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Abstract
In this paper, we study the problem of establish-
ing the accountability and fairness of transparent
machine learning models through monotonicity.
Although there have been numerous studies on
individual monotonicity, pairwise monotonicity
is often overlooked in the existing literature. This
paper studies transparent neural networks in the
presence of three types of monotonicity: individ-
ual monotonicity, weak pairwise monotonicity,
and strong pairwise monotonicity. As a means of
achieving monotonicity while maintaining trans-
parency, we propose the monotonic groves of neu-
ral additive models. As a result of empirical exam-
ples, we demonstrate that monotonicity is often
violated in practice and that monotonic groves of
neural additive models are transparent, account-
able, and fair.

1. Introduction
There has been growing public concern over the misuse of
artificial intelligence models in the absence of regulations,
despite the success of artificial intelligence (AI) and ma-
chine learning (ML) in many fields (Radford et al., 2019;
He et al., 2016; Chen & Guestrin, 2016). The European
Commission (EC) has proposed the Artificial Intelligence
Act (AIA) (EU2, 2021), which represents a significant first
step toward filling the regulatory void. Regulations regard-
ing artificial intelligence should consider transparency, ac-
countability, and fairness (Carlo et al., 2021; OCC, 2021).

Many efforts have been made to develop transparent ML
models (Rudin, 2019; Agarwal et al., 2021; Yang et al.,
2021; Tsang et al., 2020; Hastie, 2017; Caruana et al., 2015;
Lou et al., 2013). A transparent model facilitates the expla-
nation of how it makes decisions, therefore allowing us to

1Zu Chongzhi Center for Mathematics and Computa-
tional Sciences, Duke Kunshan University, Kunshan, Jiangsu,
China. Correspondence to: Dangxing Chen <dangx-
ing.chen@dukekunshan.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

easily verify conceptual soundness and fairness.

Nevertheless, conceptual soundness and fairness are not
necessarily guaranteed for ML models, even if they are
transparent. Our focus in this paper is on monotonicity, one
of the most important indicators. In recent years, monotonic
machine learning models have received extensive research
attention (Yanagisawa et al., 2022; Liu et al., 2020; Mi-
lani Fard et al., 2016; You et al., 2017; Potharst & Feelders,
2002; Duivesteijn & Feelders, 2008). These studies have led
to a more reasonable and fair approach to ML. The majority
of papers, however, focus on individual monotonicity, that
is, on the fact that a model is monotonic with a particular
feature. It was only recently pointed out that individual
monotonicity is insufficient to summarize all relevant infor-
mation (Chen & Ye, 2022; Gupta et al., 2020). It is also
important to consider pairwise monotonicity, a monotonic-
ity that considers monotonicity between different features.
Furthermore, most of these models are not necessarily trans-
parent.

In this paper, pairwise monotonicity is explored in more de-
tail, particularly in the context of transparent machine learn-
ing models. We divide pairwise monotonicity into two types:
the pairwise monotonicity introduced in (Chen & Ye, 2022)
is classified as weak pairwise monotonicity, and monotonic
dominance discussed in (Gupta et al., 2020) is classified as
strong pairwise monotonicity. Time and severity are the two
most common causes of pairwise monotonicity. In terms of
time, recent information should often be considered more
important than older information. For example, in credit
scoring, if there is one past due, the credit score should be
lower if the past due occurred recently. It is important to
take into account such pairwise monotonicity in order to
give people the opportunity to improve. It is important that
all individuals have the opportunity to succeed without be-
ing solely based on their past behaviors. In terms of severity,
some events are intrinsically more severe than others due to
the nature of justice. A felony, for example, is more serious
than a misdemeanor in criminal justice. It is important to
maintain pairwise monotonicity as justice is an important
component of fairness and a good society should have a
system of reward and punishment that is fair. Furthermore,
weak and strong pairwise monotonicity are distinguished
based on whether two features can only be compared at
the same magnitude. Strong pairwise monotonicity occurs
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when two features can be compared at any level. Justice
usually dictates the making of such comparisons.

Pairwise monotonicity is analyzed and its impact on sta-
tistical interactions is discussed. The traditional way to
check additive separability should incorporate monotonic-
ity constraints. Features with strong pairwise monotonicity
and diminishing marginal effects should not be separated,
even if data indicate otherwise. A new class of monotonic
groves of neural additive models (MGNAMs) is presented
to incorporate three types of monotonicity into transparent
neural networks. We demonstrate empirically that pair-
wise monotonicities frequently occur in a wide range of
fields, including finance, criminology, and healthcare. Over-
all, MGNAMs provide a transparent, accountable, and fair
framework.

2. Monotonicity
For problem setup, assume we have D × Y , where D is
the dataset with n samples and m features and Y is the
corresponding numerical values in regression and labels in
classification. We assume the data-generating process

y = f(x) + ϵ (1)

for regression problems and

y|x = Bernoulli(f(x)) (2)

for binary classification problems. For simplicity, we as-
sume x ∈ Rm. Then ML methods are applied to approxi-
mate f .

2.1. Individual Monotonicity

Throughout the paper, without loss of generality, we focus
on the monotonic increasing functions. Suppose α is the list
of all individual monotonic features and ¬α its complement,
then the input x can be partitioned into x = (xα,x¬α).
Then we have the following definition.
Definition 2.1. We say f is individually monotonic with
respect to xα if

f(xα,x¬α) ≤ f(x′
α,x¬α),

xα ≤ x′
α,∀xα,x

′
α,x¬α, (3)

where xα ≤ x′
α denotes the inequality for all entries, i.e.,

xαi
≤ x′

αi
,∀i.

Here is an example of individual monotonicity.
Example 2.2. In credit scoring, the probability of default
should increase as the number of past due increases.

For a differentiable function f , individual monotonicity with
respect to xα can be verified if

min
x,i

∂f(x)

∂xαi

≥ 0. (4)

2.2. Pairwise Monotonicity

There are some features that are intrinsically more impor-
tant than others in practice. Analog to (3), we partition
x = (xβ , xγ ,x¬). Without loss of generality, we assume
xβ is more important than xγ . As a result of multiple fea-
tures encountering pairwise monotonicity, we record them
in two lists u and v such that ui is more important than vi.
Lastly, we require all features with pairwise monotonicity
also satisfy individual monotonicity.

2.2.1. WEAK PAIRWISE MONOTONICITY

We classify the pairwise monotonicity introduced in (Chen
& Ye, 2022) as the weak pairwise monotonicity. The defini-
tion is given as follows.

Definition 2.3. We say f is weakly monotonic with respect
to xβ over xγ if

f(xβ , xγ + c,x¬) ≤ f(xβ + c, xγ ,x¬),

∀xβ , xγ s.t. xβ = xγ ,∀x¬,∀c ∈ R+. (5)

We give an example of weak pairwise monotonicity below.
Example 2.4. Functions should be weakly monotonic with
respect to features containing current information over fea-
tures containing past information. Following Example 2.2,
let xβ and xγ count the number of past dues within two
years and two years ago, then the probability of default is
weakly monotonic with respect to xβ over xγ .

Such monotonicity is considered weak due to the condi-
tion of xβ = xγ . Using this condition ensures that the
effects of features on the function are compared at the same
magnitude, and can therefore be viewed as a more general
definition.

Suppose f is differentiable and is weakly monotonic with
respect to ui over vi for all i in lists u and v, then the weak
pairwise monotonicity can be verifed as

min
x̃,i

(
∂f

∂xui

(x̃)− ∂f

∂xvi

(x̃)

)
≥ 0. (6)

where x̃ui
= x̃vi in x̃.

2.2.2. STRONG PAIRWISE MONOTONICITY

In addition to the weak pairwise monotonicity, there exists
a stronger condition of pairwise monotonicity. We classify
the monotonic dominance introduced in (Gupta et al., 2020)
as the strong pairwise monotonicity.

Definition 2.5. We say f is strongly monotonic with re-
spect to xβ over xγ if

f(xβ , xγ + c,x¬) ≤ f(xβ + c, xγ ,x¬),

∀xβ , xγ ,x¬,∀c ∈ R+. (7)
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The difference between strong/weak monotonicity is
whether the condition xβ = xγ is needed. Strong mono-
tonicity implies the impacts of increments of some features
are more important than others at any point. Note that the
features in Example 2.4 are only weakly pairwise mono-
tonic, not strongly pairwise monotonic. Adding more past
dues to the credit score will have a different impact based
on the number of past dues. Thus, current and past features
cannot be directly compared, unless they are of equal mag-
nitude. We provide an example of strong pairwise mono-
tonicity below.
Example 2.6. In criminology, an additional felony is always
considered more serious than an additional misdemeanor.
Therefore, the probability of recidivism should be strongly
monotonic with respect to felonies over misdemeanors.

Clearly, we have the following Lemma.

Lemma 2.7. If f is strongly monotonic with respect to xβ

over xγ , then f is also weakly monotonic with respect to xβ

over xγ .

For a differentiable function f , suppose f is strongly mono-
tonic with respect to ui over vi for all i in lists u and v, then
the strong pairwise monotonicity can be verifed as

min
x,i

(
∂f

∂xui

(x)− ∂f

∂xvi

(x)

)
≥ 0. (8)

Strong pairwise monotonicity is transitive and we provide
the following Lemma, where proof is provided in Ap-
pendix A.1.

Lemma 2.8. If f is strongly monotonic with respect to xβ

over xγ and xγ over xδ, then f is strongly monotonic with
respect to xβ over xδ .

3. Statistical Interactions
The study of transparent machine learning models has be-
come increasingly popular in order to improve explanation
and compliance with regulatory requirements. As a general
rule, we should avoid interactions between features if they
do not exist in order to maintain transparency in our mod-
els. One popular class of transparent models is generalized
additive models (GAMs) (Hastie, 2017) of the form

f(x) = α+

m∑
i=1

fi(xi). (9)

GAMs are transparent in that statistical interactions are not
included. (Agarwal et al., 2021; Caruana et al., 2015) have
shown that combination of GAMs with ML models achieved
high accuracy for many datasets. In this section, we discuss
whether we could incorporate three types of monotonicity
into GAMs.

3.1. Individual and Weak Pairwise Monotonicity for
GAMs

In GAMs, individual and weak pairwise monotonicity can
be easily enforced. Assume that f follows the GAM (9) of
the form and is differentiable. If f is individually monotonic
with respect to xα, then we need

f ′
α(x) ≥ 0, ∀x ∈ R. (10)

Similarly, if f is weakly monotonic with respect to xβ over
xγ , then the weak pairwise monotonicity requires that

f ′
β(x) ≥ f ′

γ(x),∀x ∈ R. (11)

Constraints such as these can be easily implemented (Chen
& Ye, 2022). Furthermore, without statistical interactions,
weak pairwise monotonicity is also transitive, as illustrated
in the following Lemma with proof in Appendix A.1.

Lemma 3.1. If f follows the GAM (9), f is weakly mono-
tonic with respect to xβ over xγ and xγ over xδ, then f is
weakly monotonic with respect to xβ over xδ .

3.2. Additive Separability

Statistical interactions can be determined by checking ad-
ditive separability. For simplicity, suppose there are two
groups: x can be split into two components xU and xV ,
with U ∪ V = D and U ∩ V = ∅, where D = {1, . . . ,m}.
Extending it to multiple groups is straightforward.

Definition 3.2. We say a function f with D is strictly addi-
tive separable for U and V if

f(x) = g(xU ) + h(xV ) (12)

for some functions g and h, U ∪ V = D, and U ∩ V = ∅.

Recently, statistical interactions have been studied exten-
sively in the existing literature (Sorokina et al., 2008; Tsang
et al., 2018b; 2020). Roughly speaking, we wish to know
whether there are interactions between groups U and V .
As implied from the name, the conclusion is often drawn
according to whether such interactions are statistically sig-
nificant. There are many different rules to check statistical
significance, as a simple example, we might consider a
threshold ϵ and check whether the accuracy deteriorates if
no interactions are assumed.

Verify additive separability:
|Acc(f(x))− Acc(g(xU ) + h(xV ))| < ϵ. (13)

If the criteria are satisfied, it seems reasonable to conclude
that there are no interactions between U and V . When it
comes to GAMs, if a GAM achieves similar accuracy as the
black-box ML model, we may conclude that no interaction
is necessary.
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3.3. Additive Separability in the Presence of
Monotonicity

In the context that monotonicity is required, we should add
the monotonicity into the requirement of additive separabil-
ity. That motivates us to modify the rule of Equation 13.

Verify additive separability with monotonicity:
|Acc(f(x))− Acc(g(xU ) + h(xV ))| < ϵ, (14)
f and g + h have required monotonicity.

For statistical interactions with monotonicity, monotonicity
constraints for g + h are essential, since we may not have
sufficient data for statistically significant results. In spite
of this, neglecting such a statistical interaction may have
catastrophic consequences. To illustrate our idea, consider
the following example of credit scoring.
Example 3.3. Suppose x = (xβ , xγ) where xβ counts the
number of past dues of more than 60 days and xγ counts
the number of past dues between 30 and 59 days. Assume f
calculates the probability of defaults. Clearly, f should be
strongly monotonic with respect to xβ over xγ . For simplic-
ity, consider the values of f in the region where xβ+xγ ≤ 2.
Suppose the true function f and an additive approximation
f̃ = f1 + f2 are given in Table 1. If there are no data for
x = (1, 1), then f̃ exactly fits f in all training data. Accord-
ing to the criteria (13), xβ and xγ can be well separated.
However, f̃ doesn’t have strong pairwise monotonicity and
f̃(1, 1) > f̃(2, 0) causes algorithmic unfairness. Further-
more, such rules could encourage people with x = (1, 1)
to wait for an additional month to pay back to change to
x = (2, 0) in order to obtain a lower probability of default,
and therefore higher credit score. Even worse, ML models
might not recognize this from data in the long run, as people
would intentionally avoid the state x = (1, 1). Data does
not reveal such a problem, thus it must be considered in
advance.

3.4. In the Presence of Strong Pairwise Monotonicity

We argue that there exists a common situation in which
features with strong pairwise monotonicity cannot be sepa-
rated, except in the trivial case. Let us consider the following
proposition, whereas the proof is in Appendix A.1.

Proposition 3.4. Suppose f takes the GAM form (9), f is
differentiable, individually monotonic with respect to xβ

and xγ , and strongly monotonic with respect to xβ over
xγ . If there exists x∗ such that f ′

β(x
∗) = 0, then fγ(x) is a

constant function.

According to the Proposition, under such additive forms, fγ
is a constant function, which can be inconsistent with reality.
Sadly, such phenomena are common in practice, and one
of the most common causes is diminishing marginal effects.

Table 1. Comparison between f with strong pairwise monotonic
features and an additive approximation f̃ = f1 + f2. f is strongly
monotonic with respect to xβ over xγ . f̃ violates strong pairwise
monotonicity at x = (1, 1).

TRUE f

2 0.4
1 0.3 0.35
0 0 0.2 0.3
xβ\xγ 0 1 2

f̃ = f1 + f2

2 0.4
1 0.3 0.5
0 0 0.2 0.3
xβ\xγ 0 1 2

We provide the definition below.
Definition 3.5. Suppose x = (xα,x¬α). We say a differ-
entiable function f has the diminishing marginal effect
(DME) with respect to xα if followings hold

1. ∂
∂xα

f(xα,x¬α) > 0

2. ∂2

∂x2
α
f(xα,x¬α) < 0

3. limxα→∞
∂

∂xα
f(xα,x¬α) = 0.

As a matter of fact, DMEs are quite common in practice.
For example, the Cobb-Douglas utility function, u(x, y) =
xay1−a with 0 < a < 1, is commonly used to illustrate
diminishing marginal utility in economics.

Proposition 3.4 suggests that DMEs may prevent us from
separating features with strong pairwise monotonicity. Fea-
tures with strong pairwise monotonicity that exhibits DME
patterns must be assumed to be non-separable at the time of
its emergence. Therefore, GAMs are insufficient to incorpo-
rate strong pairwise monotonicity in this case.

3.5. Implications on Binary Features

There is an exception to the previous analysis, which is
when features are binary since DMEs do not apply. In this
case, we have the following Lemma, whereas the proof is
left in Appendix A.1.
Lemma 3.6. For binary features, weak pairwise monotonic-
ity coincides with strong pairwise monotonicity.

In this case, features can still be additive separable in the
linear form. Consider the linear regression of the following
form for simplicity

f(x) = α+

m∑
i=1

βixi.
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Suppose f is monotonic with respect to xγ over xδ, then
we require βγ > βδ, and the additive separability can be
achieved.

4. Monotonic Groves of Neural Additive
Models

There has been an increasing demand for transparent models
recently. In this direction, Neural additive models (NAMs)
(Agarwal et al., 2021) and its monotonic version (Chen &
Ye, 2022) provide the most transparent neural networks by
avoiding statistical interactions, and have been very suc-
cessful. NAMs have assumed that each fi in Equation (9)
is parametrized by neural networks (NNs). Despite their
success, they cannot handle strong pairwise monotonicity,
as discussed above. We aim to develop a new model that
will maintain transparency to the greatest extent possible,
in the manner of NAMs, as well as incorporate strong pair-
wise monotonicity. Thus, we consider a more general form,
namely the groves of neural additive models (GNAMs),
similar to (Sorokina et al., 2008),

f(x) = α+
∑

p:p∈P

fp(xp) +
∑

q:q∈Q

fq(xq), (15)

fp and fq are parametrized by NNs. There exists five types
of features:

• Nonmonotonic features

• Features with only individual monotonicity

• Features with only weak pairwise monotonicity

• Features with only strong pairwise monotonicity

• Features with both strong and weak pairwise mono-
tonicity

The first three types of features are trained by 1-dimensional
functions fp, just like monotonic NAMs (MNAMs) (Chen
& Ye, 2022). Different from MNAMs, xq can be higher-
dimensional. For the last two types, when there is strong
pairwise monotonicity involved, features with pairwise
monotonicity should be grouped together in q. Note we
group features with both strong and weak pairwise mono-
tonicity to avoid unfair comparisons. Detailed explanations
can be found in Appendix A.2.

Regularized algorithms are used to enforce monotonicity.
In GNAMs’ architecture, motivated by conditions (4), (6),
and (8), we consider the optimization problem:

min
Θ

ℓ(Θ) + λ1h1(Θ) + λ2h2(Θ) + λ3h3(Θ), (16)

where ℓ(Θ) is the mean-squared error for regressions and
log-likelihood function for classifications, and

• Individual monotonicity: suppose α is the list of indi-
vidual monotonic features, then

h1(Θ) =
∑
α∈α

∫
Rm

max

(
0,−∂f(x;Θ)

∂xα

)2

dx.

• Weak pairwise monotonicity: suppose u and v are
weak pairwise monotonic lists such that f is weakly
monotonic with respect to ui over vi, then

h2(Θ) =

|u|∑
i=1

∫
Rm−1

max (0,∆f(x̃i,Θ))
2
dx̃i

where

∆f(x̃i,Θ) = −∂f(x̃i;Θ)

∂xui

+
∂f(x̃i;Θ)

∂xvi

and xui = xvi in x̃i.

• Strong pairwise monotonicity: suppose y and z are
strong pairwise monotonic lists such that f is strongly
monotonic with respect to yi over zi, then

h3(Θ) =

|y|∑
i=1

∫
Rm

max (0,∆fi(x,Θ))
2
dx

where

∆fi(x,Θ) = −∂f(x;Θ)

∂xyi

+
∂f(x;Θ)

∂xzi

.

In the GNAM’s architecture (15), computational dimen-
sions can be reduced. For example, when calculating partial
derivatives for features in the group q, it is sufficient to
evaluate ∂fq instead of ∂f . In practice, we replace the in-
tegral with the equispaced discrete approximations. In the
optimization procedure, we also replace all max(0, ·) with
max(ϵ, ·).

We gradually increase λ1, λ2, and λ3 until penalty terms
vanish. The two-step procedure is summarized in Algo-
rithm 1. We refer to the GNAM that satisfies all required
monotonic constraints (3), (5), and (7) as the monotonic
groves of neural additive model (MGNAM).

5. Empirical Examples
This section evaluates the performance of models for a vari-
ety of datasets in different fields, including finance, crimi-
nology, and health care. We compare fully-connected neural
networks (FCNNs), neural additive models (NAMs), mono-
tonic neural additive models (MNAMs), and monotonic
groves of neural additive models (MGNAMs). For MNAMs,
strong pairwise monotonicity is replaced by weak pairwise
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Algorithm 1 Monotonic Groves of Neural Additive Model
Initialization: λ1 = λ2 = λ3 = 0, the architecture of
the GNAM (P and Q)
Train a GNAM by (16)
while min(h1, h2, h3) > 0 do

Increase λi if hi > 0
Retrain the GNAM by (16).

end while

Table 2. Model performance of the GMSC dataset. All ML models
perform similarly.

MODEL/METRICS CLASSIFICATION ERROR AUC

FCNN 6.6% 79.5%
NAM 6.6% 79.8%
MNAM 6.6% 80.0%
MGNAM 6.5% 80.2%

monotonicity. We use FCNNs to check the accuracy of
black-box ML models and NAMs/MNAMs for visualiza-
tions. We do not consider other models here as the general
comparison of accuracy is not our focus, but the conceptual
soundness and fairness. More details of the dataset, models,
and experiments setup are provided in Appendix A.3.

5.1. Finance - Credit Scoring

In credit scoring, statistical models are used to assess an
individual’s creditworthiness. A popularly used dataset is
the Kaggle credit score dataset 1. In this dataset, we have
included three delinquency features that quantify the number
of past dues and their duration: 30-59 days, 60-89 days, and
90+ days. To demonstrate the strong pairwise monotonicity
of this dataset, we focus on these three features. Without
loss of generality, we denote them as x1, x2, and x3. When
an additional past due exceeds 90 days, the system should
take it much more seriously than when it exceeds 60-89
days, which should take it much more seriously than when it
exceeds 30-59 days. We, therefore, impose strong pairwise
monotonicity on this order. In the event that such strong
pairwise monotonicity is violated, customers with longer
past dues could have a higher credit score, thereby causing
algorithmic unfairness. In addition, customers with shorter
past dues may wish to delay their payments in order to
increase their credit score.

A summary of the model performance is provided in Ta-
ble 2. There is no significant difference in accuracy between
the different methods, indicating that transparent neural
networks are sufficient for this dataset.

Next, we evaluate conceptual soundness and fairness. For

1https://www.kaggle.com/c/GiveMeSomeCredit/overview

Table 3. Function values for x1, x2, x3 by the MNAM in the
GMSC dataset. f is weakly monotonic with respect to x3 over x2

and x2 over x1. Individual and weak pairwise monotonicity are
preserved.

f\x 0 1 2
f1 0 0.8 1.0
f2 0 1.4 1.7
f3 0 1.7 2.2

simplicity, we focus on the number of past dues in each
period that are less than or equal to two, that is, 0 ≤
x1, x2, x3 ≤ 2. We will begin by examining the result
of the NAM since it is straightforward to visualize. A com-
parison of the associated functions is provided in Figure 1.
The pairwise monotonicity is clearly violated when there is
more than one past due. For example, the feature with 30-59
days past due becomes more important than the feature with
60-89 days past due. Then, we evaluate the MNAM with
function values in Table 3. Both individual monotonicity
and weak pairwise monotonicity are satisfied. But when
statistical interactions are involved for large x, the strong
pairwise monotonicity is violated. As an example, consider
an applicant who has three past dues, with x3 = 1. If
(x1, x2, x3) = (0, 2, 1), then it should be punished more
severely than (x1, x2, x3) = (1, 1, 1); however, according
to the MNAM, f1(0) + f2(2) + f3(1) = 3.4, which is less
than f1(1) + f2(1) + f3(1) = 3.9. Therefore, based on
the MNAM, for the person with (0,1,1), if the applicant did
not pay for one month and received (1,1,1), then he or she
should wait and pay one payment in an additional month to
achieve (0,2,1) for a higher credit score (lower probability
of default). Clearly, the fairness of this situation has been
violated.

We then examine the result of the MGNAM. We are inter-
ested in knowing if delinquency features can be separated
additively. We plot the marginal probability of default as
a function of x1 − x3 in Figure 2. The presence of DMEs
is evident. By Proposition 3.4, we cannot separate these
three features additively and therefore group them together.
The values of fq(x1, x2, x3) calculated by MGNAM are
shown in Table 4. The table provides confidence to model
users by verifying all monotonicity is achieved. It should be
emphasized that without satisfying monotonicity, even the
most accurate ML model will not be accepted. Furthermore,
the transparent nature of the MGNAM makes it easier to
verify conceptual soundness and fairness, which are difficult
to achieve with black-box machine learning models.

5.2. Criminal Justice - COMPAS

The COMPAS scoring system was developed to predict
recidivism risk and has been scrutinized for its racial bias
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90+ days
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30-59 days

Figure 1. Comparison of functions associated with the number of
past dues in different periods by the NAM for the GMSC dataset.
Monotonicity is violated between 30-59 days and 60-89 days.

(Angwin et al., 2016; Dressel & Farid, 2018; Tan et al.,
2018). In 2016, ProPublica published recidivism data for
defendants in Broward County, Florida (Pro, 2016). We
focus on the simplified cleaned dataset provided in (Dressel
& Farid, 2018). Race and gender unfairness have been
extensively studied in the past (Foulds et al., 2020; Kearns
et al., 2019; 2018; Hardt et al., 2016). Our focus is on
the potential unfairness associated with types of offenses.
Specifically, a felony is considered more serious than a
misdemeanor. Without loss of generality, assume x1 counts
the number of past misdemeanors and x2 counts the number
of past felonies. Due to this, we ask that the probability of
recidivism be strongly monotonic with respect to x2 over
x1. Criminals may consider turning a misdemeanor into a
felony in the future if this strong pairwise monotonicity is
violated.

Model performance is summarized in Table 5. The perfor-
mance of all methods is similar. In this regard, algorithmic
fairness is more important than accuracy when it comes to
the dataset.

Next, we evaluate conceptual soundness and fairness. For
simplicity’s sake, we restrict ourselves to a maximum of
three charges per type. Regarding the architecture of the
MGNAM, the diminishing marginal effect is clearly ob-
served for the felony in Figure 3, therefore we should group
the felony and misdemeanor together, based on Proposi-
tion 3.4. Due to the fact that there are only two features in
the group, function values are calculated and compared in
tables 6. For small values of x1 and x2, functions behave
reasonably in the NAM. For larger values, it immediately vi-
olates pairwise monotonicity. The individual monotonicity
of x2 is violated when the value of x1 is fixed. Further-
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Figure 2. Marginal probability of defaults with respect to x1 − x3

in the GMSC dataset. Diminishing marginal effects are observed.

Table 4. Function values for x1, x2, x3 by the MGNAM in the
GMSC dataset. f is strongly monotonic with respect to x3 over
x2 and x2 over x1. Monotonicity is preserved.

x3 = 0
x1\x2 0 1 2
0 0 1.7 2.3
1 1.7 2.3 2.8
2 2.3 2.8 3.2
x3 = 1
x1\x2 0 1 2
0 2.2 2.7 3.2
1 2.7 3.1 3.5
2 3.1 3.5 3.7
x3 = 2
x1\x2 0 1 2
0 3.1 3.4 3.7
1 3.4 3.6 3.8
2 3.6 3.8 3.9

more, the function contribution is only 0.37 when there are
three past felonies (x2 = 3), whereas the function value
is 0.65 when there is one felony and one misdemeanor
(x1 = x2 = 1). Compared to the first case, the value
is almost doubled, which is a serious violation. Then, we
evaluate the MNAM. Both individual monotonicity and
weak pairwise monotonicity are satisfied. But when statis-
tical interactions are involved for large x, the strong pair-
wise monotonicity is violated. Consider the example of
(x1, x2) = (0, 2) which should be punished more severely
than (1, 1). However, according to the MNAM, the value
of the function at (0, 2) is 0.37, which is less than the value
at (1, 1) as 0.50. Consequently, a person who commits one
felony and one misdemeanor will be punished more severely
than a person who commits two felonies. There is a seri-
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Table 5. Model performance of the COMPAS dataset. All ML
models perform similarly.

MODEL/METRICS CLASSIFICATION ERROR AUC

FCNN 33.8% 71.9%
NAM 34.1% 71.8%
MNAM 33.5% 71.7%
MGNAM 34.3% 71.9%

ous violation of the principle of fairness in this situation.
Additionally, if someone with one felony commits another
crime, he or she may consider it to be a felony rather than
a misdemeanor, leading to difficulties in society. In our
model, this issue has been avoided, since the value of the
function at (0, 2) is 0.54, which is larger than 0.53 at (1, 1).
There are many other similar examples of violations. In the
absence of such strong pairwise monotonicity, the algorithm
should not be used.
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Figure 3. Marginal probability of recidivism with respect to the
number of felonies in the COMPAS dataset. The diminishing
marginal effect is observed.

5.3. Healthcare - Heart Failure Clinical Records

This dataset (Ahmad et al., 2017; Chicco & Jurman, 2020)
contains the medical records of 299 patients who had heart
failure, collected during their follow-up period, where each
patient profile has 13 clinical features. This study aims to
predict the survival of patients suffering from heart failure.
Conceptual soundness is a very important aspect of health
datasets. With limited dataset, machine learning models are
very easy to overfit, which can be mitigated by imposing
constraints. In the case that one needs to determine the
priority of patients, then fairness is also a very important
factor. For this dataset, we focus on four features: smoking,

Table 6. Function values for x1, x2 by the MNAM and MGNAM
of the COMPAS dataset. There are multiple violations of mono-
tonicity for the NAM, for example, between (2, 2) and (2, 3), and
between (0, 3) and (1, 1). Violations are also observed for the
MNAM, for example, between (0, 2) and (1, 1). The MGNAM
preserves monotonicity.

MGNAM
x1\x2 0 1 2 3
0 0 0.35 0.54 0.56
1 0.21 0.53 0.56 0.56
2 0.49 0.55 0.56 0.56
3 0.55 0.56 0.56 0.56
NAM
x1\x2 0 1 2 3
0 0 0.41 0.40 0.37
1 0.24 0.65 0.65 0.62
2 0.32 0.72 0.72 0.69
3 0.33 0.74 0.73 0.70
MNAM
x1\x2 0 1 2 3
0 0 0.33 0.37 0.37
1 0.17 0.50 0.54 0.54
2 0.19 0.53 0.57 0.57
3 0.20 0.53 0.57 0.57

Table 7. Model performance of the heart dataset. All ML models
perform similarly.

MODEL/METRICS CLASSIFICATION ERROR AUC

FCNN 20.3% 87.0%
NAM 18.9% 89.8%
MGNAM 17.6% 90.6%

anemia, high blood pressure, and diabetes. Without loss of
generality, we denote them as x1, x2, x3, and x4. Anemia,
high blood pressure, and diabetes are considered to be more
serious health risks than smoking. Thus, f should be mono-
tonic with respect to x2 − x4 over x1. Due to the fact that
they are all binary features, strong monotonicity is the same
as weak monotonicity, by Lemma 3.6.

A summary of the results is provided in Table 7. Since
the NAM performs similarly to the FCNN and features
associated with pairwise monotonicity are only binary, we
do not consider interactions, and the MGNAM coincides
with the MNAM. The MGNAM also has a similar level of
accuracy.

Next, we evaluate conceptual soundness and fairness. For
blood and diabetes in the NAM, both individual and pair-
wise monotonicity are violated, as shown in Figure 4 and
Figure 5. This problem has been avoided by MGNAM. Ac-
cording to the NAM, high blood pressure and diabetes are
actually beneficial for survival. Furthermore, smoking is
more dangerous than both of them.
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Figure 4. Comparison of blood and smoking functions by the NAM
and the MGNAM for the heart dataset. The individual and pairwise
monotonicity are both violated by the NAM.
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Figure 5. Comparison of diabetes and smoking functions by the
NAM and the MGNAM for the diabetes dataset. The individual
and pairwise monotonicity are both violated by the NAM.

6. Related work
Monotonic Models: Most of previous work (Yanagisawa
et al., 2022; Liu et al., 2020; Milani Fard et al., 2016; You
et al., 2017) focus on individual monotonicity. Weak pair-
wise monotonicity is considered in (Chen & Ye, 2022) and
strong pairwise monotonicity is considered in (Gupta et al.,
2020). Our paper has considered three types of monotonic-
ity.

Transparent Models: There has been enormous literature
on designing transparent machine learning models. (Agar-
wal et al., 2021; Chen & Ye, 2022; Yang et al., 2021; Lou
et al., 2012) starts with transparent generalized additive
models. Another direction specifies neural network models
based on statistical interactions (Janizek et al., 2021; Tsang
et al., 2018b; 2020; 2018a). However, these approaches

haven’t yet included the discussion between monotonicity
and transparency.

7. Conclusion
In this paper, we analyze three types of monotonicity and
propose monotonic groves of neural additive models (MG-
NAMs) for transparency and monotonicity.

There are many avenues for future directions. First, the reg-
ularized algorithm with discretized integrals in the penalty
functions in order to enforce monotonicity. It is possible
to achieve high accuracy with continuous features by using
a large number of points, however, certification is not yet
available for three types of monotonicity. Second, there are
many applications in which these integrals are appropriate
when the dimensions of pairwise monotonic features are
small. Nevertheless, there is the possibility of having a large
collection of pairwise monotonic features in some contexts.
In the future, we plan to investigate possible fast algorithms
for implementing pairwise monotonicity. Third, in the spirit
of neural additive models, we keep MGNAM architectures
as simple as possible to preserve the transparency of mod-
els. There is, however, a possibility that some datasets will
exhibit other interactions. The detection of statistical inter-
actions will be studied in the future in the presence of three
types of monotonicity. Further, conjoint measurement and
multiple criteria decision analysis (Bouyssou & Pirlot, 2016;
Grabisch & Labreuche, 2018) are also concerned with trans-
parency when dealing with complex statistical interactions.
The inclusion of some analysis will be of interest.
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A. Appendix
A.1. Proof

Proof of Lemma 2.8. We partition x = (xβ , xγ , xδ,x¬), based on Definition 2.5, we have

f(xβ , xγ + c, xδ,x¬) ≤ f(xβ + c, xγ , xδ,x¬), (17)
f(xβ , xγ , xδ + c,x¬) ≤ f(xβ , xγ + c, xδ,x¬), (18)

∀xβ , xγ , xδ,x¬,∀c ∈ R+. (19)

These imply that

f(xβ , xγ , xδ + c,x¬) ≤ f(xβ + c, xγ , xδ,x¬). (20)

Thus, we conclude.

Proof of Lemma 3.1. If f is weakly monotonic with respect to xβ over xγ and xγ over xδ , we have

f ′
β(x) ≥ f ′

γ(x), f
′
γ(x) ≥ f ′

δ(x), ∀x ∈ R. (21)

Therefore, we have f ′
β(x) ≥ f ′

δ(x), ∀x ∈ R.

Proof of Proposition 3.4. f has the form (9), f is differentiable, and is strongly monotonic with respect to xβ over xγ ,
therefore

min
x

f ′
β(x) ≥ max

x
f ′
γ(x) ≥ 0. (22)

where we have assumed monotonically increasing without loss of generality in the content. Now at x∗, f ′
β(x

∗) = 0.
Therefore, f ′

γ(x) = 0,∀x, and fγ(x) is a constant function.

Proof of Lemma 3.6. We partition x = (xβ , xγ ,x¬), where xβ and xγ are binary. Suppose f is weakly monotonic with
respect to xβ over xγ , then we have

f(0, 1,x¬) ≤ f(1, 0,x¬). (23)

Note this coincides with the inequality required for strong pairwise monotonicity for the binary feature. Strong pairwise
monotonicity implies weak pairwise monotonicity based on Lemma 2.7.

A.2. Remarks about Architectures of MGNAMs

Remark A.1. Additional consideration should be given to the case in which there is a mixture of strong and weak pairwise
interactions. Suppose f is strongly monotonic with respect to xδ over xη , we group them together as xβ . Consider the case
for x = (xβ , xγ), where f is weakly monotonic with respect to xη in xβ over xγ , then we shouldn’t separate xβ and xγ

as there will be some unfair comparisons. More specifically, xβ can take different choices of values, whereas xγ is only
one-dimensional. It follows that if there is strong pairwise monotonicity involved, then all pairwise related features should
be grouped together. As a concrete example, let xδ count the number of past dues with 60+ days within one year, xη count
the number of past dues with 30-59 days within one year, and xγ counts the number of past dues with 30-59 days one
year ago. As there is strong pairwise monotonicity between xδ and xη, we group them together. Suppose now we take the
additive form that

f(x) = g(xδ, xη) + h(xγ), (24)

for some differentiable functions g and h. The weak pairwise monotonicity between xη and xγ would requires that

∂

∂xη
g(xδ, y) ≥

∂

∂xγ
h(y), ∀y, xδ. (25)

Note g is impacted by values of xδ and h is not. This is inconsistent with our intention and is an unfair comparison.
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A.3. Empirical Examples

For all our experiments, the dataset is randomly partitioned into 75% training and 25% test sets. All neural networks contain 1
hidden layer with 2 units, logistic activation, and no regulation. We monitored the model selection cross-validation empirical
results and observe no obvious improvement in accuracy based on in/out-of-sample results, except for the healthcare dataset
due to insufficient data. We tested models with up to 20 hidden units and two hidden layers. No obvious improvement in
accuracy was observed. Additionally, we checked existing literature or public codes online; our accuracy is comparable.
For accuracy, we check classification errors and the area under the curve (AUC). The code is built and modified based on
(Tshitoyan, 2023).

A.3.1. FINANCE - CREDIT SCORING

A popularly used dataset is the Kaggle credit score dataset 2. For simplicity, data with missing variables are removed. Past
dues greater than four times are truncated. Further careful data cleanings could potentially improve model performance but
are not the primary concern of this paper. Among the total 120969 observations, 8,357 (6.95%) relate to the cardholders
with default payments. This shows that the data are seriously imbalanced. The dataset contains 10 features as explanatory
variables:

• x1: Total balance on credit cards and personal lines of credit except for real estate and no installment debt such as car
loans divided by the sum of credit limits

• x2: Age of borrower in years

• x3: Number of times borrower has been 30-59 days past due but no worse in the last 2 years

• x4: Monthly debt payments, alimony, and living costs divided by monthly gross income

• x5: Monthly income

• x6: Number of open loans (installments such as car loan or mortgage) and lines of credit (e.g., credit cards)

• x7: Number of times borrower has been 90 days or more past due

• x8: Number of mortgage and real estate loans including home equity lines of credit

• x9: Number of times borrower has been 60-89 days past due but no worse in the last 2 years

• x10: Number of dependents in the family, excluding themselves (spouse, children, etc.)

• y: Client’s behavior; 1 = Person experienced 90 days past due delinquency or worse

The feature age is further excluded to avoid potential discrimination.

A.3.2. CRIMINAL JUSTICE - COMPAS

COMPAS is a proprietary score developed to predict recidivism risk, which is used to guide bail, sentencing, and parole
decisions. It has been criticized for racial bias(Angwin et al., 2016; Dressel & Farid, 2018; Tan et al., 2018). A report
published by ProPublica in 2016 provided recidivism data for defendants in Broward County, Florida (Pro, 2016). We focus
on the simplified cleaned dataset provided in (Dressel & Farid, 2018). Three thousand and fifty-one (45%) of the 7,214
observations committed a crime within two years. This study uses a binary response variable, recidivism, as the response
variable. The dataset here contains nine features, which were selected after some feature selection was conducted.

• x1: Races include White (Caucasian), Black (African American), Hispanic, Asian, Native American, and Others

• x2: Sex, male or female

• x3: Age

2https://www.kaggle.com/c/GiveMeSomeCredit/overview
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• x4: Total number of juvenile felony criminal charges

• x5: Total number of juvenile misdemeanor criminal charges

• x6: Total number of non-juvenile criminal charges

• x7: A numeric value corresponding to the specific criminal charge

• x8: An indicator of the degree of the charge: misdemeanor or felony

• x9: An numeric value between 1 and 10 corresponds to the recidivism risk score generated by COMPAS software (a
small number corresponds to a low risk, and a larger number corresponds to a high risk)

• y: Whether the defendant recidivated two years after the previous charge

To avoid discrimination, we further exclude races and sexes. The COMPAS score is also excluded as it is not the focus of
this study and is correlated with other features, making its interpretation more difficult. As there are too few samples, we
truncate the number of juveniles exceeding three. Otherwise, if monotonicity is requested, NN functions will become flat,
which is not useful.

A.3.3. HEALTHCARE - HEART FAILURE CLINICAL RECORDS

This dataset (Ahmad et al., 2017; Chicco & Jurman, 2020) focuses on the prediction of patients’ survival with heart failure
in 2015. In total, there are 299 patients. The concept of fairness may be relevant here, for example, if doctors are required to
decide which operation should be performed first based on the patient’s condition. Death is used as the response variable in
this study. This dataset contains a total of 12 features.

• x1: Age

• x2: Anaemia, a decrease of red blood cells or hemoglobin

• x3: High blood pressure, if the patient has hypertension

• x4: Creatinine phosphokinase

• x5: If the patient has diabetes

• x6: Ejection fraction, percentage of blood leaving the heart at each contraction

• x7: Platelets in the blood (kiloplatelets/mL)

• x8: Sex

• x9: Level of serum creatinine in the blood (mg/dL)

• x10: Level of serum sodium in the blood (mEq/L)

• x11: If the patient smokes or not

• x12: Time, follow-up period (days)

• y: Death event, if the patient deceased during the follow-up period
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