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Abstract

Motion capture technologies have transformed numerous fields, from the film and gaming
industries to sports science and healthcare, by providing a tool to capture and analyze human
movement in great detail. The holy grail in the topic of monocular global human mesh and
motion reconstruction (GHMR) is to achieve accuracy on par with traditional multi-view
capture on any monocular videos captured with a dynamic camera, in-the-wild. This is
a challenging task as the monocular input has inherent depth ambiguity, and the moving
camera adds additional complexity as the rendered human motion is now a product of both
human and camera movement. Not accounting for this confusion, existing GHMR, methods
often output motions that are unrealistic, e.g. unaccounted root translation of the human
causes foot sliding. We present DiffOpt, a novel 3D global HMR method using Diffusion
Optimization. Our key insight is that recent advances in human motion generation, such as
the motion diffusion model (MDM), contain a strong prior of coherent human motion. The
core of our method is to optimize the initial motion reconstruction using the MDM prior.
This step can lead to more globally coherent human motion. Our optimization jointly
optimizes the motion prior loss and reprojection loss to correctly disentangle the human
and camera motions. We validate DiffOpt with video sequences from the Electromagnetic
Database of Global 3D Human Pose and Shape in the Wild (EMDB) and demonstrate
superior global human motion recovery capability over state-of-the-art global HMR methods
such as GLAMR and SLAHMR.

1 Introduction

3D human mesh recovery (HMR) refers to the task of computing a mesh of a human body in 3D given an
input image or a video. HMR has various applications such as augmented/virtual reality, motion capture
(MoCap), sports, and healthcare. Particularly, in terms of MoCap, HMR holds the advantage in terms
of accessibility and cost over traditional marker-based MoCap systems that require costly equipments and
human subjects to wear specialized marker suits. In light of this demand for more accessible methods of
MoCap, numerous optimization-based HMR algorithms have been developed in recent times [Miindermann
et al.| (2006]); Nagymaté & Kiss| (2018]); [Hamill et al.| (2021); |Colyer et al.[ (2018). Moreover, HMR, methods
that not only predict the pose of the human body but also the global root trajectory have garnered significant
attention. We refer to this task as global HMR (GHMR). Though several GHMR, algorithms have been
developed recently [Yuan et al.| (2022)); [Ye et al.| (2023), the ability for these methods to recover accurate
human motion in the global frame leaves much to be desired.

GHMR is a much more challenging task than regular HMR, as we need to simultaneously constrain and
predict the states of both major actors in HMR: 1.) the moving human and 2.) the camera capturing
this moving human. Jointly optimizing the human-camera pair in predicting global motion requires great
temporal understanding for both that allows the model to not just reason about the plausibility of its
predictions on a per-frame basis, but rather the plausibility of the sequential progression of predictions
across time. The lack of temporal understanding of the human-camera pair could yield a multitude of failure
modes: for example, failing to ensure consistency between pose transitions and its corresponding global
translation, hence resulting in highly inaccurate global root trajectory as well as foot sliding, and wrongfully
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attributing the camera’s jitters to the human, hence forcing the predicted human to jitter instead [Ye et al.
(2023)); |Li et al.| (2022).

We propose a novel monocular GHMR framework that systematically optimizes both the human motion and
camera movement with enhanced temporal understanding to recover a more accurate and plausible global
human motion. More specifically, we introduce a framework that represents global human motion through
a neural motion field [Wang et al.| (2022)) supervised by a motion diffusion model (MDM) Tevet et al.| (2022)
serving as a motion prior and dynamic camera predictions initialized by DROID-SLAM [Teed & Deng| (2022).

MDM is used to constrain the predicted motion by penalizing implausible pose sequences outputted by the
neural motion field. This motion prior is crucial as it leverages its knowledge on the inherent characteristics
of human motion learned through training with a large-scale 3D human motion dataset et al.|(2019)), and thus
possesses a strong prior for coherent human motion. Our multi-stage optimization framework ensures that
the motion prior instills temporal understanding for the human and the dynamic camera without wrongfully
tangling the two. We hereby refer to this motion diffusion-guided GHMR, framework as DiffOpt.

We validate DiffOpt’s GHMR capability through evaluating its performance on videos from the Electro-
magnetic Database of Global 3D Human Pose and Shape in the Wild (EMDB) dataset [Kaufmann et al.
(2023) and comparing its performance alongside two other GHMR, algorithms: GLAMR |[Yuan et al.| (2022)
and SLAHMR |Ye et al| (2023)). We verify that DiffOpt demonstrates the best performance in recovering
global motion.

To summarize, our contributions to the field of global HMR through this work are threefold:

o We present DiffOpt, a motion diffusion and neural motion field-based GHMR framework for single
human monocular videos that jointly optimize human motion and camera through leveraging a
motion prior module and dynamic camera prediction module.

o We incorporate a motion diffusion-based [Tevet et al.| (2022) motion prior to guide the motion field’s
pose and global trajectory predictions towards realistic and plausible motions. Also, we successfully
guide the global trajectory predictions using dynamic camera parameters from DROID-SLAM [Teed
& Deng (2022), demonstrating that neural motion field-based models are capable of handling videos
captured by moving cameras.

o We validate our framework on video sequences from the EMDB dataset Kaufmann et al.| (2023)
and demonstrate superior global motion recovery capability against state-of-the-art global HMR
methods including GLAMR |Yuan et al.|(2022) and SLAHMR |Ye et al.| (2023)).

2 Related Works

2.1 HMR methods

Our method, DiffOpt, is an optimization-based global HMR framework on monocular videos (Cho et al.,
2022} [Zhang et al., 2022} |Guan et al. [2021; Igbal et all [2021} [Sengupta et al. 2021 [Kanazawa et al.
2018azbt [2019), but it could also be seen as a test-time-optimization system that fine-tunes predictions
from off-the-shelf methods. NeMo Wang et al.| (2022) is another neural motion field-based TTO framework
that jointly optimizes multiple video instances of the same action, which is a loosened form of multi-view
data. NeMo aims to tackle spatial ambiguities of monocular videos such as occlusions through leveraging
information gained from videos of alternative viewpoints. NeMo fine-tunes predictions from VIBE [Kocabas
et al.| (2020). VIBE, which stands for Video Inference for Human Body Pose and Shape Estimation, is a
3D HMR system for monocular video sequences. VIBE has a temporal module that allows the system to
leverage the temporal information available in videos, which helps in achieving more accurate and consistent
3D pose and shape estimations. SMPLify |Pavlakos et al.| (2019a) fits a 3D body model parameterized by
the the Skinned Multi-Person Linear (SMPL) [Loper et al.| (2015) model to the 2D body joints predicted by
DeepCut Pishchulin et al., a CNN-based model. SMPLify [Pavlakos et al.| (2019a) makes predictions based on
monocular images, but an extension to the framework, named SMPLify-X |Pavlakos et al.| (2019b)) estimates
consistent 3D human poses across video frames by taking into account the temporal sequence of images.
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2.2 GHMR methods

Recently, GHMR have also garnered attention, due to their ability to recover the global motion of humans,
thus allowing us to analyze motion beyond the camera frame. Global occlusion-aware human mesh recovery
with dynamic cameras (GLAMR) [Yuan et al.| (2022) fine-tunes pose predictions from HyBrik Li et al.| (2021}
2023) through the use generative modeling to combat occlusions and recover the global trajectory of the
human subject. Simultaneous Localization And Human Mesh Recovery (SLAHMR) |Ye et al. (2023) recovers
the global root trajectory of multiple humans by fine-tuning tracklets from PHALP |[Rajasegaran et al.
(2021) through leveraging the transitional motion prior HuMoR |[Rempe et al.| (2021)) and dynamic camera
parameters from DROID-SLAM [Teed & Deng (2022]).

2.3 Human motion priors

Human motion priors can be used to guide and constrain the estimation of human poses and motions in order
to make them more physically plausible and consistent with our knowledge of how humans move. [Arnab
et al.| (2019)) use 3D joint predictions to compute a temporal error term that pushes the predictions to mimic
the smoothness of natural human motion. [Zhang et al.| (2021]) use a motion smoothness prior by training an
autoencoder on AMASS data et al.[(2019) to learn a latent space of motion that could be deemed as smooth.
Rempe et al| (2020) utilize regression techniques on body joints and the contact points between the foot
and the ground obtained from the input video to carry out a trajectory optimization, which could also be
seen as a physics-based prior. Rempe et al.| (2021)) presents the 3D Human Motion Model for Robust Pose
Estimation (HuMoR), an expressive generative model implemented as a conditional variational autoencoder
that models a probability distribution of pose transitions. HuMoR is presented as a generative model, but
its potential to serve as a motion prior for optimization-based HMR methods is also explored. SLAHMR
Ye et al.| (2023), a state-of-the-art global HMR algorithm, leverages HuMoR as a motion to constrain its
predicted motion.

3 Method

In this section, we formulate the task of 3D GHMR, (Sec. , discuss the mechanism of our motion diffusion
prior (Sec. , and delineate the multi-stage optimization of DiffOpt (Sec. .

3.1 Problem set-up

Our objective is to recover the 3D global human motion, i.e. root trajectory included, given a video captured
by a dynamic camera. We follow the paradigm of model-based HMR, which uses the SMPL [Loper et al.
(2015) body model, which we refer to as f,,. Given an input video with T" frames, the global human motion
is then represented by a sequence of articulation (a.k.a joint angles) 81.7 € R?*3*T" global root orientation
p1.7 € R¥*T along with root translations x;.7 € R3*T.

DiffOpt is an optimization-based HMR method [Pavlakos et al.| (2019al); [Kocabas et al.| (2020). Specifically,
we build on three types of models: (i) a 3D HMR regression method (e.g. HMR2.0 |Goel et al.| (2023))
that outputs only the articulation @ for each frame, (ii) a 2D keypoint detection method (e.g. ViTPose |Xu
et al| (2022)) that outputs 2D joint keypoints 7 € R?, and (iii) a SLAM |Teed & Deng (2022) method that
estimates the extrinsic and intrinsic camera parameters per-frame. We represent the final, optimized, human
motion using the recently proposed neural motion (NeMo) field [Wang et al.| (2022) for additional smoothness
over the sequence and to seamlessly incorporate various loss terms including the MDM-SDS loss described
in section In other words, instead of optimizing the global motion {6, ¢,x} directly, the variables are
now represented using multi-layer perceptrons (MLPs) { fo, f,, fz} respectively. The articulation at frame ¢
is produced by NeMo as fg(t), and similarly for the root motion. The full system architecture for the global
motion prediction pipeline is in Figure
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Figure 1: (top) DiffOpt system architecture. Given an input video with T'(n) frames, DiffOpt uses
neural motion fields to predict the pose, root orientation, and global root translation for each frame. We
regress these parameters using the SMPL [Loper et al.| (2015) body model to get the 3D joint and vertex
positions. Our predicted motion is then constrained by 3D loss against initial predictions from off-the-shelf
HMR models (Goel et al.|(2023), 2D re-projection loss against predictions from 2D keypoint detection models
(2022), and motion prior loss from the motion diffusion model Tevet et al] (2022). (bottom)
The MDM-SDS loss [Poole et al| (2022)) is computed by transforming the neural motion fields’ predicted
parameters to MDM’s input format, running the noising and de-noising steps to compute the posterior, and
using this to compute the SDS guidance [Poole et al. (2022)). This guidance term is back-propagated to the
neural motion fields.

3.2 Motion Diffusion Prior

Motion priors |Arnab et al| (2019); Rempe et al. (2021} 2020) is commonly utilized in the context of HMR
optimization. In the context of GHMR with a dynamic camera, the human movement in the video is
confounded by the movement of the camera. In addition, while one might expect that the camera movement
can be well estimated using existing SLAM methods, and be factored out, we found that SLAM methods
perform less robustly in these dynamic human-centric videos. Thus, utilizing motion prior is even more
crucial in inferring the global root trajectory. DiffOpt utilizes the state-of-the-art motion prior, a motion
diffusion model (MDM) Tevet et al| (2022). The key idea is to recover the accurate global human motion
through leveraging MDM'’s strong prior of coherent human motion. To utilize MDM as a prior, we use the
well-established technique of score distillation sampling (SDS) loss presented in DreamFusion
, which has been a major driving force in using image prior for 3D content generation.

Motion diffusion model. The core component of a MDM is a denoising network €4 whose inputs are some
noised motion and outputs are the denoised motion, denoted using xg. The forward Markov noising process
follows:

q(x¢|x0) = N(axo, 0%1), (1)

where t is the diffusion timestep and «; € (0,1) decrease monotonically. Commonly, the o is chosen to

satisfy this constraint, a? = 1 — ¢2. In other words, the MDM denoising network is trained with the

following optimization:

min By~ nts0.1) [ X0 — €o(xt, 3], (2)

where D is a training set of real motion.
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Score distillation sampling. Given a pretrained MDM, the SDS prior is formulated as:
Loin(6,@) = Bue [w(t) [leg(ana + ove,t) — el (3)

where t ~ U(0,1), € ~ N(0,1) and w(¢) is a weighting function (see [Poole et al] (2022))). Lastly, to use the
MDM-SDS prior in the HMR pipeline, the data representation has to match. Since MDMs are typically
trained with auxiliary losses where the data includes the forward kinematic results (i.e. joint locations) and
contact labels, we use the same (differentiable) transformation function on the HMR motion.

3.3 DiffOpt

We perform a 3-stage optimization, as delineated in Table[I] Intuitively, stage one warms up the neural field
to mimic the articulation from the initial 3D HMR estimate from an off-the-shelf model |Goel et al.| (2023).
In stage two, given the warmed-up articulation, we utilize the motion diffusion prior to complete a plausible
global trajectory while updating the camera trajectory to keep the target human in view. In the final stage,
we fine-tune both the human and camera motion using the 2D key-points using an ensemble of objectives.

3.3.1 Stage 1: Articulation Warm-Up

In the warm-up stage, all 3 modules (pose, orientation, translation) are optimized through L2 loss with
respect to initial predictions from HMR2.0|Goel et al.| (2023). The warm-up optimization could be expressed
as the following:

minf Lwarmup (f97 f(pa fwa Hinita Pinit, xinit) (4)

f97f<p7 x
T-1

1
Ewarmup = T Z (”fG(Tt) - eznztng
t=0

2
+fo(7e) = Pinitll

1 Falm) — a2 ) (5)

where 0, is the pose parameter, @;,;+ is the orientation predicted by HMR2.0 |Goel et al.| (2023)). The
initial translation x;,;; is estimated using a simple heuristic that keeps the human in the frustum of the
estimated camera (see Supplementary Material). All three modules take 7¢, an element at index t of 7, a
self-normalized, monotonically increasing phase vector of length 7" where 79 = 0 and 7p_; = 1.

3.3.2 Stage 2: MDM Guidance

The second stage, MDM guidance, is our key optimization step. Given the warmed-up articulation, our goal
in this step is to first find a plausible global root trajectory coherent with the articulation. As we update the
human trajectory, the rendered human will deviate from the original video. Hence, as we update the human
trajectory, we also update the camera motion by making sure the reprojection loss stays low. Intuitively, this
last step can be thought of as optimizing camera motion by human motion prior. In practice, we alternative
between the steps of human motion update (Equation @ and camera motion update (Equation .

Learnable camera parameters. In refining the camera motion, we learn four distinct parameters:

« Camera Rotation Bias (bg € R6*T): added to the camera rotation matrix in 6d rotation repre-

sentation. Hence, the resulting camera rotation parameter is R.qm = Rsrpan + br, where Rspan
is the camera rotation predicted by DROID-SLAM [Teed & Deng| (2022).

« Camera Translation Scale (s; € R**7T): scales the camera translation vector.
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« Camera Translation Bias (b, € R**7): added to the scaled camera translation vector. Hence,
the resulting camera translation parameter is t.q., = tspanm * S¢ + by, where tgpans is the camera
translation predicted by DROID-SLAM [Teed & Deng| (2022).

« Camera Focal Length Scale (s; € R'*T): scales the focal length. Hence, the resulting camera
focal length is feqm = fspam * sp, where fspan is the focal length predicted by DROID-SLAM
Teed & Deng (2022]).

Human motion update. For optimizing human motion, we use a combination of the MDM-SDS loss and only
the articulation loss from the warmup:

min (ﬁDiff(fe, for fo) + 1 fo(Te) = Oinitl )7 (6)

f97 wsJx

Camera motion update. The optimization of camera motion can be written as:

bRg’ig},sf Lop , where (7)

Lop = (; ZP(%JE)) ; (8)
t=1

jt = P<Rcamf3d (pt) - tcam>7 (9)

P =W (fm(fo(r)) + fulm))- (10)

We use P to denote the perspective projection and p(-) the error function for 2D points. W is a linear
regressor fitted to get the major body joints in 3D through applying a linear transformation to the SMPL
outputs. We use the Geman-McClure error function |Barron| (2019), which is more robust to outliers than
the mean squared errors. T indicates the length of the video.

‘ Optimized params ‘ Losses used
1. Warm'up ‘ f9 ftp fz ‘ »Cwarmup
Lpi,
2a. Human fofofs v

||€pred - einit H

2b. Camera ‘ brsibisy ‘ La2p

3. Fine-tuning ‘ fofofs brStbesy ‘ Lpig, L2D, Lwarmup

Table 1: Optimization parameters and loss functions used in different stages. DiffOpt utilizes a
multi-stage optimization scheme comprised of three distinct stages. In the warm-up stage, we optimize the
neural motion fields with respect to initial predictions from off-the-shelf HMR methods. The second stage,
named MDM-guidance step, is comprised of alternating between two sub-stages: 2a) Human optimization
and 2b) Camera optimization stages. In the final fine-tuning stage, we optimize both human and camera
with a compilation of losses.

3.3.3 Stage 3: Fine-tuning

In the final stage of DiffOpt’s optimization scheme, we fine-tune the human motion and camera motion
jointly using Lpig, Lwarmup, and Lop. The fine-tuning optimization stage can be expressed as the following:

. £oi £ L 11
f97f<p7fmn}711?75t7bt)sf< Diff + warmup+ QD) ( )
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The neural motion field is constrained simultaneously by Lpig, Lwarmup, and Lop, and the dynamic camera
parameters are constrained through Lop. Intuitively, the Lyarmup Serves to regularize the neural motion field
to prevent it from further deviating too much from the initial predictions from off-the-shelf predictors |Goel
et al.|[ (2023), and Lop is used to make fine-grained adjustments to our motion field for our predicted motion
to better fit to pseudo-ground truth 2D keypoints Xu et al.| (2022).

To summarize DiffOpt’s multi-stage optimization framework, stage 1 aims to initialize the neural motion
field to mimic the initial predictions from HMR2.0 |Goel et al.| (2023)), stage 2 grants the MDM module the
ability to aggressively push the neural motion field to implicitly represent a more realistic and plausible
motion when appropriate, and stage 3 finalizes our predicted motion through making minute adjustments
for the motion field to have both the realism demanded by MDM and accuracy/faithfulness with respect to
the original video sequence demanded by initial predictions and 2D keypoint supervision.

4 Experiments

In this section, we validate DiffOpt’s GHMR capability through recovering the global human motion in the
EMDB dataset [Kaufmann et al.| (2023)) video sequences and retrieving quantitative and qualitative results.
We conduct two primary GHMR experiments: one evaluates DiffOpt’s performance on short 100-frame
video sequences, and the other assesses its robustness on lengthy, untrimmed sequences with varying lengths
(averaging approximately 1,300 frames).

Baselines To assess DiffOpt’s performance relative to pre-existing HMR methods, we compared it to the
following baseline models:

e GLAMR [Yuan et al.| (2022) — a global HMR method that optimizes initial SMPL predictions from
HybriK [Li et al.| (2021)) and is robust to long-term occlusions and tracks human bodies outside the
camera’s field of view.

e SLAHMR |Ye et al.|(2023) — a global HMR method that optimizes initial SMPL predictions from
PHALP |Rajasegaran et al.| (2021) and recovers the global trajectories of all humans in a moving
camera video leveraging the HuMoR |Rempe et al.[ (2021)) motion prior and camera parameters from
DROID-SLAM [Teed & Deng (2022]).

Metrics We used four independent metrics to evaluate DiffOpt and the baselines.

« MPJPE / MPVPE — Mean per joint /vertex position error assess the accuracy of 3D HMR methods
by determining the mean distance between predicted and actual joint or vertex positions in 3D space.
Measured in millimeters (mm), MPJPE pertains to SMPL joints, whereas MPVPE considers SMPL
vertices.

o Global-MPJPE / MPVPE — These metrics are global counterparts of MPJPE/MPVPE, factor-
ing in predicted global root translation and orientation.

EMDB Dataset We evaluate DiffOpt alongside the baselines with the EMDB dataset Kaufmann et al.
(2023). The EMDB dataset includes 58 minutes of complex 3D human motion, totaling approximately
105,000 frames across 81 distinct sequences, captured in a variety of in-the-wild settings. For each se-
quence, EMDB offers detailed ground-truth annotations of pose and body shape along with global root
trajectories and camera parameters. We utilize the EMDB dataset slightly differently for our two exper-
iments. For the first experiment involving 100 frame sequences, we evaluate DiffOpt on seven distinct
sequences that contain motion that is characterized by both 1.) intricate and dynamic pose transitions and
2.) significant global root trajectory throughout the entire duration of the video sequence. The selected
videos that suit both these criteria are: ‘09_outdoor_walk’, ‘14_ outdoor_ climb’, ‘16_ outdoor_warmup’,
‘32_outdoor__soccer__warmup_a’, ‘37_outdoor_run_ circle’, ‘41_indoor_ jogging workout’, and ‘58_ out-
door__parcours’. For simplicity, we refer to them as ‘outdoor walk’ ‘outdoor climb’, ‘outdoor warmup’,
‘soccer warmup’, ‘outdoor run’, ‘indoor workout’, and ‘outdoor parcour’ from this point and onwards. For
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each of the selected sequences, we divide each sequence to 100 frame segments. We do this because we
observe that the performance of pre-existing baseline GHMR models degrade rapidly as the length of the
input motion sequence increases. Hence, this experiment provides the baseline models the opportunity to
demonstrate optimal performance. For the second experiment, we use the entirety of the EMDB dataset
without trimming any sequences.

4.1 Quantitative Results on EMDB

DiffOpt achieves the strongest overall performance compared to state-of-the-art baselines. Specifically,
DiffOpt consistently outperforms other methods in key global metrics (G-MPJPE & G-MPVPE), show-
ing substantial improvements of 17% in G-MPJPE and 18% in G-MPVPE for trimmed sequences (more
detailed discussion in section from the second-best GHMR framework, and 16% in G-MPJPE and
16% in G-MPVPE for untrimmed sequences (more detailed discussion in section |4.1.2)). Despite maintaining
comparable performance in local metrics, DiffOpt’s superior global performance is crucial for applications
requiring accurate global trajectory estimation. On the other hand, other methods that show smaller im-
provements in some local metrics have much less consistent and worse performance in some settings, in ad-
dition to the poorer global MPJPE / MPVPE performance in experiments on both trimmed and untrimmed
EMDB sequences. Furthermore, DiffOpt demonstrates significant efficiency gains, with a 67% faster run-
time compared to the second-best method, SLAHMR. These advantages make DiffOpt particularly suitable
for real-world applications where both accuracy and efficiency are critical.

4.1.1 Trimmed EMDB Sequence Results:

We now offer a more in-depth discussion of the quantitative results of the first experiment shown in Table [2]

While the camera-frame MPJPE and MPVPE metrics are comparable for all three models, the G-MPJPE
and G-MPVPE metrics indicate that DiffOpt has the clear superior ability to estimate global human motion
over GLAMR |Yuan et al| (2022) and SLAHMR |Ye et al| (2023), as DiffOpt outperforms both baselines
in G-MPJPE and G-MPVPE in five of seven sequences and on average. DiffOpt outperforms SLAHMR
and GLAMR on ‘outdoor climb’; ‘outdoor run’; ‘outdoor walk’, ‘outdoor parcour’ and ‘indoor workout’.
SLAHMR, on the other hand, outperforms DiffOpt on ‘outdoor warmup’ and marginally outperforms
DiffOpt in ‘soccer warmup’. DiffOpt’s superior ability to recover the global motion on the aforementioned
sequences can be attributed to MDM’s [Tevet et al.| (2022) ability to promote greater consistency between
pose and global translation particularly in flat surfaces where the only external force is gravity. On the
other hand, DiffOpt’s struggles in ‘outdoor warmup’ could be attributed to the fact that the human makes
prolonged contact with rigid objects throughout the sequence. As MDM has been pre-trained on the AMASS
dataset et al.| (2019)) comprised of motion where the human is only making contact with the ground plane,
the sequence represents a challenging distribution shift.

We also report the average run-time of GLAMR, SLAHMR and DiffOpt over the seven 100-frame sequences
during inference in Table 3] GLAMR demonstrates the fastest run-time of the three models with 202.42
seconds, while DiffOpt exhibits a reasonable run-time of 644.94 seconds and SLAHMR has the slowest
run-time by a wide margin with its run-time nearing 2000 seconds. Hence, DiffOpt achieves state-of-the-art
performance on GHMR metrics while maintaining a run-time that is significantly quicker than that of the
next best method SLAHMR.

4.1.2 Untrimmed EMDB Sequence Results:

On the second experiment, we run GLAMR, SLAHMR and DiffOpt on lengthy untrimmed EMDB se-
quences. We find that DiffOpt exhibits the best performance on the global metrics G-MPJPE and G-
MPVPE, as shown in Table 4l Notably, DiffOpt scores 1776.2 in G-MPJPE, which is significantly better
than GLAMR’s score of 2113.5 and SLAHMR’s score of 5595.8. This suggests that DiffOpt, compared to
existing baselines, is the most robust GHMR framework against longer motion sequences. GLAMR yields
the best local MPJPE and MPVPE metrics but trails against DiffOpt in its ability to recover global hu-
man motion. Lastly, SLAHMR optimization invariably breaks down when attempting to optimize the full
untrimmed EMDB sequences, resulting in considerably worse metrics compared to GLAMR, and DiffOpt.
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Method Outdoor Outdoor Soccer Outdoor Outdoor Outdoor Indoor
Climb Warmup Warmup Run Walk Parcour Workout Mean

MPJPE / G-MPJPE (mm)

GLAMR 102.8 / 477.3 91.0 / 391.2  77.8 / 554.8 82.8 / 462.8 73.9 /7453 196.8 / 963.2 56.6 / 515.3 97.4 / 587.1
SLAHMR 69.5 /247.6 95.5/299.7 774 /345.7 76.6 /169.4 64.6 / 425.4 90.3 / 697.4 57.0 / 536.8 75.8 / 388.9
DiffOpt 90.7 / 241.4  94.0 / 364.0 74.1 /357.8 82.6/130.8 82.0/288.4 82.5/662.5 91.6/213.4 854 /322.6

MPVPE / G-MPVPE (mm)

GLAMR 124.2 / 496.8 116.0 / 439.4  98.0 / 5534  106.9 / 479.2 93.0 / 687.3  270.1 /962.6  73.1 /5015 125.9 / 588.6
SLAHMR 90.6 / 253.5 1239 /315.8 94.8/356.4 99.4 / 186.6 86.9 / 439.5 103.2 / 705.6  69.3 / 558.6 95.4 / 402.3
DiffOpt 108.9 / 256.0 112.8 /374.7 91.6 /367.6 100.9 / 145.7 109.2 /307.5 93.4 /617.4 118.7/220.0 105.1 / 327.0

Table 2: Quantitative results on the trimmed EMDB dataset. We validate DiffOpt’s GHMR ca-
pability by comparing its performance against GLAMR and SLAHMR on a subset of the EMDB dataset
containing motions of outdoor climb, warmup, soccer warmup, outdoor run, walk, parcour, and indoor
workout. While local MPJPE and MPVPE metrics are comparable across all methods, DiffOpt clearly
stands superior in global metrics, with DiffOpt showing superior performance in five out of seven evalu-
ation sequences. This result highlights DiffOpt’s robustness in recovering accurate global human motion,
particularly in scenarios with significant global root trajectory.

Method Runtime (s)

GLAMR 202.42
SLAHMR  1926.51
DiffOpt 644.94

Table 3: Average run-time on 100 frame sequences.

Validating DiffOpt to be the most robust GHMR method amongst state-of-the-art models holds an impor-
tant implication that DiffOpt is the least constrained in terms of potential mocap applications scenarios.

Method MPJPE/G-MPJPE MPVPE/G-MPVPE
GLAMR 90.4 / 2113.5 114.1 / 2131.3
SLAHMR 234.8 / 5595.8 280.9 / 5596.6
DiffOpt 102.5 / 1776.2 130.2 / 1790.7

Table 4: Metrics for original (untrimmed) EMDB sequences. DiffOpt was evaluated alongside
GLAMR and SLAHMR on original (untrimmed) EMDB sequences. DiffOpt achieves global metrics that
are significantly better than both baselines, thus proving that DiffOpt is the most robust GHMR framework
against lengthy sequences.

In conclusion, the quantitative metrics strongly indicate that DiffOpt outperforms existing state-of-the-
art GHMR methods, particularly in global metrics, which is crucial for not only accurate global trajectory
recovery but also recovery of motion with coherent root translation. DiffOpt not only demonstrates superior
accuracy in these metrics across multiple challenging sequences but also maintains a significantly more robust
optimization framework towards longer motion sequences and faster runtime than its closest competitor,
SLAHMR |Ye et al.| (2023), as shown in tables |4| and |3, respectively. These results underscore DiffOpt’s
potential as the preferred solution for applications requiring robust and efficient GHMR, in dynamic, real-
world environments for prolonged motion sequences.
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Figure 2: Qualitative results on a trimmed segment in the ‘soccer warmup’ EMDB sequence
[Kaufmann et al.| (2023). This is a challenging motion sequence, as the human subject continuously twists
his hips while making quick side-steps. 3D human meshes have been rendered on the original video sequences
for GLAMR [Yuan et al| (2022) on the top row, SLAHMR [Ye et al| on the middle row and DiffOpt
on the bottom row. Moreover, the ground-truth global root trajectory and each model’s predicted global
root trajectory have been visualized next to the original video renderings.

4.2 Qualitative Results on EMDB

We render DiffOpt’s estimated global human motion on both the original input video as well as a static
world frame to assess whether DiffOpt has recovered human motion that is realistic, plausible, and faithful
to the motion depicted in the video sequence.

On the original video renderings shown in Figure [2| DiffOpt’s human mesh perfectly encapsulates the
human body at all time intervals, and the rendered limbs and feet position are faithful to the human’s
action. GLAMR renderings occasionally fail to fully cover the human body, while SLAHMR renderings
have minor inaccuracies in feet position. The global root trajectory plots indicate that DiffOpt clearly
recovers the most accurate global root trajectory. DiffOpt’s global root trajectory not only adheres to the
ground-truth trajectory throughout the entire duration of the sequence but also has the most accurate final
position, which indicates that DiffOpt most accurately estimates both the incremental translation along
the way and the net translation.

Hence, the qualitative results demonstrate DiffOpt’s superior ability to recover realistic, plausible, and
accurate human motion as well as global root trajectory for the whole duration of the motion.

In conclusion, the experimental results provide strong evidence that DiffOpt outperforms existing state-
of-the-art GHMR methods both quantitatively and qualitatively. Quantitatively, DiffOpt achieves superior
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accuracy in key global metrics, consistently outperforming baselines across multiple challenging sequences.
This is particularly important for applications that require the precise global trajectory estimation for com-
plex pose sequences. Qualitatively, DiffOpt demonstrates its ability to produce highly realistic and plausible
human motion, with visually accurate and natural limb positioning and adherence to the ground-truth global
trajectory. The rendered outputs show that DiffOpt effectively captures the intricate dynamics of human
motion, even in sequences with complex movements. Moreover, DiffOpt maintains a significantly faster
runtime than its closest competitor, SLAHMR |Ye et al.| (2023]), making it the most efficient and highest
quality choice for real-world GHMR applications.

4.3 Ablations

For ablation studies, we test the contribution of DiffOpt’s three primary design components: 1. neural
motion field, 2. multi-stage optimization, and 3. MDM motion prior on the “outdoor walk” sequence of the
EMDB dataset. We also include the metrics on the full DiffOpt model for comparison. The results of these
ablation experiments are provided in table [5

In the ablation for neural motion field, we replace the motion representation with learnable parameters
initialized with HMR2.0 values. Replacing the neural motion field MLPs with learnable tensors initialized
with HMR2.0 values for pose, root orientation, and global translation maintained local MPJPE and MPVPE
metrics but significantly worsened global metrics (G-MPJPE and G-MPVPE), highlighting the importance
of implicit neural representations in the successful integration of the MDM motion prior for temporal con-
sistency.

In the ablation for the multi-stage optimization scheme, we try two things: 1. replace the multi-stage
scheme with a single-stage scheme that includes all loss terms, and 2. remove each of the three stages. For
the first experiment, combining all loss terms into a single stage severely deteriorates performance, thereby
demonstrating that the multi-stage optimization framework is essential for leveraging the MDM-SDS loss
term. Next, bypassing each optimization stage independently revealed that the warm-up and MDM stage
significantly impacts global metrics, and the fine-tuning step, though beneficial, is less critical.

Lastly, replacing the MDM motion prior with the VPoser pose prior resulted in poorer performance in both
global and local metrics, underscoring the MDM'’s superior capability to enhance temporal consistency and
frame-by-frame pose accuracy.

Full Model Metrics

MPJPE G-MPJPE MPVPE G-MPVPE
DiffOpt 82.0 288.4 109.2 307.5

Motion Representation

Learnable params 82.3 (+0.3) 871.5 (+583.1) 109.7 (+o.5) 883.2 (+575.7)

Optimization Scheme

Single Stage 103.8 (+21.8) 827.6 (+539.2) 142.5 (+33.3)  894.0 (+586.5)
Bypassed Stage
No warm-up 81.9 (-0.1) 580.5 (+292.1) 108.9 (-0.3) 594.0 (+286.5)
No MDM step 81.8 (-0.1) 683.6 (+395.2) 109.2 (0.0) 687.0 (+379.5)
No fine-tuning 82.3 (+0.3) 460.3 (+171.9) 109.6 (+0.4) 462.9 (+155.4)
Prior Type
VPoser prior 87.5 (+5.5) 722.8 (+434.4) 119.2 (+10.0) 764.1 (+456.6)

Table 5: Ablation experiment results. We explore the importance of DiffOpt’s implicit neural repre-
sentation of motion, multi-stage optimization framework, and the MDM motion prior module. The topmost
row contains the metrics for the full DiffOpt model. Each ablation metrics are accompanied by its difference
from the metrics of the full DiffOpt model in parenthesis.
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5 Limitations and Future Work

Our current approach to 3D global human mesh recovery utilizing a motion diffusion model (MDM) has
highlighted several areas for improvement that are crucial for enhancing the model’s robustness and gener-
alizability across various motion scenarios. We identified two main limitations within our MDM framework.
Firstly, the model exhibits a decrease in performance when subjects maintain static leg postures over time,
resulting in minimal translational movement of the human body. Such scenarios challenge the model’s ca-
pacity to accurately capture and predict subtle human body dynamics. Secondly, the model struggles with
interactions where the human body is subject to external forces beyond gravity and contact force from the
ground, such as push-and-pull dynamics with external objects. Addressing these deficiencies is imperative
for the model to reliably generalize across diverse scenarios.

Another noted limitation is the performance degradation associated with increased sequence length. To
mitigate this issue, we currently employ a running-window trimming operation during preprocessing. This
is a suboptimal solution, as it does not tackle the underlying issue of the model’s diminishing accuracy over
long sequences.

Furthermore, our reliance on the DROID-SLAM [Teed & Deng| (2022) algorithm for initializing dynamic
camera parameters presents a challenge. The algorithm, primarily trained on the TartanAir dataset [Wang
et al| (2020) devoid of moving objects and tailored for robot navigation, may experience a distribution shift
when applied to videos featuring a moving human subject. This shift necessitates adaptations or retraining
to better suit our use-case.

6 Conclusion

We proposed DiffOpt a novel GHMR, framework for recovering realistic and accurate global human mo-
tion given a monocular video captured under dynamic camera settings. DiffOpt jointly optimizes human
motion and camera dynamics. It achieves this by integrating a motion diffusion-based prior with a dynamic
camera prediction module in our multi-stage optimization scheme, which significantly improves the temporal
coordination between the human subject and the camera.

We conduct extensive evaluations of our framework on the EMDB dataset, where it demonstrates enhanced
capabilities in global motion recovery. Our method outperforms leading-edge global HMR techniques, in-
cluding GLAMR and SLAHMR, showcasing its effectiveness in accurate human motion capture.

DiffOpt’s main contributions are not only in successfully integrating a motion diffusion model as a motion
prior but also in proposing a multi-stage optimization scheme that enables the joint optimization of hu-
man and camera motion to disentangle the two motions and yield more realistic and accurate motions for
each. Therefore, we believe that DiffOpt’s GHMR ability can continue to challenge the limits of GHMR
model performance through seamlessly integrating better motion priors and camera parameter estimation
algorithms into the optimization framework in the future.

Broader Impact Statement

DiffOpt offers several positive impacts by providing an accessible and cost-effective alternative to traditional
marker-based motion capture systems, which require expensive equipment and specialized setups that are
infeasible for everyday use. This heightened accessibility could benefit fields like sports science, healthcare,
film, and gaming by enabling broader applications. However, there are potential negative impacts to consider:
DiffOpt’s performance may vary across demographic groups if the training data lacks diversity, leading to
biased outcomes in applications such as healthcare and sports analysis. Moreover, the method’s reliance on
initial predictions from existing pose estimation models and camera algorithms could also propagate any
inherent biases or limitations in those models.

In conclusion, it is crucial to address the aforementioned risks associated with privacy and bias. We encourage
ongoing dialogue and collaboration within the research community to maximize the positive impacts while
mitigating the negative consequences of this technology.
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A Appendix

We have provided qualitative results in the form of body mesh rendering videos on several distinct EMDB
sequences and can be viewed on our project page: https://sites.google.com/view/diffopt-tmlr
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