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Abstract

We investigate implications of the (extended) low-degree conjecture (recently
formalized in [MW23]) in the context of the symmetric stochastic block
model. Assuming the conjecture holds, we establish that no polynomial-time
algorithm can weakly recover community labels below the Kesten-Stigum (KS)
threshold. In particular, we rule out polynomial-time estimators that, with
constant probability, achieve 𝑛−0.49 correlation with the true communities.
Whereas, above the KS threshold, polynomial-time algorithms are known to
achieve constant correlation with the true communities with high probability
[Mas14, AS15].
To our knowledge, we provide the first rigorous evidence for such a sharp
transition in recovery rate for polynomial-time algorithms at the KS thresh-
old. Notably, under a stronger version of the low-degree conjecture, our
lower bound remains valid even when the number of blocks diverges.
Furthermore, our results provide evidence of a computational-to-statistical
gap in learning the parameters of stochastic block models.
In contrast, prior work either (i) rules out polynomial-time algorithms
with 1 − 𝑜(1) success probability [Hop18, BBK+21a] under the low-degree
conjecture, or (ii) degree-poly(𝑘) polynomials for learning the stochastic
block model [LG24].
For this, we design a hypothesis test which succeeeds with constant prob-
ability under symmetric stochastic block model, and 1 − 𝑜(1) probability
under the distribution of Erdős Rényi random graphs. Our proof combines
low-degree lower bounds from [Hop18, BBK+21a] with graph splitting
and cross-validation techniques. In order to rule out general recovery algo-
rithms, we employ the correlation preserving projection method developed
in [HS17].

1 Introduction

The stochastic block model (SBM) is among the most fundamental models in (social)
network analysis and information theory, and has been intensively studied for decades
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[HLL83, MNS12, ABH15, KMM+13, Abb18]. A fascinating phenomenon in the SBM is the
sharp computational threshold for weak recovery of its hidden community structure: efficient
algorithms are known for achieving constant correlation with the hidden signal when the
signal-to-noise ratio is above a certain threshold [CO10, DKMZ11, Mas14, AS15], while no
polynomial-time algorithms have been discovered below this threshold despite significant
research effort. This computational threshold is known as the Kesten-Stigum threshold (KS
threshold) in the statistical physics literature [DKMZ11], and it is an important topic in both
probability theory and theoretical computer science.

Kesten-Stigum threshold in the symmetric stochastic block model. For simplicity, we
focus on the following special case of the stochastic block model.
Definition 1.1 (Symmetric 𝑘-stochastic block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘)). Let 𝑘 ∈ ℕ+ be the
number of communities, 𝑑 ∈ ℕ+ be the average degree of the graph, 𝜀 ∈ [0, 1] be the bias
parameter, and 𝑛 ∈ ℕ+ be a multiple of 𝑘. A graph 𝑌 ∈ {0, 1}𝑛×𝑛 1 follows the symmetric
𝑘-stochastic block model distribution SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) if it is sampled in the following way:
assign each vertex a label uniformly at random from [𝑘], then independently add edges with
probability (1 + 𝑘−1

𝑘
𝜀) 𝑑𝑛 between vertices with the same label and with probability (1 − 𝜀

𝑘
) 𝑑𝑛

between vertices with different labels.

Note that, when the bias parameter 𝜀 = 0, the model reduces to Erdős-Rényi random graphs
with average degree 𝑑, denoted by 𝔾(𝑛, 𝑑

𝑛 ).

Given a graph sampled from SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘), the most fundamental problem is to recover

the hidden community labels of the vertices, or equivalently to recover the community
membership matrix 𝑀◦ given by

𝑀◦
𝑖 , 𝑗 := 1𝑥◦

𝑖
=𝑥◦

𝑗
− 1

𝑘
(𝑖 , 𝑗 ∈ [𝑛]),

where 𝑥◦
𝑖
∈ [𝑘] is the label of the 𝑖-th vertex. In this work, we consider weak recovery of 𝑀◦,

that is to find a matrix 𝑀 which correlates with 𝑀◦ in the following sense.
Definition 1.2 (Recovery rate and weak recovery in the SBM). For any 𝛿 ∈ [0, 1], an algorithm
achieves recovery rate 𝛿 in the 𝑘-stochastic block model, if given a random graph sampled
from SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), it outputs a nonzero matrix 𝑀 ∈ ℝ𝑛×𝑛 such that with constant
probability,

⟨𝑀,𝑀◦⟩ ⩾ 𝛿∥𝑀∥F∥𝑀◦∥F.

If the recovery rate 𝛿 satisfies 𝛿 ⩾ Ω(1), then the algorithm is said to achieve weak recovery.

The difficulty of achieving weak recovery in the SBM appears to be closely related to the
choice of parameters 𝜀, 𝑑, 𝑘. In particular, [Mas14, MS15] give polynomial-time algorithms
for weak recovery above the KS threshold 𝜀2𝑑 ⩾ 𝑘2. On the other hand, while it is known
that exponential-time algorithms can achieve weak recovery below this threshold (when
𝑘 ⩾ 5) [BMNN16], it is widely believed that no polynomial-time algorithms exist that achieve
weak recovery when 𝜀2𝑑 < 𝑘2.

Rigorous evidence for average case complexity. To provide rigorous evidence for the innate
hardness of weak recovery below the Kesten-Stigum threshold, one could follow two general
approaches. The first is to construct a reduction from problems widely believed to be hard
(such as planted clique [BBH19, BB20] or learning with errors (LWE) [BRST20, GVV22, Tie24]).
However, this approach is unlikely to be successful for our problem as no such reductions
are known for (other) average-case problems with constant sharp statistical threshold. The
second approach is to prove unconditional lower bounds that rule out certain classes of
algorithms. For example, those based on sums of squares [BHK+19, KMOW17, JPR+22,

1For ease of notation, we will use the adjacency matrix and the graph interchangeably.
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MRX20], statistical queries [BKW03, Fel17, BBH+20], or low-degree polynomials [HKP+17,
HS17, Hop18, KWB19]. As it appears that significant technical barriers have to be overcome
to prove lower bounds against the former two classes for average-case problems with sharp
statistical threshold, we focus on the latter.

The low-degree method for hypothesis testing. In recent years, the low-degree method has
emerged as a standard tool for providing rigorous evidence for computational hardness in
average-case problems [Hop18, KWB19]. Inspired by the fact that thresholding the likelihood
ratio function provides optimal algorithms for hypothesis testing, the low-degree method
provides a heuristic for average-case computational hardness by proving lower bounds
against the low-degree projection of the likelihood ratio between two distributions from
the hypothesis class. In fact, previous works[Hop18, BBK+21a] has provided low-degree
hardness evidence for the related hypothesis testing problems on distinguishing the stochastic
block model and Erdős-Rényi distribution with probability 1 − 𝑜(1). However, significant
barrier needs to be overcome for extending their computational lower bound to weak
recovery below KS threshold. The reason is that we want to rule out recovery algorithms
which only need to succeed with constant probability, while below the Kesten-Stigum
threshold, the two distributions considered in [Hop18, BBK+21a] can be distinguished with
probability strictly larger than 1/2 by counting triangles in the graph [BM17]. 2

Low-degree recovery lower bound. In this paper, we focus on the implications of the
following conjecture of [MW23] in the context of the SBM3.
Conjecture 1.3 (Low-degree conjecture). Let 𝑃 be a distribution from the 𝑘-stochastic block model
and 𝑄 be a distribution of Erdős-Rényi random graphs. For (randomized) functions 𝑓 : ℝ𝑛×𝑛 → ℝ,
consider the parameter

𝑅𝑃,𝑄( 𝑓 ) B
𝔼𝑌∼𝑃 𝑓 (𝑌)√
𝔼𝑌∼𝑄( 𝑓 (𝑌))2

. (1.1)

Suppose that for any arbirary constant 𝛿 ∈ (0, 1], and every polynomial 𝑓 (·) of degree at most 𝑛𝛿,
we have 𝑅𝑃,𝑄( 𝑓 ) ⩽ 𝑂(1). Then, for any function 𝑓 (·) computable in time exp(𝑛0.99𝛿) taking values
in [0, 1] satisfying 𝔼𝑌∼𝑃 𝑓 (𝑌) ⩾ Ω(1) , we have 𝑅𝑃,𝑄( 𝑓 ) ⩽ 𝑂(1) .

The parameter 𝑅𝑃,𝑄(·) in (1.1) is motivated by Le Cam’s method: if the maximum of 𝑅𝑃,𝑄( 𝑓 )
over all computable functions 𝑓 is bounded by 𝑂(1), no algorithm can distinguish between
the distributions 𝑃 and 𝑄 with high probability. Intuitively, Conjecture 1.3 tells us that, if
the maximum of 𝑅𝑃,𝑄( 𝑓 ) is bounded over all low-degree polynomials, it is in fact bounded
over all efficiently computable functions.

Assuming this conjecture for 𝑃 given by the symmetric SBM and 𝑄 given by the Erdős-Rényi
graph distribution, we aim to clarify the relation between the upper bounds for the low-degree
likelihood ratio (proved in [Hop18, BBK+21a]) and lower bounds for computationally efficient
algorithms for the SBM. Specifically, we address the following question:
Question 1.4. Assuming Conjecture 1.3, can we rule out polynomial-time algorithms
achieving weak recovery (or even non-trivial error rate) in the stochastic block model below
the Kesten-Stigum threshold, when the number of communities is a universal constant?

Implications for learning stochastic block model. A potential computational-statistical
gap similar to weak recovery can also be observed in the closely related problem of learning
the parameters of the stochastic block model [Xu17]. Although [LG24] established a low-
degree recovery lower bound for learning the probability matrix in the symmetric SBM,
their result does not imply a lower bound for learning the parameters 𝑑, 𝜀, as their hard

2Similar detection-recovery gap in success probabilities is also recently revealed by [HS24] in the
context of planted cliques.

3The original conjecture is stated for the closely related spiked Wigner model.
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instance is given by a symmetric SBM with fixed parameters. Moreover, when 𝑘 ≲ log(𝑛)
(rather than constant), their lower bound cannot rule out polynomial-time algorithms for
achieving the minimax error rate.

As such, we address the following question in this paper:
Question 1.5. Assuming Conjecture 1.3, can we provide rigorous evidence for a
computational-statistical gap in the error rate of learning the parameters of the stochastic
block model?

2 Main result

2.1 Computational lower bound for weak recovery in stochastic block model

We provide the first rigorous evidence that no polynomial-time algorithms can achieve
recovery rate 𝑛−0.49 with constant probability below the Kesten-Stigum threshold, assum-
ing Conjecture 1.3.
Theorem 2.1 (Computational lower bound below the KS threshold, see Theorem B.1 for the
full statement). Let 𝑘, 𝑑 ∈ ℕ+ be such that 𝑘 ⩽ 𝑂(1), 𝑑 ⩽ 𝑂(1). Assume that for any 𝑑′ ∈ ℕ+

such that 0.999𝑑 ⩽ 𝑑′ ⩽ 𝑑, Conjecture 1.3 holds with distribution 𝑃 given by SSBM(𝑛, 𝑑′𝑛 , 𝜀, 𝑘) and
distribution 𝑄 given by the Erdős-Rényi graph model 𝔾(𝑛, 𝑑′𝑛 ). Then, no exp

(
𝑛0.99) time algorithm

can achieve recovery rate 𝑛−0.49 in the 𝑘-stochastic block model when 𝜀2𝑑 ⩽ 0.99𝑘2.

Note that the algorithm which outputs a matrix 𝑀̂ reflecting a random partition of the
vertices into 𝑘 communities only achieves vanishing recovery rate 𝛿 ≲ 1/

√
𝑛. In contrast,

recall that above the KS threshold (when 𝜀2𝑑/𝑘2 > 1), polynomial-time algorithms can
achieve a recovery rate in Ω(1) (i.e., weak recovery). To our knowledge, this is the first
result showing such a sharp transition in the recovery rate that can be achieved by efficient
algorithms above and below the KS threshold4.

SNR 𝑑𝜀2/𝑘2
𝜆𝐼𝑇

𝜆𝐴𝑙𝑔

Impossible Regime
(𝜆 < 𝜆𝐼𝑇)

No algorithm achieves
constant correlation

Hard Regime
(𝜆𝐼𝑇 < 𝜆 < 𝜆𝐴𝑙𝑔)

Sub-exponential time algo-
rithms cannot achieve

𝑛−0.49 correlation.

Easy Regime
(𝜆 > 𝜆𝐴𝑙𝑔)

Polynomial time algorithms
achieve Ω(1) correlation.

Under a strengthened low-degree conjecture (see Conjecture A.2 below), our lower bound
extends to the regime where the number of communities can be as large as 𝑛𝑜(1).
Theorem 2.2 (Computational lower bound for diverging number of blocks). Let 𝑘, 𝑑 ∈ ℕ+

be such that 𝑘 ⩽ 𝑛𝑜(1) , 𝑑 ⩽ 𝑛𝑜(1). Assume that for any 𝑑′ ∈ ℕ+ such that 0.999𝑑 ⩽ 𝑑′ ⩽ 𝑑,
Conjecture A.2 holds with distribution 𝑃 given by SSBM(𝑛, 𝑑′𝑛 , 𝜀, 𝑘) and distribution 𝑄 given by
the Erdős-Rényi graph model 𝔾(𝑛, 𝑑′𝑛 ). Then no exp

(
𝑛0.99) time algorithm can achieve recovery rate

𝑛−0.49 in the 𝑘-stochastic block model when 𝜀2𝑑 ⩽ 0.99𝑘2.

Concurrent work. A concurrent work [SW25] also provides rigorous evidence for com-
putational lower bound below KS threshold based on low-degree polynomials. They give
the first unconditional low-degree recovery lower bound below the KS threshold in the
stochastic block model. In our setting, for the task of weak recovery (which is to say, achieving
constant recovery rate), their lower bound directly rules out estimators based on degree 𝑛𝛿

4For small number of communities 𝑘 = 2, 3, 4, there is no information-computation gap, and thus
no hard regime. In these scenarios, we suspect that there is sharp phase transition of recovery rate
from 𝑛−0.49 to constant information-theoretically.
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polynomials, which captures many natural candidates of algorithms. Such a lower bound is
beyond reach with techniques from [Hop18, BBK+21a]. For this, they introduce significantly
new techniques in analyzing the low-degree polynomials.

In comparison, we give evidence that sub-exponential time algorithms cannot achieve
recovery rate 𝑛−0.49 with constant probability below the KS threshold, while polynomial time
algorithms are known to achieve weak recovery above the threshold. Our techniques are
based on relating the rate of recovery to the low-degree conjecture formulated in [MW23].
Notably, we did not prove new low-degree lower bounds for our main results, but exploited
the existing results from [Hop18, BBK+21a].

In a concurrent work, [Li25] established computational lower bounds for random graph
matching below sharp thresholds, also based on a strengthened version of the low-degree
conjecture. However, their polynomial-time reduction between hypothesis testing with
lopsided success probability and recovery differs significantly from ours.

As we discuss next, our result also has implications for other learning tasks in the stochastic
block model.

2.2 Computational lower bound for learning stochastic block model

We give computational lower bounds for learning the stochastic block model under two
different error metrics: learning the edge connection probability matrix and the block
graphon function.
Definition 2.3 (Edge connection probability matrix for the SBM). In the symmetric stochastic
block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), the edge connection probability matrix 𝜃◦ ∈ [0, 1]𝑛×𝑛 has
entries 𝜃◦

𝑖 , 𝑗
= (1 + (𝑘−1)𝜀

𝑘
) 𝑑𝑛 if 𝑖 , 𝑗 belong to the same community and 𝜃◦

𝑖 , 𝑗
= (1 − 𝜀

𝑘
) 𝑑𝑛 if 𝑖 , 𝑗

belong to different communities.

Given a random graph sampled from distribution SSBM(𝜀, 𝑑, 𝑘, 𝑛), the simple polynomial-
time algorithm based on 𝑘-SVD outputs a matrix𝜃 ∈ [0, 1]𝑛×𝑛 such that𝔼∥𝜃−𝜃◦∥2

𝐹
⩽ 𝑂(2𝑘 ·𝑑)

[Xu17, LG24]. On the other hand, exponential-time algorithms based on maximum-likelihood
can give an estimator which achieves the optimal error rate 𝔼∥𝜃 − 𝜃◦∥2

F ⩽ 𝑂
(
log(𝑘) · 𝑑 + 𝑘2) .

We give rigorous evidence for the hardness of learning the edge connection probability
matrix of symmetric SBMs, by proving the following computational lower bound.
Theorem 2.4 (Computational lower bound for learning the SBM). Let 𝑘, 𝑑 ∈ ℕ+ be such that
𝑘 ⩽ 𝑛𝑜(1) , 𝑑 ⩽ 𝑜(𝑛). Assume that for any 𝑑′ ∈ ℕ+ such that 0.999𝑑 ⩽ 𝑑′ ⩽ 𝑑, Conjecture A.2 holds
with distribution 𝑃 given by SSBM(𝑛, 𝑑′𝑛 , 𝜀, 𝑘) and distribution 𝑄 given by Erdős-Rényi graph
model 𝔾(𝑛, 𝑑′𝑛 ). Then given graph 𝐺 ∼ SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), no exp
(
𝑛0.99) time algorithm can output

𝜃 ∈ [0, 1]𝑛×𝑛 achieving error rate ∥𝜃 − 𝜃◦∥2
F ⩽ 0.99𝑘𝑑/4 with constant probability, where 𝜃◦ is the

sampled edge connection probability matrix.

Our computational lower bound matches the guarantees of known efficient algorithms in
[Xu17] up to constant factors.5 In comparison, [LG24] show that degree-ℓ polynomials cannot
give error rate better than 𝑂(𝑘𝑑/ℓ 4). For standard low-degree conjectures [Hop18, KWB19,
SW22], to give evidence of hardness for polynomial-time algorithms, the polynomial degree
ℓ needs to be taken as large as log(𝑛). Therefore, their lower bound on the error rate can only
match the guarantees of existing algorithm up to logarithmic factors. As a result, they cannot
give evidence of a computational-statistical gap for the error rate when 𝑘 = 𝑂(log(𝑛)).6
Another error metric considered in [KTM+15, BCS15, BCSZ18, CDD+24] is learning the
graphon function. In the context of the symmetric SBM, the graphon function is block-wise
constant and given by:

5For completeness, we state this algorithmic result in Appendix F.2.
6We also obtain an unconditional low-degree recovery lower bound for learning the 𝑘-stochastic

block model when 𝑘 ⩽ 𝑛0.001 in Appendix D.
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Definition 2.5 (Graphon in the symmetric SBM). Let 𝑑, 𝑘 ∈ ℕ+ and 𝜀 ∈ [0, 1]. Consider
the symmetric stochastic block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘). Let 𝐵◦ ∈ [0, 1]𝑘×𝑘 be the community
connection probability matrix with diagonal entries given by (1 − 𝜀(𝑘−1)

𝑘
) 𝑑𝑛 and non-diagonal

entries given by (1 + 𝜀
𝑘
) 𝑑𝑛 . Let 𝛾 : [0, 1] → [𝑘] be a mapping such that 𝛾(𝑥) = ⌈𝑘𝑥⌉. Then a

function 𝑊◦ : [0, 1] × [0, 1] → [0, 1] is a graphon generating distribution SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘) if

𝑊◦(𝑥, 𝑦) = 𝐵◦
𝛾(𝑥),𝛾(𝑦).

We note that in contrast with the edge connection probability matrix, the graphon function
only depends on the parameters of the distribution 𝜀, 𝑑, 𝑘. Previous works [BCS15, BCSZ18,
KTM+15, CDD+24] consider the following distance metric between graphons:
Definition 2.6 (Gromov-Wasserstein distance between graphons). Let functions 𝑊1 ,𝑊2 :
[0, 1] × [0, 1] → [0, 1]. We consider the Gromov-Wasserstein distance metric

GW(𝑊1 ,𝑊2) B

√
min
𝜙

∫ 1

0

∫ 1

0

(
𝑊1(𝜙(𝑥), 𝜙(𝑦)) −𝑊2(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦

where the minimum is taken over all measure-preserving bĳective mappings.

Given a graph sampled from SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘), our goal is to output a graphon 𝑊̂ minimizing

GW(𝑊̂ ,𝑊◦). [KTM+15] obtains the minimax error rate

GW(𝑊̂ ,𝑊◦) ≲

√√√
𝑑2

𝑛2 ·
(
𝑘2

𝑛𝑑
+

log(𝑘)
𝑑

+
√

𝑘

𝑛

)
.

However, existing polynomial-time algorithms [Xu17, CDD+24] can only achieve error rate

GW(𝑊̂ ,𝑊◦) ≲

√√√
𝑑2

𝑛2 ·
(
𝑘

𝑑
+

√
𝑘

𝑛

)
.

Although there is a lower bound showing that the error term 𝑑
𝑛 (𝑘/𝑛)1/4 is information-

theoretically necessary[BCS15], it is not clear whether polynomial time algorithms can
achieve better error rate than 𝑑

𝑛

√
𝑘/𝑑, especially if the graph is sparse.

In this paper, we give the first rigorous evidence for a computational-statistical gap in
learning the graphon function when the number of blocks 𝑘 is a sufficiently large constant.
Theorem 2.7 (Computational lower bound for learning block graphon function). Let 𝑘, 𝑑 ∈ ℕ+

be such that 𝑘 ⩽ 𝑂(1), 𝑑 ⩽ 𝑜(𝑛). Assume that Conjecture 1.3 holds with distribution 𝑃 given
by SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) and distribution 𝑄 given by Erdős-Rényi graph model 𝔾(𝑛, 𝑑
𝑛 ). Then no

exp
(
𝑛0.99) time algorithm can output a poly(𝑛)-block graphon function 𝑊̂ : [0, 1] × [0, 1] → [0, 1]

such that GW(𝑊̂ ,𝑊◦) ⩽ 𝑑
3𝑛

√
𝑘
𝑑

with 1 − 𝑜(1) probability under distribution 𝑃 and distribution 𝑄.

In comparison, [LG24] do not provide any lower bound for learning the graphon function
since their hard instance is a symmetric SBM with fixed distribution parameters 𝜀, 𝑑, 𝑘.

3 Techniques

3.1 Lower bounds for weak recovery

In this section, we give an overview of the techniques we use to prove lower bounds for
weak recovery in the stochastic block model with constant number of blocks 𝑘 and constant
average degree 𝑑. That is, an overview of our proof of (a special case of) Theorem 2.1.

Suppose for a contradiction that we have a polynomial-time recovery algorithm for
SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), 𝜀2𝑑 ⩽ 0.99𝑘2, that achieves recovery rate 𝛿 ⩾ Ω(𝑛−0.49), in the sense

6



of Definition 1.2. Using this algorithm, we will construct a function 𝑓 (·), which can be evalu-
ated in polynomial time, such that 𝑅𝑃,𝑄( 𝑓 ) ⩾ 𝑛Ω(1). Here, 𝑅𝑃,𝑄(·) is the parameter (1.1) for
the distributions 𝑃 = SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) and 𝑄 = 𝔾(𝑑, 𝑛). Assuming the low-degree conjecture
(Conjecture 1.3) for this 𝑃 and 𝑄, this implies that there exists a low-degree polynomial
𝑓 ′ with 𝑅𝑃,𝑄( 𝑓 ′) ⩾ 𝜔(1). But, since 𝜀2𝑑 ⩽ 0.99𝑘2 is below the KS threshold, this leads to a
contradiction with the low-degree lower bound of [Hop18] (Theorem A.1).

In the remainder of this section, we show how to construct the function 𝑓 (·), and give a
sketch of the proof that 𝑅𝑃,𝑄( 𝑓 ) ⩾ 𝑛Ω(1).

Regularization via correlation-preserving projection. We begin with the following tool,
which allows us to regularize the estimators of the community membership matrix 𝑀◦

provided by the recovery algorithm. Suppose that 𝑀̂0 is a matrix achieving correlation 𝛿
with 𝑀◦, i.e., satisfying ⟨𝑀̂0 , 𝑀

◦⟩ ⩾ 𝛿∥𝑀̂0∥F∥𝑀◦∥F. We show that 𝑀̂0 can be projected into
a (small) convex set 𝒦 ⊆ ℝ𝑛×𝑛 containing 𝑀◦, while preserving the correlation (up to a
constant). Concretely, the convex set 𝒦 here is given by

𝒦 :=
{
𝑀 ∈ [−1/𝛿, 1/𝛿]𝑛×𝑛 : 𝑀 + 1

𝑘𝛿
1 1⊤ ⪰ 0 , Tr(𝑀 + 1

𝑘𝛿
1 1⊤) ⩽ 𝑛/𝛿

}
. (3.1)

In particular, elements of 𝒦 have bounded entries and bounded nuclear norm, which will
be crucial in later steps of the proof where we apply a Bernstein inequality. To achieve this,
we make use of the correlation preserving projection from [HS17] (see Theorem F.1), which
projects 𝑀̂0 onto a matrix 𝑀̂ ∈ 𝒦 satisfying

⟨𝑀̂, 𝑀◦⟩ ⩾ Ω(1) · 𝛿∥𝑀̂∥F∥𝑀◦∥F ,

In addition, Theorem F.1 promises that ∥𝑀̂∥F = Θ(∥𝑀◦∥F). Thus, we find that

⟨𝑀̂, 𝑀◦⟩ ⩾ Ω(1) · 𝛿∥𝑀̂∥F∥𝑀◦∥F ⩾ Ω(1) · 𝛿∥𝑀◦∥2
F ⩾ 𝛿 ·Ω(𝑛2). (3.2)

Importantly, the correlation preserving projection can be implemented in polynomial time
via semidefinite programming. See Lemma B.5 for details.

Testing statistics via cross validation. The basic idea is to construct 𝑓 (·) via cross validation.
Given a random graph𝐺, we construct a subgraph𝐺1 with the same vertex set by subsampling
each edge in 𝐺 independently with probability 1−𝜂, where 𝜂 > 0 is a small constant. Note that
if𝐺 is drawn from SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), then𝐺1 is distributed according to SSBM(𝑛, (1−𝜂) 𝑑𝑛 , 𝜀, 𝑘).
If 𝐺 is drawn from 𝔾(𝑛, 𝑑

𝑛 ), then 𝐺1 is distributed according to 𝔾(𝑛, (1 − 𝜂) 𝑑𝑛 ). We run the
polynomial-time recovery algorithm on 𝐺1 to obtain an estimate 𝑀̂ ∈ ℝ𝑛×𝑛 of the community
membership matrix 𝑀◦, which we regularize using the correlation preserving projection
discussed above. Let 𝑌2 denote the adjacency matrix of 𝐺2 := 𝐺 \ 𝐸(𝐺1). Our function 𝑓 (·) is
then defined as

𝑓 (𝑌) :=

{
1, if ⟨𝑀̂, 𝑌2 − 𝜂𝑑

𝑛 𝟙𝟙
⊤⟩ ⩾ 𝑛0.51 ,

0, otherwise.
(3.3)

See Algorithm 3.1 for an overview of the construction of 𝑓 (·). It remains to show
that 𝑅𝑃,𝑄( 𝑓 ) ⩾ 𝑛Ω(1). For this, we establish a lower bound on the expectation 𝔼𝑌∼𝑃 𝑓 (𝑌)
of 𝑓 under graphs drawn from the SBM and an upper bound on the expectation 𝔼𝑌∼𝑄 𝑓 (𝑌)
of 𝑓 under Erdős-Rényi random graphs.
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Algorithm 3.1 (Test function 𝑓 (·) used in the proof of Theorem 2.1).
Input: A graph 𝐺 with 𝑛 vertices, given by its adjacency matrix 𝑌.
Output: Test function 𝑓 (𝑌) ∈ {0, 1}.
Algorithm:

1. Obtain a subgraph 𝐺1 of 𝐺 by subsampling each edge with probability 1 − 𝜂.

2. Obtain an estimator 𝑀̂0 by running a recovery algorithm on the graph 𝐺1.

3. Obtain 𝑀̂ by projecting 𝑀̂0 onto the set 𝒦 defined in (3.1) using the correlation
preserving projection.

4. Return 𝑓 (𝑌) = 𝟙{⟨𝑀̂, 𝑌2 − 𝜂𝑑
𝑛 𝟙𝟙

⊤⟩ ⩾ 𝑛0.51}, where 𝑌2 is the adjacency matrix of
𝐺 \ 𝐸(𝐺1).

Lower bound on the expectation under the SBM.. First, we give a lower bound on the
expectation of 𝑓 under the distribution SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), i.e, on

𝔼
𝑌∼𝑃

𝑓 (𝑌) = ℙ
𝑌∼𝑃

[
⟨𝑀̂, 𝑌2 −

𝜂𝑑

𝑛
𝟙𝟙⊤⟩ ⩾ 𝑛0.51

]
.

To do so, note that we may decompose 𝑌2 − 𝜂𝑑
𝑛 𝟙𝟙

⊤ =
𝜀𝜂𝑑
𝑛 𝑀◦ +𝑊2, where 𝑊2 is a random

matrix whose entries are independent with mean zero. Then, we have

⟨𝑌2 −
𝜂𝑑

𝑛
𝟙𝟙⊤ , 𝑀̂⟩ = 𝜀𝜂𝑑

𝑛
⟨𝑀◦ , 𝑀̂⟩ + ⟨𝑊2 , 𝑀̂⟩ .

The first term on the RHS above is large with constant probability by (3.2). We would like
to apply a Bernstein inequality to the second term, but the matrices 𝑊2 and 𝑀̂ are not
independent. However, as we show in Lemma E.3, they are approximately independent in
the sense that there exists a zero-mean symmetric matrix 𝑊̃2 with independent entries,
independent of 𝑀̂, so that each entry in 𝑊̃2 −𝑊2 has variance bounded by 𝑂(𝑑2/𝑛2).
For ease of presentation, we ignore the difference between 𝑊̃2 and 𝑊2 for now, and assume
that 𝑊2 and 𝑀̂ are independent. In this case, we note that ⟨𝑊2 , 𝑀̂⟩ can be written as the
summation of independent zero-mean random variables, namely

⟨𝑊2 , 𝑀̂⟩ =
∑
𝑖 , 𝑗

𝑊2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) ,

where 𝑊2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) ⩽ 𝑂(1/𝛿) for each 𝑖 , 𝑗 ∈ [𝑛]. (Here, we have used that 𝑀̂ ∈ 𝒦 ).
Moreover, since ∥𝑀̂∥2

F = Θ(∥𝑀◦∥2
F) = Θ(𝑛2), we have∑

𝑖 , 𝑗

𝑀̂(𝑖 , 𝑗)2 𝔼
[
𝑊2(𝑖 , 𝑗)2

]
≲

𝑑

𝑛

∑
𝑖 , 𝑗

𝑀̂(𝑖 , 𝑗)2 ⩽ 𝑂(𝑛2 · 𝑑
𝑛
) = 𝑂(𝑛𝑑) .

By the Bernstein inequality, and using the fact that 𝛿 ⩾ Ω(𝑛−0.49), we then have

ℙ


∑
𝑖 , 𝑗

𝑊2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) ⩾ 𝑛0.501
 ⩽ exp

(
−𝑛0.001

)
.

As result, when 𝑑 ⩽ 𝑂(1), 𝑘 ⩽ 𝑂(1), 𝜂 = Θ(1), with constant probability, we have

⟨𝑌2 −
𝜂𝑑

𝑛
, 𝑀̂⟩ ⩾ 𝜂𝜀𝑑

𝑛
⟨𝑀◦ , 𝑀̂⟩ − 𝑛0.501 ≳ 𝛿𝑛 − 𝑛0.501 ≳ 𝑛0.51 − 𝑛0.501 ⩾ Ω(𝑛0.51) .

Therefore, we have 𝔼𝑌∼𝑃 𝑓 (𝑌) ⩾ Ω(1).
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Upper bound under the null distribution. Next, we give an upper bound on the expectation
of 𝑓 under the Erdős-Rényi distribution 𝔾(𝑛, 𝑑

𝑛 ). Our proof shares many ingredients with
the proof of the lower bound in the previous section. We show that with high probability
under the distribution 𝔾(𝑑, 𝑛), we have

𝑔(𝑌) :=
����⟨𝑌2 −

𝜂𝑑

𝑛
𝟙𝟙⊤ , 𝑀̂⟩

���� = 𝑜(𝑛0.51) .

To do so, we again apply the argument that𝑌2− 𝜂𝑑
𝑛 𝟙𝟙

⊤ and 𝑀̂ are approximately independent.
In particular, let𝑊2 = 𝑌2− 𝜂𝑑

𝑛 𝟙𝟙
⊤, for some i.i.d. zero-mean symmetric matrix𝑊̃2, independent

of 𝑀̂, so that each entry in 𝑊̃2−𝑊2 has variance bounded by 𝑑2/𝑛2. By the triangle inequality,
we have ����⟨𝑌2 −

𝜂𝑑

𝑛
𝟙𝟙⊤ , 𝑀̂⟩

���� ⩽ ��⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩
�� + ��⟨𝑊̃2 , 𝑀̂⟩

�� .
For simplicity, we again ignore the difference between 𝑊̃2 and𝑊2 here. By the same reasoning
as above, and again relying on the properties of 𝑀̂ guaranteed by the correlation preserving
projection, we have the Bernstein inequality

ℙ
[��⟨𝑊̃2 , 𝑀̂⟩

�� ⩾ 𝑛0.501] ⩽ exp
(
−𝑛0.01

)
.

As result, when 𝑑 ⩽ 𝑂(1) and 𝑘 ⩽ 𝑂(1), we have 𝑔(𝑌) ⩽ 𝑜(𝑛0.501) with probability at least
1 − exp(−𝑛0.01) and thus 𝔼𝑌∼𝑄 𝑓 (𝑌) ⩽ exp(−𝑛0.01).

Finishing the proof. Using the lower and upper bound established above, and the fact
that 𝑓 (·) ∈ {0, 1}, we get that

𝔼𝑌∼𝑃 𝑓 (𝑌) −𝔼𝑌∼𝑄 𝑓 (𝑌)√
Var𝑌∼𝑄( 𝑓 (𝑌))

⩾
Ω(1)

exp(−𝑛0.01)
⩾ exp(𝑛0.01) ⩾ 𝜔(1).

3.2 Lower bound for learning the stochastic block model

In this section, we give an overview of the techniques used to prove our results on learning
the stochastic block model, stated in Section 2.2.

Lower bound for learning edge connection probability matrix. We sketch the proof of
Theorem 2.4. We show that if an 𝑂(exp

(
𝑛0.99))-time algorithm can learn the edge connection

probability matrix 𝜃◦ such that with constant probability, the error rate ∥𝜃̂ − 𝜃◦∥2
F ⩽ 0.99𝑘𝑑,

then an algorithm with running time exp
(
𝑛0.99) can achieve weak recovery when 𝜀2𝑑 ⩾ 0.99𝑘2.

The key observation is that, for the symmetric stochastic block model, the edge connection
probability matrix is given by 𝜃◦ =

(1−𝜂)𝜀𝑑
𝑛 𝑀◦ + (1−𝜂)𝑑

𝑛 , where 𝑀◦ ∈ {1 − 1/𝑘,−1/𝑘}𝑛×𝑛 is
the community membership matrix. Therefore, when the estimation error is smaller than
0.99

√
𝑘𝑑, the estimator 𝜃̂− 𝑑

𝑛 achieves weak recovery under the distribution SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘),

which contradicts the extended low-degree conjecture (Conjecture A.2).

Lower bound for learning graphon function. We sketch the proof of Theorem 2.7. Let 𝑊0
be the graphon function underlying the distribution 𝔾(𝑛, 𝑑

𝑛 ) and 𝑊1 be the graphon function

underlying the distribution SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘). We then have GW(𝑊0 ,𝑊1) ⩾ 𝑑

𝑛

√
0.99𝑘
𝑑

when
𝜀2𝑑 ⩾ 0.99𝑘2.

Now suppose there is a polynomial-time algorithm which, given a random graph 𝐺 sampled
from an arbitrary symmetric 𝑘-stochastic block model, outputs an 𝑛-block graphon function
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𝑊̂ : [0, 1] × [0, 1] → [0, 1] achieving error 𝑑
3𝑛

√
𝑘
𝑑

with probability 1 − 𝑜(1). Then one can
construct a testing statistic by taking

𝑓 (𝑌) =
{

1, if GW(𝑊̂ ,𝑊0) ⩽ 3𝑑
𝑛

√
𝑘
𝑑
,

0, otherwise.

We have 𝑓 (𝑌) = 1 with probability 1 − 𝑜(1) under the distribution SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘) and

𝑓 (𝑌) = 0 with probability 1 − 𝑜(1) under the distribution 𝔾(𝑛, 𝑑
𝑛 ). Therefore, we have

𝑅𝑃,𝑄( 𝑓 ) ⩾ 𝜔(1). Since the function 𝑓 (·) can be evaluated in polynomial time, this contradicts
the low-degree lower bound (Theorem A.1), assuming Conjecture 1.3.
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A Preliminaries

A.1 Low-degree framework

Low-degree likelihood ratio lower bound in the SBM. The low-degree likelihood ratio
lower bound is a standard framework to provide evidence of hardness for hypothesis testing
problems. [Hop18, BBK+21a] prove the following theorem7 on the low-degree lower bound
for the stochastic block model:
Theorem A.1 (Low-degree lower bound for SBM, Thm. 2.20 in [BBK+21a]). Let 𝑑 = 𝑜(𝑛), 𝑘 =

𝑛𝑜(1) and 𝜀 ∈ [0, 1]. Let 𝜇 : {0, 1}𝑛×𝑛 → ℝ be the relative density of SSBM(𝑛, 𝑑, 𝜀, 𝑘) with respect
to 𝐺

(
𝑛, 𝑑

𝑛

)
. Let 𝜇⩽ℓ be the projection of 𝜇 to the degree-ℓ polynomials with respect to the norm

induced by 𝐺
(
𝑛, 𝑑

𝑛

)
For any constant 𝛿 > 0,



𝜇⩽ℓ

 is

⩾ 𝑛Ω(1) , if 𝜀2𝑑 > (1 + 𝛿)𝑘2 , ℓ ⩾ 𝑂(log 𝑛)

⩽ 𝑂𝛿
(
exp(𝑘2)

)
, if 𝜀2𝑑 < (1 − 𝛿)𝑘2 , ℓ < 𝑛0.99

Assuming the low-degree conjectures in [Hop18, KWB19], this gives rigorous hardness
evidence for distinguishing

• planted distribution 𝑃: symmetric 𝑘-stochastic block model SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘),

• null distribution 𝑄: Erdős-Rényi random graph 𝔾(𝑛, 𝑑
𝑛 ),

with probability 1 − 𝑜(1) when 𝑘 is a universal constant and 𝜀2𝑑 ⩽ 0.99𝑘2. However, even
assuming the low-degree conjectures for hypothesis testing from [Hop18, KWB19], these
works do not rule out polynomial-time weak recovery algorithms under our definition (i.e.,
algorithms that achieve constant correlation with constant probability).

Extended low-degree hypothesis. To show our lower bounds in the regime where 𝑘 is
polylogarithmic, Conjecture 1.3 is not sufficient. Instead, we rely on the following stronger
low-degree hypothesis from [MW23].
Conjecture A.2 (Extended low-degree conjecture). Let 𝑃 be a distribution from the 𝑘-stochastic
block model and 𝑄 be a distribution of Erdős-Rényi random graphs. Consider the hypothesis testing
problem between 𝑌 ∼ 𝑃 and 𝑌 ∼ 𝑄 for distribution 𝑃 and 𝑄. Let 𝑅𝑃,𝑄( 𝑓 ) B 𝔼𝑌∼𝑃 𝑓 (𝑌)√

𝔼𝑌∼𝑄 ( 𝑓 (𝑌))2
. Let

𝛿 ∈ (0, 1]. For any (randomized) function 𝑓 (·) computable in time exp(𝑛0.99𝛿) taking values in [0, 1]
and satisfying 𝔼𝑃 𝑓 (𝑌) ⩾ Ω(1), we have

𝑅𝑃,𝑄( 𝑓 ) ≲ max
deg( 𝑓 )⩽𝑛𝛿

𝑅𝑃,𝑄( 𝑓 ) .

When maxdeg( 𝑓 )⩽𝑛𝛿 𝑅𝑃,𝑄( 𝑓 ) ⩽ 𝑂(1), the conjecture is reduced to Conjecture 1.3. The ex-
tended low-degree hypothesis is closely related to the low-degree lower bound for random
optimization problems (see [GJW24]).

A.2 Organization

The rest of the paper is organized as follows. We present our main proof ideas in Section 3.
In Appendix B, we give the formal proof of our computational lower bounds for recovery
algorithms conditional on the low-degree conjectures (i.e., the proof of Theorem 2.1). In

7Although the original theorem statement is for constant 𝑘, 𝑑, it is easy to see in their analysis that
the lower bound holds when 𝑑 = 𝑜(𝑛). Also a weaker version of the theorem is stated in Thm. 8.6.1 of
[Hop18].
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Appendix C, we give proofs of our computational lower bounds for parameter learning
algorithms conditional on the low-degree conjectures (i.e., the proof of Theorem 2.4 and
Theorem 2.7). In Appendix E, we introduce some facts from probability theory used in our
paper. In Appendix F, we introduce some existing algorithms from the literature that are
used in our paper. In Appendix G, we clarify the upper bound on the low-degree likelihood
ratio when the number of blocks 𝑘 diverges, which is implicitly obtained in [BBK+21a].

B Computational lower bound for recovery

In this section, we prove Theorem 2.1 by showing that there exists an efficient algorithm
that reduces testing to weak recovery in SBM. We will show that there exists a efficiently
computable testing function (shown in Algorithm B.2) that is large with constant probability
if the input is sampled from SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) and is small with high probability if the input
is sampled from 𝔾(𝑛, 𝑑/𝑛). This will lead to a contradiction with low-degree lower bounds
of testing if we assume Conjecture 1.3.

Before describing the algorithm, we restate Theorem 2.1 here for completeness.
Theorem B.1 (Full version of Theorem 2.1). Let 𝑘, 𝑑 ∈ ℕ+ be such that 𝑘 ⩽ 𝑂(1), 𝑑 ⩽ 𝑛𝑜(1).
Assume that for any 𝑑′ ∈ ℕ+ such that 0.999𝑑 ⩽ 𝑑′ ⩽ 𝑑, Conjecture 1.3 holds for distribution
𝑃 = SSBM(𝑛, 𝑑′𝑛 , 𝜀, 𝑘) and distribution 𝑄 = 𝔾(𝑛, 𝑑′𝑛 ). Then for any small constants 𝛿1 , 𝛿2, no
exp

(
𝑛0.99) time algorithm can achieve recovery rate 𝑛−0.5+𝛿1 in the 𝑘-stochastic block model when

𝜀2𝑑 ⩽ (1 − 𝛿2)𝑘2.

The reduction that we consider is the following.

Algorithm B.2 (Reduction from testing to weak recovery).
Input: A random graph 𝐺 with equal probability sampled from Erdős-Rényi model or
stochastic block model, and target recovery rate 𝛿, parameters 𝜀, 𝑘, 𝑑.
Output: Testing statistics 𝑔(𝑌) ∈ ℝ, where 𝑌 is the adjacency matrix.
Algorithm:

1. Let 𝜂 = 0.001𝛿2, where 𝛿2 = 1 − 𝜀2𝑑/𝑘2. Obtain subgraph 𝐺1 by subsampling each
edge with probability 1 − 𝜂, and let 𝐺2 = 𝐺 \ 𝐺1.

2. Obtain estimator 𝑀̂0 by running weak recovery algorithm on graph 𝐺1.

3. Obtain 𝑀̂ by applying correlation preserving projection (see Theorem F.1) on 𝑀̂0 to
the set 𝒦 =

{
𝑀 ∈ [−1/𝛿, 1/𝛿]𝑛×𝑛 : 𝑀 + 1

𝑘𝛿 1 1⊤ ⪰ 0 , Tr(𝑀 + 1
𝑘𝛿 1 1⊤) ⩽ 𝑛/𝛿

}
.

4. Return testing statistics 𝑔(𝑌) = ⟨𝑀̂, 𝑌2 − 𝜂𝑑
𝑛 𝟙𝟙

⊤⟩, where 𝑌2 is the adjacency matrix
for the graph 𝐺2.

To prove Theorem B.1, we will show that the testing statistics 𝑔(𝑌) from Algorithm B.2
satisfies the following two lemmas.
Lemma B.3. Let 𝑌 be the adjacency matrix of the graph sampled from the symmetric 𝑘-stochastic
block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) and 𝑀◦ ∈ {−1/𝑘, 1 − 1/𝑘}𝑛×𝑛 be the corresponding community
membership matrix. Suppose that ⟨𝑀̂0 , 𝑀

◦⟩ ⩾ 𝑛−0.5+𝛿1 ∥𝑀̂0∥F∥𝑀◦∥F and ∥𝑀̂∥F = Θ(∥𝑀◦∥F).
Then Algorithm B.2 outputs testing statistics 𝑔(𝑌) ∈ ℝ such that 𝑔(𝑌) ⩾ Ω

(
𝑛0.5(1+𝛿1)

)
.

Lemma B.4. Let 𝑌 be the adjacency matrix of the graph sampled from Erdős-Rényi random graph
𝔾(𝑛, 𝑑/𝑛). With probability at least 1− exp(−𝑛0.001𝛿1), Algorithm B.2 outputs 𝑔(𝑌) ⩽ 𝑂(𝑛0.5+𝛿1/3)
in polynomial time.

Combining Lemma B.3 and Lemma B.4, Theorem 2.1 follows as a corollary.
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Proof of Theorem 2.1. Suppose that there is a exp
(
𝑛0.99) time algorithm which outputs esti-

mator 𝑀̂0 such that ⟨𝑀̂0 , 𝑀
◦⟩ ⩾ 𝑛−0.5+𝛿1 ∥𝑀̂0∥F∥𝑀◦∥F. Let 𝑓 (𝑌) = 1𝑔(𝑌)⩾0.001𝑛0.5+𝛿1/2 . When

𝜀2𝑑 ⩾ Ω(𝑘2), combining Lemma B.3 and Lemma B.4, we have

𝔼𝑃 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

⩾ exp(𝑛0.001𝛿1) .

By the low-degree likelihood ratio upper bound Theorem A.1, when 𝜀2𝑑 ⩽ (1 − 𝛿2)𝑘2, we
have

max
deg( 𝑓 )⩽𝑛0.01

𝔼 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

⩽ exp(𝑘2) .

Since 𝑓 (𝑌) can be evaluated in 𝑂(exp
(
𝑛0.99)) time, assuming Conjecture 1.3, we then have

𝔼 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

≲ max
deg( 𝑓 )⩽𝑛0.01

𝔼 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

⩽ 𝑂(1) ,

which leads to a contradiction. As a result, assuming Conjecture 1.3, we cannot achieve
weak recovery in exp

(
𝑛0.99) time when 𝜀2𝑑 ⩽ (1 − 𝛿2)𝑘2. □

B.1 Correlation preserving projection

In this part, we prove that we can project the estimator into the set of matrices with bounded
entries and bounded nuclear norm, while preserving correlation.
Lemma B.5. Let 𝑀◦ ∈ {−1/𝑘, 1 − 1/𝑘}𝑛×𝑛 be a symmetric matrix with rank-(𝑘 + 1). For any 𝛿 ⩽
𝑂(1), given matrix 𝑀̂0 such that ⟨𝑀̂0 , 𝑀

◦⟩ ⩾ 𝛿∥𝑀̂0∥F∥𝑀◦∥F, there is a polynomial time algorithm
which outputs 𝑀̂ ∈ 𝒦 such that ⟨𝑀̂, 𝑀◦⟩ ⩾ Ω(1) · 𝛿∥𝑀̂∥F∥𝑀◦∥F and ∥𝑀̂∥F ⩾ Ω(∥𝑀◦∥F), where

𝒦 =

{
𝑀 ∈ [−1/𝛿, 1/𝛿]𝑛×𝑛 : 𝑀 + 1

𝑘𝛿
1 1⊤ ⪰ 0 , Tr(𝑀 + 1

𝑘𝛿
1 1⊤) ⩽ 𝑛/𝛿

}
.

Proof. We apply the correlation preserving projection from [HS17] (restated in Theorem F.1).
By definition, 𝑀◦ = 𝑋◦(𝑋◦)⊤ − 1

𝑘
1 1⊤ is in 𝒦 . Let 𝑁 be the matrix that minimizes ∥𝑁 ∥F

subject to 𝑁 ∈ 𝒦 ′ and ⟨𝑁, 𝑀̂0⟩ ⩾ 𝛿∥𝑀◦∥F∥𝑀̂0∥F, where

𝒦 ′ =

{
𝑀 ∈ [−1, 1]𝑛×𝑛 : 𝑀 + 1

𝑘
1 1⊤ ⪰ 0 , Tr(𝑀 + 1

𝑘
1 1⊤) ⩽ 𝑛

}
.

Using ellipsoid method, this semidefinite program can be solved in polynomial time. By
Theorem F.1, we have ⟨𝑁, 𝑀◦⟩ ⩾ Ω(1) · 𝛿∥𝑁 ∥F∥𝑀◦∥F and ∥𝑁 ∥F ⩾ 𝛿∥𝑀◦∥F. We let 𝑀̂ =
∥𝑀◦∥F
∥𝑁 ∥F

·𝑁 . Then it follows that 𝑀̂ ∈ 𝒦 , ∥𝑀̂∥F = ∥𝑀◦∥F and ⟨𝑀̂, 𝑀◦⟩ ⩾ Ω(𝛿)∥𝑀̂∥F · ∥𝑀◦∥F. □

B.2 Proof of Lemma B.3

In this section, we prove Lemma B.3.

Proof of Lemma B.3. We consider the decomposition that 𝑌2 − 𝜂𝑑
𝑛 𝟙𝟙

⊤ =
𝜀𝜂𝑑
𝑛 𝑀◦ +𝑊2 where

𝑊2 is a symmetric random matrix with independent and zero mean entries. By Lemma E.3,
there exists an i.i.d zero mean symmetric matrix 𝑊̃2 that is independent with 𝑌1, and satisfies
that the entries in 𝑊̃2 −𝑊2 are independent with zero mean and have variance bounded by
𝑂(𝑑3/𝑛3), conditioning on the subsampled graph 𝑌1 and community matrix 𝑀◦. As result,
we have

⟨𝑌2 −
𝜂𝑑

𝑛
𝟙𝟙⊤ , 𝑀̂⟩ = ⟨ 𝜀𝜂𝑑

𝑛
𝑀◦ , 𝑀̂⟩ + ⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩ + ⟨𝑊̃2 , 𝑀̂⟩ .
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For the first term ⟨ 𝜀𝜂𝑑𝑛 𝑀◦ , 𝑀̂⟩, it follows from Lemma B.5 that

⟨𝑀◦ , 𝑀̂⟩ ⩾ Ω

(
𝜀𝜂𝑑

𝑛

)
𝛿∥𝑀̂∥F∥𝑀◦∥F

⩾ Ω

(
𝛿𝜀𝜂𝑑

𝑛

)
∥𝑀◦∥2

F .

As with probability at least 1 − exp(−𝑛0.001), we have ∥𝑀◦∥2
F ⩾ Ω(𝑛2), and as result

⟨𝑀◦ , 𝑀̂⟩ ⩾ Ω(𝑛𝛿𝜀𝑑).
For bounding the second term ⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩, we condition on the subsampled graph 𝑌1 and
the community matrix 𝑀◦. With probability at least 1 − exp(−𝑛𝛿1), we have

|⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩| ⩽ ∥𝑊2 − 𝑊̃2∥F · ∥𝑀̂∥F ≲

√
𝑑3

𝑛3 · 𝑛2+𝛿1 · 𝑛2 =
√
𝑛1+𝛿1𝑑3 .

For the third term ⟨𝑊̃2 , 𝑀̂⟩, we again conditional on the subsampled graph 𝑌1 and the
community matrix 𝑀◦. We note that it can be written as the summation of independent
zero-mean random variables

⟨𝑊̃2 , 𝑀̂⟩ =
∑
𝑖 , 𝑗

𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) .

where 𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) are independent zero mean variables bounded by 𝑂(1/𝛿) for all 𝑖 ⩽ 𝑗.
Moreover, we have∑

𝑖 , 𝑗

𝑀̂(𝑖 , 𝑗)2 𝔼
[
𝑊̃2(𝑖 , 𝑗)2

]
≲

𝑑

𝑛

∑
𝑖 , 𝑗

𝑀̂(𝑖 , 𝑗)2 ⩽ 𝑂(𝑛2 · 𝑑
𝑛
) = 𝑂(𝑛𝑑) .

By Bernstein inequality, we have

ℙ


������∑𝑖 , 𝑗 𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗)

������ ⩾ 100𝑡
 ⩽ exp

(
−𝑡2/(𝑛𝑑 + 𝑡/𝛿)

)
.

Taking 𝑡 = 𝑛(1+𝛿1)/2
√
𝑑 and 𝛿 ⩾ 𝑛−0.5+𝛿1 , we have

ℙ


������∑𝑖 , 𝑗 𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗)

������ ⩾ 𝑛0.5(1+𝛿1)
√
𝑑

 ⩽ exp
(
−𝑛𝛿1/2

)
.

As a result, when 𝑑 ⩽ 𝑛𝑜(1) , 𝑘 ⩽ 𝑛𝑜(1) , 𝛿 ⩾ 𝑛−0.5+𝛿1 , 𝜀 = Θ(1/
√
𝑑), with constant probability,

we have
⟨𝑌2 −

𝜂𝑑

𝑛
𝟙𝟙⊤ , 𝑀̂⟩ ⩾ Ω(𝑛0.5+𝛿1

√
𝑑) .

□

B.3 Proof of Lemma B.4

In this section, we prove Lemma B.4.

Proof of Lemma B.4. We will use the fact that 𝑌2 − 𝜂𝑑
𝑛 𝟙𝟙

⊤ and 𝑀̂ are approximately indepen-
dent. More precisely, let 𝑊2 = 𝑌2 − 𝜂𝑑

𝑛 𝟙𝟙
⊤, by Lemma E.3, there exists symmetric zero mean

matrix 𝑊̃2 with independent entries such that each entry in 𝑊̃2 −𝑊2 has zero mean variance
bounded by 𝑂(𝑑3/𝑛3) conditioning on 𝑀̂. By triangle inequality, we have

𝑔(𝑌) =
����⟨𝑌2 −

𝜂𝑑

𝑛
𝟙𝟙⊤ , 𝑀̂⟩

���� ⩽ ��⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩
�� + ��⟨𝑊̃2 , 𝑀̂⟩

�� .
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For bounding the first term ⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩, we condition on the subsampled graph 𝑌1. With
probability at least 1 − exp(−𝑛𝛿1/3), we have

|⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩| ⩽ ∥𝑊2 − 𝑊̃2∥F · ∥𝑀̂∥F ≲

√
𝑑3

𝑛3 · 𝑛2+𝛿1/3 · 𝑛2 =

√
𝑑3𝑛1+𝛿1/3 .

For the second term, we note that ⟨𝑊̃2 , 𝑀̂⟩ can be written as the summation of independent
zero-mean random variables

⟨𝑊̃2 , 𝑀̂⟩ =
∑
𝑖 , 𝑗

𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) .

where 𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗) are independent zero mean variables bounded by 𝑂(1/𝛿) for 𝑖 ⩽ 𝑗.
Moreover, we have∑

𝑖 , 𝑗

𝑀̂(𝑖 , 𝑗)2 𝔼
[
𝑊̃2(𝑖 , 𝑗)2

]
≲

𝑑

𝑛

∑
𝑖 , 𝑗

𝑀̂(𝑖 , 𝑗)2 ⩽ 𝑂(𝑛2 · 𝑑
𝑛
) = 𝑂(𝑛𝑑) .

By Bernstein inequality, we have

ℙ


������∑𝑖 , 𝑗 𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗)

������ ⩾ 100𝑡
 ⩾ exp

(
−𝑡2/(𝑛𝑑 + 𝑡/𝛿)

)
.

Taking 𝑡 = 𝑛0.5+𝛿1/3
√
𝑑 and 𝛿 ⩾ 𝑛−0.5+𝛿1 , we have

ℙ


������∑𝑖 , 𝑗 𝑊̃2(𝑖 , 𝑗)𝑀̂(𝑖 , 𝑗)

������ ⩾ 𝑛0.5+𝛿1/3
 ⩽ exp

(
−𝑛0.001𝛿1

)
.

□

B.4 Proof of Theorem 2.2

In this part, we give the proof of Theorem 2.2, which is the same as the proof of Theorem 2.1
except that we assume stronger low-degree conjecture.

Proof of Theorem 2.2. Suppose that there is a polynomial time algorithm which outputs
estimator 𝑀̂0 such that ⟨𝑀̂0 , 𝑀

◦⟩ ⩾ 𝑛−0.5+𝛿1 ∥𝑀̂0∥F∥𝑀◦∥F. Let 𝑓 (𝑌) = 1𝑔(𝑌)⩾0.001𝑛0.5+𝛿1/2 .
When 0.001𝑘2 ⩽ 𝜀2𝑑 ⩽ (1 − 𝛿2)𝑘2, combining Lemma B.3 and Lemma B.4, we have

𝔼𝑃 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

⩾ exp(𝑛0.001) .

Since 𝑓 (𝑌) can be evaluated in 𝑂(exp(𝑛0.001)) time, assuming Conjecture 1.3, by
[Hop18](stated in Theorem A.1), we have

𝔼 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

≲ max
deg( 𝑓 )⩽𝑛0.99

𝔼 𝑓 (𝑌)√
Var𝑄( 𝑓 (𝑌))

⩽ exp(𝑘2) .

When 𝑘2 ⩽ 𝑛0.001, this leads to a contradiction. As a result, assuming Conjecture A.2, we
cannot achieve recovery rate 𝑛−0.5+𝛿1 in polynomial time when 𝜀2𝑑 ⩽ (1 −Ω(1))𝑘2. □

C Computational lower bound for learning stochastic block model

C.1 Computational lower bound for learning the edge connection probability matrix

In this section, we prove Theorem 2.4 by showing that there exists an efficient algorithm that
reduces testing to learning in SBM. The reduction of algorithm Algorithm C.2 is similar to
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that of Algorithm B.2. The proof of Theorem 2.4 is also a similar proof by contradiction to
the proof of Theorem 2.1.

Before describing the algorithm, we restate Theorem 2.4 here for completeness.
Theorem C.1 (Restatement of Theorem 2.4). Let 𝑘, 𝑑 ∈ ℕ+ be such that 𝑘 ⩽ 𝑛𝑜(1) , 𝑑 ⩽ 𝑜(𝑛).
Assume that for any 𝑑′ ∈ ℕ+ such that 0.999𝑑 ⩽ 𝑑′ ⩽ 𝑑, Conjecture A.2 holds with distribution
𝑃 given by SSBM(𝑛, 𝑑′𝑛 , 𝜀, 𝑘) and distribution 𝑄 given by Erdős-Rényi graph model 𝔾(𝑛, 𝑑′𝑛 ).
Then given graph 𝐺 ∼ SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), no exp
(
𝑛0.99) time algorithm can output 𝜃 ∈ [0, 1]𝑛×𝑛

achieving error rate ∥𝜃 − 𝜃◦∥2
F ⩽ 0.99𝑘𝑑/4 with constant probability, where 𝜃◦ is the ground truth

sampled edge connection probability matrix.

The reduction that we consider is the following.
Algorithm C.2 (Reduction from testing to learning).
Input: A random graph 𝐺 with equal probability sampled from Erdős-Rényi model or
stochastic block model.
Output: Testing statistics 𝑔(𝑌) ∈ ℝ, where 𝑌 is the centered adjacency matrix
Algorithm:

1. Obtain subgraph 𝐺1 by subsampling each edge with probability 1 − 𝜂 = 0.999, and
let 𝐺2 = 𝐺 \ 𝐺1.

2. Run learning algorithm on 𝐺1, and obtain estimator 𝜃̂ ∈ ℝ𝑛×𝑛

3. Obtain 𝑀̂ by running correlation preserving projection on 𝜃̂ − 𝑑
𝑛 1 1⊤ to the set

𝒦 =
{
𝑀 ∈ [−1, 1]𝑛×𝑛 : 𝑀 + 1

𝑘
1 1⊤ ⪰ 0 , Tr(𝑀 + 1

𝑘
1 1⊤) ⩽ 𝑛

}
.

4. Construct the testing statistics 𝑔(𝑌) = ⟨𝑀̂, 𝑌2 − 𝜂𝑑
𝑛 1 1⊤⟩, where 𝑌2 is the adjacency

matrix for the graph 𝐺2.

Before proving Theorem 2.4, we first show the relationship between learning edge connection
probability and weak recovery.
Lemma C.3. Consider the distribution of SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) with 𝑑 ⩽ 𝑛𝑜(1). Suppose give graph
𝑌 ∼ SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), the estimator 𝜃̂ ∈ ℝ𝑛×𝑛 achieves error rate ∥𝜃̂ − 𝜃◦∥F ⩽
1
2
√

0.99𝑘𝑑 with
constant probability, then 𝜃̂ − 𝑑/𝑛 achieves weak recovery when 𝜀2𝑑 ⩾ 0.99𝑘2.

Proof. By the relation between edge connection probability matrix 𝜃◦ and the community
matrix 𝑀◦, We have

⟨𝜃̂ − 𝑑

𝑛
1 1⊤ , 𝑀◦⟩ = ⟨𝜃̂ − 𝜃◦ , 𝑀◦⟩ + ⟨𝜃◦ − 𝑑

𝑛
1 1⊤ , 𝑀◦⟩ = ⟨𝜃̂ − 𝜃◦ , 𝑀◦⟩ + ⟨ 𝜀𝑑

𝑛
𝑀◦ , 𝑀◦⟩ .

For the first term, since with constant probability, ∥𝜃̂ − 𝜃◦∥F ⩽
√

0.99𝑘𝑑, we have��⟨𝜃̂ − 𝜃◦ , 𝑀◦⟩
�� ⩽ ∥𝑀◦∥F∥𝜃̂ − 𝜃◦∥F ⩽ ∥𝑀◦∥F

√
0.99𝑘𝑑 .

For the second term, since with overwhelming high probability, ∥𝑀◦∥F ⩾
𝑛√
𝑘
(1− 1

𝑘
), we have

⟨ 𝜀𝑑
𝑛
𝑀◦ , 𝑀◦⟩ = 𝜀𝑑

𝑛
∥𝑀◦∥2

F ⩾
𝜀𝑑

2
√
𝑘
∥𝑀◦∥F .

Therefore, when 𝜀2𝑑 > 0.999𝑘2, we have

⟨𝜃̂ − 𝑑

𝑛
1 1⊤ , 𝑀◦⟩ ⩾ 𝜀𝑑

2
√
𝑘
∥𝑀◦∥F − ∥𝑀◦∥F

√
0.99𝑘𝑑

2 ⩾ Ω

(
𝜀𝑑∥𝑀◦∥F√

𝑘

)
.

On the other hand, by triangle inequality



𝜃̂ − 𝑑

𝑛
1 1⊤






F
⩽



𝜃̂ − 𝜃◦


F +





𝜃◦ − 𝑑

𝑛
1 1⊤






F
⩽ 𝑂(

√
𝑘𝑑 + 𝜀𝑑√

𝑘
) ⩽ 𝑂

(
𝜀𝑑/

√
𝑘
)
,
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Therefore we have

⟨𝜃̂ − 𝑑

𝑛
1 1⊤ , 𝑀◦⟩ ⩾ Ω(∥𝑀◦∥F · ∥𝜃̂ − 𝑑

𝑛
1 1⊤∥F) .

We thus conclude that with constant probability, 𝜃̂ − 𝑑
𝑛 1 1⊤ achieves weak recovery when

𝜀2𝑑 ⩾ 0.99𝑘2. □

With Lemma C.3, the proof of lower bound for learning the edge connection probability
matrix of stochastic block model follows as a corollary.

Proof of Theorem 2.4. By Lemma C.3, suppose an exp
(
𝑛0.99) time algorithm achieves error rate

less than 0.99
√
𝑘𝑑 in estimating the edge connection probability matrix, then in Algorithm C.2,

𝜃̂ − 𝑑
𝑛 achieves weak recovery when 𝜀2𝑑 = 0.99𝑘2. We let 𝑓 (𝑌) = 1𝑔(𝑌)⩾0.001𝜀2𝑑2/𝑘 .

We show that with constant probability under 𝑃, we have 𝑓 (𝑌) = 1. We essentially follow
the proof of Lemma B.3 with 𝛿 taken as a constant, except that we take a different strategy
for bounding ⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩. By Lemma E.2, we have, with probability at least 1 − 𝑜(1), the
following spectral radius bounds on the symmetric random matrices

∥𝑊2 − 𝑊̃2∥op ⩽ 𝑂

(√
𝑑 log(𝑛) ·

√
𝑑

𝑛

)
.

Therefore, by Trace inequality, we have

|⟨𝑊2 − 𝑊̃2 , 𝑀̂⟩| = |⟨𝑊2 − 𝑊̃2 , 𝑀̂ + 1
𝑘𝛿

1 1⊤⟩ − ⟨𝑊2 − 𝑊̃2 ,
1
𝑘𝛿

1 1⊤⟩|

⩽ |⟨𝑊2 − 𝑊̃2 , 𝑀̂ + 1
𝑘𝛿

1 1⊤⟩| + |⟨𝑊2 − 𝑊̃2 ,
1
𝑘𝛿

1 1⊤⟩|

⩽ ∥𝑊2 − 𝑊̃2∥op Tr(𝑀̂ + 1
𝑘𝛿

1 1⊤) + ∥𝑊2 − 𝑊̃2∥op Tr( 1
𝑘𝛿

1 1⊤)

⩽ 𝑂

(√
𝑑 log(𝑛) ·

√
𝑑

𝑛
(1 + 1

𝑘
)𝑛
𝛿

)
= 𝑂

(
(𝑑 + 𝑑

𝑘
)
√
𝑛 log(𝑛)

𝛿

)
.

With the same reasoning, by Lemma B.4, with probability at least 1 − exp(−𝑛0.001) under
distribution 𝑄, we have 𝑓 (𝑌) = 0. Therefore, we have 𝑅𝑃,𝑄( 𝑓 ) ⩾ exp(𝑛0.001). Since 𝑓 (𝐴) can
be evaluated in 𝑂

(
exp

(
𝑛0.99) ) time, assuming conjecture 1.3 we have

𝑅𝑃,𝑄( 𝑓 ) B
𝔼 𝑓 (𝐴)√

Var𝑄( 𝑓 (𝐴))
≲ max

deg( 𝑓 )⩽𝑛0.99

𝔼 𝑓 (𝐴)√
Var𝑄( 𝑓 (𝐴))

.

On the other hand, by low-degree lower bound stated in Theorem A.1, we have

max
deg( 𝑓 )⩽𝑛0.99

𝔼 𝑓 (𝐴)√
Var𝑄( 𝑓 (𝐴))

⩽ exp(𝑘2) .

Since we have exp(𝑛0.001) ≫ exp(𝑘2) when 𝑘 ⩽ 𝑛𝑜(1), this leads to a contradiction. □

C.2 Computational lower bound for learning graphon

In this part, we give formal proof of Theorem 2.7.
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Theorem C.4 (Restatement of Theorem 2.7). Let 𝑘, 𝑑 ∈ ℕ+ be such that 𝑘 ⩽ 𝑂(1), 𝑑 ⩽ 𝑜(𝑛).
Assume that Conjecture 1.3 holds with distribution 𝑃 given by SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘) and distribution
𝑄 given by Erdős-Rényi graph model 𝔾(𝑛, 𝑑

𝑛 ). Then no exp
(
𝑛0.99) time algorithm can output a

poly(𝑛)-block graphon function 𝑊̂ : [0, 1] × [0, 1] → [0, 1] such that GW(𝑊̂ ,𝑊◦) ⩽ 𝑑
3𝑛

√
𝑘
𝑑

with
1 − 𝑜(1) probability under distribution 𝑃 and distribution 𝑄(where 𝑊◦ is the underlying graphon of
the corresponding distribution).

Proof. Let 𝑊0 be the graphon function underlying the distribution 𝔾(𝑛, 𝑑
𝑛 ) and 𝑊1 be the

graphon function underlying the distribution SSBM(𝑛, 𝑑
𝑛 , 𝜀, 𝑘), we have GW(𝑊0 ,𝑊1) ⩾

𝑑
𝑛

√
0.99𝑘
𝑑

when 𝜀2𝑑 ⩾ 0.99𝑘2.

Now suppose there is a polynomial time algorithm, which given random graph 𝐺 sampled
from an arbitrary symmetric 𝑘-stochastic block model, outputs an 𝑛-block graphon function

𝑊̂ : [0, 1] × [0, 1] → [0, 1] achieving error 𝑑
3𝑛

√
𝑘
𝑑

with probability 1 − 𝑜(1). Then one can
construct the testing statistics by taking

𝑓 (𝑌) =
{

1, if GW(𝑊̂ ,𝑊0) ⩽ 𝑑
3𝑛

√
𝑘
𝑑

0, otherwise

We have 𝑓 (𝑌) = 1 with probability 1 − 𝑜(1) under the distribution of symmetric stochastic
block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘). By triangle inequality, we have 𝑓 (𝑌) = 0 with probability
1 − 𝑜(1) under the distribution 𝔾(𝑛, 𝑑

𝑛 ). Therefore we have 𝑅𝑃,𝑄( 𝑓 ) ⩾ 𝜔(1).

Now since the function 𝑊̂ can be represented as a symmetric matrix with poly(𝑛) number
of rows and columns, and moreove since 𝑊0 is a constant function,

GW(𝑊̂ ,𝑊0) =
∫ 1

0

∫ 1

0
(𝑊̂(𝑥, 𝑦) −𝑊0(𝑥, 𝑦))2𝑑𝑥𝑑𝑦 .

Therefore, the function 𝑓 (·) can be evaluated in polynomial time. This contradicts the
low-degree lower bound (Theorem A.1) assuming Conjecture 1.3. □

D Low-degree recovery lower bound for learning dense stochastic block
model

In this part, we give unconditional lower bound against low-degree polynomial estimators
for the edge connection probability matrix in stochastic block model, via implementing
reduction from hypothesis testing to weak recovery using low-degree polynomials. For
simplicity, we focus on the dense graph.
Theorem D.1 (Low-degree lower bound for learning). Let 𝑛 ∈ ℕ+ and ℓ ⩽ 𝑛0.001. Let 𝑑 = Θ(𝑛).
Let ℱ𝑛,ℓ be the set of degree-ℓ polynomials mapping from 𝑛×𝑛 symmetric matrices to 𝑛×𝑛 symmetric
matrices. Suppose 𝜃◦ ∈ [0, 1]𝑛×𝑛 , 𝑌 ∈ {0, 1} are edge connection probability matrix and adjacency
matrix sampled from symmetric stochastic block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘). Then for 𝑘 ⩽ 𝑛0.001, we
have

min
𝑓 ∈ℱ𝑛,ℓ

max
𝜀∈[0,1]

𝔼
(𝑌,𝜃◦)∼SSBM(𝑛, 𝑑𝑛 ,𝜀,𝑘)

∥ 𝑓 (𝑌) − 𝜃◦∥2
F ⩾ Ω(𝑘 · 𝑛) .

D.1 Construction of the low-degree polynomial

For simplicity, we define the community matrix of symmetric stochastic block model.
Definition D.2 (Community matrix for stochastic block model). Under symmetric stochastic
block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), we define the community matrix 𝑋◦ ∈ {±1} as following:
𝑋◦(𝑖 , 𝑗) = 1 if vertex 𝑖 , 𝑗 have the same community label and 𝑋◦(𝑖 , 𝑗) = 0 otherwise.
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Given the polynomial function 𝑓 : ℝ𝑛×𝑛 → ℝ𝑛×𝑛 . We consider a graph with 2𝑛 nodes and
randomly partition the nodes into two equal-sized sets 𝑆1 and 𝑆2. Let 𝑋 = 𝑛

𝜀𝑑

(
𝑓 (𝑌1) − 𝑑

𝑛

)
where 𝑌1 is the subgraph induced by vertices in 𝑆1. We construct the polynomial function
𝑔 : ℝ𝑛×𝑛 → ℝ as following:

𝑔(𝑌) =
〈(
𝑌12 −

𝑑

𝑛

)
𝑋

(
𝑌12 −

𝑑

𝑛

)
, 𝑌2 −

𝑑

𝑛

〉
, (D.1)

where 𝑌12 ∈ ℝ𝑛×𝑛 is the adjacency matrix of the bipartite graph between vertices in 𝑆1 and
𝑆2, and 𝑌2 is the adjacency matrix of the induced subgraph supported on 𝑆2.

We show the lower bound of this polynomial under the symmetric stochastic block model,
and the upper bound of this polynomial under the Erdős-Rényi graph model.
Lemma D.3. Let 𝜃◦ , 𝑌 be the edge connection probability matrix and adjacency matrix sampled from
the planted distribution SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘). Let 𝑋◦
1 be the community matrix of the subgraph induced

by vertices in 𝑆1. Suppose in Eq. (D.1), 𝔼∥𝑋 − 𝑋◦∥2
F ⩽ 𝑜(𝑛2), then we have 𝔼 𝑔(𝑌) ⩾

(
𝜀𝑑
𝑛

)3
𝑛4.

Lemma D.4. When the graph is sampled from the null distribution 𝔾(𝑛, 𝑑
𝑛 ), we have 𝔼 𝑔(𝑌) = 0

and
√

Var(𝑔(𝑌)) ⩽ 𝑑3/2 · 𝑛1−Ω(1).

Combining Lemma D.3 and Lemma D.4, Theorem D.1 follows as a corollary:

Proof of Theorem D.1. Suppose there is a degree-𝑛0.001 polynomial 𝑓 : ℝ𝑛×𝑛 → ℝ𝑛×𝑛 which
gives error rate 𝑜(𝑛 · 𝑘). Let 𝑋 = 𝑛

𝜀𝑑

(
𝑓 (𝑌) − 𝑑

𝑛

)
. Then we have

∥𝑋 − 𝑋◦∥F =
𝑛2

𝜀2𝑑2 ∥ 𝑓 (𝑌) − 𝜃◦∥2
F ⩽ 𝑜

(
𝑛2

𝜀2𝑑2 𝑘𝑛

)
⩽ 𝑜

(
𝑘

𝜀2𝑑
· 𝑛
𝑑
· 𝑛2

)
.

When 𝜀2𝑑 ⩾ 0.001𝑘2 and 𝑑 = Θ(𝑛), we have 𝔼∥𝑋 − 𝑋◦∥2
F ⩽ 𝑜(𝑛2). combining Lemma D.3

and Lemma D.4, we have
𝔼 𝑔(𝑌)√
Var(𝑔(𝑌))

⩾ 𝑛0.001 .

Since 𝑔(𝑌) is a degree-ℓ polynomial with ℓ ⩽ 𝑛0.01, by [Hop18], we have

𝔼 𝑔(𝑌)√
Var(𝑔(𝑌))

⩽ exp(𝑘2) .

When exp(𝑘2) ⩽ 𝑛0.001, this leads to a contradiction. As result, we conclude that no degree-
𝑛0.001 polynomial can achieve error rate 𝑜(𝑛𝑘). □

D.2 Proof of Lemma D.3

In this section, we analyze the property of the polynomial in Eq. (D.1) under the 𝑘-symmetric
stochastic block model, and give a proof for Lemma D.3.

Proof of Lemma D.3. Let 𝑋◦
12 ∈ {±1}𝑛×𝑛 be the community matrix for the bipartite graph

between 𝑆1 and 𝑆2, i.e for 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2, we have 𝑋◦
12(𝑖 , 𝑗) = 1 if 𝑖 , 𝑗 belongs to the same

community and 𝑋◦
12(𝑖 , 𝑗) = −1 if 𝑖 , 𝑗 belongs to different communities. Moreover, we let 𝑋◦

1
be the community matrix for the induced subgraph on 𝑆1 and let 𝑋◦

2 be the community
matrix for the induced subgraph on 𝑆2. Then we have 𝑌12 = 𝜀𝑑

𝑛 𝑋◦
12 +𝑊12, 𝑌1 = 𝜀𝑑

𝑛 𝑋◦
1 +𝑊1

and 𝑌2 = 𝜀𝑑
𝑛 𝑋◦

2 +𝑊2, where

• 𝑊12 ,𝑊1 ,𝑊2 are independent,
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• (𝑊12 ,𝑊1 ,𝑊2) is independent with (𝑋◦
12 , 𝑋

◦
1 , 𝑋

◦
2 ),

• every entry in 𝑊12 ,𝑊1 ,𝑊2 has zero mean.

Then we have

𝔼 𝑔(𝑌) = 𝔼

〈
(𝑌12 −

𝑑

𝑛
)𝑋(𝑌12 −

𝑑

𝑛
), 𝑌2 −

𝑑

𝑛

〉
=

(
𝜀𝑑
𝑛

)3
𝔼
〈
𝑋◦

12𝑋𝑋◦
12 , 𝑋

◦
2
〉
+𝔼⟨𝑊12𝑋𝑊12 ,𝑊2⟩ +

2𝜀𝑑
𝑛

𝔼
〈
𝑊12𝑋𝑋◦

12 ,𝑊2
〉

=

(
𝜀𝑑
𝑛

)3
𝔼
〈
𝑋◦

12𝑋𝑋◦
12 , 𝑋

◦
2
〉
.

Since 𝔼
〈
𝑋◦

12𝑋
◦
1𝑋

◦
12 , 𝑋

◦
2
〉
⩾ Ω(𝑛4) and

𝔼
〈
𝑌◦

12(𝑋1 − 𝑋◦
1 )𝑋

◦
12 , 𝑋

◦
2
〉
⩽

√
𝔼∥𝑋1 − 𝑋◦

1 ∥
2
F · 𝔼∥𝑋◦

12𝑋
◦
2𝑋

◦
12∥

2
F ⩽ 𝑜(𝑛4) .

Therefore, we have 𝔼
〈
𝑋◦

12𝑋𝑋◦
12 , 𝑋

◦
2
〉
⩾ Ω(𝑛4). and the claim follows. □

D.3 Proof of Lemma D.4

In this section, we analyze the property of the polynomial defined in Eq. (D.1), under the
Erdős-Rényi graph distribution, and give a proof for Lemma D.4.

Proof of Lemma D.4. Under the Erdős-Rényi graph distribution, the entries in 𝑌2 − 𝑑
𝑛 are i.i.d

zero mean random variables, independent with 𝑌12 and 𝑌2(i.e the rest of the graph). As
result, we have 𝔼 𝑔(𝑌) = 0.

It remains to bound the variance of the polynomial under the Erdős-Rényi graph distribution,
which is to say, we bound

𝔼 𝑔(𝑌)2 = 𝔼

〈(
𝑌12 −

𝑑

𝑛

)
𝑋

(
𝑌12 −

𝑑

𝑛

)
, 𝑌2 −

𝑑

𝑛

〉2
.

Let 𝑊12 = 𝑌12 − 𝑑
𝑛 and 𝑊2 = 𝑌2 − 𝑑

𝑛 . The main observation is that 𝑋,𝑊12 ,𝑊2 are all
independent. As result, let 𝑍 = 𝑊12𝑋𝑊12, we have

𝔼⟨𝑊12𝑋𝑊12 ,𝑊2⟩2
=

∑
𝑖 𝑗

(𝔼𝑊2(𝑖 , 𝑗)𝑍(𝑖 , 𝑗))2 =
∑
𝑖 𝑗

𝔼𝑊2
2 (𝑖 , 𝑗)𝔼𝑍(𝑖 , 𝑗)2 =

𝑑

𝑛
𝔼∥𝑍∥2

F .

As ∥𝑋∥F ⩽ 𝑂(𝑛) without loss of generality, and ∥𝑊12∥ ⩽
√
𝑑 log(𝑛) with overwhelming high

probability, we have

𝔼∥𝑍∥2
F ⩽ 𝑂

(
𝑛2𝑑2 log4(𝑛)

)
.

Therefore we have
𝔼⟨𝑊12𝑋𝑊12 ,𝑊2⟩2 ⩽ 𝑂

(
𝑛𝑑3 log4(𝑛)

)
.

By taking the square root, we conclude the proof. □

E Probability theory facts

In this section, we provide probability tools that we will need in the paper.
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E.1 Concentration of spectral radii of random matrices

The following concentration inequality for the spectral norm of the centered adjacency
matrix of stochastic block model will be useful for our proofs.
Theorem E.1 (Spectral norm bound for random matrices, theorem 2.7 in [BGBK20]). Let
𝐻 ∈ ℝ𝑛×𝑛 be a symmetric matrix whose upper triangular entries are independent zero mean random
variables. Moreover, suppose that there exist 𝑞 > 0 and 𝜅 ⩾ 1 such that

max
𝑖

∑
𝑗

𝔼|𝐻𝑖 𝑗 |2 ⩽ 1 ,

max
𝑖 , 𝑗

𝔼|𝐻𝑖 𝑗 |2 ⩽ 𝜅/𝑛 ,

max
𝑖 , 𝑗

|𝐻𝑖 𝑗 | ⩽ 1/𝑞 .

Then we have

𝔼∥𝐻∥ ⩽ 2 + 𝐶

√
log(𝑛)
𝑞

.

Moreover, we have
ℙ[|∥𝐻∥ −𝔼∥𝐻∥| ⩾ 𝑡] ⩽ 2 exp(−𝑐𝑞2𝑡2) .

As corollary, for stochastic block model, we have the following concentration inequality:
Lemma E.2. Let 𝐴 be the adjacency matrix of a random graph with vertex 𝑖 , 𝑗 independently
connected with probability 𝜃(𝑖 , 𝑗) ⩾ Ω(1/𝑛). Let 𝑑 = 𝑛−1

𝑛

∑
𝑖 , 𝑗 𝜃(𝑖 , 𝑗) and suppose 𝜃(𝑖 , 𝑗) ⩽ 2𝑑/𝑛.

Let 𝐻 = 1√
2𝑑
(𝐴 − 𝜃). Then for every 𝑡 ⩾ 10000 log(𝑛), for some small universal constant 𝑐 > 0, we

have
ℙ[∥𝐻∥ ⩾ 𝑡] ⩽ 2 exp(−𝑐𝑡2) .

Proof. We vertify that the matrix 𝐻 here satisfies the conditions in Theorem E.1. Crucially,
since 𝜃(𝑖 , 𝑗) ⩽ 2𝑑/𝑛, we have 𝔼𝐻2

𝑖 , 𝑗
⩽ 1/𝑛 First for each 𝑖 ∈ [𝑛], we have

∑
𝑗∈𝑛 𝔼

��𝐻𝑖 𝑗

��2 ⩽ 1.
Finally, we have max𝑖 , 𝑗 |𝐻𝑖 , 𝑗 | ⩽ 1. Therefore by taking 𝜅 = 1 and 𝑞 = 1 in Theorem E.1, we
have 𝔼∥𝐻∥ ⩽ 𝐶

√
log(𝑛), and the concentration bound

ℙ[∥𝐻∥ ⩾ 𝔼∥𝐻∥ + 𝑡] ⩽ 2 exp(−𝑐′𝑡2) .
where 𝑐′ is a universal constant. Taking 𝑡 ⩾ 1000 log(𝑛), we have the claim. □

E.2 Decoupling edge partition

In this section, we give a lemma that describes the approximate independence between edge
sets of the subsampling process.
Lemma E.3. Let 𝑋 ∼ Ber(𝑝), and let 𝑋1 be obtained from 𝑋 by subsampling with probability 1−𝜂, i.e
𝑋1 = 𝑋𝜉, where 𝜉 ∼ Ber(1−𝜂) is independent of 𝑋. Let 𝑋2 = 𝑋−𝑋1, and 𝑋̃2 = 𝑋2−𝔼[𝑋2 |𝑋1]+𝜂𝑝.
Then we have 𝔼[𝑋̃2 |𝑋1] = 𝔼[𝑋2] = 𝜂𝑝 and 𝔼[(𝑋̃2 − 𝑋2)2 |𝑋1] ⩽ 𝑂(𝑝3). Moreover, we have��𝑋2 − 𝑋2

�� ⩽ 𝜂𝑝.

Proof. We first note that
𝔼[𝑋̃2 |𝑋1] = 𝜂𝑝 = 𝔼[𝑋2] .

Next we note that
𝔼[𝑋2 |𝑋1] =

𝜂𝑝

1 − (1 − 𝜂)𝑝 (1 − 𝑋1) ,

Therefore, we have

𝔼[(𝑋̃2 − 𝑋2)2 |𝑋1] = 𝔼

[(
𝜂𝑝 − 𝜂𝑝(1 − 𝑋1)

(1 − (1 − 𝜂)𝑝)

)2
]
⩽ 𝑂(𝜂2𝑝3)

□
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Corollary E.4. Let 𝑌 be the adjacency matrix of a random graph with each edge (𝑖 , 𝑗) sampled with
probability 𝑝(𝑖 , 𝑗). Suppose that 𝑝(𝑖 , 𝑗) ⩽ 𝑝 for each 𝑖 , 𝑗 ∈ [𝑛]. Let 𝑌1 be the adjacency matrix of the
graph obtained by subsampling each edge in 𝑌 with probability 1 − 𝜂. Let 𝑌2 = 𝑌 − 𝑌1. Then there is
a matrix 𝑌̃2 such that

• for every 𝑡 ⩾ log(𝑛), ∥𝑌̃2 − 𝑌2∥2
F ⩽ 𝑡𝜂𝑝3𝑛2 with probability at least 1 − exp(−𝑡),

• for every 𝑖 , 𝑗 ∈ [𝑛], 𝔼 𝑌̃2(𝑖 , 𝑗) = 𝔼𝑌2(𝑖 , 𝑗)

• moreover 𝑌̃2 and 𝑌1 are independent,

• and finally the entries in 𝑌̃2 are independent.

Proof. We construct the matrix 𝑌̃2 in the following way. For each 𝑖 , 𝑗, we let 𝑌̃2(𝑖 , 𝑗) =

𝑌2(𝑖 , 𝑗) − 𝔼[𝑌2(𝑖 , 𝑗)|𝑌1] + 𝜂𝑝(𝑖 , 𝑗). Then by Lemma E.3, we have 𝔼 𝑌̃2(𝑖 , 𝑗) = 𝔼𝑌2(𝑖 , 𝑗) and
𝔼

(
𝑌̃2(𝑖 , 𝑗) − 𝑌2(𝑖 , 𝑗)

)2
⩽ 𝑂(𝜂2𝑝3). In addition, we have

��𝑌̃2(𝑖 , 𝑗) − 𝑌2(𝑖 , 𝑗)
�� ⩽ 𝑂(𝜂𝑝).

Furthermore 𝑌̃2(𝑖 , 𝑗) and 𝑌1 are independent.

Finally since the upper triangular entries in 𝑌 are independent, we have the upper triangular
entries in 𝑌̃2 are independent. By Hoeffding bound, with probability at least 1 − exp(−𝑡), we
have ∥𝑌̃2 − 𝑌2∥2

F ⩽ 𝑡𝜂𝑝3𝑛2 log(𝑛). □

F Useful algorithmic results

In this section, we provide two algorithmic results from previous work that will be useful in
our paper.

F.1 Correlation preserving projection

Given a vector 𝑃 that has constant correlation with an unknown vector 𝑌, [HS17] shows
that one can project the vector 𝑃 into a convex set containing 𝑌, and preserve the constant
correlation with 𝑌.
Theorem F.1 (Correlation preserving projection, theorem 2.3 in [HS17]). Let 𝛿 ∈ ℝ+ Let 𝒞
be a convex set and 𝑌 ∈ 𝒞. Let 𝑃 be a vector with ⟨𝑃, 𝑌⟩ ⩾ 𝛿 · ∥𝑃∥ · ∥𝑌∥. Then, if we let 𝑄 be the
vector that minimizes ∥𝑄∥ subject to 𝑄 ∈ 𝒞 and ⟨𝑃, 𝑄⟩ ⩾ 𝛿 · ∥𝑃∥ · ∥𝑌∥, we have

⟨𝑄,𝑌⟩ ⩾ 𝛿/2 · ∥𝑄∥ · ∥𝑌∥ . (F.1)

Furthermore, 𝑄 satisfies ∥𝑄∥ ⩾ 𝛿∥𝑌∥.

We include their proof here for completeness.

Proof. By construction,𝑄 is the Euclidean project of 0 into the set {𝑄 ∈ 𝒞|⟨𝑃, 𝑄⟩ ⩾ 𝛿∥𝑃∥∥𝑌∥}.
By Pythagorean inequality, the Euclidean projection into a set decreases distances to points
into the set. Therefore, ∥𝑌 −𝑄∥2 ⩽ ∥𝑌 − 0∥2, which implies that ⟨𝑌, 𝑄⟩ ⩾ ∥𝑄∥2/2. Moreover,
⟨𝑃, 𝑄⟩ ⩾ 𝛿∥𝑃∥∥𝑌∥, which implies ∥𝑄∥ ⩾ 𝛿∥𝑌∥ by Cauchy-Schwartz. Thus, we can conclude
that ⟨𝑌, 𝑄⟩ ⩾ 𝛿/2 · ∥𝑌∥ · ∥𝑄∥. □

F.2 Learning edge connection probability matrix via SVD

Theorem F.2. When 𝑑 ⩾ log(𝑛), there is a polynomial time algorithm which given the adjacency
matrix of a graph sampled from symmetric 𝑘-stochastic block model SSBM(𝑛, 𝑑

𝑛 , 𝜀, 𝑘), returns an
estimator 𝜃̂ ∈ [0, 1]𝑛×𝑛 such that ∥𝜃◦ − 𝜃∥2

F ⩽ 𝑘𝑑 with high probability.

24



Proof. We take 𝜃̂ as the best rank-𝑘 approximation for the adjacency matrix. Then since
∥𝐴 − 𝜃◦∥op ⩽

√
𝑘𝑑 with high probability, we have ∥𝜃̂ − 𝐴∥op ⩽

√
𝑘𝑑 with high probability.

By triangle inequality, we have ∥𝜃̂ − 𝜃◦∥op ⩽ 2
√
𝑑. As result, we have ∥𝜃̂ − 𝜃◦∥F ⩽ 2

√
𝑘𝑑 . □

G Low-degree lower bound beyond constant number of blocks

By extending the result of [BBK+21b], we can get a more general bound (with respect to 𝑘)
on low degree likelihood ratio of k-SBM. The proof of the extended result follows trivially
from the proof of Theorem 2.20 of [BBK+21b]. Therefore, we only provide a proof sketch by
pointing out the simple modifications that we need from the original proof.
Theorem G.1 (Restatement of Theorem A.1). Let 𝑑 = 𝑜(𝑛), 𝑘 = 𝑛𝑜(1) and 𝜀 ∈ [0, 1]. Let
𝜇 : {0, 1}𝑛×𝑛 → ℝ be the relative density of SBM (𝑛, 𝑑, 𝜀, 𝑘) with respect to 𝐺

(
𝑛, 𝑑

𝑛

)
. Let 𝜇⩽ℓ be

the projection of 𝜇 to the degree-ℓ polynomials with respect to the norm induced by 𝐺
(
𝑛, 𝑑

𝑛

)
For any

constant 𝛿 > 0,

𝜇⩽ℓ

 is

⩾ 𝑛Ω(1) , if 𝜀2𝑑 > (1 + 𝛿)𝑘2 , ℓ ⩾ 𝑂(log 𝑛)

⩽ 𝑂𝛿
(
exp(𝑘2)

)
, if 𝜀2𝑑 < (1 − 𝛿)𝑘2 , ℓ < 𝑛0.99

Proof. In this proof, we stick to the notations of [BBK+21b]. The only modification we need is
that the size of the 𝛿-net of the unit sphere in ℝ𝑘 , denoted by 𝐶(𝛿, 𝑘), is equal to exp(𝑂𝛿(𝑘)).
The size of the 𝛿-net 𝐶(𝛿, 𝑘) is crucial in Proposition 6.4 and Proposition 6.5 of [BBK+21b]
and is treated as constant in the proof of Theorem 2.16 and Theorem 2.20 of [BBK+21b].

By plugging 𝐶(𝛿, 𝑘) = 𝑂𝛿(exp(𝑘)) into the upper bound of the small deviation term 𝐿1 in
the proof of Theorem 2.16 of [BBK+21b], it follows that we have



𝐿⩽𝐷

 = 𝑂𝛿(exp(𝑘)) for
the likelihood ratio 𝐿 and 𝐷 ⩽ 𝑜(𝑛/log(𝑛)). Then, the bound on low-degree likelihood ratio
of k-SBM follows from the same reduction as in proof of Theorem 2.20 of [BBK+21b], and
we get 𝜀2𝑑/(1 − 𝑑/𝑛) ⩽ 1. As 𝑑 = 𝑜(𝑛), we get the claimed bound on low-degree likelihood
ratio. □

H Conclusion and future directions

Based on low-degree heuristics, our paper gives rigorous evidence for a computational
phase transition of recovery at the Kesten-Stigum threshold. We view our work as a first
step in studying this phenomenon, leaving open many interesting questions:

• Below the Kesten-Stigum threshold, suppose we are given an initalization achieving
recovery rate 𝑛−0.49, could we boost the accuracy in polynomial time to get a weak
recovery algorithm?

• Can we show a computational-statistical gap for learning the graphon function
when the number of blocks satisfies 𝑘 ⩽

√
𝑛 (as in [LG24])?
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authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many
papers do not require this, but we encourage authors to take this into account
and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as

part of their submissions via structured templates. This includes details about
training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [No]
Justification: the paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [No]
Justification: the paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between
institutions and locations, and we expect authors to adhere to the NeurIPS
Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM
is used only for writing, editing, or formatting purposes and does not impact the
core methodology, scientific rigorousness, or originality of the research, declaration
is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs
as any important, original, or non-standard components.
Guidelines:
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• The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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