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ABSTRACT

Automotive aerodynamic design relies simultaneously on global metrics (e.g.,
drag coefficient Cd) and local flow field information (e.g., surface pressure and
wall shear stress). While the former dictates overall fuel efficiency, the latter in-
forms detailed design and performance optimization. Existing deep-learning sur-
rogates typically focus on either global or local predictions individually, failing
to optimize both tasks jointly, thus limiting their effectiveness in iterative design
processes. To address this, we propose UniAero, a unified framework that jointly
predicts Cd and dense surface fields from 3D automotive geometry. UniAero
combines (i) a Physically Stratified Mixture-of-Experts (Phys2MoE) with scale-
sensitive experts and physics-aware gating for multi-task, multi-scale learning;
(ii) Serialized Patch Attention to process large meshes efficiently while preserving
long-range interactions; and (iii) a hierarchical encoder with Geometry-aware Po-
sition Encoding (GPE) to capture subtle shape cues. Experiments on three indus-
trial datasets demonstrate that, by explicitly leveraging the inherent coupling be-
tween global and local aerodynamic phenomena through joint modeling. UniAero
reduces drag error by 12% and improves local-field accuracy by 16% over strong
single-task baselines, with ∼1 s inference per vehicle on a single GPU, far faster
than CFD simulations. With its superior accuracy, speed, and coherence, UniAero
holds significant promise for automotive aerodynamic design. The code is avail-
able at https://anonymous.4open.science/r/ICLR2026UniAero.

1 INTRODUCTION

Automotive aerodynamics significantly impacts vehicle fuel efficiency, driving stability, and overall
design quality, making it a critical optimization task in automotive engineering. Traditionally, high-
fidelity computational fluid dynamics (CFD) simulations are employed to predict global metrics
such as drag coefficient Cd, as well as local flow fields like surface pressure and wall shear stress.
However, CFD simulations require extensive computational resources, often running for hours or
even days on large computing clusters, severely limiting rapid design iterations.

Effective aerodynamic design demands rapid and accurate predictions of both global and local aero-
dynamic properties. Global metrics (e.g., Cd) influence overall vehicle efficiency, while local flow
fields provide insights essential for precise geometric refinements. Current surrogate modeling meth-
ods predominantly focus either on global aerodynamic metrics (Liu & Chen, 2025; Elrefaie et al.,
2024b; Song et al., 2023) or detailed local flow field reconstructions (Wu et al., 2024a; Hassan et al.,
2024; Liu et al., 2025; Hao et al., 2023). Models like DrivAerNet++ (Elrefaie et al., 2024b) excel in
quick global drag estimation but lack detailed local geometric insights, whereas local-flow-oriented
models such as Transolver (Wu et al., 2024a) neglect the fundamental physical coupling between
local flow dynamics and global performance metrics. This gap highlights the urgent need for surro-
gate models that comprehensively address the multi-scale, multi-task nature of aerodynamic flows.
Crucially, global aerodynamic metrics and local flow fields are intrinsically coupled, local surface
changes impact global drag, and vice versa. Independent modeling neglects these interdependencies,
underscoring the need for a unified joint modeling framework.

As illustrated in Figure 1, automotive aerodynamic phenomena inherently exhibit complex multi-
scale interactions. Drag primarily depends on large-scale flow structures (e.g., wakes and vortices),
while local aerodynamic behaviors (pressure, wall shear stress) are highly sensitive to millimeter-
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Figure 1: Global–local aerodynamics of two vehicles with different drag coefficients. Left: geometry
with Cd (top 0.3071, bottom 0.2811) as a global efficiency indicator. Middle/right: surface pressure (P) and
wall shear magnitude (WSS) capture fine-grained flow interactions; insets highlight stagnation/separation-prone
regions (A-pillar, front wheel arch, grille). Despite the small gap in Cd (scalar), P (signed, wide range) and WSS
(positive) differ markedly and non-uniformly. The three targets also span distinct types and scales, spatially
heterogeneous differences, making joint learning a cross-scale, heteroscedastic task. Shared color scales; fixed
camera/lighting.

scale geometric details. Capturing these cross-scale phenomena poses substantial challenges due to
varying loss scales, geometric diversity across vehicle types (e.g., sedans, SUVs), and multi-scale
physical interactions. Traditional deep learning models, such as Graph Neural Networks (GNNs)
(Deng & Hooi, 2021; Pham et al., 2025) and general-purpose Transformers (Vaswani et al., 2017;
Chen et al., 2024; Wu et al., 2022; Liu & Chen, 2025), often struggle to simultaneously capture these
intricate dependencies.

To overcome these challenges, we introduce UniAero, a physics-inspired Transformer framework
designed explicitly for automotive aerodynamics. UniAero simultaneously predicts global aerody-
namic metrics (Cd) and local flow fields (pressure, wall shear stress) within a unified and com-
putationally efficient pipeline. The core innovations include: (1) Phys2MoE (Physically Stratified
Mixture-of-Experts), employing scale-sensitive expert modules, stratified parameter sharing, and
physics-aware routing mechanisms to efficiently handle multi-scale and multi-task complexities in
aerodynamic flows; (2) Serialized Patch Attention (SPA), enabling efficient processing of large-
scale automotive surface meshes while preserving crucial long-range aerodynamic interactions; (3)
Hierarchical Multi-Scale Encoder with Geometry-aware Position Encoding (GPE). Captures global-
to-local aerodynamic interactions through a multi-scale encoding structure and explicitly encodes
fine-grained geometric information via sparse voxel convolutions, significantly enhancing model
sensitivity to subtle surface variations.

Experiments on three industrial-scale automotive datasets (DrivAerNet, DrivAerNet++, and Dri-
vAerML) demonstrate that UniAero substantially outperforms state-of-the-art surrogate models, re-
ducing drag prediction errors by 12%, improving local flow accuracy by 16%, and achieving infer-
ence times of one seconds per vehicle on a single GPU, orders of magnitude faster than traditional
CFD simulations.

In summary, our paper makes three key contributions: (1) We present UniAero, a unified
Transformer-based surrogate that jointly predicts global aerodynamic Cd and dense local flow fields
on automotive geometries; (2) we introduce Phys2MoE, a physics-stratified mixture-of-experts that
handles multi-scale phenomena and mitigates multi-task conflicts; (3) we design a hierarchical
multi-scale encoder with geometry-aware positional encoding (GPE) that captures global context
and fine geometric cues.

2 RELATED WORK

Surrogate Models in Automotive Aerodynamics. Effective aerodynamic analysis of vehicles ne-
cessitates the accurate prediction of global parameters such as drag coefficient (Cd), as well as
detailed local aerodynamic characteristics including pressure distributions and wall shear stress.
Conventional methods, including computational fluid dynamics (CFD) simulations and wind tunnel
experiments (Scardovelli & Zaleski, 1999; Menter et al., 2003; Fröhlich & Von Terzi, 2008), offer
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precise results but are computationally expensive and slow, restricting iterative vehicle design pro-
cesses. Recently, surrogate models leveraging machine learning techniques (Elrefaie et al., 2024b;
Liu & Chen, 2025) have been proposed to expedite aerodynamic evaluations. Nevertheless, most
existing surrogate methods adopt simplified geometrical representations, such as low-dimensional
parameterizations or planar projections, thus inadequately capturing intricate three-dimensional geo-
metric features essential for accurate predictions. UniAero addresses these limitations by integrating
comprehensive 3D geometric information into a unified, scalable framework, significantly improv-
ing prediction accuracy and computational efficiency.

Neural Networks for Solving PDEs. Physics-informed neural networks (PINNs) (Raissi et al.,
2019) and neural PDE solvers (Wang et al., 2023; Wu et al., 2024a) have gained prominence in effi-
ciently solving complex fluid dynamics problems governed by partial differential equations. Tech-
niques such as Fourier neural operators (Li et al., 2021; 2023b; Wu et al., 2023a; Li et al., 2023d; Liu
et al., 2025) and transformer-based approaches (Liu et al., 2022; Li et al., 2023a; Hao et al., 2023;
Wu et al., 2024a; Li et al., 2025b) demonstrate impressive capability in capturing fine-grained local
flow phenomena. However, their applicability to global aerodynamic metrics (e.g., drag coefficient)
remains indirect and often requires cumbersome post-processing of local solutions, potentially in-
troducing errors and inefficiencies. UniAero circumvents these issues by directly learning a holistic
mapping from the vehicle geometry to global aerodynamic indicators, simultaneously incorporating
local aerodynamic insights, thereby achieving superior accuracy and streamlined computation.

Advancements in 3D Geometric Learning. Recent advancements in geometric deep learning have
led to various representations and techniques for analyzing 3D data, including point clouds, voxel
grids, and mesh-based methods. Point cloud methods such as PointNet (Qi et al., 2017a) and its
derivatives (Pang et al., 2022; Han et al., 2024; Chen et al., 2024) effectively process sparse and irreg-
ular geometries, yet encounter limitations with dense and heterogeneous data distributions. Voxel-
based methods leverage regular grid structures and convolutional operations (Wu et al., 2024b; 2022;
Wang, 2023) but are hindered by significant memory usage and limited spatial resolution. Mesh-
based approaches (Pfaff et al., 2021b; Wang et al., 2019) utilize connectivity information but are vul-
nerable to mesh irregularities and inefficient at handling multi-scale features. Current transformer
models, although promising, typically lack explicit integration of critical geometric details specific
to automotive aerodynamic analysis. In contrast, UniAero innovatively incorporates hierarchical
multi-scale encoding and Geometry-aware Position Encoding (GPE) into transformer architectures,
effectively capturing both global interactions and subtle local geometric variations.

Expert-based Architectures. Mixture-of-Experts (MoE) models, featuring dynamic routing across
specialized subnetworks, have shown considerable promise in multi-task learning and scalable
model training (Li et al., 2025a; Wu et al., 2024c; Shazeer et al., 2017). Traditional MoE frameworks
primarily focus on improving generalization through sparse gating mechanisms, yet frequently over-
look the complexities arising from distinct scale and physics characteristics inherent in specific
application domains, such as automotive aerodynamics. UniAero introduces a novel Physically
Stratified Mixture-of-Experts (Phys2MoE) architecture that explicitly addresses these challenges by
incorporating scale-sensitive experts, stratified parameter sharing schemes, and physics-aware rout-
ing mechanisms. This tailored design significantly enhances predictive capabilities in multi-scale,
multi-task aerodynamic applications.

3 METHODOLOGY

We introduce UniAero, a Transformer-based framework for predicting both global aerodynamic
metrics (e.g., drag coefficient Cd) and local flow fields (e.g., pressure, wall shear stress) from auto-
motive geometries. Figure 2 shows the architecture.

3.1 PROBLEM DEFINITION

Let the vehicle surface be sampled as a point set (or mesh vertices) G = {xi}Ni=1 ⊂ R3. Our goal
is to learn a function

f : G 7−→
(
Flocal, Cd

)
, (1)
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Figure 2: Overview of UniAero architecture. The input automotive surface point cloud is serialized and
embedded, then passed through a hierarchical Transformer backbone featuring grid pooling, Geometry-aware
Position Encoding (GPE), and Serialized Patch Attention (SPA). The extracted multi-scale features enter a
Physically Stratified Mixture of Experts (Phys2MoE) module, dynamically routing tokens to shared and task-
specific experts. Finally, the local task head reconstructs detailed surface pressure and wall shear stress fields,
while the global task head directly predicts the vehicle’s drag coefficient (Cd).

where Flocal = {fi}Ni=1 contains per-vertex physical quantities (e.g. pressure, wall shear magnitude)
and global Cd ∈ R. Equation equation 1 couples local flow reconstruction and global drag regression
in a single forward pass, aligning with real-world aerodynamic design needs.

3.2 POINT-CLOUD SERIALIZATION

Motivation. Aerodynamic simulations of automotive surfaces often involve extremely large point
clouds comprising millions of mesh vertices. Accurately modeling airflow dynamics across such
extensive surfaces requires capturing intricate local aerodynamic phenomena (e.g., pressure varia-
tions, wall shear stress patterns) as well as long-range global interactions influencing overall drag
performance. However, traditional attention mechanisms, which rely heavily on computationally
intensive K-nearest neighbor (KNN) queries and pairwise interactions, become impractical at such
scales. To efficiently handle these computational challenges, we propose a point-cloud serialization
technique that transforms the unstructured 3D surface points into a structured, one-dimensional se-
quence. This allows for highly efficient attention calculations while preserving critical 3D spatial
information necessary for aerodynamic analysis.

Space-filling Curves. To maintain spatial proximity in serialized sequences, we employ space-
filling curves, specifically Morton (Z-order) and Hilbert curves to serialize the vehicle’s surface
geometry. After voxelizing the vehicle surface with grid size g, each voxel center v = (x, y, z) ∈ Z3

is mapped into a compact 64-bit Morton or Hilbert code ϕ(v) ∈ Z. Sorting the surface points
based on these codes implicitly encodes spatial locality, facilitating effective capture of aerodynamic
features such as local pressure distributions and detailed wall shear stress patterns.

Multi-pattern Rolling. Using a single serialization pattern may bias the model’s attention toward
particular directional contexts, potentially limiting its effectiveness in modeling the diverse spatial
relationships inherent in aerodynamic phenomena. To mitigate this, we precompute multiple serial-
ization patterns, including Morton, Hilbert, and their axis-permuted variants—and cyclically rotate
through these patterns at each encoder layer. This multi-pattern strategy enhances the model’s ability
to capture varied aerodynamic contexts, ensuring robust modeling of both global shape-dependent
effects and localized aerodynamic features.

Patch Grouping. Following serialization, the structured sequence is segmented into non-
overlapping patches, each of size M . Within these localized patches, we apply Serialized Patch
Attention (SPA). This design eliminates the computational burden of repeated KNN searches and
pairwise relative positional encoding (RPE), significantly reducing complexity. By simplifying com-
putations in this manner, our model effectively captures essential fine-grained aerodynamic details
across extensive automotive surfaces, ensuring both accuracy and computational efficiency in large-
scale aerodynamic predictions.
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3.3 HIERARCHICAL MULTI-SCALE ENCODER

Motivation. Real-world aerodynamic phenomena span multiple scales, from global structures
such as wakes and vortices to fine-grained details like localized flow separations around mirrors
or bumpers. Accurately modeling these phenomena requires a multi-scale representation that cap-
tures both large-scale interactions and detailed local features. Our hierarchical multi-scale encoder
progressively extracts global context first and then refines local aerodynamic details, effectively ad-
dressing the complex, scale-dependent nature of aerodynamic flow fields.

Encoder Structure. The encoder consists of N Transformer blocks, arranged into S sequential
stages. Each block operates on a point set P(k), transforming input features into richer representa-
tions:

P(k) = Block(k)(P(k−1)), k = 1, . . . , N. (2)
At stage transitions, we down-sample the points by a factor of 1 : 2 using down sampling and simul-
taneously double the feature channel width. This hierarchical design enables efficient aggregation
of both global and local aerodynamic features across different scales.

Block Design. Each block contains three streamlined components: (i) Geometry-aware Position
Encoding (GPE) that embeds local geometric context, (ii) Serialized Patch Attention (SPA) that
efficiently captures long-range dependencies, (iii) a point-wise MLP for feature refinement. Residual
connections and layer normalization further enhance model stability and performance, enabling the
block to deliver coherent global features and precise local details for downstream predictions.

3.4 GEOMETRY-AWARE POSITION ENCODING (GPE)

Motivation. Local geometry—such as surface curvature and edges—strongly influences aerody-
namic behavior. Standard positional encodings are insufficient for capturing these nuanced features
on irregular surfaces. To address this, we introduce Geometry-aware Position Encoding (GPE),
embedding local geometric context through sparse voxel-based 3D convolutions.

Implementation. In each Transformer block, incoming features first pass through a sparse 3D con-
volutional layer, capturing local geometric details such as curvature and sharp edges. A subsequent
linear projection and LayerNorm layer stabilize training. GPE enhances the model’s sensitivity to
local geometric variations, significantly improving prediction quality for both global and local aero-
dynamic metrics.

3.5 SERIALIZED PATCH ATTENTION (SPA)

Motivation. Directly applying conventional self-attention to large-scale vehicle meshes (over 105
points) incurs prohibitive computational costs (O(N2)). Traditional down-sampling methods sacri-
fice critical local details, while convolutional approaches struggle to capture the long-range depen-
dencies necessary for accurately modeling aerodynamic phenomena. To overcome these challenges,
we propose Serialized Patch Attention (SPA), a highly efficient attention mechanism (O(NM),
M ≪ N ) designed specifically for structured, serialized patches.

Patch Formation. We partition the serialized point cloud into non-overlapping geodesic patches
of size M . Each patch preserves intrinsic distances within a local neighborhood, converting an
unstructured 3D surface into structured sequences suitable for efficient computation on GPUs.

Attention Computation. Within each patch, SPA computes standard multi-head attention:

Attn(F) = softmax
(
QK⊤
√
dh

)
V, (3)

where Q,K,V are linear transformations of patch features. This mechanism efficiently captures
detailed local interactions and longer-range aerodynamic dependencies.

3.6 PHYSICALLY STRATIFIED MIXTURE-OF-EXPERTS

Motivation and Challenges. Our goal is to simultaneously predict surface pressure, wall shear
stress, and the drag coefficient in a single forward pass. This unified model promises reduced com-
putational resources, improved data efficiency, and guaranteed physical consistency between local

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and global predictions. However, aerodynamic tasks pose specific challenges: (i) loss-scale mis-
match between local fields and global metrics, (ii) multi-scale physical interactions from millimeter-
scale boundary layers to meter-scale wakes, and (iii) diverse geometric shapes across vehicle types
(sedans, SUVs).

Phys2MoE Architecture. To address these, we introduce Phys2MoE, a specialized mixture-of-
experts architecture featuring: 1. Dual-depth experts. Experts with varying depths, where shallow
experts efficiently capture global flow features such as wake structures, while deeper experts spe-
cialize in resolving fine-scale boundary-layer details critical to aerodynamic accuracy. 2. Stratified
parameter sharing. Instead of “all shared” or “all private”, Phys2MoE provides S shared experts
for geometry-invariant primitives and K task-specific routed experts for pressure, shear, or drag.
Shape-dependent tokens (sedan versus SUV) therefore activate different mixtures, suppressing neg-
ative transfer across geometry domains. 3. Physics-aware gating. Tokens are adaptively routed
to experts based on physical relevance, effectively balancing different loss scales and minimizing
inter-task interference.

At the end of the encoder we attach expert module. The pool is divided into

Ssh, Sdp︸ ︷︷ ︸
shared

∪ Pt
sh, Pt

dp︸ ︷︷ ︸
private for task t

,

where sh / dp denote shallow and deep experts, respectively. Every task t ∈ {P,WSS, Cd} has a
sparse gate gt : Rd →∆ |S|+|Pt|−1 that scores all shared experts and its own private ones (Equa-
tion 4).

H̃t =
∑

e∈Topk

gsht,e Esh
e (H) +

∑
e∈Topk

gdpt,e Edp
e (H), (4)

where the first sum ranges over Ssh ∪ Pt
sh (shallow experts), the second over Sdp ∪ Pt

dp (deep
experts), and each term keeps the top–k weights within its depth. Shallow experts supply coarse
wake features for Cd, whereas deep experts resolve near-wall physics for pressure and wall shear
stress. The aggregated token set H̃t is then passed to the corresponding decoder (local fields) or
global head (drag).

3.7 TASK HEADS

Local Task Head. The Local Task Head is responsible for reconstructing detailed flow fields such
as surface pressure and wall shear stress. The structure of the Local Task Head mirrors the encoder,
but instead of down-sampling, it performs upsampling to recover high-resolution features from the
encoder. The output is processed through decoder blocks, applying Grid UnPooling and Serialized
Patch Attention (SPA) to refine local features. This allows the model to capture fine-grained details
in the flow field, ensuring accurate predictions of pressure and shear stress.

Global Task Head. The Global Task Head predicts the overall drag coefficient (Cd). To compre-
hensively capture vehicle shape context, we apply global pooling at multiple encoder scales. These
pooled features are concatenated and processed by a regression MLP, ensuring accurate prediction
of the global aerodynamic metric.

Learning objective. We employ a simple but robust weighted sum of relative mean-squared errors
(RMSE):

L = λp RMSEp + λτ RMSEτw + λd RMSECd
,

where λp, λτ and λd are the weighting factors for the pressure, wall shear stress, and drag coefficient,
respectively.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance of UniAero on three industrial
datasets, focusing on both global and local aerodynamic tasks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Summary of the datasets for evaluation.
Dataset #Cars #Train/Val/Test #Point

DrivAerNet++ 7673 5361/1148/1154 420k–2.2M
DrivAerNet 3760 2632/562/566 420k
DrivAerML 483 383/50/50 8.2M

Datasets. We evaluate our model us-
ing three industrial datasets: Dri-
vAerNet++, DrivAerNet, and Dri-
vAerML, which cover various vehicle
shapes (Estateback, Fastback, Notch-
back), point resolutions (420k to 8.2M
polygons). Table 1 summarizes key
statistics. To ensure fair comparisons with baseline models, we perform separate training for the
global task (drag coefficient prediction) and local task (surface flow field reconstruction), keeping
the same data splits across both tasks. Specifically, we partition the training set from one subset
while testing on different subsets or datasets.

Evaluation Metrics. We evaluate the model’s performance using metrics: Relative L2 Error:
This metric measures the percentage error relative to the ground truth and is defined as:

Relative L2 Error =

∑M
i=1

(
Yi − Ŷi

)2

∑M
i=1(Yi)2

,

where Yi is the true value, Ŷi is the predicted value and M denotes the number of samples/points.

Baselines. We compare UniAero with more than 10 baselines, including state-of-the-art point-
based 3D deep learning methods such as PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b),
PointTransformer (Zhao et al., 2021),SGFormer (Wu et al., 2023b) ,PointGPT (Chen et al., 2024),
Mamba3D (Han et al., 2024) and MeshGraphNet (Pfaff et al., 2021a), as well as neural operator
methods like GNOT (Hao et al., 2023), GINO (Li et al., 2023c), DragSolver (Liu & Chen, 2025),
AeroGTO (Liu et al., 2025), and Transolver (Wu et al., 2024a). To enable fair comparisons, we adapt
local-field-only models by adding a global pooling and fully-connected layer to predict global aero-
dynamic metrics (Cd). Unlike these adapted models, UniAero inherently performs joint modeling
of global and local aerodynamic quantities.

Implementations. To ensure fair comparisons, we employ a consistent hierarchical encoder back-
bone comprising 3–5 stages, reducing spatial resolution by half at each stage while increasing feature
channels from 32 to 512 and patch size from 512 to 2048 points. For input preparation, we apply a
random sampling strategy to uniformly sample approximately 60k points from each vehicle surface.
In the Phys2MoE module, we configure a total of 10 experts, including 4 shallow experts (depth
of 2 hidden layers) and 6 deep experts (depth of 5 hidden layers). Specifically, 2 shallow and 2
deep experts are shared across tasks, while the remaining 6 experts are task-specific and adaptively
routed. All experts have a hidden dimension of 256 channels. For multi-task optimization, we set
the loss weights to prioritize local flow fields due to their greater optimization difficulty relative to
global drag prediction. Specifically, we set the learning objective weights as λp = 1, λτ = 1, and
λd = 0.1. We optimize the model using the AdamW optimizer (Loshchilov, 2019) with a base
learning rate of 1×10−3, a batch size of 8, and train for 50 epochs with a cosine learning rate decay
schedule. Unless otherwise specified, all experiments are conducted on NVIDIA A800 GPUs, and
these hyperparameters remain consistent across all experiments. Detailed implementation settings
are provided in Appendix C.

4.1 GLOBAL TASK PERFORMANCE

We evaluate UniAero on the global task of drag coefficient prediction (Cd) across three datasets:
DrivAerNet, DrivAerNet++, and DrivAerML. As shown in Table 2, UniAero consistently achieves
state-of-the-art results, outperforming point-based networks and advanced neural operators. Com-
pared to the strongest baseline, DragSolver, UniAero achieves relative L2 errors of 0.0007 (DrivAer-
Net), 0.0006 (DrivAerNet++), and 0.0019 (DrivAerML), reducing errors by up to 14.28%. Crucially,
unlike baseline models adapted via global pooling and fully-connected layers, UniAero explicitly
leverages the inherent coupling between global and local aerodynamic phenomena through joint
modeling. This unified approach enables UniAero to capture richer aerodynamic insights, directly
yielding more accurate and robust predictions without additional post-processing.
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Table 2: Performance comparison on three datasets for both global drag coefficient Cd and local
pressure (P) and wall shear stress (WSS) field prediction. Relative L2 errors are reported for all tasks.
The best results are highlighted in bold, and the second-best results are underlined. “Promotion”
denotes the relative improvement of our best-performing model (UniAero) compared to the best-
performing baseline model, calculated as 1− Our best model’s error

Best competitor’s error . “UniAero-single” represents models
trained separately for each task, while “UniAero” denotes the joint training across all three tasks.
“/” indicates that the model is not applicable for the corresponding task. Models marked with (*)
are adapted to predict Cd by adding global pooling layers and fully-connected layers.

Model
DrivAerNet DrivAerNet++ DrivAerML

Cd ↓ P ↓ WSS ↓ Cd ↓ P ↓ WSS ↓ Cd ↓ P ↓ WSS ↓
PointNet (Qi et al., 2017a) 0.0062 / / 0.0079 / / 0.0101 / /
PointNet++ (Qi et al., 2017b) 0.0046 / / 0.0064 / / 0.0093 / /
PointTransformer (Zhao et al., 2021) 0.0024 / / 0.0031 / / 0.0065 / /
PointGPT (Chen et al., 2024) 0.0023 / / 0.0028 / / 0.0056 / /
DragSolver (Liu & Chen, 2025) 0.0008 / / 0.0007 / / 0.0021 / /

SGFormer (Wu et al., 2023b)* 0.0024 0.2215 0.2528 0.0026 0.2065 0.2426 0.0042 0.2360 0.2650
MeshGraphNet (Pfaff et al., 2021a)* 0.0064 0.2508 0.2834 0.0041 0.2429 0.2790 0.0092 0.2559 0.2642
RegDGCNN (Elrefaie et al., 2024b)* 0.0030 0.2845 0.3718 0.0059 0.2705 0.3445 0.0078 0.2829 0.3669
GINO (Li et al., 2023c)* 0.0286 0.2360 0.2679 0.0316 0.2359 0.2645 0.0387 0.2365 0.2611
Transolver (Wu et al., 2024a)* 0.0180 0.2395 0.2745 0.0223 0.2320 0.2610 0.0342 0.2529 0.2714
GNOT (Hao et al., 2023)* 0.0036 0.2536 0.2786 0.0028 0.2479 0.2643 0.0061 0.2682 0.2845
AeroGTO (Liu et al., 2025)* 0.0104 0.2375 0.2556 0.0094 0.0.2132 0.2315 0.0121 0.2373 0.2582

UniAero-single (Ours) 0.0008 0.1645 0.2105 0.0007 0.1705 0.2062 0.0022 0.2145 0.2411
UniAero (Ours) 0.0007 0.1685 0.2045 0.0006 0.1665 0.2031 0.0019 0.2035 0.2331
Relative Promotion 12.50% 25.73% 19.10% 14.28% 19.30% 12.26% 9.52% 13.77% 9.72%
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Figure 3: Columns: ground truth, UniAero (multi-task, Phys2MoE), UniAero-single, SGFormer,
Transolver. Rows: (1) wall shear magnitude, (2) wall shear absolute error, (3) surface pressure, (4)
pressure absolute error (red = higher error). Right: aligned 2× zooms on fixed ROIs for each method
(top: WSS error, bottom: pressure error). UniAero yields lower and more spatially uniform errors,
notably near the A-pillar and windshield. Shared color scales; fixed camera/lighting.

4.2 LOCAL TASK PERFORMANCE

For local surface flow prediction, we evaluate UniAero on the per-point regression of pressure and
wall shear stress (WSS). As summarized in Table 2, UniAero also leads on all datasets, on DrivAer-
Net++, errors reach 0.1665 (pressure) and 0.2031 (WSS), outperforming SGFormer/AeroGTO. No-
tably, even compared with our own UniAero-single variant (trained separately for each task), joint
training improves consistency and reduces total error. This highlights UniAero’s ability to capture
multi-scale interactions and shared inductive biases between pressure and shear stress.
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4.3 VISUAL ANALYSIS

Figure 3 provides a side-by-side comparison on an unseen sedan. UniAero (ours) reproduces both
the high-shear ribbons along the wheel arches and the low-pressure footprints on the bonnet with
near-CFD fidelity, whereas SGFormer underestimates the front-fender separation and Transolver
smears the wake-induced suction peak. The superiority is most evident in the absolute error maps:
(i) For wall-shear stress, UniAero exhibits only faint, evenly distributed residuals, whereas the base-
lines show pronounced streaks of high error along the A-pillar and rear diffuser. (ii) For pressure,
our model largely suppresses the broad over-prediction band on the windshield that remains con-
spicuous in the single-task variant, underscoring the benefit of cross-task supervision provided by
Phys2MoE.

4.4 WHY PHYS2MOE HELPS

Table 3: Evaluation on DRIVAERNET++. We compare
the single-task UniAero, a naı̈ve multi-task version without
MoE, a vanilla MoE variant, and our Phys2MoE. For pres-
sure and wall-shear stress we report relative L2 error; for Cd

we report R2 (higher ↑ is better).

Method Pressure WSS Cd

Rel.L2 ↓ Rel.L2 ↓ R2 ↑
UniAero (single) 0.1705 0.2062 0.9623
UniAero (w/o MoE) 0.2731 0.2965 0.9341
UniAero (w/ MoE) 0.1938 0.2218 0.9679
UniAero (w/ Phys2MoE) 0.1665 0.2031 0.9734

Table 3 evaluates different multi-
task learning strategies on DRI-
VAERNET++. Single-task UniAero
achieves strong performance by train-
ing each task independently, how-
ever, this requires maintaining three
separate models and fails to lever-
age inter-task structure. Phys2MoE
(ours) closes all gaps and achieves
the best results on all three tasks:
0.1665 (pressure), 0.2031 (WSS),
and R2 = 0.9734. This represents a
38.9% reduction in pressure error and
31.5% in WSS error over naı̈ve MTL,
along with a 4.2% improvement in
drag prediction. These results confirm that Phys2MoE effectively addresses gradient conflict and
task heterogeneity through stratified expert routing, using shallow shared experts to model global
wake structures for drag, and deep task-specific experts to capture localized boundary-layer physics,
resulting in more accurate aerodynamic predictions.

4.5 TRAINING AND INFERENCE EFFICIENCY

Table 4: Training/inference time (per epoch, per sample)
for UniAero and baselines.

Method PointGPT SGFormer UniAero

Train (s/epoch) 1680 1010 540
Infer (s/sample) 0.97 0.95 0.93

We now compare the efficiency of Uni-
Aero against state-of-the-art 3D point-
based methods under the same hard-
ware environment. As highlighted
in previous works, KNN-based ap-
proaches (e.g., PointGPT (Chen et al.,
2024)) incur high computational costs
due to repeated neighbor graph con-
struction and attention computation. To overcome this, UniAero adopts a sparse convolutional
backbone (Contributors, 2022) combined with FlashAttention (Dao, 2024), significantly reducing
computational complexity by eliminating costly KNN operations. Table 4 demonstrates that Uni-
Aero achieves 3× faster training time compared to traditional point-based methods.

5 CONCLUSION

We introduce UniAero, a unified Transformer framework for both global and local aerodynamic
predictions. It integrates multi-scale encoding, serialized patch attention, geometry-aware position
encoding, and physically stratified Mixture-of-Experts. Experiments show that UniAero reduces Cd

prediction error by 12%, improves local field accuracy by 16%, and achieves inference times of
1 s per vehicle, significantly faster than CFD. This demonstrates UniAero’s potential for real-time
aerodynamic design.
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ETHICS STATEMENT

This work uses publicly available aerodynamic datasets (DrivAerNet/++, DrivAerML) and involves
no human subjects, personal data, or sensitive content; IRB approval was not required. We comply
with licenses and cite all sources. Potential misuse: optimizing drag without safety/regulatory con-
straints, hence we position UniAero as a surrogate within established engineering workflows. All
authors have read and adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide materials to facilitate reproduction of our results:

Code and configs: An anonymized repository (supplementary) with data loaders, preprocessing
scripts, Phys2MoE/Serialized Patch Attention/GPE modules, training/evaluation scripts, and exper-
iment configs.

Data and splits: Datasets and preprocessing are described in the main text; exact train/val/test splits
appear in Tables 1.

Hyperparameters: Optimizer, learning rates/schedules, loss weights (λp, λτ , λd), batch sizes, and
epochs are specified in Implementation Details and config files.

Determinism: Random seeds are set where supported; any non-deterministic kernels are noted.

Metrics and evaluation: Definitions for Relative L2 (fields) and R2 (Cd) are given in Evaluation
Metrics; scripts to compute them are provided.

Environment: An environment file (conda/pip) plus CUDA/driver and GPU details are included.
These materials enable reproduction of main results, ablations, and qualitative visualizations with
minimal effort.
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Ruben Scardovelli and Stéphane Zaleski. Direct numerical simulation of free-surface and interfacial
flow. Annual review of fluid mechanics, 31(1):567–603, 1999.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Binyang Song, Chenyang Yuan, Frank Permenter, Nikos Arechiga, and Faez Ahmed. Surrogate
modeling of car drag coefficient with depth and normal renderings. In International Design En-
gineering Technical Conferences and Computers and Information in Engineering Conference,
volume 87301, pp. V03AT03A029. American Society of Mechanical Engineers, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 2023.

Peng-Shuai Wang. Octformer: Octree-based transformers for 3d point clouds. ACM Transactions
on Graphics (TOG), 42(4):1–11, 2023.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):
1–12, 2019.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-
dimensional pdes with latent spectral models. In ICML, 2023a.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. ICML, 2024a.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations.
Advances in Neural Information Processing Systems, 36:64753–64773, 2023b.

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2:
Grouped vector attention and partition-based pooling. NeurIPS, 35:33330–33342, 2022.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong
He, and Hengshuang Zhao. Point transformer v3: Simpler faster stronger. In CVPR, pp. 4840–
4851, 2024b.

Xun Wu, Shaohan Huang, Wenhui Wang, Shuming Ma, Li Dong, and Furu Wei. Multi-head mixture-
of-experts. Advances in Neural Information Processing Systems, 37:94073–94096, 2024c.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
ICCV, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DATASET DESCRIPTIONS

In this appendix, we provide detailed descriptions of the datasets used in our experiments: DrivAer-
Net, DrivAerNet++, and DrivAerML. These datasets specifically cater to automotive aerodynamic
analysis, capturing various vehicle geometries, aerodynamic features, and resolution scales, thus
forming a comprehensive benchmark for both global and local aerodynamic predictions.

A.1 DRIVAERNET

DrivAerNet (Elrefaie et al., 2024a) is a dataset designed to support aerodynamic predictions, partic-
ularly focusing on accurately capturing the global drag coefficient (Cd) of automotive vehicles. The
dataset comprises:

• Vehicle Types: Three distinct vehicle shapes are included: Estateback, Fastback, and
Notchback.

• Data Scale: The dataset contains 3,760 vehicle geometries, each represented by approxi-
mately 420k mesh vertices.

• Data Splits: For our experiments, we follow the standard split: 2,632 vehicles for training,
562 vehicles for validation, and 566 vehicles for testing.

• Aerodynamic Quantities: High-fidelity computational fluid dynamics (CFD) simulation
results provide the ground-truth aerodynamic data, particularly the drag coefficient (Cd).

DrivAerNet is notable for its structured geometric diversity and fidelity, making it a suitable bench-
mark for evaluating surrogate models targeting global aerodynamic predictions.

A.2 DRIVAERNET++

DrivAerNet++ (Elrefaie et al., 2024b) extends DrivAerNet by significantly increasing the diversity
and complexity of vehicle geometries and flow conditions. Key characteristics include:

• Vehicle Types: Expanded variety of vehicle geometries, including Estateback, Fastback,
and Notchback, with additional configurations to cover broader aerodynamic phenomena.

• Data Scale: The dataset consists of 7,673 vehicle geometries, with mesh resolutions ranging
from 420k to 2.2M vertices per vehicle, enabling evaluation at multiple spatial scales.

• Data Splits: It is partitioned into 5,361 vehicles for training, 1,148 vehicles for validation,
and 1,154 vehicles for testing.

• Aerodynamic Quantities: Ground-truth CFD results include detailed local aerodynamic
flow fields such as surface pressure and wall shear stress, along with global drag coeffi-
cients.

The DrivAerNet++ dataset is particularly suited for comprehensive evaluations of multi-task surro-
gate models, providing benchmarks for both global metrics and detailed local flow field reconstruc-
tions.

A.3 DRIVAERML

DrivAerML (Ashton et al., 2024) represents the most detailed and high-resolution dataset among the
three, specifically created to push the boundaries of geometric resolution and aerodynamic feature
detail:

• Vehicle Types: The dataset covers highly detailed automotive geometries, focusing on com-
plex aerodynamic scenarios often encountered in advanced design processes.

• Data Scale: It includes 483 vehicles, each represented by approximately 8.2 million mesh
vertices, offering an unprecedented level of detail.

• Data Splits: For consistency, we follow the standard partition of 383 vehicles for training,
50 vehicles for validation, and 50 vehicles for testing.
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• Aerodynamic Quantities: CFD simulation results in DrivAerML provide exceptionally
high-fidelity local aerodynamic quantities such as detailed pressure fields and precise wall
shear stress distributions, in addition to global drag metrics.

DrivAerML’s high resolution and extensive detail make it ideal for evaluating models’ ability to
handle large-scale data and accurately predict intricate aerodynamic phenomena, pushing surrogate
modeling towards near-CFD precision.

Collectively, these three datasets provide a robust foundation for rigorous evaluation and bench-
marking of deep learning-based aerodynamic prediction methods, covering a broad spectrum of
geometric complexities, aerodynamic features, and scales.

B DETAILED MODEL PARAMETERS

UniAero Model Configuration

B.1 OVERALL ARCHITECTURE

Our model architecture follows the hierarchical Transformer structure with serialized patch attention
and utilizes Physically Stratified Mixture-of-Experts at a specified encoder stage. Below are detailed
hyperparameters:Input Channels=3, Serialization Order: [”z”, ”hilbert”], and Encoder Stages = 5,
Decoder Stages = 4, Embedding Channels = 32.

B.2 ENCODER CONFIGURATION

The encoder is organized into five stages with the following parameters in Table 5:

Stage Stride Blocks Channels Heads Patch Size

1 - 2 32 2 512
2 2 2 64 4 512
3 2 2 128 8 512
4 2 4 256 16 512
5 2 2 256 16 512

Table 5: Encoder stage-wise configurations.

B.3 DECODER CONFIGURATION

The decoder mirrors the encoder structure and has four stages in Table 6:

Stage Blocks Channels Heads Patch Size

1 2 128 8 512
2 2 64 4 512
3 2 32 2 512
4 2 32 2 512

Table 6: Decoder stage-wise configurations.

B.4 PHYSICALLY STRATIFIED MIXTURE-OF-EXPERTS CONFIGURATION

The MOE module is integrated after encoder stage 3 (zero-indexed), with the following parameters:

• MoE Position: After encoder stage 3
• Number of Experts: 10
• Number of Tasks: 3 (Pressure, Wall Shear Stress, Drag Coefficient)
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• Expert Network:

– Type: MLP-based with optional Flash Attention
– Hidden Layer Dimensionality Ratio: 0.5 (relative to input channels)
– Depth: 3 or 5 layers per expert
– Attention: Flash Attention variant available

• Gating Network: Softmax-based task-specific gating

B.5 TASK HEADS

The model has separate heads for each task:

• Pressure Head: Linear layer, input channels = 32, output = 1

• Wall Shear Stress Head: Linear layer, input channels = 32, output = 3 (vector)

• Drag Coefficient (Cd) Head: Fully connected layers

– Input Channels: 512 (concatenation of global mean and max pooling from the final
encoder)

– Hidden layers: [128, 64]
– Activation: ReLU with BatchNorm
– Dropout: 0.5
– Output Channels: 1 (scalar)

B.6 ADDITIONAL HYPERPARAMETERS

• Drop Path Rate: 0.3

• Normalization: Layer Normalization (LayerNorm), Batch Normalization (BatchNorm)

• Activation: GELU

• Projection Dropout: 0.0

• Attention Dropout: 0.0

• Use Flash Attention: True

• Relative Positional Encoding (RPE): Disabled

C IMPLEMENTATION DETAILS

C.1 TRAINING CONFIGURATION

We optimize our UniAero model using the AdamW optimizer (Loshchilov, 2019) with a base learn-
ing rate of 1× 10−3. The training batch size is set to 8, and the total training duration is 50 epochs,
with a cosine learning rate decay schedule applied to smoothly decrease the learning rate towards
the end of training. To handle varying vehicle surface resolutions efficiently, we randomly sample
approximately 60k points uniformly from each vehicle surface before feeding them into the model.

The Phys2MoE module within UniAero employs 10 expert networks: 4 shallow experts (each with
2 hidden layers) and 6 deep experts (each with 5 hidden layers). Among these, 2 shallow and 2 deep
experts are shared across all tasks, while the remaining 6 experts are task-specific and adaptively
routed through a gating mechanism. Each expert network has a hidden dimension of 256 channels,
and GELU activation functions are used throughout the network.

We conduct our training on 4 NVIDIA A800 GPUs, with each GPU having 64 GB of memory to
ensure adequate resources for handling large-scale point cloud data and batch sizes.
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C.2 LOSS FUNCTION

Our model is jointly optimized for global (drag coefficient Cd prediction) and local (pressure P
and wall shear stress τ fields) aerodynamic tasks. The total loss L combines task-specific losses
weighted according to their relative optimization difficulty:

L = λpLp + λτLτ + λdLd, (5)

where Lp, Lτ , and Ld are the mean squared errors (MSE) losses computed between predictions and
ground truths for pressure, wall shear stress, and drag coefficient, respectively. Specifically, we use:

λp = 1, (6)
λτ = 1, (7)
λd = 0.1. (8)

This weighting scheme prioritizes local flow field predictions due to their higher complexity and
difficulty in optimization compared to the scalar drag prediction.

C.3 EVALUATION METRICS

In addition to the Relative L2 Error metric presented in the main experiments, we also use the
Coefficient of Determination (R2) to evaluate the global drag prediction task. This metric measures
the proportion of variance in the true drag coefficients explained by the model:

R2 = 1−

∑M
i=1

(
Cd,i − Ĉd,i

)2

∑M
i=1

(
Cd,i − Cd

)2 , (9)

where Cd,i is the ground-truth drag coefficient, Ĉd,i is the predicted drag coefficient, and Cd is
the mean of the ground-truth drag coefficients. An R2 value closer to 1 indicates better predictive
performance.

C.4 COMPARISON METHODS

We compare UniAero against various advanced baseline methods spanning two main categories:

• Point-based 3D deep learning methods, including PointNet (Qi et al., 2017a), Point-
Net++ (Qi et al., 2017b), PointTransformer (Zhao et al., 2021), PointGPT (Chen et al.,
2024), SGFormer (Wu et al., 2023b), and Mamba3D (Han et al., 2024).

• Neural operator and graph-based methods, including MeshGraphNet (Pfaff et al.,
2021a), GNOT (Hao et al., 2023), GINO (Li et al., 2023c), DragSolver (Liu & Chen, 2025),
AeroGTO (Liu et al., 2025), RegDGCNN (Elrefaie et al., 2024b), and Transolver (Wu et al.,
2024a).

These comparisons provide a comprehensive performance evaluation, highlighting our method’s
advantages in both accuracy and computational efficiency across global and local aerodynamic tasks.
To enable baseline methods originally designed solely for local flow-field predictions to also predict
global aerodynamic metrics (Cd), we adapted them by appending a global pooling layer followed
by fully-connected layers. Specifically, we first perform a global pooling operation (concatenating
mean and max pooling results), resulting in a feature vector of twice the original channel dimension.
This pooled feature is then passed through a fully-connected module consisting of three linear layers
interleaved with Batch Normalization, ReLU activations, and dropout regularization:

• Layer 1: Linear (input dimension: 2 × feature channels, output dimension: 128), Batch-
Norm1d, ReLU activation, Dropout (probability=0.5)

• Layer 2: Linear (128, 64), BatchNorm1d, ReLU activation
• Layer 3: Linear (64, 1), outputting the scalar drag coefficient prediction.

These modifications ensure a fair and consistent evaluation against our UniAero model, which in-
herently supports joint prediction of global and local aerodynamic properties.
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D MODEL PERFORMANCE SENSITIVITY ANALYSIS

We conduct sensitivity experiments on the DRIVAERNET++ dataset to investigate the impact of loss
weighting parameters (λp, λτ , and λd) on the multi-task performance of UniAero. Table 7 summa-
rizes the results across different weighting schemes, focusing on their influence on both global and
local aerodynamic predictions.

Our analysis reveals that increasing the drag coefficient loss weight to equal the local field weights
(λp = 1, λτ = 1, λd = 1) slightly improves local predictions (pressure and WSS) but results in a
notable decline in the accuracy of drag coefficient predictions (R2 = 0.9650). Conversely, reducing
the weight of the wall shear stress loss (λp = 1, λτ = 0.5, λd = 0.1) achieves marginally better
accuracy in both drag coefficient and pressure predictions, demonstrating the beneficial trade-off
when emphasizing specific tasks.

The baseline configuration (λp = 1, λτ = 1, λd = 0.1) achieves the best balance overall, pro-
viding optimal performance across all tasks with a notably high R2 score of 0.9734 for the drag
coefficient and low relative L2 errors for both pressure (0.1665) and wall shear stress (0.2031). This
configuration underscores the importance of careful weight selection to achieve robust multi-task
performance, effectively balancing local flow field accuracy with global aerodynamic metrics.

Table 7: Sensitivity Analysis of Model Performance under Varying Loss Weights. Relative L2

errors are reported for pressure (P) and wall shear stress (WSS), and R2 score is reported for drag
coefficient (Cd). The default weights (λp = 1, λτ = 1, λd = 0.1) are highlighted in bold.

λp λτ λd P (Rel. L2)↓ WSS (Rel. L2)↓ Cd (R2)↑
1 1 1 0.1687 0.2057 0.9650
1 0.5 0.1 0.1646 0.2041 0.9731
1 1 0.1 0.1665 0.2031 0.9734
1 1 0.5 0.1668 0.2037 0.9728

E LLM USAGE (LANGUAGE EDITING ONLY).

A large language model was used exclusively for copy-editing (grammar, wording, and minor stylis-
tic tightening). It was not involved in problem framing, method or experiment design, data handling
or analysis, interpretation of results, or drawing conclusions. All edits were reviewed and approved
by the authors.
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