between ours and the current SOTA achieved using ResNet-18 + ACS is 4.58%.

Resiliency Against Corrupted Test Data. Noise resiliency in TACO-Net is achieved because topological
features, extracted via persistent homology, capture the global shape characteristics of objects rather than
relying on exact point positions. These features remain stable under small perturbations or noise, as persistent
homology emphasizes long-lived topological structures while ignoring short-lived, noise-induced artifacts.
Consequently, TACO-Net maintains high accuracy in most cases even when point clouds are corrupted,
as discussed below. To test the robustness of TACO-Net, we have used the standardized approach of
ModelNet40-C Sun et al. (2022), where the test set of ModelNet40 is perturbed by adding various common
types of corruptions. Note that the ‘uniform downsampling’ perturbation was not part of ModelNet40-C.

Two main differences between our implementation and ModelNet40-C are 1) we use 2048 × 3 size point
clouds, and 2) we do not apply any normalization after the perturbation is incorporated. The results for this
study are presented in Table 8. The first row presents the test results found by the model with the highest
test accuracy for clean ModelNet40 without any corruption. We use this saved model for inference on the
corrupted test dataset and report the results in Table 8. Two severity levels of data corruption are chosen from
Sun et al. (2022): 1 and 5, named Low and High, respectively, in our paper. For ‘uniform downsampling’, we
have removed 10 and 30% random points uniformly for low and high severity, respectively.

We see that TACO-Net is very robust against low-level perturbations - always achieves ≥ 94% OA except
for ‘impulse’, where the OA falls to 52.88%. As expected with high-level perturbations, TACO-Net shows
resiliency. In case of ‘impulse’, the OA more than halves, but for the others, it performs reasonably well - the
average OA being 68.65%. If the underlying shape changes significantly, then topological features become
very different from clean class signatures, and TACO-Net struggles to recognize corrupted point clouds.
Under the high-severity corruption, augmenting the training set with corrupted copies of randomly selected
20% of training instances lifts overall accuracy to 96.11% in the case of rotation, for example, substantially
outperforming the non-augmented model (49.39%). This demonstrates that a task-aligned augmentation
confers significant robustness to extreme pose variations without altering the core architecture.

Shape Retrieval. Our method achieves a new state-of-the-art retrieval performance with an mAP of 99.33
on ModelNet40, surpassing the strongest baseline Latformer (97.4) and all prior approaches (see summary
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results in Table 11 in the Appendix). Beyond accuracy, the framework demonstrates strong generalizability,
showing its effectiveness not only for classification but also for challenging tasks such as shape retrieval.

Note on efficiency. With voxel size ρ = 0.05 (our optimal configuration), the throughput of the TDA
feature generation pipeline is 5.3 point clouds/second, when the feature vector length was set to 1728 for
the ModelNet40 dataset. This number increased to 8.2 and decreased to 1.4 when ρ was increased to 0.07
or decreased to 0.03, respectively. However, as mentioned earlier, the test accuracy decreases in both cases.
However, on the bright side, due to the lightweight 1D CNN of TACO-Net, the training time is short (2.50
mins.) and class prediction is lightning-fast – achieving a throughput rate of 16, 454 point clouds/second.
Furthermore, Table 10 demonstrates that our proposed TACO-Netmodel achieves state-of-the-art accuracy
with the very few parameters (0.72M), highlighting its superior efficiency compared to prior methods.

Table 2: Ablation study on ModelNet40.

Variant OA mAcc

fe
at

ur
es DEDS only 96.52 93.76

H only 98.29 96.38
DEDS + H only 98.82 97.33
Entropy only 96.16 92.79

ne
t First two Conv1D 98.18 95.93

First Conv1D 94.76 90.70

Ablation Study. Our approach to studying the effect of
ablation is two-fold. First, using our proposed network (Fig.
4), we test different sets of topological features extracted from
a point cloud, i.e., using density, erosion, dilation, and signed
distance filtration (DEDS) only, height (H) filtration only, and
finally DEDS + H only (i.e., without any radial filtration). The
effect of using different radial filtration along with DEDS and H
together is already illustrated in Fig. 8(a) and discussed earlier.
In the next set of ablation studies, we use the best topological
features for ModelNet40, i.e., a vector length of 1728, while
testing the effect of deleting one CNN layer at a time. The
results are listed in Table 2. This study demonstrates that the features extracted via the H filtration are the
most effective, yielding over 98% OA, which outperforms all baselines while being 3.5x faster than the whole
pipeline. Similarly, when just entropy is used (without amplitude), vector generation is 2.2x faster while
maintaining 96.16% OA. This shows TACO-Net is not only accurate but also tunable for resource-constrained
scenarios. The finding further supports our rationale for employing 26 directional vectors, as outlined in
Sec. 2. Incorporating the DEDS features provides a slight improvement, but the gain is marginal. In contrast,
removing two CNN layers leads to a moderate decrease in 4.29% in accuracy. To highlight the effectiveness
of our 1D CNN for feature vector classification, we replace it with a heavier 2.2M-parameter transformer that
incorporates feature and positional embeddings, mixed self-attention, and a fully connected classifier. Despite
its complexity, this transformer yields only 62.20% accuracy on ModelNet40, underscoring the superiority
of our lightweight CNN design. On the other hand, XGBoost, a non-deep learning method also yielded
substantially lower OA of 81.35% (see Table 9). Taken together, these results provide strong justification for
our feature selection and network design choices.

4 CONCLUSION AND FUTURE WORK

3D object classification is an important task for autonomous systems. Furthermore, such classification can
become standard in automated diagnosis with 3D medical imaging. Computer vision researchers have made
significant advancements in this topic using various deep learning techniques in recent years. However, there
are still some challenges to address and open directions to explore. To this end, we have proposed a novel
framework, named TACO-Net, for 3D object classification. Our proposed approach takes a point cloud
of the object as input, converts it into a voxelized 3D binary image, extracts topological signatures from it
through various filtration techniques, and finally learns these features using a lightweight 1D CNN. Results
show that our proposed technique achieves near-perfect overall accuracy in popular 3D object classification
benchmark datasets, namely ModelNet40 and ModelNet10, while outperforming the current SOTA for these.
Further, when tested on two 3D medical datasets consisting of brain MRA and abdominal CT scan data,
TACO-Net, outperforms all the benchmarks provided in the literature, showcasing its strong generalizable
qualities. To enhance real-time performance, future work will focus on exploiting GPU parallelism to increase
throughput for the topological feature generation pipeline.
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ETHICS STATEMENT

This research poses minimal ethical risks, as it uses only publicly available benchmarks and anonymized
medical datasets. The work does not involve the collection of sensitive or personally identifiable data. Its
potential positive impacts include improving autonomous navigation, robotics, and medical diagnostics.
However, as with any object recognition system, there is a possibility of misuse in surveillance or military
applications, which warrants awareness and responsible deployment. Overall, the benefits to safety and
healthcare outweigh foreseeable risks.

REPRODUCIBILITY STATEMENT

We have provided the Python and MATLAB codebase as supplementary material in a ZIP file. The best
model (in MATLAB) has also been included for reproducing our numbers. The dataset details are provided in
the Appendix.
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APPENDIX

4.1 TACO-NET PIPELINE AND ILLUSTRATION OF CUBICAL PERSISTENCE

We present a diagram of the TACO-Net pipeline in Fig. 5.

Point cloud P

Height (26) Radial (27) Density (1) Dilation (1) Erosion (1) Sign. Dist.(1)

Cubical Pers.(26) Cubical Pers.(27) Cubical Pers.(1) Cubical Pers.(1) Cubical Pers.(1) Cubical Pers.(1)

Entropy [3]

Amplitude [33]
⊕(

)×26
Entropy [3]

Amplitude [33]
⊕

936-length
vector

972-length
vector

36-length
vector

36-length
vector

36-length
vector

36-length
vector⊕

2052-length vector

1D CNN1D CNN

Class Prediction

⊕ ⊕ ⊕ ⊕

Binary image B

Entropy [3]

Amplitude [33]
⊕(
)×27

Entropy [3]

Amplitude [33]
⊕ Entropy [3]

Amplitude [33]
⊕ Entropy [3]

Amplitude [33]
⊕

Figure 5: An illustration of the novel pipeline of TACO-Net. The numbers in the parentheses denote the
number of variants. For instance, ‘Height (26)’ implies that 26 variants of the height filtration have been used.
The integers inside the square braces denote vector length. For example, Entropy[3] implies that applying
entropy to cubical persistence yields a vector of length 3. Further, ⊕ denotes vector concatenation.

An illustrative example. We give an example of cubical persistence in Fig. 6(a-d).

A 2D grayscale image with pixels having their grayscale values in {0, 50, 100} is shown in (a). During
filtration, 0-pixels are considered first, then 50-pixels, and finally 100-pixels. In (b), K0 is shown; the 0-pixels
are added, resulting in three connected components, each comprising just one pixel. (c) K1: The 50-pixels
are added. Consequently, there is just one connected component that looks like the digit 6. In the previous
step, there were three, but now just one. So, three connected components took birth at 0, and two of them
died at 50. A hole takes birth inside K1. (d) K2: The 100-pixels are added. The hole obtained in the previous
step dies in this step.

In the homology dimension 0, there are two birth-death pairs (0, 50), (0, 50) since two connected components
died, and in dimension 1, there is exactly one (50, 100) since the hole formed at 50 and died at 100. Hence,
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the persistence (a multiset) contains three pairs. This is expressed pictorially in Fig. 7. In the end, there is just
one connected component that never dies.

100 100

100100100100

100 100

100100100

100 100

50 50

50 50 50

50

505050

0

0

0

(a) (b) (c) (d)

K0 K1 K2

Figure 6: Illustrating filtration for cubical persistence (here shown in 2D). Note that K0 ⊆ K1 ⊆ K2.

Figure 7: The persistence diagram corresponding to the filtration shown above. There are two overlapping
red dots for the two birth-death pairs (0, 50), (0, 50). The green dot corresponds to the pair (50, 100).

Rationale for the Amplitude Kinds.

In what follows, we provide an expansion on the amplitude discussion presented in Sec. 2, to provide insights
on their use.

p-Wasserstein Tauzin et al. (2021). The half-lifetime of a pair (bi, di) ∈ X is defined as di−bi
2 . The

Wasserstein amplitude of order p, denoted by W (X, p), is defined as the Lp norm of the vector of half-
lifetimes of the birth-death pairs in X . Hence, W (X, p) = (

∑
i

(
di−bi

2

)p
)1/p. For TACO-Net, we have

used p = 1, 2. We obtain 6 real numbers for this metric, since there are 3 homology groups and 2 values of p.
This metric aids in measuring the Lp norm of half-lifetimes, providing a stable (to diagram perturbations)
and tunable sensitivity to feature persistence. Using p = 1 emphasizes the aggregate contribution of many
moderate features, while p = 2 weights longer lifetimes, more strongly complementary views that improve
discrimination.
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Bottleneck Tauzin et al. (2021). The Bottleneck amplitude is denoted by B(X) = W (X,∞). We obtain 3
real numbers for this metric due to the three homology groups. This metric captures the single most persistent
topological structure, which often aligns with the dominant, category-defining shape cue. Its robustness to
small noise and invariance to minor diagram perturbations make it a strong separator when a few long-lived
features matter most.

Betti curve. Tauzin et al. (2021) The Betti curve of X is the function BC : R → N, such that BC(s) gives
the number of birth-pairs in X that contains s when every pair (bi, di) in X is treated as an interval. Two
amplitudes are obtained using the L1 and L2 norms. We obtain 6 real numbers for this metric, since there
are three homology groups and two norms. This metric helps summarize “how many features are alive"
across filtration values, yielding an interpretable 1D profile of topology over scale. The norms over this curve
provide compact, stable vectors that are efficient to learn with a 1D CNN while retaining multi-scale counts.

Landscape Bubenik & Dłotko (2017); Bubenik et al. (2015). For a birth-death pair (bi, di) ∈ X , let
f(bi,di) : R → [0,∞], be a piecewise linear function given in the following equation.

f(bi,di)(x) =


0 if x /∈ (bi, di)

x− bi if x ∈ (bi,
bi+di

2 ]

−x+ di if x ∈ ( bi+di

2 , di)

The persistence landscape of X is the sequence of functions λk : R → [0,∞], k = 1, 2, 3, . . . where λk(x)
is the k-th largest value of {f(bi,di)(x)}i. Further, λk(x) is set to 0 if the k-th largest value does not exist.
The parameter k is called the layer. For TACO-Net, we have used k = 1, 2. Four amplitudes are obtained
using L1 and L2 norms for both the values of k. We get 12 real numbers for this metric, since there are three
homology groups, two norms, and two distinct values of k. This metric encodes order-statistics of feature
prominence via layers λk, preserving more geometric detail than simple counts yet remaining Hilbert-space
friendly for averaging and norms. Using k = 1, 2 captures dominant and secondary structures, offering a
stable, rich functional summary that boosts class separability.

Heat kernel Reininghaus et al. (2015). Gaussians of standard deviation σ are placed over every point in X
and a negative Gaussian of σ on the mirror point across the diagonal line in the persistence diagram. Thus,
a real-valued function is obtained on R2. For TACO-Net, we have used σ = 0.15. We get 6 real numbers
for this metric, since there are three homology groups and two norms, L1, L2. This metric places (positive)
Gaussians on diagram points and (negative) mirrors across the diagonal, yielding a smooth, multi-scale
similarity that is robust to small birth/death shifts. This continuous embedding captures spatial arrangement
in the diagram and works well with standard norms; our σ = 0.15 balances noise-tolerance and sensitivity.

4.2 THEORETICAL ANALYSIS

Theorem 1. Let P be an n-element point cloud that needs to be classified by TACO-Net. Then, the time
taken for classification is O(n + v3 + v/ρ3), where v is the number of voxels in B and ρ is the voxel-size
used.

Proof. Initializing all voxels in B as inactive requires O(v) time. For each point in P , locating the corre-
sponding voxel in B takes O(1) time. Since |P | = n, the total time to prepare B is O(v + n).

From B, we generate 57 grayscale images using six filtration types: height, radial, density, dilation, erosion,
and signed distance. For the 26 height and 27 radial filtrations, each voxel requires a constant-time distance
computation, resulting in O(v) time per filtration. Thus, the total time for generating these 53 grayscale
images is O(57 · v) = O(v), including initialization. For the density filtration, each voxel must inspect
its neighborhood within a ball of radius r, which contains O(r3/ρ3) voxels. In TACO-Net, we set r =
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1, yielding a per-voxel cost of O(1/ρ3), and a total cost of O(v/ρ3). The remaining three filtrations,
dilation, erosion, and signed distance, can be computed in O(v) time each using efficient distance transform
algorithms Fabbri et al. (2008). Therefore, the total time for generating all 57 grayscale images is O(v(1 +
1/ρ3)).

Cubical persistence for a single grayscale image can be computed in O(v3) time using standard matrix
reduction techniques Wagner et al. (2011). For 57 images, the total cost is O(57 · v3) = O(v3). Each voxel
generates up to 27 cells (1 cube, 6 faces, 12 edges, 8 vertices), the building blocks of a cubical complex. Each
cell can belong to at most one persistence pair. Hence, the worst-case number of birth–death pairs is at most
27v = O(v).

Feature extraction from each cubical persistence involves computing persistent entropy and amplitude metrics.
Persistent entropy requires O(v) time per image. Wasserstein and Bottleneck amplitudes also take O(v) time.
The Betti curve kernel, evaluated over 100 filtration values, requires O(v) time per image. The persistence
landscape kernel, which involves sorting at each of 100 sampled values, incurs O(v log v) time. The heat
kernel, evaluated over 20 filtration values, takes O(v) time. Thus, the total time to generate the topological
features for one grayscale image is O(v log v). For the 57 images, time taken is O(57 · v log v) = O(v log v).

Since the 1D CNN model is fixed during inference, classification of the topological vector takes constant
time, i.e., O(1).

Combining all components, the overall time complexity of the pipeline is:

O(v + n) +O
(
v

(
1 +

1

ρ3

))
+O(v3) +O(v log v) +O(1) = O

(
n+ v3 +

v

ρ3

)
.

4.3 FURTHER EXPERIMENTAL DETAILS AND RESULTS

4.3.1 DATASETS

We have used the following six datasets to test the performance of the proposed TACO-Net framework.
• ModelNet40 Wu et al. (2015): It is one of the most popular benchmark datasets. The dataset comprises 40

classes, each consisting of CAD models of everyday objects. We used the official split, which consisted of
9,843 shapes for training and 2,468 for testing. For every shape, a random uniform sample of 2048 3D
points was extracted from these CAD objects for the classification task.

• ModelNet10: A smaller, 10-class version of ModelNet40 Wu et al. (2015) with 3991 train and 908 test
samples. Similar to ModelNet40, a 2048-element point cloud for each object was used in our experiments.

• OmniObject3D: A real-world point cloud object dataset, which is notoriously difficult to classify Wu et al.
(2023). With a large number of categories, it poses an extreme class-imbalance and inter-class similarity
challenge, making accurate classification significantly harder compared to smaller-scale benchmarks.
Unlike ModelNet10/40, there is no official train/test split available for this dataset. Therefore, we used an
80/20 split, without instance leakage.

• ScanObjectNN: The challenging real-world OBJ_BG variant is derived from scanned indoor scenes,
comprising (2309 train and 581 test) partial and noisy point clouds with backgrounds across 15 object
classes, often with multiple objects co-existing in cluttered environments Uy et al. (2019).For this, the voxel
size ρ = 0.03. The vector length is set to 1440, the visual reasoning for which is presented in Fig. 10.

• VesselMNIST3D: In Yang et al. (2020), the authors have introduced an open-access 3D intracranial
aneurysm dataset with 103 3D meshes from brain Magnetic Resonance Angiography (MRA). This dataset
has two classes: 1, 694 healthy vessel segments (V.) and 215 aneurysm segments (A.). The dataset has the
training, validation, and test set ratio of 7 : 1 : 2 Yang et al. (2023).
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• AdrenalMNIST3D: It is a CT scan dataset with two classes, consisting of shape masks from 1, 584 left and
right adrenal glands (i.e., 792 patients) Yang et al. (2023). The binarized images for the two medical datasets
are provided through the medmnist Python package and have a resolution of 28× 28× 28. Therefore,
our starting point is 3D binary images instead of point clouds for AdrenalMNIST3D and VesselMNIST3D.

(a) (b)

Figure 8: ModelNet40: (a) Change in OA/mAcc w.r.t. feature vector length (i.e., different number of radial
filtrations) and (b) Precision-recall curve for the best OA model.

Figure 9: Confusion matrix for the best OA model.
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ModelNet40
Method OA mAcc

3DShapeNets Wu et al. (2015) 84.7 77.3
PointNet Qi et al. (2017a) 89.2 86.2
MVCNN Su et al. (2015) 90.1 -
Ma et al. Ma et al. (2018) 91.05 -

KD-Network Klokov & Lempitsky (2017) 91.8 88.5
PointNet++ Qi et al. (2017b) 91.9 -
PointCNN Li et al. (2018b) 92.5 88.1

OctFormer Wang (2023) 92.7 -
GVCNN Feng et al. (2018) 93.1 -

PointNeXt Qian et al. (2022) 93.2 90.8
PointMamba Liang et al. (2024) 93.6 -

Point-Transformer Zhao et al. (2021) 93.7 90.6
Point-Bert Yu et al. (2022) 93.8 -
PointMLP Ma et al. (2022) 94.5 91.4

MHBN Yu et al. (2018) 94.7 93.1
PointGPT Chen et al. (2023) 94.9 -

Pointview-GCN Mohammadi et al. (2021) 95.4 -
VRN Ensemble Brock et al. (2016) 95.54 -

HGNN Feng et al. (2019) 96.6 -
RotationNet Kanezaki et al. (2019) 97.37 96.29

TACO-Net (Ours) 99.05 97.97

Table 3: Classification accuracy (%) results on ModelNet40 dataset.

Figure 10: ScanObjectNN dataset: Change in OA/mAcc w.r.t. feature vector length (i.e., different number of
radial filtrations).
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ModelNet10
Method OA mAcc

3DShapeNets Wu et al. (2015) 83.54 -
3D-GAN Wu et al. (2016) 91 -

VoxNet Maturana & Scherer (2015) 92 -
Primitive-GAN Khan et al. (2019) 92.2 -

ORION Sedaghat et al. (2017) 93.9 -
KD-Network Klokov & Lempitsky (2017) 94 93.5

MHBN Yu et al. (2018) 95 95
3DmFV-Net Ben-Shabat et al. (2018) 95.2 -

Point2Sequence Liu et al. (2019a) 95.3 95.1
A-CNN Komarichev et al. (2019) 95.5 95.3

RCNet-E Wu et al. (2019) 95.6 -
PANORAMA-ENN Sfikas et al. (2018) 96.85 -

VRN Ensemble Brock et al. (2016) 97.14 -
Grid-GCN Xu et al. (2020) 97.5 97.4

RotationNet Kanezaki et al. (2019) 98.9 -

TACO-Net (Ours) 99.52 99.52

Table 4: Classification accuracy (%) results on ModelNet10 dataset.

Method OA

DGCNN Wang et al. (2019) 44.8
PointNet Qi et al. (2017a) 46.6
PointNet++ Qi et al. (2017b) 40.7
RSCNN Liu et al. (2019c) 39.3
SimpleView Goyal et al. (2021) 47.6
GDANet Xu et al. (2021) 49.7
CurveNet Xiang et al. (2021) 50.0
PCT Guo et al. (2021) 45.9
RPC Ren et al. (2022) 47.2

TACO-Net (Ours) 58.9

Table 5: Classification accuracy (%) results on OmniObject3D dataset Wu et al. (2023).

4.3.2 COMPARISON WITH NON-DEEP LEARNING ALGORITHMS

We show that the proposed 1D CNN model thoroughly outperforms standard non-deep learning methods such
as XGBoost Chen & Guestrin (2016) and Random Forest classifiers. We chose the ModelNet40 dataset for
this test while using the topological feature vector length of 1728 as mentioned in the paper. For XGBoost
and Random Forest classifiers, we used Python’s xgboost and scikit-learn packages, respectively,
with default options.

The comparison result is presented in Table 9. Our proposed TACO-Net achieves 17.7% and 20.7%
higher accuracies than XGBoost and Random Forest, respectively. Notably, XGBoost required 74% more
training time than that of TACO-Net. On the other hand, the throughput of XGBoost was 2.75x faster
than TACO-Net. Overall, these results empirically demonstrate the superiority of the 1D CNN within the
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Figure 11: Change in performance with various radial center points and consequent feature vector lengths.

Table 6: VesselMNIST3D Yang et al. (2020): The
best mAcc (%) and F1-scores from Yang et al. (2020)
are reported along with our average results at the
bottom.

Network mAcc F1

PointNet++ Qi et al. (2017b) 93.52 0.90
SpiderCNN Xu et al. (2018) 92.59 0.87
SO-Net Li et al. (2018a) 91.50 0.88
PointCNN Li et al. (2018b) 92.38 0.90
DGCNN Wang et al. (2019) 90.67 0.86
PointNet Qi et al. (2017a) 81.62 0.69

TACO-Net (Ours) 95.28 0.94

Table 7: Overall accuracies (OA) in % for AdrenalM-
NIST3D (A3D) and VesselMNIST3D (V3D) across
different methods as benchmarked in Yang et al.
(2023) compared with TACO-Net.

Methods A3D V3D

ResNet-18 + 2.5D 77.2 84.6
ResNet-18 + 3D 72.1 87.7
ResNet-18 + ACS 75.4 92.8
ResNet-50 + 2.5D 76.3 87.7
ResNet-50 + 3D 74.5 91.8
ResNet-50 + ACS 75.8 85.8
auto-sklearn Feurer et al. (2015) 80.2 91.5
AutoKeras Jin et al. (2019) 70.5 89.4

TACO-Net (Ours) 80.54 97.38

proposed TACO-Net framework in learning meaningful representations for object classification from the
input topological vectors.
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Table 8: Accuracies (%) when trained on clean ModelNet40 and tested on perturbed ModelNet40 test set.

Low High

Perturbation OA mAcc OA mAcc

None (best model) – 99.15 98.37

Downsampling 99.11 98.34 85.21 83.09
Uniform 98.82 97.17 70.10 63.08
Gaussian 94.08 90.35 54.50 47.58
Upsampling 91.90 88.02 50.28 47.19
Rotation 97.49 95.93 49.39 45.00
Shear 98.74 97.82 61.91 62.89
FFD 98.70 97.69 76.34 71.16
RBF 99.07 98.02 83.47 77.07
Inverse-RBF 99.15 98.47 86.63 80.04
Impulse 52.88 41.80 24.19 18.82

Table 9: Comparison with XGBoost and Random Forest classifiers (dataset: ModelNet40)

Algorithm OA (%) Training Time (mins.) Test Throughput

Random Forest 78.35 0.55 18,985
XGBoost 81.35 4.35 61,700

TACO-Net (Ours) 99.05 2.50 16,454

Methods Param. (M)

PointNet Qi et al. (2017a) 3.5
PointNet++ Qi et al. (2017b) 1.5
MVTN Hamdi et al. (2021) 3.5
DGCNN Wang et al. (2019) 1.8
PointNeXt Qian et al. (2022) 1.4
PCT Guo et al. (2021) 2.9
Point-BERT Yu et al. (2022) 22.1
PointGPT Chen et al. (2023) 29.2
PointMamba Liang et al. (2024) 12.3

TACO-Net (Ours) 0.72

Table 10: Comparison of network parameters (in millions) of different models for the ModelNet40 dataset.
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Method Retrieval mAP

3D ShapeNets Wu et al. (2015) 49.2
Densepoint Liu et al. (2019b) 88.5
PVNet You et al. (2018) 89.5
MVCNN Su et al. (2015) 80.2
MLVCNN Yu et al. (2018) 92.2
MVTN Hamdi et al. (2021) 92.9
Latformer He et al. (2024) 97.4

TACO-Net (ours) 99.33

Table 11: Shape retrieval (mAP) results on ModelNet40.
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