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Abstract: Imitation-based policy training for long-horizon manipulation tasks
involving multi-step object interactions is often susceptible to compounding ac-
tion errors. Contemporary methods discover semantic subgoals embedded within
the overall task, decomposing the overall task into tractable shorter-horizon goal-
conditioned policy learning. However, policy deployment requires iteratively es-
timating which subgoal is being pursued and when it is achieved. We observe the
brittleness of conventional heuristic-based approaches (ad hoc threshold based),
particularly for long-horizon imitation, since pursuing an incorrect subgoal can
lead the robot policy to experience out of distribution states. In this work, we
introduce two policy architectures for modeling subgoal transitions within a pol-
icy learning loop for long-horizon tasks. The first model autoregressively predicts
the likelihood of the next subgoal transition, while the second uses cross-attention
(via a transformer-based architecture) and implicitly models smooth and continu-
ous transitions. We evaluate our models on 25 simulated tasks on Franka Kitchen,
6 real-world table-top tasks and 18 simulated tasks on a new corpus (Franka-Long
Horizon Tasks (LHT)) focused on tasks with rich object interactions over long
episode lengths. Experimental results show significant improvements in learning
efficacy, task success rates and generalization to out-of-distribution settings- ex-
tending horizon lengths for imitating manipulation tasks from long to long(er).
Project webpage: https://shivam89jain.github.io/lhi/
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1 Introduction

Training robots for long-horizon tasks remains a fundamental challenge in robot learning. These
tasks often involve executing a precise sequence of actions to accomplish complex, multi-step goals.
For example, assembling furniture, cooking a meal, or setting a dining table requires a robot to
understand dependencies between subtasks and transition smoothly between them. Learning policies
that can generalize across such long-horizon tasks is difficult due to compounding errors and the
need for structured decision-making over extended sequences.

Prior work has shown that decomposing trajectories into subgoals and training goal-conditioned
policies (see Fig. 1) can significantly improve learning efficacy and task success [1]. Existing pol-
icy architectures for multi-task goal-conditioned learning include MLP-based models [1, 2] and
transformer-based [3] models such as the GPT-style causal transformer [4, 5, 6, 1]. These models
demonstrate strong learning capabilities, but a key challenge remains during inference: given a se-
quence of subgoals, representing milestones of a long-horizon task, the robot must determine when
a subgoal has been successfully achieved and transition to the next one. The most commonly used
approach for transitioning subgoals is to define a fixed hyperparameter, ϵ, where a subgoal is con-
sidered achieved if the mean squared error (MSE) between the current state and the subgoal falls
below this threshold [7, 1]. While simple and effective in some cases, this method is highly sensi-
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Figure 1: (top-left) Training goal-conditioned policies from expert demonstrations using behavioral
cloning. (top-right) At inference time, the policy follows a sequence of subgoals to accomplish the
overall task. A subgoal transition mechanism updates the subgoal based on current task progress.
(bottom) Environments used in our experiments along with the average episode lengths (figure not
to scale) of demonstration trajectories, indicating increasing task horizons.

tive to hyperparameter tuning and does not generalize well across diverse tasks with varying state
distributions. This makes calculating an optimal ϵ for different environments challenging. Alterna-
tive methods for subgoal transitions include maintaining a subgoal budget [1] or avoiding this step
completely by always selecting the k-th future frame as the subgoal [8]. However, these approaches
require additional trajectory information during inference, such as access to the full execution path
in advance, making them less practical for real-world deployment. To address these limitations,
we propose a novel architecture, ST-GPT (Subgoal Transition-GPT), that allows the policy itself to
predict when a subgoal has been achieved. Instead of relying on handcrafted heuristics, our model
learns to infer subgoal transitions directly from experience with no additional supervision required.

However, a limitation of this entire framework is that it still relies on identifying a discrete timestamp
to determine when the policy should stop conditioning on the current subgoal and transition to
the next one. This can introduce instability, especially in very long-horizon tasks, where a single
misidentified subgoal transition can push the robot out of distribution, leading to cascading failures.
To address this, we propose a novel transformer-based architecture called SGPT (Subgoal Guided
Policy Transformer). SGPT processes all subgoals simultaneously, encoding them into a structured
representation. Instead of making hard transitions at discrete time steps, the current state undergoes
cross-attention over the subgoal embeddings, allowing the model to dynamically adjust the weight
of each subgoal in a continuous manner. This enables smooth and continuous subgoal transitions,
improving policy robustness and adaptability in long-horizon tasks.

To evaluate our approach, we conduct extensive experiments in both real-world robotic setups and
simulated environments. We also introduce FrankaLHT, a new simulation benchmark specifically
designed for long-horizon robot learning. Compared to existing benchmarks, FrankaLHT presents
more complex, multi-stage tasks that require precise long-horizon planning and execution.

Our key contributions can be summarized as follows:

1. ST-GPT and SGPT, two novel policy architectures for modeling explicit discrete (hard) and
implicit continuous (soft) subgoal transitions respectively.

2. FrankaLHT, a challenging simulation benchmark designed for long-horizon task learning,
featuring diverse scenarios across household, medical, and industrial settings.

3. Extensive experiments on multiple environments, demonstrating the scalability and adapt-
ability of our approach.
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2 Related Work

Training desired behaviors via imitation learning (IL) is a popular paradigm as an alternative to de-
signing rewards [9]. Behavior cloning (BC) is a form of IL that casts imitation as supervised learning
from observations to actions given offline demonstrations from an expert [10]. BC is susceptible to
catastrophic failures when compounding errors lead the robot to states outside its training distri-
bution [11]. The problem is more pronounced while learning skills involving multi-stage complex
object interactions inherent in real-world tasks (such as assembly, packing, clearing etc.) which are
the focus of this paper.

Contemporary approaches use subgoal decomposition of a long demonstration by observing phase
shifts in visual representations [1], transitions in proprioceptive data [12] or using a video prediction
model [13]. Inherently subgoals model task progress and provide a shorter-horizon learning signal
during policy training. Crucially, learning subgoal conditioned policies relies on estimating when
a subgoal has been achieved and when the policy should pursue the next subgoal. Prior works use
heuristic methods such as using an ϵ-threshold [7], adjusting a subgoal budget [1] or training task-
specific subgoal trackers [14, 15]. In contrast, this work learns a subgoal transition model jointly
during policy learning.

Recently, transformer-based auto-regressive models have been successful as policy architectures
mapping a context of robot state to next action [4, 5, 16, 6]. For robot manipulation, works such as
[8, 17] achieve generalization across tasks by incorporating tokenized language annotations or goal
images as context. We build on the aforementioned models and focus on incorporating image-based
subgoals as well as modeling their transitions while learning a policy for a long-horizon task. Other
policy architectures learn a task-specific multi-modal distribution over actions via diffusion [18],
BeT [19, 20] or via Gaussian mixtures [21]. In this work, we develop a unified architecture that
generalizes across multiple tasks.

This work is also related to general RL techniques that use subgoals [22] and those which relabel
trajectories with subgoals [23, 24] in order to improve generalization in RL for manipulation tasks.
This work confines itself to the behavior cloning setup and instead uses subgoals to improve temporal
generalization during policy training. Alternative approaches use semantic knowledge of task com-
position to guide hierarchical skill learning via foundation models [25], querying the human [26] or
by using symbolic planners [27]. While the aforementioned works use language annotations as su-
pervision for decomposition, this work trains a policy from subgoals that capture interaction-related
transitions during a long task. The subgoals lie in the visual space and may be more numerous than
the subset aligned with distinct language descriptions.

3 Problem Statement

Trajectory Representation and Subgoals: A robot’s interaction with its environment can be rep-
resented by its state at each time step. We define the state at time t as St = (ϕ(st), s

′
t), where st

is an image captured from an external camera, offering a visual representation of the scene, and s′t
denotes the robot’s joint state, encapsulating its physical configuration. ϕ denotes an image encoder
that extracts a compact vector representation of the visual scene. A trajectory T is represented as
a sequence of state-action pairs, formally defined as T = {(St, at)}Nt=1. The ordered sequence of
states within T is denoted by S = (S1,S2, . . . ,SN ). A subgoal sequence associated with T is a
selected subsequence of S, represented as G = (G1,G2, . . . ,Gn). Each subgoal Gi serves as an
intermediate milestone in the trajectory, with the final subgoal always aligning with the last state,
i.e., Gn = SN . For each state Si, the corresponding subgoal Ḡi is defined as the earliest future
state that belongs to the subgoal set G. Formally, Ḡi = Sk, where k = min{j | j ≥ i,Sj ∈ G}.
This ensures that every state is mapped to the nearest succeeding subgoal in the trajectory. Conse-
quently, the subgoal-mapped trajectory T ′ is defined as T ′ = {(St, at, Ḡt)}Nt=1, where Ḡt denotes
the future subgoal, guiding state St. We use the Universal Visual Decomposer (UVD) [1], an off-
the-shelf task decomposition method for visual long-horizon manipulation, to extract a semantically
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meaningful subgoal sequence G from a given trajectory T . Additional details on UVD can be found
in Appendix A.

Policy Training: The training dataset consists of multiple trajectories and is denoted as D =
{Ti}Ni=1, where Ti = {(St, at)}Ni

t=1. The corresponding subgoal-mapped dataset is given by D′ =
{T ′

i }Ni=1, where T ′
i = {(St, at, Ḡt)}Ni

t=1. The objective is to train a policy πθ that minimizes the
expected loss,

L = E(S,a,G)∼T ′,T ′∼D′ [L(a, πθ(S | G))]

where L(·) is a predefined loss function.

Policy Evaluation: During policy evaluation, the agent is provided with a sequence of subgoals,
denoted as {Gi}ni=1. These subgoals may originate from: 1. A trajectory Ti in the training dataset
D, 2. A previously unseen trajectory, or 3. A semantically meaningful sequence of subgoals that
is independently defined, and not derived from any trajectory decomposition. The policy begins
by sampling an action a from πθ(S1 | G1), where S1 represents the initial state. The selected
action a is then executed by the robot, and the policy proceeds iteratively. At some time step t, once
G1 is deemed achieved, the policy transitions to the next subgoal by updating its conditioning to
πθ(St | G2). This process continues until the final subgoal is achieved.

4 Technical Approach

We now introduce our key contributions: ST-GPT (Subgoal Transition-GPT), a framework for
modeling explicit subgoal transitions, and SGPT (Subgoal Guided Policy Transformer), a novel
transformer-based architecture that implicitly models these transitions in long-horizon skill learn-
ing. We further elaborate on how these models redefine the problem formulation and enhance policy
learning.

4.1 ST-GPT: Modeling Subgoal Transitions

Causal Transformer

St-k+1 StSt-k G
. . .

Positional
Encoding

Output Layer
MLP

Multi-step
Action Prediction

Subgoal
Change

Prediction

MSE
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BCE
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Figure 2: ST-GPT Architecture: The
dual-headed output enables the model
to determine when to transition between
subgoals while executing precise motor
commands.

ST-GPT takes as input a fixed-length history of the last
k states (St−k+1, . . . ,St) along with the current sub-
goal G. These inputs are passed as separate tokens
through a causal transformer, which employs masked
self-attention to ensure each token attends only to past
and present information (see Fig. 2). The transformer
processes the sequence and outputs contextualized to-
ken embeddings, which are then concatenated and passed
through an MLP head. The MLP produces two outputs:
the joint-space action at, specifying the robot’s intended
movement, and a subgoal transition signal σt ∈ {0, 1},
where σt = 1 signifies that the current subgoal has
been achieved, prompting a transition to the next sub-
goal, while σt = 0 indicates that the current subgoal re-
mains active. Mathematically, the policy is defined as:
πθ(St | G) ≡ πθ(St−k+1, . . . ,St | G) = (at ◦ σt).
Given a subgoal-mapped trajectory T = (St, at, Ḡt), we
define a transition-augmented subgoal-mapped trajectory
as: T ′ = (St, at ◦ σt, Ḡt), where σt = I{St = Ḡt} is
an indicator function that returns 1 when the current state matches the corresponding subgoal, sig-
nifying its successful completion. The corresponding training dataset D′ = {T ′

i }Ni=1 is a collection
of such transition-augmented trajectories. Extending our earlier formulation, the training loss for
ST-GPT is defined as:

L = E(S,a◦σ,G)∼T ′,T ′∼D′ [L(a ◦ σ, πθ(S | G))]

where L(a ◦ σ, â ◦ σ̂) = L1(a, â) + wL2(σ, σ̂) is a weighted loss combination. In our framework,
we use L1 as mean squared error (MSE) to regress the joint actions and L2 as binary cross-entropy
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Figure 3: SGPT Architecture: Cross-attention over subgoals allows the model to capture subgoal
dependencies, enabling fluid subgoal transitions and seamless execution of long-horizon tasks.

(BCE) to supervise the subgoal transitions. At inference time, the agent is provided with a sequence
of subgoals {Gi}ni=1 that guides the robot through a complex-long task. The key idea is that, rather
than relying on manually defined thresholds or heuristic rules to determine subgoal transitions, the
policy learns to predict them directly via the transition signal σt, jointly alongside the action at. In
practice, instead of predicting a single action at each step, we extend the model to predict a sequence
of l future joint-space actions, ({at, at+1, . . . , at+l−1} ◦ σt) and apply action chunking [16] along
with temporal averaging to ensure smoother behavior and improved stability. Additional details,
including implementation specifics and hyperparameters, are provided in Appendix B.2.

4.2 SGPT: Smoothening Subgoal Transitions

While ST-GPT effectively models subgoal transitions, it still operates under the limiting assumption
that transitions occur at discrete time steps. Identifying the exact moment of when to transition
to the next subgoal is often ambiguous—even for humans. In such architectures, this reliance on
hard, discrete transition points limits scalability to very long-horizon tasks, where such decisions
become increasingly uncertain and can lead to cascading errors. Marking a subgoal as completed
too early can lead to premature transitions and compounding errors, while delaying the transition
can cause inefficient behavior or stagnation. To address these challenges, we propose SGPT, an
architecture that enables smooth and implicit subgoal transitioning, allowing the policy to gradually
shift its focus between subgoals without requiring explicit transition signals. SGPT takes as input
the current state St along with the complete subgoal sequence G = (G1,G2, . . . ,Gn) (see Fig. 3),
enabling it to contextualize its decisions over the entire task plan. To retain the temporal order of
the subgoals, positional encodings are added to the sequence before passing it through a transformer
encoder with multi-head self-attention, producing contextualized subgoal embeddings. The current
state token St then attends to these embeddings via a cross-attention mechanism, effectively learning
a soft alignment over the subgoal sequence. This process yields a weighted mixture over subgoals
that reflects their relevance at the current time step. The resulting context vector is then passed
through an MLP head to produce the predicted action at. Mathematically, the policy is defined as:
πθ(St | G) ≡ πθ(St | G1,G2, . . . ,Gn) = at. Given a dataset D = {Ti}Ni=1, where each trajectory
Ti = {(St, at)}Ni

t=1, the training loss for SGPT is defined as:

L = E(S,a)∼T ,T ∼D [L(a, πθ(S | G))]
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where G is the subgoal sequence associated with T . In our implementation, we use mean squared er-
ror (MSE) as the loss function. To encourage more stable and smooth behavior, we also incorporate
action chunking [16]—by predicting multi-step action sequences instead of single-step actions—as
introduced in the previous section. While it is possible to augment SGPT with a history of past
states as additional input, we find through ablations that this leads to suboptimal performance (see
Appendix B.2). Thus, we keep the architecture simple by conditioning only on the current state. For
more architectural details, please refer to Appendix B.3.

5 Experimental Setup

Figure 4: Sample execution trajectories from simulation(FrankaLHT) and real-world environments.
These examples demonstrate the compositional and long-horizon nature of the tasks used in our
experiments.

Baselines: We evaluate three state-of-the-art models for goal-conditioned policy learning, listed in
increasing order of their modeling power: MLP, GPT, and BAKU. The MLP [1] model is a standard
goal-conditioned policy that takes the current state St and goal G, concatenates them, and passes
the result through a multi-layer perceptron to predict joint-space action at. The GPT [1] model
is a history-aware, goal-conditioned causal transformer, similar in design to the ST-GPT model
described earlier, except that it only outputs actions and does not predict subgoal transition signals.
In both these models, subgoal transitions are triggered using a fixed threshold ϵ, where the current
subgoal is considered achieved when the distance ∥St − G∥2 < ϵ. The BAKU [8] model takes
as input multiple camera views, the robot’s joint state, and a trainable action token to predict the
next action. Unlike the other models, BAKU does not decompose the trajectory into subgoals and
instead conditions on the final frame alone as the ultimate goal. It serves as a strong baseline,
outperforming prior state-of-the-art methods on long-horizon manipulation tasks. All three baseline
models use action chunking and predict multi-step actions. Further architectural details of these
baselines are provided in Appendix B.

Evaluation Metrics & Generalization: We train multitask policies across different benchmarking
environments, each consisting of n different long-horizon tasks and k expert demonstrations per
task, resulting in a total of n × k trajectories. Each task’s k demonstrations are collected with
multiplicative Gaussian noise applied to the robot’s initial state and object positions, along with
inherent variability in task progress. We randomly sample half of the trajectories for each task (k/2)
to form the training set, denoted as Dtrain, resulting in a total of n × k

2 training demonstrations.
The remaining k/2 trajectories per task form the evaluation set, Deval, with the complete dataset
given by D = Dtrain ∪ Deval. At inference time, we extract subgoals (final goal for BAKU) from
each trajectory in D using UVD [1]. When the policy is evaluated on subgoals extracted from
the trajectories in Dtrain, we refer to the results as in-distribution (InD) performance. Conversely,
evaluations on subgoals extracted from the trajectories in Deval are referred to as out-of-distribution
(OoD) performance. Each task is long-horizon and composed of multiple subtasks. We report two
key metrics: success rate, defined as the fraction of roll outs in which the entire task is completed,
and completion rate, defined as the average fraction of sub-tasks completed within a long-horizon
task by the policy across different roll outs.
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Our experiments are designed to answer the following questions:

• Does the ST-GPT policy provide more effective subgoal transitions compared to the stan-
dard GPT policy that relies on a fixed ϵ threshold as a heuristic for subgoal transitions?

• Do continuous and smooth subgoal transitions (SGPT) outperform discrete subgoal tran-
sitions (ST-GPT)?

• How well do these policies scale with increasing task horizon lengths, and what is the
breakpoint where their performance begins to degrade?

6 Results

A) Simulation Experiments

Franka Kitchen Environment: We conduct our experiments in the Franka Kitchen environment,
a widely used benchmark for evaluating long-horizon manipulation tasks. Each task in this en-
vironment is a sequence of 4 high-level subtasks, such as opening cabinets, turning on burners,
flipping a light switch, opening the microwave, etc. The dataset D used in our experiments is a
curated subset of the original Franka Kitchen dataset introduced in [28], consisting of 25 such tasks,
with 10 demonstration trajectories per task, and an average episode length of ∼250 steps. For each
task, 5 trajectories are randomly sampled to form the training set Dtrain, while the remaining 5 are
assigned to Deval, as described earlier. Table 1 presents a comparison between ST-GPT and the
standard GPT model. We perform a grid search over different values of the hyperparameter ϵ, and
show that no choice of threshold yields performance that surpasses our model. Table 2 presents
a detailed comparison of all baselines, including ST-GPT and our strongest model, SGPT. The re-
sults indicate that while ST-GPT performs well on in-distribution (InD) tasks and BAKU excels on
out-of-distribution (OoD) tasks, SGPT consistently outperforms all the models across both InD and
OoD settings. Figure 5 in appendix provides a visualization of continuous subgoal transitioning in
the SGPT architecture.

Architecture Subgoal Transition
Threshold InD OoD

Success Completion Success Completion
GPT 0.003 0.320 0.696 0.040 0.456
GPT 0.001 0.480 0.770 0.040 0.369
GPT 0.0008 0.504 0.792 0.008 0.292
GPT 0.0005 0.432 0.754 0.008 0.260
GPT 0.0001 0.312 0.670 0.000 0.171

ST-GPT (Ours) N.A. 0.928 0.978 0.089 0.488

Table 1: Comparison between ST-GPT and GPT models with varying subgoal transition thresholds
in the Franka Kitchen environment. As the threshold ϵ decreases, OoD performance degrades due
to the difficulty of achieving precise subgoal transitions in unseen tasks. InD performance peaks at
an intermediate value of ϵ, indicating an optimal trade-off. Nonetheless, none of the GPT variants
surpasses the performance of ST-GPT.

FrankaLHT Environment: The results from the Franka Kitchen environment show that while
SGPT outperforms all other models, the baselines also perform reasonably well. We attribute this
to the relatively low complexity of tasks in the Franka Kitchen environment and the increased capa-
bilities of modern policies, which allow us to extend the notion of long-horizon tasks well beyond
250 time steps. However, no publicly available benchmarking environments focus on complex,
fine-grained, long-horizon manipulation that demands sequential decision-making across multiple
interconnected subtasks. To address this gap, we introduce FrankaLHT, a new benchmark specif-
ically designed for evaluating long-horizon robot learning in complex, multi-stage tasks. Built on
the PyBullet [29] physics engine, FrankaLHT comes with 180 expert trajectories spanning 18 di-
verse tasks across three distinct scenarios, with an average episode length of ∼1000 steps. With
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10 trajectories per task, we generate our Dtrain and Deval datasets in the same manner as described
earlier for the Franka Kitchen environment. Table 2 presents a detailed comparison of all the models
across both these simulation environments. We observe that all models, including ST-GPT, perform
poorly in the FrankaLHT environment. In contrast, SGPT significantly outperforms these models,
achieving performance comparable to that in the Franka Kitchen environment, with only a slight
drop in OoD performance. These results highlight the robustness and strong generalization capabil-
ities of SGPT’s continuous subgoal transitioning mechanism in addressing the increased complexity
and longer temporal horizons posed by the FrankaLHT environment. Additional details about the
FrankaLHT benchmark—including task descriptions and a comparison between ST-GPT and GPT
in this setting—are provided in Appendix C.

Architecture Franka Kitchen FrankaLHT

InD OoD InD OoD

S C S C S C S C

MLP 0.040 0.452 0.008 0.254 0.000 0.100 0.000 0.092
GPT 0.504 0.792 0.008 0.292 0.000 0.175 0.000 0.067

BAKU 0.488 0.790 0.258 0.583 0.011 0.083 0.000 0.067
ST-GPT (Ours) 0.928 0.978 0.089 0.488 0.000 0.242 0.000 0.181
SGPT (Ours) 0.928 0.982 0.266 0.639 0.922 0.969 0.222 0.381

Table 2: Performance comparison of all architectures across both the simulation environments. For
MLP and GPT, we report results using the subgoal transition threshold that yields the best InD
performance. While most models perform well in the simpler Franka Kitchen setting, their per-
formance drops significantly in the more challenging FrankaLHT environment. SGPT consistently
outperforms all baselines across both settings (S: Success rate, C: Completion rate).

B) Real World Experiments

Architecture InD OoD

S C S C

MLP 0.000 0.071 0.000 0.024
GPT 0.000 0.119 0.000 0.077

BAKU 0.000 0.060 0.000 0.048
ST-GPT (Ours) 0.000 0.202 0.000 0.137
SGPT (Ours) 0.524 0.810 0.167 0.411

Table 3: Real World Experimental Results
(S: Success rate, C: Completion rate)

We perform our real-world experiments on a Franka
Panda robot across 6 diverse table-top manipulation
tasks. Figure 4 showcases the experimental setup
with accompanying snapshots of a sample task. We
collect 14 teleoperated demonstration trajectories
per task, with an average episode length of ∼500
steps. These trajectories are then uniformly split
into Dtrain and Deval in the same manner as described
earlier. Table 3 presents a performance comparison
of all the models in the real-world setup. We ob-
serve similar trends as in the FrankaLHT environ-
ment, with most models struggling to perform well,
whereas SGPT consistently achieves superior per-
formance over all baselines. Figure 11 in appendix provides an overview of all the real-world tasks.

7 Conclusion

This paper addresses the problem of determining - which subgoal to pursue and when to transi-
tion to another during visual BC-based imitation learning for long-horizon tasks. We introduced
two policy architectures: one that explicitly predicts subgoal attainment and another that implicitly
models subgoal transitions via cross-attention, both aimed at enabling policies to better navigate
the long-horizon task structure. Experiments were performed on simulation environments and on a
real Franka Emika Robot Manipulator over temporally extended tasks involving multi-step object
interactions. Results demonstrate significant gains over state-of-the art multi-task, goal-conditioned
policy learners, particularly in the long-horizon task setting, indicating the benefit of modeling sub-
goal transitions within the policy learning loop.
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8 Limitations

A key limitation of the current framework is scalability to imitating very long sequences (e.g., pack-
ing large number of bottles in a container involving periodic object placements at slightly different
locations). Imitating such tasks requires more semantic decomposition instead of attending over all
constituent subgoals in the demonstration. A possible direction is to align subgoals with language
to discover more pronounced compositional structure embedded in the demonstration. Finally, the
current framework assumes access to subgoals from a demonstration trajectory during policy execu-
tion. Incorporating the ability to induce subgoals from related tasks can take a step in the direction of
more generic goal-conditioned policies capable of performing tasks even in the absence of demon-
strations.
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Appendix

(a) Task sequence: Microwave, Kettle, Top Left
Burner, Light Switch

Decoder Layer: 3 Attention Head: 1
The first vertical bar of the heatmap illustrates how
the model’s attention is distributed over Subgoal 1

across time. We observe that the attention on
Subgoal 1 gradually increases from the start and

peaks around timestep 50. Notably, this peak aligns
closely with the time at which the first subgoal

occurs in the expert demonstration. This illustrates
how the model does not make any hard or discrete

subgoal transitions, but instead shifts its focus
smoothly through gradually changing attention

weights.

(b) Task sequence: Kettle, Bottom Left Burner ,Top
Left Burner, Light Switch

Decoder Layer: 1 Attention Head: 3
We observe similar results in this heatmap as in (a),

with Subgoal 5 receiving peak attention near
timestep 150. Interestingly, we also notice a strong

early peak for Subgoal 4, even though it occurs
much later in the time horizon. This suggests that the

model is attending to future subgoals early on,
potentially to establish a longer-term understanding
of the task. Such behavior indicates that different
transformer layers and attention heads might be

capturing varying levels of temporal abstraction and
subgoal dependencies.

Figure 5: Cross-attention heatmaps from the SGPT policy, visualizing continuous subgoal transi-
tioning across long-horizon tasks, in the Franka Kitchen environment. Each heatmap is generated
during policy execution, where the policy is conditioned on a sequence of subgoals (shown as images
to the right of the heatmap, arranged from top to bottom). At each timestep, the current state attends
to these subgoals via a cross-attention mechanism to compute the action. The heatmaps display the
attention weights assigned to each subgoal (x-axis) over time (y-axis, running from top to bottom).
The sequence of subgoals shown here is extracted from the decomposition of some trajectory using
UVD. The horizontal dotted lines indicate the frame numbers at which these subgoals occur in the
video demonstration.
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A Universal Visual Decomposer

We use the Universal Visual Decomposer (UVD) [1] to extract subgoals from demonstration videos,
where each subgoal corresponds to a meaningful subtask within the long-horizon activity. Math-
ematically, given a video demonstration of a long-horizon robotic task V = (f1, f2, . . . , fN ),
where fi denotes the i-th frame, the Universal Visual Decomposer produces a sequence of subgoals
UVD(V) 7→ (g1, g2, . . . , gn), where each gi corresponds to a selected frame from V , i.e., gi = fj for
some j ∈ {1, . . . , N}. UVD identifies these subgoals by detecting phase shifts in the visual embed-
ding space. These subgoals serve as intuitive checkpoints (see Fig. 6), guiding the robot through the
task in a structured and interpretable manner.

(a) The robot sequentially opens the microwave, places the kettle on the top-left burner, turns the burner knob,
and opens the hinge cabinet.

(b) The robot picks up a brinjal from the table, places it in the basket, and then covers the basket with its lid.

Figure 6: Examples of subgoal extraction using UVD across (a) the Franka Kitchen simulation
environment, and (b) our real-world experimental setup.

B Network Architecture and Training Details

The input proprioceptive state s′t in both the FrankaLHT and real-world setup is an 8-dimensional
vector consisting of the 7 joint angles of the Franka arm and the gripper position. The action space
is also 8-dimensional, where the first 7 values correspond to joint commands and the last value con-
trols the gripper position, applied symmetrically to both fingers. The other half of the robot’s state
st comes from the embedding of an external camera image. Each input image is center-cropped
to a size of 224 × 224 pixels and passed through the VIP encoder [30], which generates a 1024-
dimensional image encoding. Table 4 presents the hyperparameters for the MLP, GPT, and SGPT
policy architectures. To ensure a fair comparison across all policies, each was designed to have ap-
proximately 25M trainable parameters and trained for 1000 epochs. The only exception is the MLP
policy, which has 3M parameters, as deeper or wider configurations resulted in unstable training and
poor performance. To compensate for the smaller model size, we increased its training to 10,000
epochs.

B.1 BAKU

The hyperparameters for BAKU are adopted directly from the configuration provided in their origi-
nal work [8]. The BAKU paper performs an extensive ablation study to justify various architectural
choices in their design. We use the configuration that employs a transformer-based observation
trunk, an MLP action head, no observation history, and action chunking. The policy is conditioned
on the final goal image. As discussed in their paper, this configuration was shown to yield state-
of-the-art results when compared to prior baselines such as MT-ACT [17] and RT-1 [35]. Notably,
although BAKU does not explicitly utilize subgoals, its policy remains highly effective on long-
horizon tasks.
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Hyperparameter Value

Hidden Layers [1024, 512, 256]
Activation ReLU [31]

Normalization Batch Norm [32]
Epochs 10000

Batch Size 512
Learning Rate 3e-4

Optimizer Adam [33]
Scheduler Cosine Annealing

Action chunk length 25
Trainable Parameters 3M

(a) MLP

Hyperparameter Value

Observation History 1
Attention Heads 4

Feedforward Dim. 1024
Layers 4

Activation ReLU [31]
Normalization Layer Norm [34]

Epochs 1000
Batch Size 512

Learning Rate 3e-4
Optimizer Adam [33]
Scheduler Cosine Annealing

Action chunk length 10
Trainable Parameters 25.7M

(b) GPT

Hyperparameter Value

Encoder Layers 1
Decoder Layers 3
Attention Heads 4

Feedforward Dim. 1024
Dropout 0.1

Activation ReLU [31]
Normalization Layer Norm [34]

Epochs 1000
Batch Size 512

Learning Rate 3e-4
Optimizer Adam [33]
Scheduler Cosine Annealing

Action chunk length 10
Trainable Parameters 25.6M

(c) SGPT

Table 4: Hyperparameters for MLP, GPT, and SGPT policy architectures.

B.2 ST-GPT

The hyperparameters of the ST-GPT policy largely follow those of the GPT architecture, with a few
key additions specific to our subgoal prediction framework. Since subgoal transitions are signifi-
cantly sparser than non-subgoal transitions in long-horizon tasks—owing to subgoals representing
high-level subtask boundaries rather than every step of the trajectory—we address this class imbal-
ance using a weighted Binary Cross Entropy (BCE) loss. Specifically, we assign a pos weight of
6 to place greater emphasis on positive samples. This BCE loss is combined with the Mean Squared
Error (MSE) loss used for action prediction, with a weighting ratio of 100:1 (MSE:BCE) to balance
the two objectives. We find, however, that the training process is not particularly sensitive to the
exact values of both these hyperparameters. Table 4 (b) shows that the observation history length
is set to 1, meaning only the current state and the subgoal are provided as input. We observe that
including 2-3 past states yields no performance improvements, and increasing the history beyond
this actually degrades performance, likely due to increased distribution shifts. We observe a similar
trend with the SGPT architecture as well. As a result, we keep both these architectures simple by
using a history length of 1. Similar findings have been reported in prior work [8]. Consequently, the
only advantage of the GPT policy over the MLP is that in GPT, the current state and subgoals are
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Architecture Franka Kitchen FrankaLHT Real-World Setup

MLP 10.9 25.5 5.1
GPT 4.8 10.7 1.4

BAKU 7.9 21.6 2.6
ST-GPT 4.9 10.8 1.4
SGPT 20.1 115.8 23.4

Table 5: Training time (in hours) required for each policy architecture across different experimental
setups.

passed as separate tokens, enabling the attention mechanism to model their interaction, whereas in
the MLP, they are concatenated and processed simply through a neural network.

B.3 SGPT

Figure 5 shows a visualization of continuous subgoal transitions observed during the execution of
the SGPT policy in the Franka Kitchen environment. The hyperparameters used for training the
SGPT policy are listed in Table 4(c).

B.4 Computational Requirements

We trained all our policies on an NVIDIA A40 GPU. Table 5 reports the training time for each pol-
icy across both simulation and real-world environments. Despite having only 3M parameters, the
MLP model takes longer to train due to running 10 times more epochs. We also conducted ablations
with MLP variants—altering the number of parameters and epochs—but the model inherently lacks
the capacity to learn complex patterns required for long-horizon manipulation. Among all policies,
SGPT incurs the highest training cost, even though all models (except MLP) are trained with ∼25M
parameters and for 1000 epochs. This is because each update step in SGPT is computationally more
intensive. Unlike GPT and BAKU, which use decoder-only and encoder-only transformer architec-
tures respectively, SGPT employs both an encoder and a decoder. Thus, while SGPT achieves the
best performance across all our experiments, it comes with a significantly higher training cost.

C FrankaLHT Simulation Environment

Figure 7: Overview of the three diverse scenes used for task execution in the FrankaLHT benchmark.

The FrankaLHT (Long-Horizon Tasks) environment is built on the PyBullet physics engine and pro-
vides a challenging benchmark for evaluating policies on temporally extended manipulation tasks.
The environment includes 180 demonstration trajectories collected via keyboard teleoperation, with
the Franka Panda robot operating at a control frequency of 50 Hz. Figures 8–10 illustrates three
diverse task categories represented in the FrankaLHT suite:

• Domestic Assistive Tasks: These simulate common household activities such as placing
fruits in a basket or pouring water into a bottle, reflecting real-world assistive robotics
applications.
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Architecture Subgoal Transition
Threshold InD OoD

Success Completion Success Completion
GPT 0.0008 0.000 0.111 0.000 0.106
GPT 0.0005 0.000 0.133 0.000 0.103
GPT 0.0001 0.000 0.175 0.000 0.067
GPT 0.00008 0.000 0.156 0.000 0.064
GPT 0.00005 0.000 0.131 0.000 0.039

ST-GPT (Ours) N.A. 0.000 0.242 0.000 0.181

Table 6: Comparison between ST-GPT and GPT models with varying subgoal transition thresholds
in the FrankaLHT environment. None of the models achieved a positive success rate, indicating that
the very idea of discrete subgoal transitions is not strong enough for scaling to very long-horizon,
complex tasks as posed by FrankaLHT. Nonetheless, the ST-GPT model demonstrates the highest
completion rate in both in-distribution (Ind) and out-of-distribution (Ood) settings, highlighting its
relatively better performance compared to the standard GPT model.

• Medical Waste Sorting: These tasks involve sorting and placing medical items—such as
syringes and syrup bottles into appropriate trays and bins, relevant to hospital automation
scenarios.

• Food and Beverage Packaging: These tasks are inspired by industrial packaging workflows,
where the robot packs food items and beverage bottles into cardboard boxes or cartons.

Table 6 presents a comparison between ST-GPT and the standard GPT model in the FrankaLHT
environment, similar to the analysis shown in Table 1 for the Franka Kitchen domain.
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Figure 8: Domestic Assistive Tasks (FrankaLHT)
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Figure 9: Medical Waste Sorting Tasks (FrankaLHT)
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Figure 10: Food and Beverage Packaging Tasks (FrankaLHT)

19



Figure 11: Real-world setup showing all 6 table-top manipulation tasks.
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