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ABSTRACT

Generative Flow Networks (GFlowNets) are a class of generative models that
sample objects in proportion to a specified reward function through a learned policy.
They can be trained either on-policy or off-policy, needing a balance between
exploration and exploitation for fast convergence to a target distribution. While
exploration strategies for discrete GFlowNets have been studied, exploration in
the continuous case remains to be investigated, despite the potential for novel
exploration algorithms due to the local connectedness of continuous domains.
Here, we introduce Adapted Metadynamics, a variant of metadynamics that can
be applied to arbitrary black-box reward functions on continuous domains. We
use Adapted Metadynamics as an exploration strategy for continuous GFlowNets.
We show several continuous domains where the resulting algorithm, MetaGFN,
accelerates convergence to the target distribution and discovers more distant reward
modes than previous off-policy exploration strategies used for GFlowNets.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) are a type of generative model that samples from a discrete
space X by sequentially constructing objects via actions taken from a learned policy PF (Bengio
et al., 2021a). The policy PF (s, s′) specifies the probability of transitioning from some state s to
some other state s′. The policy is parameterised and trained so that, at convergence, the probability
of sampling an object x ∈ X is proportional to a specified reward function R(x). GFlowNets offer
advantages over more traditional sampling methods, such as Markov chain Monte Carlo (MCMC),
by learning an amortised sampler, capable of single-shot generation of samples from the desired
distribution. Since GFlowNets learn a parametric policy, they can generalise across states, resulting in
higher performance across various tasks (Bengio et al., 2021a; Malkin et al., 2022; Zhang et al., 2022;
Jain et al., 2022; Deleu et al., 2022; Jain et al., 2023; Hu et al., 2023; Zhang et al., 2023; Shen et al.,
2023b) and applications to conditioned molecule generation (Shen et al., 2023b), maximum likelihood
estimation in discrete latent variable models (Hu et al., 2023), structure learning of Bayesian networks
(Deleu et al., 2022), scheduling computational operations (Zhang et al., 2023), and discovering
reticular materials for carbon capture (Cipcigan et al., 2023).

Although originally conceived for discrete state spaces, GFlowNets have been extended to more
general state spaces, such as entirely continuous spaces, or spaces that are hybrid discrete-continuous
(Lahlou et al., 2023). In the continuous setting, given the current state, the policy specifies a continuous
probability distribution over subsequent states, and the probability density over states x ∈ X sampled
with the policy is proportional to a reward density function r(x). The continuous domain unlocks
more applications for GFlowNets, such as molecular conformation sampling (Volokhova et al., 2023)
and continuous control problems (Luo et al., 2024).

GFlowNets are trained like reinforcement learning agents. Trajectories of states are generated either
on-policy or off-policy, with the terminating state x ∈ X providing a reward signal for informing a
gradient step on the policy parameters. GFlowNets therefore suffer from the same training pitfalls
as reinforcement learning. One such issue is slow temporal credit assignment, which has thus far
been addressed by designing more effective loss functions, such as detailed balance (Bengio et al.,
2021b), trajectory balance (Malkin et al., 2022) and sub-trajectory balance (Madan et al., 2022). This
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latter approach has recently been extended by providing an energy function inductive bias at the early
stages of training (Pan et al., 2023).

Besides loss functions, another aspect of GFlowNet training is the exploration strategy for acquiring
training samples. Exclusively on-policy learning is generally inadequate as it leads to inefficient
exploration of new modes. More successful strategies therefore rely on off-policy exploration. For
the discrete setting, numerous exploration strategies have been proposed including ϵ-noisy with
a uniform random policy, tempering, Generative Augmented Flow Networks (GAFN) (Pan et al.,
2022), Thompson sampling (Rector-Brooks et al., 2023) and Local Search GFlowNets (Kim et al.,
2024). While these approaches can be generalised to the continuous domain, there is limited literature
benchmarking their effectiveness in this setting.

Sampling in the continuous setting is a common occurrence in various domains such as molecular
modelling (Hawkins, 2017; Yang et al., 2019) and Bayesian inference (Shahriari et al., 2016).
The local connectedness of a continuous domain allows for novel exploration strategies that are
not directly applicable in the discrete setting. Sendera et al. (2024) compared several exploration
strategies in the context of diffusion samplers, and proposed alternating between on-policy sampling
and backward sampling from a fixed set of MCMC samples when training continuous GFlowNets.
These samples were selected prior to training, thereby inducing a fixed pre-training cost but keeping
the cost of each training trajectory constant. The authors showed effective exploration, even in
high-dimensional problems. However, their MCMC approach requires access to cheap gradients
of the reward landscape, which might not always be readily available (Rengarajan et al., 2022).
In addition, there are some settings, such as in molecular conformation sampling, where MCMC
approaches are known to require significantly longer timescales to overcome energy barriers than
methods based on molecular dynamics (MD) simulations (Abrams and Bussi, 2014), thereby making
the pre-training cost prohibitively expensive.

In this work, we propose MetaGFN, a novel exploration algorithm for continuous GFlowNets inspired
by metadynamics, an enhanced sampling method widely used for molecular modelling (Laio and
Parrinello, 2002). Unlike MCMC-based sampling methods, MetaGFN operates in a general black-box
setting, relying solely on an oracle for reward values, without requiring access to reward gradients. In
common with standard metadynamics, MetaGFN converges quickly when a reduced-dimensional
representation of the reward measure, specified by a so-called collective variable (CV) basis, is known.
While our method is domain-agnostic, this feature makes MetaGFN particularly well-suited for small
molecular systems, where such representations are known and often low-dimensional (Fiorin et al.,
2013). MetaGFN requires no pre-training and only introduces a small, constant cost for each training
trajectory, which becomes negligible as the cost of reward evaluation increases.

The main contributions of this work are:

• Introducing MetaGFN, an algorithm that adapts metadynamics to black box rewards and
continuous GFlowNets;

• Proving that the Adapted Metadynamics formulation underlying MetaGFN is consistent and
reduces to standard metadynamics in the appropriate limit;

• Showing empirically that MetaGFN outperforms existing GFlowNets exploration strategies
in various continuous environments, including alanine dipeptide conformation sampling.

The rest of the paper is as follows. In Section 2 we review the theory of discrete and continuous
GFlowNets as well as metadynamics and collective variables. In Section 3, we present the Adapted
Metadynamics and MetaGFN algorithms. In Section 4, we evaluate MetaGFN against other ap-
proaches, showing that MetaGFN generally outperforms existing exploration strategies in various
continuous environments. We finish with limitations and conclusions in Sections 5 and 6. Code for
MetaGFN is available at [link in camera-ready].

2 PRELIMINARIES

2.1 DISCRETE GFLOWNETS

In a GFlowNet, the network refers to a directed acyclic graph (DAG), denoted as G = (S,A). Nodes
represent states s ∈ S , and edges represent actions s→ s′ ∈ A denoting one-way transitions between
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states. The DAG has two distinguishable states: a unique source state s0, that has no incoming edges,
and a unique sink state ⊥, that has no outgoing edges.

The set of states, X ⊂ S, that are directly connected to the sink state are known as terminating
states. GFlowNets learn forward transition probabilities, known as a forward policy PF (s′|s), along
the edges of the DAG so that the resulting marginal distribution over the terminal states complete
trajectories (the terminal distribution) , denoted as P⊥(x), is proportional to a given reward function
R : X → R. GFlowNets also introduce additional learnable objects, such as a backward policy
PB(s|s′), which is a distribution over the parents of any state of the DAG, to create losses that
train the forward policy. Objective functions for GFlowNets include flow matching (FM), detailed
balance (DB), trajectory balance (TB) and subtrajectory balance (STB) (Bengio et al., 2021a;b;
Malkin et al., 2022; Madan et al., 2022). During training, the parameters of the flow objects are
updated with stochastic gradients of the objective function applied to batches of trajectories. These
trajectory batches can be obtained either directly from the current forward policy or from an alternative
algorithm that encourages exploration. These approaches are known as on-policy and off-policy
training respectively.

2.2 CONTINUOUS GFLOWNETS

Continuous GFlowNets extend the generative problem to continuous spaces (Lahlou et al., 2023),
where the analogous quantity to the DAG is a measurable pointed graph (MPG) (Nummelin, 1984).
MPGs can model continuous spaces (e.g., Euclidean space, spheres, tori), as well as hybrid spaces,
with a mix of discrete and continuous components, as often encountered in robotics, finance, and
biology (Bortolussi and Policriti, 2008; Swiler et al., 2012; Neunert et al., 2020).
Definition 2.1 (Measurable pointed graph (MPG)). Let (S̄, T ) be a topological space, where S̄ is
the state space, T is the set of open subsets of S̄, and Σ is the Borel σ-algebra associated with the
topology of S̄. Within this space, we identify the source state s0 ∈ S̄ and sink state ⊥∈ S̄, both
distinct and isolated from the rest of the space. On this space we define a reference transition kernel
κ : S̄ × Σ → [0,+∞) and a backward reference transition kernel κb : S̄ × Σ → [0,+∞). The
support of κ(s, ·) are all open sets accessible from s. The support of κb(s, ·) are all open sets where s
is accessible from. Additionally, these objects must be well-behaved in the following sense:

(i) Continuity: For all B ∈ Σ, the mapping s 7→ κ(s,B) is continuous.

(ii) No way back from the source: The backward reference kernel has zero support at the source
state, i.e. for all B ∈ Σ, κb(s0, B) = 0.

(iii) No way forward from the sink: When at the sink, applying the forward kernel keeps you
there, i.e. κ(⊥, ·) = δ⊥(·), where δ⊥ is the Dirac measure of the sink state.

(iv) A fully-explorable space: The number of steps required to possibly reach any measurable
B ∈ Σ from the source state, and to guarantee to reach the sink state, with the forward
reference kernel is bounded.

The set of objects (S̄, T ,Σ, s0,⊥, κ, κb) then defines an MPG.

Note that the support of κ(s, ·) and κb(s, ·) are analogous to the child and parent sets of a state s in a
DAG. Similarly, a discrete GFlowNet’s DAG satisfies discrete versions of (ii), (iii), and (iv).

The set of terminating states X are the states that can transition to the sink, given by X =
{s ∈ S : κ(s, {⊥}) > 0}, where S := S̄ \ {s0}. Trajectories τ are sequences of states that run
from source to sink, τ = (s0, . . . , sn,⊥). The forward Markov kernel PF : S̄ × Σ → [0,∞)
and backward Markov kernel PB : S̄ × Σ → [0,∞) have the same support as κ(s, ·) and κb(s, ·)
respectively, where being a Markov kernel means states are mapped to probability measure, hence∫
S̄ PF (s, ds

′) =
∫
S̄ PB(s, ds

′) = 1. A flow F is a tuple F = (f, PF ), where f : Σ → [0,∞) is a
flow measure, satisfying f({⊥}) = f(s0) = Z, where Z is the total flow.

The reward measure is a positive and finite measure R over the terminating states X , we denote the
density of this reward measure as r(x), for x ∈ X . A flow F is said to satisfy the reward-matching
conditions if

R(dx) = f(dx)PF (x, {⊥}).
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If a flow satisfies the reward-matching conditions and trajectories are recursively sampled from
the Markov kernel PF starting at s0, the resulting measure over terminating states, P⊥(B), is
proportional to the reward: P⊥(B) = R(B)

R(X ) for any B in the σ-algebra of terminating states (Lahlou
et al., 2023).

Objective functions for discrete GFlowNets generalise to continuous GFlowNets. However, in the
continuous case, the forward policy p̂F : S × S̄ → [0,∞), backward policy p̂B : S × S̄ → [0,∞)

and parameterised flow f̂ : S → [0,∞) parameterise the PF , PB transition kernels and flow measure
f on an MPG. Discrete GFlowNets parameterise log transition probabilities and flows on a DAG.
In this work, we consider DB, TB and STB losses. For a complete trajectory τ , the TB loss can be
written as

LTB(τ) =

(
log

Zθ
∏n
t=0 p̂F (st, st+1; θ)

r(sn)
∏n−1
t=0 p̂B(st+1, st; θ)

)2

,

where Zθ is the parameterised total flow (see Appendix A for the DB and STB loss functions).

2.3 EXPLORATION STRATEGIES FOR GFLOWNETS

GFlowNets can reliably learn using off-policy trajectories, a key advantage over hierarchical varia-
tional models (Malkin et al., 2023). For optimal training, it is common to use a replay buffer and
alternate between on-policy and off-policy (exploration) batches (Shen et al., 2023a). In the discrete
case, proposed techniques to encourage exploration include ϵ-noisy exploration, tempering and the
incorporation of intermediate rewards (Bengio et al., 2021a; Pan et al., 2022). Exploration strategies
for continuous GFlowNets are less well studied in the literature but several methods designed for
discrete GFlowNets can be adapted (Sendera et al., 2024). In this work, we consider:

Local Search GFlowNets (Kim et al., 2024): Explores by backtracking and resampling on-policy
trajectories. Reconstructed trajectories with a higher reward than the original are used for training,
thus encouraging the learning of high-reward modes.

Thompson sampling. (Rector-Brooks et al., 2023): Explores high-uncertainty regions by using an
ensemble of policy heads with a shared torso. A random head generates the on-policy trajectory,
and the loss is computed by averaging contributions over heads, where each head is independently
included with probability p.

Noisy exploration: Explores by increasing policy uncertainty. A small constant is added to the policy
variance which is gradually reduced to zero over the course of training.

Nested sampling (Lemos et al., 2023): A Markov-Chain Monte Carlo (MCMC) algorithm is used
to sample from the reward distribution. Backward sampling from these terminal states are used to
generate off-policy trajectories.

2.4 METADYNAMICS AND COLLECTIVE VARIABLES

Molecular dynamics (MD) simulates that dynamics of molecules using Langevin dynamics (LD)
(Pavliotis, 2014), a stochastic differential equation that models particle motion under friction and
random noise. LD trajectories ergodically sample the molecule’s Gibbs measure, ρβ(x) ∝ e−βV (x),
where x ∈ X represents atomic positions, V (x) is the molecular potential, and β is the thermo-
dynamic beta.1 However, when V (x) contains multiple, deep local minima, as is common in
biomolecules, then LD becomes inefficient, as it tends to get trapped in these minima, slowing
exploration of the full state space.

Metadynamics overcomes this by progressively modifying the potential landscape to discourage
visits to already-explored regions (Laio and Parrinello, 2002). It achieves this by regularly depositing
repulsive Gaussian biases, centered at the current state of the evolving LD trajectory. This modifies
the potential to Vtotal(x, t) = V (x) + Vbias(x, t), where Vbias(x, t) is the cumulative bias at time t.
Intuitively, metadynamics thus progressively transforms the landscape into more level surface, in
which the system can diffuse more freely, thereby accelerating exploration (Figure 1). In the limit
t→∞, the dynamics approximates free diffusion and uniformly samples the domain of V (x).

1We review Langevin dynamics in Appendix B.
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Latest Sample

Total Potential
Original Potential

Figure 1: Illustration of metadynamics in a multi-well potential. Regular deposition of a bias leads to
a total potential that gradually flattens, encouraging exploration.

Since biases are typically specified on a numerical grid, this gives rise to a memory cost that
grows exponentially with dimension. Therefore, biases are typically applied along low-dimensional
coordinates known as collective variables (CVs). A collective variable z(x) : X → Z is any mapping
from the original (high-dimension) state space X to a lower-dimensional space Z . For potential V (x)
and collective variables z, metadynamics is guaranteed to eventually uniformly sample the domain of
the marginal potential V (z′) :=

∫
X δ(z

′ − z(x))V (x)dx. In molecular contexts, ideal choices of
CVs correspond to the physical reaction coordinates that underly rare-event transitions (e.g. backbone
dihedrals, interatomic distances) (Laio and Gervasio, 2008; De Vivo et al., 2016). In more general
settings, ideal CVs should resolve rare events dynamics on V (x), simplfy the landscape (retaining
its essential features e.g. barriers and basins), and minimise the dimensionality of this representation.
For simple systems, CVs can be derived from known symmetries or macroscopic order parameters
that describe state changes. However, if the choice of CVs is not obvious, then they can learnt through
data-driven methods such as Time-Lagged Independent Component Analysis (TICA) (Molgedey and
Schuster, 1994), manifold learning algorithms, neural network autoencoders or variational methods
(Mardt et al., 2018; Bonati et al., 2021; Ramaswamy et al., 2021). For an in-depth review on these
CV-learning approaches, see Sidky et al. (2020). Metadynamics has seen numerous extensions (Bussi
and Laio, 2020). In the next section, we adapt the original metadynamics algorithm to the continuous
black box setting. We will assume suitable CVs are given, but the theory we present is agnostic to
their form–be it analytical expressions, neural networks, or non-parametric tabular mappings.

3 METAGFN: ADAPTED METADYNAMICS FOR GFLOWNETS

Metadynamics has two properties that make it well-suited as an exploration strategy. Firstly, it
eventually uniformly samples the domain, ensuring exploration of all local minima. In contrast,
techniques such as Local Search GFlowNets, Thompson sampling, and noisy exploration rely on
localised strategies that are prone to mode locking (Section 4). Secondly, its gradual diffusion from
the starting configuration allows incremental exploration, resulting in more stable training than global
approaches like nested sampling. However, metadynamics requires a potential and its gradients,
which are not always available in a black-box GFlowNet setting. We adapt metadynamics to this
setting by interpreting the reward landscape as a potential energy surface, resulting in the exploration
algorithm Adapted Metadynamics (AM) (Section 3.1) and training algorithm MetaGFN (Section 3.2).

Interpreting reward density as a potential: We assume that X is a manifold and that the reward
density r(x) is bounded and L1-integrable over X with at most finitely many discontinuities. Thus,
the target density over terminal states, ρ(x) := r(x)/

∫
X r(x

′) dx′, can be expressed as a Gibbs
distribution: ρ(x) = exp(−β′V (x))/

∫
X r(x

′) dx′, where we identify V (x) = − 1
β′ ln r(x) as the

corresponding potential, for some constant scalar β′ > 0. Reward maxima thus correspond to
potential energy minima. From simplicity, we set β′ equal to the thermodynamic beta (β). Making
this choice means that the single parameter β uniquely controls the (unbiased) transition rates
between minima of the potential2. Our goal is to use metadynamics to explore V (x), generating
high-reward terminal states that guide the GFlowNet to sample all reward density modes.

2From the Kramer formula; transition rate ∝ 1
β
exp(β∆V ), where ∆V ∝ 1

β′ = 1
β

.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Adapted Metadynamics
Input :Manifold environment of terminating states X with reward density r : X → R.

Initial state (xt, pt) ∈ X × Txt
(X ). Collective variables z = (z1, . . . , zd).

Parameters :Gaussian width σ = (σ1, . . . , σd) ∈ Rd. Gaussian height w > 0. Stride n ∈ Z+.
LD parameters: γ, β. Timestep ∆t.

1 N̂ ← 0

2 R̂← 0

3 V̂ (z)← 0
4 Vbias(z)← 0
5 every timestep ∆t:
6 zt ← z(xt)
7 every n timesteps n∆t:

8 N̂ ← N̂ + exp
(
− 1

2

∑d
i=1

(zi−zi,t)2
σ2
i

)
9 R̂← R̂+ r(xt) · exp

(
− 1

2

∑d
i=1

(zi−zi,t)2
σ2
i

)
10 V̂ ← − 1

β log
(
R̂/(N̂ + ϵ) + ϵ

)
11 Vbias(z)← Vbias(z) + n ·∆t · w · exp

(
− 1

2

∑d
i=1

(zi−zi,t)2
σ2
i

)
12 compute forces:

13 F ← −
(
∇zV̂ (z)|z=zt +∇zVbias(z)|z=zt

)
· ∇xz|x=xt

14

propagate xt, pt by ∆t using Langevin dynamics with computed force F (Alg. 3, Appendix B).

3.1 ADAPTED METADYNAMICS

Metadynamics requires the gradient of the total potential, where −∇Vtotal(x, t) = −∇(V (x) +
Vbias(x, t)). Using the above assumptions, we have∇V (x) = −∇r(x)/(β′r(x)). However, r(x) is
often a computationally expensive black-box function, and its gradient, ∇r(x), is unknown. While
finite differences can estimate∇r(x) for smooth, low-dimensional reward distributions, this approach
is impractical in high-dimensional spaces. Below, we explain how to adapt metadynamics to this
black-box setting and avoid finite difference gradient estimates by storing a dynamically-updated
kernel density estimate (KDE) of the potential. We call the modified metadynamics algorithm
Adapted Metadynamics (Algorithm 1).

Let xt denote the metadynamics sample at time t and z(x) = (z1(x), . . . , zd(x)) be a given set of
collective variables, where zi is a one-dimensional coordinate, and z ∈ Z is d-dimensional. Let
zi,t := zi(xt) denote the corresponding ith CV coordinate at time t and assume that the Jacobian
∇xz is well-defined. We store a discretisation of the KDE marginal potential and bias potentials
in CV space Z . Since these are stored in memory, gradient computations are cheap and require no
further evaluations of r(x).

Let V̂ (z, t) represent the KDE of the marginal potential at time t. To compute V̂ (z, t), we maintain
two separate KDEs: N̂(z, t) for visited states (line 8) and R̂(z, t) for cumulative rewards (line 9).
We update these KDEs on-the-fly at the same time the bias potential is updated, which occurs every
integer n steps of Langevin dynamics (line 7). If Z ∼= Rd, we use Gaussian kernels with kernel width
σ = (σ1, . . . , σk) ∈ Rk, matching the width of the Gaussian bias (line 11)3. This is a reasonable
as both are set by the variability length scale of V (x). Finally, the KDE potential V̂ (z, t) is then
computed as V̂ (z, t) = − 1

β log
(

R̂(z,t)

N̂(z,t)+ϵ
+ ϵ
)

, for a fixed constant ϵ > 0 (line 10). We found

empirically that ϵ ensured numerical stability by preventing division by zero and bounding V̂ from
above. Defining V̂ through the ratio R̂/N̂ ensures that it rapidly and smoothly adjusts whenever new
modes are discovered. Furthermore, we prove that V̂ eventually discovers all reward modes in the
CV space. More precisely,

3If Z ∼= Td (d-torus), we use von Mises distributions.
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Theorem 3.1. If the collective variable z(x) is analytic with a bounded domain, then

lim
ϵ→0

(
lim
σ→0

(
lim
t→∞

V̂ (z, t)
))

= V, (1)

where V = V (z′) :=
∫
X δ(z

′ − z(x))V (x)dx.

The proof is in Appendix C.

Note that the algorithm can be extended to a batch of trajectories, where each metadynamics trajectory
evolves independently, but with a shared V̂ and Vbias which receive updates from every trajectory
in the batch. We found empirically that this accelerates exploration and reduces stochastic gradient
noise during training and this is the version we use in our experiments (Section 4).

3.2 METAGFN

Each Adapted Metadynamics sample xi ∈ X is an off-policy terminal state sample. To train a
GFlowNet, complete trajectories are required. We generate these by backward sampling from the
terminal state, giving a trajectory τ = (s0, s1, . . . , sn = xi), where each state si−1 is sampled from
the current backward policy distribution p̂B(si−1|si; θ), for i from n to 1. This approach means that
the generated trajectory τ has reasonable credit according to the loss function, thereby providing a
useful learning signal. However, since this requires a backward policy, this is compatible with DB,
TB, and STB losses, but not FM loss. Given the superior credit assignment of the former losses, this
is not a limitation (Madan et al., 2022).

Additionally, we use a replay buffer. Due to the theoretical guarantee that Adapted Metadynamics
will eventually sample all collective variable space (Theorem 3.1), AM samples are ideal candidates
for storing in a replay buffer. When storing these trajectories in the replay buffer, there are two
obvious choices:

1. Store the entire trajectory the first time it is generated;
2. Store only the Adapted Metadynamics sample and regenerate trajectories using the current

backward policy when retrieving from the replay buffer.

We investigated both options in preliminary experiments (Appendix D.2). Option 2 was found to
be uniformly superior and it is the version we use in our main experiments (Section 4). We call the
overall training algorithm MetaGFN, with pseudocode presented in Algorithm 2, below.

Algorithm 2: MetaGFN
Input :Forward policy PF . Backwards policy PB . Loss function L.
Parameters :How often to run Adapted Metadynamics batches, freqMD. How often to run

replay buffer batches, freqRB. Batch size, b. Stride, n ∈ Z+. Time step, ∆t > 0
1 for each episode do:
2 if episode number is divisible by freqMD:
3 Run Adapted Metadynamics (batch size b) for time n∆t, obtain samples {x1, . . . , xb}
4 Push {x1, . . . , xb} to the replay buffer
5 Backward sample from {x1, . . . , xb} using current PB to obtain trajectories {τ1, . . . , τb}
6 elif episode number is divisible by freqRB:
7 Random sample {x1, . . . , xb} from the replay buffer
8 Backward sample from {x1, . . . , xb} using current PB to obtain trajectories {τ1, . . . , τb}
9 else:

10 Generate trajectories {τ1, . . . , τb} on-policy
11 Compute loss l =

∑b
i=1 L(τi, PF , PB)

12 Take gradient step on loss l

4 EXPERIMENTS

We compare MetaGFN with Thompson sampling, noisy, Local Search GFlowNets and nested
sampling (Section 2.3). We run experiments in five continuous environments, summarised below. For
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each exploration strategy, we use a replay buffer and alternate between exploration and replay buffer
batches. For MetaGFN, we use freqRB = 2, freqMD = 10. Forward and backward kernels are
Gaussian/von Mises mixture distributions, with distribution parameters specified at each state by an
MLP. In all environments, the additional computational expense of running Adapted Metadynamics
was negligible (<5%) compared to the training time of the models. Full experimental details can be
found in Appendix D.
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Figure 2: Line environment re-
ward density.

Line environment: A one-dimensional environment with state space
S = R×{t ∈ N, 1 ≤ t ≤ 3}, where t indexes the position of a state
in a trajectory. The source state is s0 = (0, 0). The terminal states
are therefore X = R × {3} ∼= R. The collective variable is the
identity, i.e. z = x. The reward density, plotted in Figure 2, consists
of an asymmetric bimodal peak near the origin and an additional
distant lone peak. It is given by the Gaussian mixture distribution:

r(x) =


N (−2.0, 1.0) +N (−2.0, 0.4)+
N (2.0, 0.6) +N (20.0, 0.1); −5 ≤ x ≤ 23

0; otherwise,
(2)

where N (µ, σ2) is a Gaussian density with mean µ and variance σ2.
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Figure 3: Free energy surface
of alanine dipeptide.

Alanine dipeptide environment: One application of continuous
GFlowNets is molecular conformation sampling (Volokhova et al.,
2023). Here, we train a GFlowNet to sample conformational states of
alanine dipeptide (AD), a a small biomolecule of 23 atoms that plays
a key role in modelling the dynamics of proteins (Hermans, 2011).
The metastable states of AD are distinguished in a 2D CV space
defined by the backbone dihedral angles ϕ and ψ. The resulting free
energy surface V (ϕ, ψ) in explicit water, obtained after extensive
sampling with long molecular dynamics simulations, is shown in Fig-
ure 3. The metastable states, in increasing energy, are P||, αR, C5,
α′, αL, and αD. The state space is S = T2 × {t ∈ N, 1 ≤ t ≤ 3},
with source state s0 = P|| = (−1.2, 2.68). Terminal states are
X = T2 ×{3} ∼= T2. The reward function is the Boltzmann weight,
r(ϕ, ψ) = 1

Z exp(−βV (ϕ, ψ)), where Z is the normalisation con-
stant.
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Figure 4: Grid environment re-
ward density in dimension 2.

Grid environments: We consider (hyper)grids in d = 2, 3 and 4
dimensions. The state space is S = [−15, 15]d×{t ∈ N, 1 ≤ t ≤ 3}.
The k-dimensional (hyper)grid consists of 2k modes, located at the
corners of the (hyper)cube [−10, 10]d. The (hyper)grid is centered
on the origin with an edge width of 20. The reward modes are
Gaussians with variance σ2 = 2 (Figure 4). We use trajectory
lengths of 3, 5, and 6 for dimensions 2, 3, and 4 respectively. The
collective variable is the identity, i.e. z = x. The source state is the
origin and terminal states are in X ∼= Rk.

4.1 RESULTS

In each environment, we run experiments with three different loss functions: Detailed Balance (DB),
Trajectory Balance (TB) and Subtrajectory Balance (STB). We evaluate performance by computing
the L1 error between the known reward distribution and the empirical on-policy distribution during
training resulting from 104 independent samples. The results, averaged over 10 repeats, are shown in
Figure 5. In 12 out of 15 of the experiments, MetaGFN outperformed all other exploration strategies.
We give further analysis below.

Line Environment: Among the losses, TB shows the lowest variance, and for all losses, MetaGFN
always converges to a lowest error 4. Indeed, MetaGFN is the only method that consistently samples

4We do not show results for nested sampling on the line environment as the implementation used did not
support one-dimensional environments, see Appendix D.
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Figure 5: The L1 difference between on-policy and reward distribution during training for different
loss functions and exploration strategies. The mean is plotted with standard error over 10 repeats.
DB - Detailed Balance loss, TB - Trajectory Balance loss, STB - Subtrajectory Balance loss.

the distant reward peak at x = 20 (Appendix D.2). Although other strategies occasionally sampled
the distant peak, MetaGFN alone converges because it continuously samples this peak, even if the
forward policy starts to lock onto the central modes, thus ensuring that the replay buffer is always
populated with diverse samples. The slight increase in the loss of MetaGFN around batch number
5 × 103 occurs as the on-policy distribution widens when Adapted Metadynamics first discovers
the distant peak. Appendix D.2 provides further analysis of Adapted Metadynamics and compares
different MetaGFN variants, with and without noise, and with and without trajectory regeneration.
We confirm that the variant of MetaGFN presented in Figure 5 (no added noise, always regenerate
trajectories) is the most robust.

Alanine Dipeptide Environment: For each loss, MetaGFN generally converges to a lower error than
all other exploration strategies. However, for TB loss, the average L1 error is marginally higher than
on-policy training, but this conceals the fact that the best-case error is smaller. To better understand
this result, we examined the best and worst training runs (as measured by L1 error) for TB on-policy
and TB MetaGFN, shown in Figure 6. Note that, unlike on-policy, the best MetaGFN run learns to
sample the rare αL mode. In the worst case, MetaGFN fails to converge (although this is rare; only
one of 10 runs failed). In Table 1, we quantify how often the different AD modes were sampled over
the different repeats (a mode is considered sampled if the on-policy distribution has a mode within
the correct basin of attraction). TB loss with MetaGFN is the only combination that consistently
samples the majority of modes. The only mode not sampled by any method is αD, which has a
natural abundance approximately 10 times less frequent than αL.

Grid Environments: MetaGFN achieves the lowest error in 7 of 9 experiments, although note that
the performance of all methods generally decreases with increasing dimension. This is unsurprising,
since the learning task becomes more difficult. For MetaGFN, this is also an expected outcome
of the curse of dimensionality of the replay buffer grid; in high-dimensional spaces metadynamics
samples encounter high-reward modes less frequently, leading to a replay buffer with less sample
diversity. This is a known limitation of metadynamics (Laio and Parrinello, 2002). Nested Sampling
outperforms MetaGFN in one case (Grid 3D, DB loss) but relies on costly MCMC-based pre-training
that scales exponentially with dimension and requires reward gradients, unlike MetaGFN. However,
the generally favourable performance of MetaGFN could be due to the method discovering an overall
larger diversity of off-policy samples, that are refreshed and updated during training, in contrast to
the static samples when using Nested Sampling approach.

9
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Table 1: Number of correct samples of AD modes in trained GFlowNets over 10 independent repeats
for DB, STB, and TB loss functions. OP - On-policy and MD - MetaGFN. The αD mode wasn’t
sampled in any model due to its low natural frequency.

DB STB TB

OP MD OP MD OP MD

P|| 1 7 6 5 10 8
αR 6 9 7 10 10 9
C5 2 7 5 6 10 8
α′ 6 9 5 10 5 9
αL 0 1 1 0 0 8

Best On-policyWorst On-policy Worst MetaGFN Best MetaGFN

Figure 6: Learned on-policy distribution for TB on-policy and TB MetaGFN training runs. The colour
bar shows the probability density. Red histograms show the marginal distribution along the angular
coordinates. Black curves show the marginal distributions of the ground truth. In the best case,
MetaGFN is able to learn the αL mode. In the worst case, MetaGFN fails to converge. On-policy
training, although more consistent, fails to learn to sample from the αL mode.

5 LIMITATIONS

For metadynamics to be an effective sampler, the CVs must be low-dimensional and bounded. Either
these CVs should be known analytically (as in our experiments) or learnt from data (Sidky et al.,
2020). Alternatively, CVs could be learnt adaptively by parameterising z(x; θ) by a neural network
and updating its parameters by back-propagating through the GFlowNet loss during training. The
metadynamics algorithm could also be replaced with a variant with smoother convergence properties,
such as well-tempered metadynamics (Barducci et al., 2008) or on-the-fly probability enhanced
sampling (OPES) (Invernizzi, 2021). We leave these as extensions for future work.

6 CONCLUSIONS

While exploration strategies for discrete Generative Flow Networks (GFlowNets) have received
extensive attention, the methodologies for continuous GFlowNets remain relatively underexplored.
To address this gap, we illustrated how metadynamics, a widely used enhanced sampling technique in
molecular dynamics, can be adapted as an effective exploration strategy for continuous GFlowNets.

In molecular dynamics, atomic forces can be computed as the gradient of the potential, whereas
continuous GFlowNets tackle problems where the reward function is a black box and gradients
are inaccessible. We demonstrated how the method could be adapted by updating a kernel density
estimate of the reward function on-the-fly, and proved that this is guaranteed to explore the space
in an appropriate limit. Our empirical investigations show that MetaGFN offers a computationally
efficient means to explore new modes in environments where prior knowledge of collective variables
exists. Importantly, this work advocates an approach wherein techniques derived from molecular
modelling can be adapted for machine learning tasks. Looking ahead, we anticipate that this could
be a fruitful area of cross-disciplinary research, where existing ideas from the enhanced sampling
literature can find further applications in generative modelling and reinforcement learning.
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A LOSS FUNCTIONS

For a complete trajectory τ , the detailed balanced loss (DB) is

LDB(τ) =

n−1∑
t=0

(
log

f̂(st; θ)p̂F (st, st+1; θ)

f̂(st+1; θ)p̂B(st+1, st; θ)

)2

,

where f̂(st+1; θ) is replaced with r(sn) if sn is terminal.

The subtrajectory balance loss (STB) is

LSTB(τ) =

∑
0≤i<j≤n λ

j−1LTB(τi:j)∑
0≤i<j≤n λ

j−i ,

LSTB(τi:j) :=

(
log

f̂(si; θ)
∏j−1
t=i p̂F (st+1|st; θ)

f̂(sj ; θ)
∏j
t=i+1 p̂B(st−1|st; θ)

)2

,

where f̂(sj ; θ) is replaced with r(sj) if sj is terminal. In the above, λ < 0 is a hyperparameter.
The limit λ→ 0+ leads to average detailed balance. The λ→∞ limit gives the trajectory balance
objective. We use λ = 0.9 in our experiments.

B LANGEVIN DYNAMICS

Langevin dynamics (LD), is defined through the Stochastic Differential Equation (SDE):

dx =M−1pdt (3)

dp = F (x)dt− γpdt+
√

2γβ−1M1/2dW. (4)

In the above, x, p ∈ RD are vectors of instantaneous position and momenta respectively, F : RD →
RD is a force function, W (t) is a vector of D independent Wiener processes, M ∈ RD × RD is
a constant diagonal mass matrix, and γ, β > 0 are constant scalars which can be interpreted as a
friction coefficient and inverse temperature respectively. In conventional Langevin dynamics, the
force function is given by the gradient of the potential energy function, F (x) = −∇V (x), where
V : RD → R and the dynamics are ergodic with respect to the Gibbs-Boltzmann density

ρβ(x, p) ∝ e−βH(x,p),

where H(x, p) = pTM−1p/2 + V (x) is the Hamiltonian. Since the Hamiltonian is separable in
position and momenta terms, the marginal Gibbs-Boltzmann density is position space is simply
ρβ(x) ∝ e−βV (x), often refered to as the Gibbs density.

We present the Euler-Maruyama numerican scheme for integrating equations 3 below. This is called
in line 14 of Adapted Metadynamics (Algorithm 1).

Algorithm 3: Euler-Maruyama Langevin Dynamics Step
Input :Current state (xt, pt). Force F .
Parameters :Friction coefficient γ. Thermodynamic beta β. Timestep ∆t.
Output :State (xt+∆t, pt+∆t) at the next timestep.

1 Sample a random vector R, with the same dimension as xt, where each element is an
independent sample from a standard normal.

2 xt+∆t = xt + pt∆t

3 pt+∆t = pt + F∆t− γpt∆t+
√

2γ∆t/β ·R
4 return (xt+∆t, pt+∆t)

C PROOFS

Lemma C.1. Let (fn(x)) and (gn(x)) be sequences of real functions where limn→∞ fn(x) =∞,
limn→∞ gn(x) =∞ and limn→∞

fn(x)
gn(x)

= h(x). Then, for all ϵ > 0, we have limn→∞
fn(x)
gn(x)+ϵ

=

h(x).
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Proof.

lim
n→∞

fn(x)

gn(x) + ϵ
= lim
n→∞

fn(x)

gn(x)

1

1 + ϵ/gn(x)

and the right-hand side is the product of two functions whose limit exists so, by the product rule of
limits

lim
n→∞

fn(x)

gn(x)
lim
n→∞

1

1 + ϵ/gn(x)
= h(x) · 1 = h(x),

so done.

Lemma C.2. Let (Xi) be a sequence of continuous random variables that take values on a bounded
domain D ⊂ Rd that asymptotically approaches the uniform random variable U on D, i.e. Xi → U
uniformly. Further, suppose

h(x) :=

∑∞
i=1 f(xi)g(x, xi)∑∞

i=1 g(x, xi)

exists, where xi ∈ D is a sample from Xi and f(x) and g(x, x′) are analytic functions on D and
D ×D respectively. Then,

h(x) =

∑∞
i=1 f(ui)g(x, ui)∑∞

i=1 g(x, ui)
,

where the ui are samples from U . We make no assumption of independence of samples.

Proof. Fix a probability space (Ω,F , P ) on which (Xi) and U are defined. Recall that a continuous
random variable X that takes values on D ⊂ Rd is a measurable function X : Ω→ D where (D,B)
is a measure space and B is the Borel σ-algebra on D. Let ω ⊂ Ω denote an arbitrary element of the
sample space. The requirement that Xi → U uniformly can be written formally as:

∀ϵ > 0,∃N(ϵ) s.t. ∀i > N(ϵ),∀ω ⊂ Ω, |Xi(ω)− U(ω)| < ϵ.

We prove the Lemma by showing that equality holds for all possible sequences of outcomes
ω1, ω2, . . . . That is, we prove:∑∞

i=1 f(Xi(ωi))g(x,Xi(ωi))∑∞
i=1 g(x,Xi(ωi))

=

∑∞
i=1 f(U(ωi))g(x, U(ωi)))∑∞

i=1 g(x, U(ωi)))
. (5)

Since these are ratios of infinite series, to prove their equality it is sufficient to show that the numerator
of the LHS is asymptotically equivalent to the numerator of the RHS and that the denominator of the
LHS is asymptotically equivalent to the denominator of the RHS. Recall that two sequences of real
functions (an) and (bn) are asymptotically equivalent if limn→∞

an(x)
bn(x)

= c where c is a constant.
First, we prove that this holds with

an :=

n∑
i=1

f(Xi(ωi))g(x,Xi(ωi)) (6)

and

bn :=

n∑
i=1

f(U(ωi))g(x, U(ωi))). (7)

We write

an
bn

=

∑N(ϵ)
i=1 f(Xi(ωi))g(x,Xi(ωi)) +

∑n
i=N(ϵ)+1 f(Xi(ωi))g(x,Xi(ωi))∑N(ϵ)

i=1 f(U(ωi))g(x, U(ωi))) +
∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

.

Dividing by
∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi))) and taking the limit n→∞ we have

lim
n→∞

an
bn

= lim
n→∞

∑n
i=N(ϵ)+1 f(Xi(ωi))g(x,Xi(ωi))∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

.

Since f and g are analytic and i > N(ϵ) for all terms in the sums we have, by Taylor expansion,
f(Xi(ωi)) = f(U(ωi)) +O(ϵ) and g(x,Xi(ωi)) = g(x, U(ωi)) +O(ϵ), hence

lim
n→∞

an
bn

= lim
n→∞

(
1 +

nO(ϵ)∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

)
= 1 + lim

n→∞

nO(ϵ)

O(n)
= 1 +O(ϵ).
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Finally, since ϵ can be made arbitrarily small by partitioning the sum at a N(ϵ) that is sufficiently
large, we conclude that limn→∞

an
bn

= 1, hence (an) and (bn) as defined in equation 6 and equation 7
are asymptotically equivalent. By a similar argument, it can be shown that

cn :=

n∑
i=1

g(x,Xi(ωi))

and

dn :=

n∑
i=1

g(x, U(ωi)))

are also asymptotically equivalent. This proves equation 5.

Below, we present the proof of Theorem 3.1 that appears in the main text.

Proof. For concreteness, throughout this proof we assume that the kernel function is a Gaussian. We
explain at the appropriate stage in the proof, indicated by (*), how this assumption can be relaxed.

First we take the n→∞ limit. Recall the notation from Section 3, i.e. assume collective variables
z(x) = (z1(x), . . . , zd(x)) where z : X → Z , and Z is d-dimensional. Since the log function is
continuous, the limit and log can be interchanged and we have

lim
n→∞

V̂ (z, tn) = −
1

β′ log

(
lim
n→∞

(
R̂(z, tn)

N̂(z, tn) + ϵ

)
+ ϵ

)
,

where, from Algorithm 1:

R̂(z, tn) =

n∑
i=1

r(xti) exp

− d∑
j=1

(zj − zj(xti))2

2σ2
j

, (8)

N̂(z, tn) =

n∑
i=1

exp

− d∑
j=1

(zj − zj(xti))2

2σ2
j

. (9)

Since the domain is bounded, we know that for fixed z, both equation 8 and equation 9 have limit at
infinity, i.e. limn→∞ R̂(z, tn) =∞ and limn→∞ N̂(z, tn) =∞. Hence, by Lemma C.1, we have

lim
n→∞

R̂(z, tn)

N̂(z, tn) + ϵ
= lim
n→∞

R̂(z, tn)

N̂(z, tn)
,

provided the limit on the RHS exists. Next, we show that this limit exists by computing it explicitly.
The limit can be written

lim
n→∞

R̂(z, tn)

N̂(z, tn)
= lim
n→∞

∑n
i=1 r(xti) exp

(
−
∑d
j=1

(zj−zj(xti
))2

2σ2
j

)
∑n
i=1 exp

(
−
∑d
j=1

(zj−zj(xti
))2

2σ2
j

) .

Recall that metadynamics eventually leads to uniform sampling over the domain, independent of the
potential. Hence, since R and z(x) are analytic, by Lemma C.2 we may replace the metadynamics
samples xti with samples ui from a uniform distribution over X :

lim
n→∞

R̂(z, tn)

N̂(z, tn)
= lim
n→∞

∑n
i=1 r(ui) exp

(
−
∑d
j=1

(zj−zj(ui))
2

2σ2
j

)
∑n
i=1 exp

(
−
∑d
j=1

(zj−zj(ui))2

2σ2
j

) .

In the limit, the ratio of sums with uniform sampling becomes a ratio of integrals:

lim
n→∞

R̂(z, tn)

N̂(z, tn)
=

∫
X r(x

′) exp
(
−
∑d
j=1

(zj−zj(x′))2

2σ2
j

)
dx′∫

X exp
(
−
∑d
j=1

(zj−zj(x′))2

2σ2
j

)
dx′

.
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The limit is therefore a (scaled) convolution of the reward function with a Gaussian in the collective
variable space with width vector σ. Taking the limit σj → 0 for all j ∈ {1, 2, . . . , d}, the Gaussian
convergences to a delta distribution in the collective variable space and we have

lim
σ→0

lim
n→∞

R̂(z, tn)

N̂(z, tn)
=

∫
X
r(x′)δ(z − z(x′))dx′.

(*) This step also holds for any kernel that becomes distributionally equivalent to a Dirac delta
function in the limit that its variance parameter goes to zero. In particular, it also holds for the von
Mises distribution that we use in our alanine dipeptide experiment in T2.

Finally, we take the limit ϵ→ 0 to obtain

lim
ϵ→0

lim
σ→0

lim
n→∞

V̂ (z, tn) = −
1

β′ limϵ→0
log

(∫
X
r(x′)δ(z − z(x′))dx′ + ϵ

)
(10)

= − 1

β′

∫
X
log (r(x′)) δ(z − z(x′))dx′ (11)

=

∫
X
V (x′)δ(z − z(x′))dx′ := V (z), (12)

where we have used the definition V (x′) = − 1
β′ log(r(x

′)) and in the last step we used the definition
of the marginal potential energy in the collective variable space. If z(x) is invertible, then the delta
function simplifies to a delta function in the original space and we obtain the original potential instead
of the marginal potential.

D EXPERIMENT DETAILS

D.1 COMMON EXPERIMENTAL PARAMETERS

Training parameters: For all environments we train for B = 105 batches use a learning rate with a
linear schedule, starting at 10−3 and finishing at 0. For the TB loss, we train the logZθ with a higher
initial learning rate of 10−1 (also linearly scheduled). For the STB loss, we use λ = 0.9, a value
that has worked well in the discrete setting (Madan et al., 2022). We use the Adam optimiser with
gradient clipping. For all loss functions, we clip the minimum log-reward signal at −10. This enables
the model to learn despite regions of near-zero reward between the modes of r(x).

Replay buffer: We use a replay buffer with capacity for 104 trajectories. Trajectories are stored in
the replay buffer only if the terminal state’s reward exceeds 10−3. When drawing a replay buffer
batch, trajectories are bias-sampled: 50% randomly drawn from the upper 30% of trajectories with
the highest rewards, and the remaining 50% randomly drawn from the lower 70%.

0 2000 4000 6000 8000 10000
j

0.0

0.5

1.0

1.5

2.0

Figure 7: Exponential noise schedule.

Noisy exploration: An additional constant, σ̄, is added to
the standard deviations of the Gaussian distributions of the
forward and backward policies. Specifically, the forward
policy becomes p̂F (st, st−1; θ) =

∑k
i=1 wiN (µi, (σi +

σ̄)2), and similarly for the backward policy, where k is
the number of Gaussians in the mixture. We schedule the
value of σ̄ so that it decreases during training according to
an exponential-flat schedule:

σ̄ =

{
σ̄0
(
e−2je/(B/2) − e−2e

)
j < B/2

0 j ≥ B/2, (13)

where j ∈ (1, . . . , B) is the batch number and σ̄0 = 2
is the initial noise, plotted in Figure 7. Note that, for the
alanine dipeptide environment, the policy is a mixture of bivariate von Mises distributions and the
noise σ̄ is added to the concentration parameter κ, where concentration is related to standard deviation
through σ = 1

κ2 .

Thompson sampling: We use 10 heads with the bootstrapping probability parameter set to p = 0.3.
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Local Search GFN: Local search samples trajectories using a forward-backward reconstruction
method. First, forward policy samples actions to generate batch size b on-policy trajectories. Then,
the backward policy is used to re-sample the last K steps of each trajectory. Finally, the forward
policy is used to reconstruct the last K steps, and trajectories in the batch with higher rewards from
reconstruction replace the originals. We use K = 1 for the line environment, alanine dipeptide
environment and two-dimensional grid. We use K = 2 and K = 3 for the three and four dimensional
(hyper)grids, respectively.

Nested sampling: We use the Gradient Based Nested Sampling (GBNS) (Lemos et al., 2023) with a
publicly available implementation: https://github.com/Pablo-Lemos/GGNS. For each
environment, GBNS generates samples from the reward distribution. During training, we alternate
between two types of backpropagation: one fully on-policy, and the other using backward-sampled
trajectories from the generated samples, guided by the current backward policy.

Compute resources: Experiments are performed in PyTorch on a desktop with 32Gb of RAM and a
12-core 2.60GHz i7-10750H CPU.

D.2 LINE ENVIRONMENT DETAILS

Parameterisation: The forward and backward policies are a mixture of three Gaussians. We
parameterise p̂F , p̂B and the flow f̂ through an MLP with 3 hidden layers, 256 hidden units per
layer. We use the GELU activation function and dropout probability 0.2 after each layer. This
defines the torso of the MLP. Connecting from this common torso, the MLP has three single-layer,
fully-connected heads. The first two heads have output dimension 9 and parameterise the 3 means (µ),
standard deviations (σ) and weights (w) of the mixture of Gaussians for the forward and backward
policies respectively. The third head has output dimension 1 and parameterises the flow function f̂ .
The mean and standard deviation outputs are passed through a sigmoid function and transformed so
that they map to the ranges µ ∈ (−14, 14) and σ ∈ (0.1, 1). The mixture weights are normalised with
the softmax function. The exception to this parameterisation is the backward transition to the source
state which is fixed to be the Dirac delta distribution centred on the source, i.e. p̂B(s0|s1; θ) = δs0 .
For the TB loss, we treat logZθ as a separate learnable parameter. We use batch size b = 64. It takes
approximately 1 hour to train a continuous GFlowNet in this environment with B = 105 batches.

MetaGFN: We use ∆t = 0.05, n = 2, β = 1, γ = 2, w = 0.15, σ = 0.1, ϵ = 10−3. The
domain of Adapted Metadynamics is restricted to [−5, 23] and reflection conditions are imposed
at the boundary. The bias and KDE potentials are stored on a uniform grid with grid spacing 0.01.
Initial metadynamics samples are drawn from a Gaussian distribution, mean 0 and variance 1, and
initial momenta from a Gaussian distribution, mean 0 and variance 0.5.

Evaluation: The L1 error between the known reward distribution, ρ(x) = r(x)/Z, and the
empirical on-policy distribution, denoted ρ̂(x), estimated by sampling 104 on-policy trajecto-
ries and computing the empirical distribution over terminal states. Specifically, we compute
error = 1

2

∫ 23

−5

∣∣∣ρ̂(x)− r(x)
Z

∣∣∣dx, where the integral is estimated by a discrete sum with grid spacing
0.01. Note that this error is normalised such that for all valid probability distributions ρ̂(x), we have
0 ≤ error ≤ 1.

On-policy distributions: Figure 9 shows the forward policy and replay buffer distributions (with
bias sampling) after training for 105 iterations with TB loss. MetaGFN is the only method that can
uniformly populate the replay buffer and consistently learn all three peaks.

Adapted Metadynamics: Figure 10a shows the L1 error between the density implied by the KDE
potential and the true reward distribution during a typical training run. Figure 10b shows the resulting
V̂ and Vbias at the end of the training. By (1), Adapted Metadynamics has fully explored the central
peaks. At (2), the third peak is discovered, prompting rapid adjustment of the KDE potential. By
2.5× 104 iterations, a steady state is reached and the algorithm is sampling the domain uniformly.

Sensitivity analysis of hyperparameters: We compare MetaGFN performance for various freqRB
and freqMD values, showing the mean and standard deviation of the final L1 error after 105

batches (Figure 8). Intuitively, we expect that if freqRB is set too large, then MetaGFN focuses
predominantly on the on-policy dynamics and may fail to learn to sample distant modes. By contrast,
setting freqRB = 1 means exclusively training on the replay buffer, without any on-policy training
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Figure 8: Mean and standard deviation L1 loss after 105 training batches over 10 repeats in the line
environment. Blue line: changing freqRB while freqMD = 10. Red line: changing freqMD while
freqRB = 2.

Figure 9: Forward policy and replay buffer distributions after training for 105 iterations with TB loss.
MetaGFN is the only method that can consistently learn all three peaks.

trajectories, which we would expect to lead to slow convergence. Therefore, an intermediate value
of freqRB should be optimal. We found that setting freqRB = 2 (giving an equal weighting to
both on-policy and replay buffer trajectories) showed the lowest loss. By contrast, performance is
not too sensitive to freqMD. freqMD should be set so that Adapted Metadynamics explores the
reward landscape in a comparable time it takes to train the GFN to convergence, hence only the order
of magnitude of freqMD is important. For concreteness, we choose freqMD = 10 but the model
performance is not too sensitive to this parameter.

Comparing MetaGFN variants: We consider three MetaGFN variants. The first variant, always
backwards sample, regenerates the entire trajectory using the current backward policy when pulling
from the replay buffer. The second variant, reuse initial backwards sample, generates the trajectory
when first added to the replay buffer and reuses the entire trajectory if subsequently sampled. The
third variant, with noise, is to always backwards sample with noisy exploration as per equation
equation 13. We plot the L1 policy errors in Figure 11. We observe that always backward sample is
better than reuse initial backwards sample for all loss functions. For DB and TB losses, there is no
evidence for any benefit of adding noise, whereas noise improves training for STB loss, performing
very similarly to TB loss without noise.
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(a) (b)

Figure 10: (a) L1 error between ρ̂ = exp(−βV̂ (x))/Z and the reward distribution, r(x)/Z (b) kde
potential, bias potential, and positions of final samples after 2.5× 104 training iterations.
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Figure 11: Comparing MetaGFN variants.
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D.3 ALANINE DIPEPTIDE ENVIRONMENT DETAILS
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Figure 12: The potential KDE
V̂ learnt using MetaGFN on
the alanine dipeptide environ-
ment, concentration κ = 10.

Computing the free energy surface: To obtain a ground-truth
free energy surface (FES) in ϕ-ψ space, we ran a 250ns NPT well-
tempered metadynamics MD simulation of alanine dipeptide at tem-
perature 300K (β = 0.4009), pressure 1bar with the TIP3P explicit
water model (Jorgensen et al., 1983). We used the PLUMMED
plugin (Bonomi et al., 2019) for OpenMM (Eastman et al., 2017)
with the AMBER14 force field (Salomon-Ferrer et al., 2013).

Parameterisation: The forward and backward policies are a mixture
of three bivariate von Mises distributions. We parameterise p̂F , p̂B
and f̂ through three heads of an MLP with 3 hidden layers with
512 hidden units per layer, with GeLU activations and dropout
probability 0.2. The first two heads have output dimensions of
15, parameterising the 6 means, 6 concentrations, and 3 weights
of the mixture of von Mises policy. The third head has output
dimension 1 and parameterises the flow function f̂ . The means are
mapped to the range (−π, π) through 2 arctan(·). Concentrations
are parameterised in log space and passed through a sigmoid to map to the range ln(κ) ∈ (0, 5).
Mixture weights are normalised with the softmax function. We use batch size b = 64. It takes
approximately 10 hours to train a continuous GFlowNet in this environment with B = 105 batches.

MetaGFN: We use freqRB = 2, freqMD = 10, ∆t = 0.01, n = 2, β = 0.4009, γ = 0.1,
w = 10−5, κ = 10, ϵ = 10−6. The bias and KDE potentials are stored on a uniform grid with
grid spacing 0.1. Initial samples are drawn from a Gaussian distribution, mean centred P||, variance
σ2 = (0.1, 0.1), and initial momenta from a Gaussian, mean µ = (0, 0), variance σ2 = (0.05, 0.05).
In Figure 12 we show the resulting learnt KDE potential with these parameters.

Evaluation: The L1 error of a histogram of on-policy samples, ρ̂(ϕ, ψ), is computed via a two-
dimensional generalisation of equation D.2; error = 1

2

∫ π
−π
∫ π
−π

∣∣∣ρ̂(ϕ, ψ)− r(ϕ,ψ)
Z

∣∣∣dϕdψ, estimated
by a discrete sum with grid spacing 0.1.

D.4 GRID ENVIRONMENTS DETAILS

Parameterisation: For the two-dimensional grid, we use a mixture of 4 Gaussians. For the three
and four dimensional (hyper)grids, we use a mixture of 2 Gaussians (but use longer trajectories, see
Section 4). We parameterise p̂F , p̂B and the flow f̂ through an MLP with 3 hidden layers, 512 hidden
units per layer, GELU activation function and dropout probability 0.2. The means and standard
deviations are mapped to the range µ ∈ (−15, 15) and σ ∈ (0.1, 7) through sigmoid functions.
Mixture weights are normalised with the softmax function. We use batch size b = 128. It takes
approximately 10 hours to train a continuous GFlowNet in this environment with B = 105 batches.

MetaGFN: We use freqRB = 2, freqMD = 10, ∆t = 0.35, n = 3, β = 1, γ = 2, w = 0.10,
σ = 2. The bias and KDE potentials are stored on a uniform grid with grid spacing 0.075/0.3/0.6
(2, 3, and 4 dimensions respectively). Initial samples are drawn from a Gaussian distribution, mean
centred at the origin, isotropic variance σ2 = 1. Momenta are initialised to zero.

Evaluation: The L1 error between the histogram of the terminal states of 104 on-policy samples and
the exact distribution is computed, e.g. for the 2D grid, error = 1

2

∫ 15

−15

∫ 15

−15

∣∣∣ρ̂(x, y)− r(x,y)
Z

∣∣∣dxdy,
estimated by a discrete sum with grid spacing 0.075.

22


	Introduction
	Preliminaries
	Discrete GFlowNets
	Continuous GFlowNets
	Exploration strategies for GFlowNets
	Metadynamics and collective Variables

	MetaGFN: Adapted Metadynamics for GFlowNets
	Adapted Metadynamics
	MetaGFN

	Experiments
	Results

	Limitations
	Conclusions
	Loss functions
	Langevin dynamics
	Proofs
	Experiment details
	Common experimental parameters
	Line environment details
	Alanine dipeptide environment details
	Grid environments details


