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ABSTRACT

Quickly resolving issues reported in industrial robotics applications is crucial to
minimize economic impact. However, the required data analysis makes diagnosing
the underlying root causes a challenging and time-consuming task, even for experts.
In contrast, large language models (LLMs) excel at quickly analyzing large amounts
of data. Indeed, prior work in AI-Ops demonstrates their effectiveness for IT
systems. Here, we extend this work to the challenging and largely unexplored
domain of robotics systems. To this end, we create SYSDIAGBENCH, an internal
system diagnostics dataset for robotics, containing over 2 500 real-world issues.
We leverage SYSDIAGBENCH to investigate the performance of LLMs for root
cause analysis, considering a range of model sizes and adaptation techniques. Our
results show that finetuned 7B-parameter models can outperform frontier models
in terms of diagnostic accuracy while being significantly more cost-effective. We
validate our LLM-as-a-judge results with a human expert study and find that our
best model achieves approval ratings similar to our reference labels.

1 INTRODUCTION

Identifying the root cause for issues with complex industrial systems is a time-critical task but
challenging and time-consuming for human experts as they struggle to analyze the large amounts
of available log data. In contrast, large language models (LLMs) excel at quickly ingesting such
semi-structured data. Indeed, there is substantial work in AI-Ops exploring automated diagnostics for
IT systems (Díaz-de-Arcaya et al., 2024; Zhaoxue et al., 2021). However, the challenging domain of
robotics systems remains largely unexplored.

This Work: Automated Diagnostics for Robotics Systems To address this challenge, and investi-
gate the suitability of similar solutions for robotics systems, we create SYSDIAGBENCH, a dataset
and benchmark for diagnosing root causes of complex robotics system failures, containing over 2 500
real-world issues. Each instance corresponds to a support ticket, containing an issue description, a set
of log files, communications with the support engineers, a reference root cause extracted from expert
discussions, and the ultimate issue resolution. The goal in SYSDIAGBENCH is to predict the root
cause underlying the reported issue, given only the information available at the creation of the ticket.

LLM-Based Diagnostics We leverage SYSDIAGBENCH to investigate multiple LLM-based diag-
nostic approaches in the robotics setting, using both LLM-as-a-judge (Zheng et al., 2023) and a human
expert study for evaluation. In particular, we investigate cost-effectiveness trade-offs between a range
of model sizes and adaptation techniques from zero-shot prompting to full finetuning. Interestingly,
we observe that even QLORA (Dettmers et al., 2023) can be sufficient to let a 7B-parameter model
outperform GPT-4 in terms of diagnostic accuracy while being significantly more cost-effective.
Validating our results in an expert study, we find that LLM-as-a-judge scores correlate well with
human expert ratings, with our reference labels matching the experts’ analysis in over half the cases
and our best model achieving similar approval ratings as these reference labels.
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Key Contributions Our key contributions are:

• We create SYSDIAGBENCH, a benchmark for automated root cause analysis of robotics
systems, based on thousands of real-world issues (Section 3).

• We propose a range of LLM-based diagnostic tools (Section 4).

• We leverage SYSDIAGBENCH to investigate these techniques and identify the most effective
and efficient strategies (Section 5).

• We validate the effectiveness of our approach using a human expert study (Section 6).

2 RELATED WORK

AI-Ops leverages machine learning (ML) in IT operations (Díaz-de-Arcaya et al., 2024) to analyze
large amounts of semi-structured data such as logs and traces (Zhaoxue et al., 2021) with the goal
of discovering anomalies and their root causes. As many traditional ML methods require structured
data, AI-Ops long focused on developing methods enhancing (Yuan et al., 2012; Zhao et al., 2017)
and parsing (He et al., 2017; Messaoudi et al., 2018) log files, using well-established methods such as
SVMs (Zhang & Sivasubramaniam, 2008; Zuo et al., 2020), simple clustering techniques (Zhao et al.,
2019; Lou et al., 2010), and decision tree (ensembles) (Chen et al., 2004) for the actual analysis.

LLM-based Approaches As LLMs can directly process the semi-structured log data, they have
recently gained popularity in the field (Shao et al., 2022; Chen & Liao, 2022; Lee et al., 2023;
Ott et al., 2021). As a representative example, Gupta et al. (2023) use an encoder architecture,
pre-trained on a large amount of log data, to compute embeddings for further analysis. In contrast to
these methods, we propose to directly predict root causes from log data using LLMs pretrained on
internet-scale text data with limited or no finetuning.

3 SYSDIAGBENCH: A DATASET FOR ROBOTICS SYSTEM DIAGNOSTICS

SYSDIAGBENCH is an internal system diagnostics dataset focusing on root cause (RC) prediction
for real-world robotics issues, constructed from a decade of industry data. Concretely, each SYS-
DIAGBENCH instance corresponds to a support ticket and contains a detailed problem description,
a set of log files from the affected system, and a reference root cause description. Below, we first
describe the information contained in a ticket and then the process of constructing SYSDIAGBENCH.
Unfortunately, the underlying data cannot be published at this point due to privacy concerns.

Support Tickets A ticket is created when a reported issue cannot be resolved by the service support
engineers and as a result is escalated to the product development team. Every ticket contains metadata
on the affected system, e.g., the robot and application type, a detailed problem description, and a
system diagnostic file capturing the system state after the issue occurred. For SYSDIAGBENCH,
we consider three log file types contained in the system diagnostic that are commonly analyzed by
experts when investigating a ticket. The elog logs all error, warning, and information events that
occur during the operation of the system. This includes the exact time, error code, and additional
information about the event such as relevant paths or variable names. The print-spool logs all
outputs that are written to the console during the operation of the system. The startup logs all events
that occur during the startup of the system, including the initialization of the system components
and the loading of the software. All three log types contain a substantial amount of data at average
lengths of 37k, 23k, and 8.1k tokens, respectively.

Historic Tickets which were already resolved successfully by human experts additionally contain
the discussion among these experts which led to the issue’s resolution, the communication with the
support engineers, and the final resolution of the issue. However, even these historic tickets generally
do not contain a description of the root cause (RC). Therefore, we need to extract it from the available
information to obtain a reference label.
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3.1 DATASET CONSTRUCTION

To create SYSDIAGBENCH, we collect over 12 000 historic tickets from over a decade of real-world
issues and filter out those that do not contain sufficiently complete system diagnostic files with
an elog, pspool, and startup file, leaving us with 2 585 tickets, which we split into a training,
validation, and test set corresponding to 75%, 5%, and 20%, respectively.

Historic Tickets

Problem
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Expert
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Customer
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Issue
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System Diagnostic

Log X

Root Cause
Description
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Figure 1: Visualization of the label extraction process for historic
tickets based on querying a strong LLM. Note that during infer-
ence time only the grey, but not the blue, boxes are available.

Root Cause Extraction To ex-
tract a concise root cause de-
scription from a historic ticket to
serve as a reference when scoring
solutions, we leverage a strong
LLM (GPT-4) (illustrated in Fig-
ure 1). Concretely, we query the
LLM with the problem descrip-
tion, expert discussion, support
engineer communication, and fi-
nal resolution. We use a chain-of-
thought (CoT) prompt (Wei et al.,
2022), instructing the model to
carefully analyze all provided in-
formation before describing the root cause (see Appendix C.1 for more details including full prompts).
We highlight that the information used to create these labels is not available when a ticket is created
and can thus not be used to predict the root cause at inference time. Finally, we validate the quality of
the extracted root causes in a human study in Section 6.

3.2 EVALUATION METRICS

Evaluating root cause correctness is inherently challenging, as descriptions of the same, correct
root cause can be highly diverse, making similarity measures such as the ROUGE score (Lin, 2004)
unsuitable. Further, there is frequently a trade-off between specificity and correctness, i.e., generic
descriptions can be correct yet unhelpful, while very precise ones may get minor details wrong while
still being overall very helpful. We thus adopt an LLM-as-a-judge evaluation (Zheng et al., 2023)
asking a model to judge the similarity between the predicted and the reference RC on a scale of 1 to
10 (see Appendix C.3 for details). We report the mean similarity score (MSS) with respect to the
reference labels as our primary evaluation metric and validate it against human experts in Section 6.

Similarity Score Callibration We repeat the above label extraction process twice more per instance,
sampling at a temperature of t = 0.5, and compute similarity scores to the reference label obtained
with greedy decoding. We thus obtain an MSS = 7.5, for root causes extracted by the same model
with access to the same information, yielding a reference for an excellent MSS. By manual inspection,
we find that a similarity score ≥ 4 typically corresponds to a correct root cause description.

4 LLM-BASED SYSTEMS DIAGNOSTIC

In this Section, we describe the system diagnostic approaches we evaluate on SYSDIAGBENCH.

4.1 PREPROCESSING AND PROMPTING
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Figure 2: Token count distribution of processed finetuning
inputs (blue) and corresponding raw logs (red).

For both training and inference, we
preprocess all log files by removing
timestamps, dates, and sequence num-
bers. We further remove all consecu-
tive duplicate lines and filter the elog
to only include error and warning but
not information events, as these are
most likely to be relevant for diag-
nosing the root cause. As both the
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print-spool and startup frequently contain tens of thousands of lines, we only retain the 10 lines
before and after each error or warning event in the elog file. Finally, while the original elog file
contains only integer error IDs, we map these to human-readable error descriptions using a lookup
table. This preprocessing reduces the mean total token count of the log files per ticket from 68k to
16k tokens, with the distribution change illustrated in Figure 2.

The LLM input is now constructed by combining a detailed CoT instruction (Wei et al., 2022) with a
context of the preprocessed log files and the issue description (see Appendix C.2 for more details).
Despite our preprocessing, the resulting inputs frequently exceed 8k (68%) and even 32k (9%) tokens
(see Figure 2), requiring models with long context processing capabilities.

4.2 TRAINING FOR SYSTEM DIAGNOSTICS

While modern LLMs have impressive zero-shot capabilities (Kojima et al., 2022), adapting them to
specific tasks can improve their performance significantly (Zhao et al., 2024). However, the long input
lengths make in-context learning, e.g., via few-shot prompting, unpractical for system diagnostics.
We, thus, consider three adaptation techniques, full finetuning (FFT), LORA (Hu et al., 2022), and
QLORA (Dettmers et al., 2023), with different performance-cost trade-offs (see Appendix A).

5 EXPERIMENTAL EVALUATION

Model Selection We select models based on three criteria: i) sufficient (≥ 32k tokens) context
length, ii) good general reasoning capabilities, and iii) a permissive license. Based on these criteria,
we choose MIXTRAL-8X7B (Mixtral-8x7B-Instruct-v0.1 under Apache-2.0 License Jiang et al.
2024) and the smaller MISTRAL-LITE-7B (MistralLite under Apache-2.0 License Yin Song and
Chen Wu and Eden Duthie 2023), which was specifically finetuned for long context tasks. As a
reference frontier model, we consider GPT-4 (gpt-4-32k-0613 OpenAI 2023).

Experimental Setup We use Axolotl (Axolotl, 2024) with DeepSpeed (Rajbhandari et al., 2020;
Rasley et al., 2020) for finetuning with AdamW (β1 = 0.9 and β2 = 0.95) (Loshchilov & Hutter,
2019) on 2 to 8 NVIDIA A100s. We train for 3 epochs at an effective batch size of 64 for full
finetuning and 16 for LORA and QLORA using an initial learning rate of 10−5 and a cosine decay
with a warm-up ratio of 10%. Unless indicated otherwise, we use rank r = 32 for LORA and
QLORA and NFloat4 + DQ (double quantization) for QLORA.

Table 1: Mean similarity score MSS for different models
and adaptation methods on SYSDIAGBENCH.

Model Base FFT LORA QLORA

MISTRAL-LITE-7B 2.39 2.94 3.07 3.27
MIXTRAL-8X7B 2.25 2.69 2.24 2.30
GPT-4 2.52 - - -

System Diagnostic Performance
We compare the performance of dif-
ferent models and training methods
in Table 1. Interestingly, we find that
the smaller MISTRAL-LITE-7B out-
performs MIXTRAL-8X7B across all
adaptation settings. We hypothesize
this is because it was specifically trained for long context capabilities, crucial for retrieving and ana-
lyzing relevant information spread across multiple long log files. While GPT-4 is the best-performing
model before adaptation, we find that our finetuned models outperform it by a significant margin,
with QLORA training yielding the best performance.

8 16 32
Lora Rank r

2.8

3.1

3.4
Mean Similarity Score MSS

LoRA

QLoRA

FFT

Figure 3: Mean similarity score of MISTRAL-
LITE-7B for LORA and QLORA training depend-
ing on rank r.

Rank Deficiency as Regularization Observ-
ing that LORA and QLORA outperform full
finetuning for MISTRAL-LITE-7B (see Table 1),
we investigate the impact of the LORA rank r
on the model’s performance, illustrating results
in Figure 3. We find that while a smaller rank
improves performance for LORA, there is only a
minimal effect for QLORA. As both a reduced
rank and quantization act as regularizers, we
conclude that QLORA is sufficiently regular-
ized even at larger ranks, while LORA benefits
from the stronger regularization at lower ranks.
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Figure 4: Human expert similarity rating between RC analysis of fully finetuned MISTRAL-LITE-7B
and our reference labels depending on whether they considered the reference label to be correct (yes,
maybe, or no).

Table 2: Mean similarity score of MISTRAL-LITE-
7B with LORA training depending on features used.

Model MSS

All Features 3.07
without startup 3.17
without printspool 3.11
without elog 2.85
without Problem Description 2.58

without printspool and startup 3.22

Feature Importance Analysis To assess
feature importance, we train MISTRAL-LITE-
7B on different feature subsets using LORA
and report results in Table 2. We observe that
the model’s performance drops significantly
when excluding the elog and Problem De-
scription, indicating their importance. In con-
trast, removing the startup and printspool
improves the model’s performance, suggest-
ing that while these features may be helpful to
debug compilation issues, they are less impor-
tant for reported issues and can even distract
the model (Jimenez et al., 2023).

6 HUMAN STUDY

We conduct a study with human experts to answer the following three questions: Q1: Are the
automatically extracted reference labels accurate? Q2: Does our LLM-as-a-judge evaluation correlate
well with human expert ratings? And Q3: Are our best models helpful in root cause analysis?

Study Setup We ask 10 experts to solve a subset of tickets, leading to n=53 answer sets. We
provide the experts with all the tools they typically use to resolve issues and the full historic ticket
data. We then ask them to describe the issue’s RC and judge their confidence. Next, we let them
assess our reference label, in terms of helpfulness (yes, no, maybe), correctness (on a scale from
1 to 10), and preference compared to their own answer. Where available, we let them assess their
colleague’s RC, in the same way. Finally, we let them rate the RCs generated by our four best models
on the same scale. See Appendix E for more details.

Q1: Reference RC Quality Asked directly, whether our reference RC was correct, experts agreed
(yes or maybe) in 49% of cases, saying it was as good as their own assessment in 55% of cases but
only as good as their colleague’s in 29%. Interestingly, they still assigned a higher or equal score
to our reference RC than to their colleagues’ RC in 43% of cases. Combined with experts only
being highly (moderately) confident in their assessment 32% (58%) of the time, this suggests that
diagnosing root causes is a particularly hard task, even for human experts with access to all findings
of the original investigation. We conclude that our reference labels have high quality while not quite
matching the human experts.

Q2: LLM-as-a-Judge Evaluation While overall MSS (LLM-as-a-judge) and mean expert ratings
induce the same ranking, the MSS evaluated on the samples considered by the experts ranks the
fully finetuned MISTRAL-LITE-7B first instead of third. Comparing per-sample LLM and expert
ratings, we find a correlation of ρ = 0.20, which increases to ρ = 0.34 when considering only the
samples where our reference labels were considered correct by the experts. This matches the per-
sample inter-expert correlation of ρ=0.32. These results again show the hardness of the root cause
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analysis task with even inter-expert agreement being relatively low. However, as our LLM-as-a-judge
evaluation matches inter-expert correlation, we conclude it to be a good proxy for human expert
judgment where we have reliable reference labels and a decent proxy otherwise.

Mixtral FFT

MistralLite FFT

MistralLite LoRA

MistralLite QLoRA

8% 28% 64%

17% 25% 58%

21% 28% 51%

25% 23% 53%

Model better

Model equal

Model worse

Figure 5: Frequency of human experts rating predicted RCs higher
(blue), equal (orange), and lower (red) than our reference RC.

Q3: Model Helpfulness We
compare the expert ratings of our
reference and predicted RCs in
Figure 5 and observe that the
RCs predicted by our best two
models match the reference la-
bels extracted by GPT-4 with
hindsight knowledge in half the
cases. We further find that even
when the reference labels are considered incorrect, there are instances where the predicted RCs are
rated highly (see Figure 4). For these instances, we found by manual inspection, that our models were
able to leverage a deeper understanding of the log files to identify the underlying RC. These results
suggest that LLMs can provide valuable insights and help experts in diagnosing the root causes of
complex robotics systems issues.

7 CONCLUSION

We conducted a case study on the effectiveness and cost-performance tradeoffs of large language
models (LLMs) for automated root cause analysis in complex industrial settings. We considered a
range of model sizes, adaptation methods, and preprocessing techniques to inform future industry
applications. To this end, we created SYSDIAGBENCH, a dataset for robotics systems diagnostics,
containing over 2 500 real-world issues. Our results show that finetuning even modestly sized models,
especially when specialized for long contexts, can outperform frontier models like GPT-4 in terms of
diagnostic accuracy while being significantly more cost-effective. We validated our results with a
human expert study and found that while both our reference label extraction and LLM-as-a-judge
evaluation cannot replace human experts, our best models can provide valuable insights.

8 ETHICAL CONSIDERATIONS AND BROADER IMPACT

Ethical Considerations The dataset underlying SYSDIAGBENCH contains real-world support
tickets from a robotics company, which may contain sensitive information about the company’s
products and customers, thus precluding its public release. To mitigate the risk of privacy breaches
during internal use, we have anonymized all tickets by removing all personally identifying information
fields.

For our human expert study, we have recruited internal experts from the robotics company’s product
team, who regularly handle the support tickets constituting SYSDIAGBENCH. We have obtained
informed consent from all participants and have anonymized the expert’s analysis before sharing it
with other experts for the inter-expert assessment. All experts were paid their regular wages during
their participation in the study.

Broader Impact While we demonstrate the effectiveness of LLM-based systems for the automated
diagnostics of robotics systems, we also highlight their limitations. In particular, we show that while
LLMs can achieve moderately high performance and even match experts in some cases, they are
unable to replace the expert’s analysis for now. We thus expect that LLM-based tools will soon
become useful aids for human experts, but not fully replace them in the foreseeable future, similar to
many other domains.
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A BACKGORUND

Prompting Once the remarkable zero-shot capabilities of LLMs had been demonstrated (Kojima
et al., 2022), a wide range of prompting schemes was proposed that aim to elicit higher quality
answers from the same model by evoking a (more thorough) reasoning process (Wang et al., 2023;
Yao et al., 2023; Xu et al., 2023; Zhou et al., 2023). In particular, Chain-of-Thought (CoT) prompting
(Wei et al., 2022) instructs the model to "think step-by-step" when answering, which has been shown
to improve performance on a wide range of tasks, with multiple follow-up works trading-off increased
inference cost and better performance (Wang et al., 2023; Yao et al., 2023).

(Full) Finetuning If zero-shot performance is unsatisfactory and labeled training data is available,
one can continue training the model on the specific task at hand, a process known as finetuning. In
particular, full finetuning refers to training the entire model on the new task.

LORA However, the huge size of modern LLMs makes GPU memory a bottleneck for training,
with common optimizers like Adam (Kingma & Ba, 2015) and AdamW (Loshchilov & Hutter,
2019) requiring three full precision values (the gradient, and its first and second moment) to be
tracked for every parameter. To alleviate this issue, LORA (Hu et al., 2022) proposes that instead
of updating all parameters in a weight matrix W ∈ Rn×n one only computes a low-rank update
AB where A ∈ Rn×k and B ∈ Rk×n with k ≪ n. We thus obtain the updated weight matrix as
W ′ = W +AB and reduce the memory footprint of the optimizer from O(n2) to O(nk). Finally,
recent work has shown that LORA can also be seen as a form of regularization that reduces forgetting
and can thereby actually improve performance (Jimenez et al., 2023).

Model Quantization and QLORA To reduce a model’s memory footprint not only during training
but also during inference, model quantization techniques have been proposed that reduce the precision
of the model’s weights and sometimes activations. In particular, representing the model’s weight
matrices using 4-, 3-, or even 2-bit precision rather than the standard (for LLMs) 16-bit half-precision
representation can lead to significant memory savings (Park et al., 2018; Frantar et al., 2022; Lin
et al., 2023). However, quantization can also lead to a significant drop in performance, especially if
applied after training. To mitigate this issue, QLORA (Dettmers et al., 2023) proposes to quantize
the weight matrices already during training, allowing the half-precision LORA adapters to learn to
correct for the quantization errors, while still significantly reducing the memory footprint compared
to standard LORA.

B LIMITATIONS

As no ground truth root cause annotations exist for (historic) tickets, we generated reference labels for
SYSDIAGBENCH using a strong LLM to extract them from the rich data available for historic tickets.
While the human expert study shows the generated labels to be as good as an expert’s analysis in over
half the cases, they are not perfect. In particular, they are only considered correct (yes or maybe) 49%
of the time by the experts. Using multiple experts to annotate the same tickets could have improved
the quality of the reference labels and thus both the performance of our finetuned models and the
evaluation quality, but this was not feasible due to the significant effort required to annotate tickets
and time constraints of available experts.

Further, even for correct reference labels, the LLM-as-a-judge evaluation is not perfect. While
we achieve a high correlation of ρ = 0.57 between the MSS and mean expert ratings when only
considering samples with correct (yes or maybe) reference labels, the per-sample correlation remains
at a moderate ρ = 0.20. However, even the inter-expert correlation of ρ = 0.77 for mean scores
and ρ = 0.32 for per-sample correlation, remains far from perfect, highlighting again the difficulty
of accurately assessing root causes. We conclude that while the LLM-as-a-judge evaluation is a
valuable tool for comparing different models, it cannot substitute expert human judgment, especially
for sample-level comparison. We note that for reliable sample-level comparison, a panel of experts
would be needed.

Finally, we only consider two base models and a limited number of hyperparameters for our experi-
ments due to both budget and time constraints. While we find for MISTRAL-LITE-7B that LORA
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An issue with an industrial grade robot is reported in the context
below. What is the root cause of the reported issue?

Let’s think step by step to answer this question. First, analyze each
section in the context and systematically identify root causes and
their relative probability. Remember that a section can have multiple
root causes or no root causes at all. Finally, pick the root cause
with the highest relative probability and respond with the root cause
in JSON format with key as "Root Cause". If the root cause is unknown,
respond "Unknown root cause" in JSON format.

Context:

Section for conversation between customer representative and engineers:
<CUSTOMER COMMUNICATION>

Section for conversation between engineers:

<EXPERT DISCUSSION>

Section for analysis of issue:

<ISSUE RESOLTUION>

Figure 6: CoT prompt used for root cause extraction, where <PLACEHOLDERS> for data from the
ticket are marked red.

and QLORA finetuning perform exceptionally well, even outperforming full finetuning, this was
not the case for MIXTRAL-8X7B. While we hypothesize that this is due to MISTRAL-LITE-7B’s
training specifically for long context retrieval tasks, a detailed study of this effect is out of scope here
and left for future work.

C DETAILED PROMPT DESCRIPTIONS

C.1 ROOT CAUSE EXTRACTION

As described in Section 3.1, we extract the root cause (RC) from the historic tickets using a strong
LLM (GPT-4) by concatenating the problem description, expert discussion, customer communication,
and the final resolution with a chain-of-thought (CoT) prompt (Wei et al., 2022) instructing the model
to carefully analyze all provided information before generating a root cause description. We show the
full prompt used to this end in Figure 6.

C.2 ROOT CUASE PREDICTION

As described in Section 4, we use a range of LLMs to predict the root causes of the tickets in
SYSDIAGBENCH. To this end, we use zero-shot prompting with the problem description and our
preprocessed logs (see Section 4). We show the full prompt used for this task in Figure 7.

C.3 LLM-AS-A-JUDGE: SIMILARITY SCORE PREDICTION

To assess the quality of generated root cause descriptions, we use a LLM-as-a-judge evaluation
procedure (Zheng et al., 2023) where we ask a model to judge the similarity between the predicted
and the reference root cause descriptions on a scale of 1 to 10. We show the full prompt used for this
task in Figure 8.

D COMPUTATIONAL REQUIREMENTS

Computational Requirements We provide an overview of the runtimes required for our different
training setups in Table 3.
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instruction: An issue with an industrial grade robot is reported in
the input. Determine the root cause for the reported issue.

input:
Elog log message:
<ELOG>

Error description:
<PROBLEM DESCRIPTION>

Startup log message:
<STARTUP>

Print spool log message:
<PRINT SPOOL>

output: <REFERENCE ROOT CAUSE>

Figure 7: Prompt used for training and inference, where <PLACEHOLDERS> for data from the
ticket are marked red and the <REFERENCE ROOT CAUSE> is only provided during training.
Depending on the model, we use the appropriate instruction template for both training and inference.

Please act as an impartial judge and evaluate the similarity of the
two analyses provided below by two different AI assistants. Both were
given the same data related to an issue in a robotics system and asked
to identify the root cause. Your job is to evaluate and quantify the
similarity between the two answers. Begin your evaluation by comparing
the two answers and identifying key differences. Do not allow the
length of the responses to influence your evaluation. Do not favor
certain names of the assistant. Be as objective as possible. After
providing your explanation, please rate the similarity on a scale of
1 to 10 by strictly following this format: "[[rating]]", for example:
"Rating: [[5]]".

[The Start of Analysis A]
<PREDICTED ROOT CAUSE>
[The End of Analysis A]

[The Start of Analysis B]
<REFERENCE ROOT CAUSE>
[The End of Analysis B]

Figure 8: Prompt used for LLM-as-a-judge evaluation, where <PLACEHOLDERS> are replaced
with the issue specific data.

E HUMAN EXPERT STUDY

We illustrate the survey interface including all questions in Figure 9. Unfortunately, we cannot
provide examples of the analyzed data and identified RCs due to the proprietary nature of the data.
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Figure 9: Human expert study questions and interface.
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Table 3: GPU (NVIDIA A100) hours required for different training setups.

Model Training Mode Training Time [h]

MISTRAL-LITE-7B
FFT 23
LORA 20
QLORA 20

MIXTRAL-8X7B
FFT 64
LORA 40
QLORA 40
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