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ABSTRACT

We introduce the novel problem of remote reinforcement learning (RRL) with a
communication constraint, in which the actor that takes the actions in the environ-
ment lacks direct access to the reward signal. Instead, the rewards are observed
by a controller, which communicates with the agent through a communication-
constrained channel. This can model a remote control scenario over a wireless
channel, where the communication link from the controller to the agent has lim-
ited capacity due to power, bandwidth, or delay constraints. In the proposed solu-
tion, rather than transmitting the reward values to the agent over the rate-limited
channel, the controller learns the optimal policy, and at each round, signals the
action that the agent should take over the channel. However, instead of sending
the precise action—which can be prohibitive when the action set is large—we use an
importance sampling approach to reduce the communication load, which allows
the agent to sample an action from the current policy. The actor, sampling from
the desired policy at each turn, can also learn the optimal policy, albeit at a slower
pace, using supervised learning. We exploit the learned policy at the actor to fur-
ther reduce the communication load. Our solution, called Guided Remote Action
Sampling Policy (GRASP), exhibits a significant reduction in communication re-
quirements, achieving an average of 12-fold decrease in data transmission across
all experiments, and 50-fold reduction for environments with continuous action
spaces. We also show the applicability of GRASP beyond single-agent scenarios,
including parallel and multi-agent environments.

1 INTRODUCTION

[Reinforcement learning (RL)| enables the solution of complex, sequential tasks through interaction
with the environment alone. This is accomplished by identifying a sequence of actions that maximize
the cumulative expected rewards. However, the reward signal is not always readily available to
the agent, as it can be difficult to evaluate or costly to acquire. For instance, in human-in-the-
loop systems, the reward may need to be evaluated and provided by a human, which can cause
delays (Knox & Stone, [2009; |[Daniel et al., [2014), or be learned from demonstrations (Abbeel &
Ngl 2004; |Schaall, |1996; |Arora & Doshi, |2021). In other complex engineering systems, such as
communication networks or multi-processor systems, evaluating the reward may require solving
complex optimization problems or accumulating information distributed across a large network.
The challenges of lacking or costly reward acquisition in have been studied in the context of
active learning (Krueger et al.,[2020; Eberhard et al.| 2024)).

In this work, we consider a distributed learning scenario with two agents: a controller and an actor.
Only the controller has access to the reward signal, while the actor takes the actions. This setting
is depicted in Figure[I] The actor observes the state of the environment, either fully or partially,
and decides on an action; however, it does not have access to the reward. The controller observes
both the state of the environment and the reward signal, but relies on the actor to take actions. The
controller communicates with the actor over a rate-limited channel to help guide it toward the correct
action. We dub this problem [remote reinforcement learning (RRL)|\with a communication constraint.

If the controller is able to convey the reward signal to the actor through the communication channel,
the actor would have all the necessary information to perform that is, it could learn a policy
that probabilistically maps states to actions to maximize the sum of future rewards. However, this
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Figure 1: Illustration of the problem. Both the actor and the controller observe the state of
the environment. The controller sends a message to the actor over a constrained communication
channel, and the actor selects the appropriate action. Only the controller receives the reward signal.

approach encounters four primary limitations in our scenario: limited communication, feasibility,
parallelism, and coordination. Firstly, the reward is usually a real number, and it may not be possible
to represent it exactly with the finite number of bits dictated by the capacity of the communication
channel between the controller and the actor. Secondly, the actor may be deployed on a resource-
constrained environment, such as an edge devices or a sensor, and may not be capable of running a
complex algorithm locally, even if it has full or partial access to the reward signal. Thirdly, to
accelerate learning, multiple concurrent agents are often used to collect experiences independently
(Mnih et al., 2016} Heess et al., 2017). In our framework, this corresponds to communicating with
multiple actors, each interacting with the same but parallel environments. However, if the actors re-
ceived individual reward signals, they would develop distinct policies, failing to benefit from shared
experiences. Lastly, injmulti-agent reinforcement learning (MARL )|scenarios, where multiple actors
jointly influence the same environment, simply conveying individual reward signals would result in
a distributed training algorithm that struggles with action coordination. These limitations suggest
that direct communication of the reward signal is an inefficient solution for [RRL]

Shifting the focus to the controller, it has full knowledge of the state and rewards. If it also had
access to the actions, it could effectively run a algorithm locally to obtain the optimal policy.
This would emulate the best possible performance of a centralized learning scenario, provided the
controller can select and communicate the subsequent actions to the actor at each decision step. In
scenarios involving small discrete action spaces, this method can result in smaller message sizes
compared to conveying the reward signal (or a quantized version of it) to the actor. On the other
hand, for continuous action spaces, one might initially think that communicating actions would face
similar bandwidth limitations as with reward transmissions, given that actions in such spaces can
assume an uncountably infinite number of values, necessitating some form of quantization and com-
pression. However, crucially, the actor does not need to take a specific action from the controller’s
policy, but any sample from it would suffice. Let P be the distribution of actions dictated by the
controller’s policy in a given state, while () represents the actor’s belief about the policy in this state.
From an information-theoretic perspective, the number of bits required to communicate a particular
sample from P (i.e., a specific action) is approximately H(P) + D k1, [P||Q]-—the entropy of the
action plus the cost of using the ‘wrong’ distribution () to compress it. Instead, by generating candi-
date samples from () and using P only to select a single candidate via an importance-sampling-like
criterion, the cost of communicating the index of the accepted sample can be reduced to approxi-
mately Dy, [P||Q] (Cuff, [2008}; Li & El Gamal, 2018)). This method of conveying random actions
is particularly effective in systems with multiple parallel agents. By centrally processing all collected
experiences, the controller can learn the most informed policy, benefiting from the experiences of all
the actors in parallel. The controller can then enable each actor to take an action based on the most
up-to-date policy in the next round. We call this approach the |Guided Remote Action Sampling|

Policy (GRASP)|method.
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extends the traditional [RL] framework to multiple agents, where the agents collectively in-
fluence the environment’s state. This scenario is particularly relevant to[RRL]because the reward is
often tied to the overall system’s performance; and thus, may not be directly accessible to each actor.
Moreover, decentralized suffers from a high degree of non-stationarity (Du & Ding}, 2021}
Wong et al., |2023). If each agent views others as part of the environment, the learning and policy
updates by other agents alter the environment, rendering it highly non-stationary and challenging
to learn from. To address this issue, a centralized-learning decentralized-execution approach is typ-
ically employed (Lowe et al.l 2017). During training, this method involves centrally learning the
policies of all agents using global information, thereby avoiding the non-stationarity problem. After
training, these policies are fixed, ensuring that even though the agents execute them independently,
the environment remains consistent for each agent. Multiple agents in translate into multi-
ple actors in [RRL] while a single centralized controller is ideally suited to oversee the centralized
training stage, enabling the actors to take correlated actions at each step.

The remainder of the paper is organized as follows: Section [2]provides the background and reviews
related works. Section [3] mathematically defines the framework for Section [ empirically
evaluates the proposed approach, comparing it against other solutions. Finally, the paper concludes
with a summary of findings and proposes potential future research directions.

The logarithms are base 2, IE [-] denotes expectation, H (P) £ Exp [log p(z)] represents the en-
tropy of a random variable distributed according to P, or differential entropy in the case of contin-

uous random variables, and Dy, [P||Q] £ E,p [log %} denotes the Kullback-Leibler diver-

gence between distributions P and Q).

2 BACKGROUND AND RELATED WORKS

2.1 RL WITH COMMUNICATION CONSTRAINTS

literature includes many connections to communications. Relevant works include federated
(Nadiger et al., 2019; Jin et al.,[2022), where multiple agents collaborate to learn a common policy
while keeping data localized to each agent. This contrasts with[RRL] where both the controller and
the actors have access to the state and the actions. with communication among agents is
an extensively studied topic, where the agents exchange messages over a dedicated link (Foerster
et al., 2016; Wang et al., 2020), including over noisy channels (Tung et al., 2021; Roig & Giindiiz,
2020), to achieve a common goal. In these works, reward is known to all the actor(s), unlike in
our setting, where it is only accessible to a remote controller. Our work is orthogonal to these
approaches; can be applied to solve problems through centralized training, with or
without communication between actors. In the presence of communication, an agent’s messages can
be considered as part of its action space; thus, during training, they would be chosen by and known
to the controller. Furthermore, in this scenario, the centralized training with decentralized execution
paradigm is often employed, to which is particularly well-suited.

Communication constraints have also been recently considered for distributed multi-armed bandit
problems in [Hanna et al.[(2022)); Mitra et al.| (2023)); Salgia & Zhao, (2023)). These works focus on
the compression of the reward signal, or the model, to minimize regret. Differently from our setting,
in these papers, the agents taking the actions observe the corresponding reward, which they then
report to the learning agent over a limited channel. The work closest to ours is [Pase et al.| (2022),
which studies sending actions over a communication-limited channel in a contextual multi-armed
bandit problem. In contrast to our work, the states are independent across time, and the agents cannot
learn the policy. The authors study the regret behavior for a certain class of policies, focusing on the
asymptotic regime of infinitely many agents.

2.2 REMOTE SAMPLING

Let P be the distribution we wish to sample from in representing the controller’s policy, and
@ be a reference distribution, representing the actor’s policy, which is also known to the controller.
Our goal is to enable the agent to sample from P by communicating as few bits as possible. This re-
mote sampling problem is also known as ‘reverse channel coding’ (Bennett et al., 2002)) or ‘channel
simulation’ (Cuff}, 2008) in the literature. In their quest to obtain the entanglement-assisted capacity
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of a quantum channel, Bennett et al. proved the asymptotic equivalence of all discrete communi-
cation channels of equal capacity, that is, they can simulate each other in the presence of sufficient
common randomness. (Cuff] (2008) studied the asymptotic per-symbol rate, focusing on the impact
of limited common randomness between the encoder and the decoder. Traditionally, channel sim-
ulation has been studied in a slightly different setting, in which for a given joint distribution Px z,
the encoder first samples z ~ Pz, and the decoder aims to sample from Py|z—., which represents
the target distribution P. The reference distribution = Px is the marginal distribution over all
values of Z. The results are then given in terms of the mutual information between X and Z, i.e.,
I(X,Z)=E,.p, [D KL [PX| Z—2| \PX} ] , the expected KL-divergence. However, as noted in Theis
& Yosril (2022), we can translate between these two viewpoints, and the relevant results apply to the
version used for[RRL]in this paper.

A naive approach to this problem would be to sample an action from P at the controller and send it
using universal lossless data compression. The advantage of the channel simulation approach over
directly sampling from P has been shown in |Li1 & El Gamal| (2018); Theis & Yosri| (2022): the
number of bits required to communicate the index of the selected candidate sample is approximately
Dk [P||Q)], whereas directly communicating the action requires at least H [P] + Dk, [P||Q)] bits.
Importantly, this approach allows for communicating samples from a continuous distribution P by
transmitting a finite number of bits, provided that D, [P||Q] < oo.

One-shot results, focusing on sending a single sample, were obtained for discrete distributions in
Harsha et al.|(2010), and later improved and generalized to continuous random variables using func-
tional representation in [Li & El Gamal| (2018)). The current best-known upper bound was derived in
L1 & Anantharam|(2021]), demonstrating that the expected message size need not exceed

Dy [P]|Q] +log (Dky [P]|Q] + 1) + 4.732 bits, (1)
which is close to optimal, and follows the following lower bound derived in|Li & ElI Gamall (2018):
Dk [P||Q] + log (DL [P]|Q] + 1) — 1 bits. 2)

The importance sampling approach in Harsha et al.| (2010) results in a suboptimal rate but pro-
vides approximation guarantees when we impose constraints on the computation complexity. These
guarantees are achieved by ordered random coding (Theis & Yosri| 2022)), which maintains the
communication rate of Poisson functional representation.

2.3 IMITATION LEARNING

In the proposed solution to the[RRL] problem, actions need to be effectively communicated from the
controller to the actor. To facilitate this, we use channel simulation, which enables the transmission
of actions using approximately D 1, [P||@)] bits, where P represents the action probability distribu-
tion under the controller’s policy in a given state, and () is a probability distribution known to both
the controller and the actor. What should @ be? One solution is to periodically transmit the con-
troller’s current policy to the actor and use it as the reference distribution (). This method involves
resending updates to account for the evolving policy as the controller learns. Since the policies are
represented as neural networks, this approach requires periodically transmitting all the parameters,
which is very costly from a communication perspective.

Alternatively, since the actor can observe the current state and receives a sample from the desired
policy, it can learn the controller’s policy—-a probability distribution over actions conditioned on the
state—-in a supervised manner. This concept is known as behavioral cloning and is an application
within imitation learning, a field focused on learning policies from demonstrations (Pomerleau,
1988;; [Torabi et al., 2018; |/Abbeel & Ngl 2004; |[Schaall [1996; |Arora & Doshi, 2021)). Inverse E]
(Arora & Doshi, [2021) offers another approach, where the objective is to recover the reward function
from a set of state-action trajectories. While this approach can succeed in scenarios where behavioral
cloning fails, it is also more complex, often requiring the solution of [RL] problems as a subroutine.
A combination of these two approaches was proposed by [Ho & Ermon| (2016)), where a policy is
learned directly as if learning from rewards recovered through inverse[RL] without explicitly solving
the inverse problem. In our experiments, we found that behavioral cloning alone was sufficient for
our purposes, and we provide a more thorough examination of this in Section {4
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Algorithm 1|(GRASP|Controller

Require: Initial controller policy parameters 6, initial actor policy parameters ¢
1: for epoch = 0 to T'/batch_size do

for step = 0 to batch_size do

3 t < epoch x batch_size + step

4: s; < observe state from environment

5: P « action distribution under controllers policy(s;, 6)

6.

7

8

(@) + action distribution under actors policy(s, ¢)
at, my < channel simulation encoding(P, Q)
: Send m; to actor
9: r; < reward from environment
10:  end for
11: b <+ epoch x batch_size
12: e < b+ batch_size
13: Update 6 based on sy.c], G[p:c]> T[p:e] Using online RL
14:  Update ¢ based on sp.q], app.c) using supervised learning
15: end for

Algorithm 2 Actor
Require: Initial actor policy parameters ¢
1: for epoch = 0 to T'/batch_size do
2:  for step = 0 to batch_size do
t < epoch x batch_size + step
s¢ < observe state of the environment
@ « action distribution under actors policy(s, ¢)
my <— receive message from the controller
a; + channel simulation decoding(mes;, Q)
act in environment(a;)
9: end for
10: b <+ epoch x batch_size
11: e 4 b+ batch_size
12:  Update ¢ based on s[p.c], ap:¢) Using supervised learning
13: end for

PRIUN R

3 REMOTE REINFORCEMENT LEARNING (RRL)

In this section, we formally define the problem. For simplicity of notation, we focus on the
single-actor case in this work, but the extension to multiple actors follows similar mathematical
arguments. Any Markov decision process can be converted into an problem; it is described
by a tuple M = (S5, sg, 4, pr, R,7), where S is the set of states, s is the initial state, A is the
set of actions, pr(s’|s,a) : S x A — P(S) represents the transition probability of moving to the
subsequent state s’ given the current state s and action a, R(s¢, s;41,a) : S? x A — P(R) is the
reward function, and v € [0, 1) is the discount factor (Sutton & Barto, [1998)). The objective is to
find a policy 7 : S — P(A) that maximizes the sum of discounted rewards:

o
T = arg maXZ Y'E as~r(se) [ri] - 3)
T =0 st41~pr (St41lst,at)
ri~R(St,S14+1,at)

At each time step, the current state s, is observed by both the controller and the actor. The controller
transmits a variable-length message m; = f (s[:t], r[:t,l]), for some encoding function f : S* x
R~ — {0,1}*, based on all the states and rewards observed so far. The actor then chooses an
action a; = g(8[4], aj:1—1], M) using a function g : ST x A1 x ({0,1}*)" — A.

The pseudocode for the proposed method, as outlined in Sections [T| and [2] is provided in
Algorithm [T] for the controller and in Algorithm [2] for the actor. The controller maintains a copy
of the actor’s parameters because, to use channel simulation, both parties (the encoder and the de-
coder) need access to a common distribution Q. In we employ the actor’s current policy
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Figure 2: Training plots for different single-agent RL] environments in the setting, comparing
sending actions with source coding (labeled [ASC) and [GRASP| (using channel simulation to com-
municate actions combined with behavioral cloning). The algorithms used include PPO, continuous
PPO, and soft Q-learning (SQ). The thick lines indicate the mean, while the shaded regions repre-
sent the standard deviation. For readability, the values are smoothed with a Gaussian kernel with a
standard deviation equal to 2% of the number of training steps for each environment.

conditioned on the current state as the common distribution. This policy is never enacted; that is,
the actor’s actions do not follow it directly but are instead used solely to facilitate efficient commu-
nication of actions derived from the controller’s policy. Additionally, the parameters of the actor’s
network are never explicitly communicated; they are updated based on the observed actions and
states, allowing them to evolve in lockstep between the actor and the controller. In particular, to
minimize the communication cost, we need to minimize the KL-divergence between the controller’s
policy ¢ and the actor’s policy 74, which corresponds to minimizing the empirical cross-entropy:

N
. o1
argminEs [Dgr, [1o(]9)]|ma(¢]s)]] = arg min 5 Z —log ma(ailsi)
i=1
where the expectation over states is based on the policy 7¢, and a;,s;,4 € {1,2,... N} are the
observed actions and states.

4 EXPERIMENTS

The two main claims of our work are that does not negatively impact training and that it
leads to significant communication savings. To evaluate its effectiveness, we assess it across a range
of RL[]environments. We compare[GRASP|against two benchmarks. In the first benchmark, the con-
troller decides which action to take at each time step and communicates this action to the actor using
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Table 1: Performance of and ASC in various [RRL]environments

trainin controller actor return norm.

environment algorithm methoc% final final a return
return return gap gap (%)
ASC 135 (31) 130 27) 5.1 (142) 17 (47)
LunarLander PPO GRASP| 141 (29) 142 (28) -0.9 (16.9) -03 (5.5)
ASC 180 (35) 178 (44) 13 (238) 03 (6.2)
Lunarl.ander SQ [GRASH 169 (4) 169 (39) 0.5 (21.4) -0.1 (5.7

>
(2]
(@!

209 (28) 196 (38) 12.6 (17.8) 39 (5.6)
214 (30) 205 (33) 9.6 (152) 29 (4.7)

340 (38) 299 (29) 41.4 (24.0) 123 (7.1)
323 (49) 274 (57) 48.8 (29.4) 152 (9.2)
87 (6) 8 (5 2.1 (62) 26 (1.7)
84 (5 80 4 39 (39 50 (.1

BipedalWalker PPOcont

Breakout PPO

CooperativePong PPO

Q Q Q
A
Q|| w»

. ASC 92 (3) 85 (10) 68 (9.5 7.3 (10.1)
PistonBall PPOcont GRASP 91 (3) 85 (1) 58 (11.0) 6.0 (11.4)

ASC 30 (1) -30 (1) -0.1 (0.8) -1.9 (12.2)
Spread PPOcont  &RASH 30 (1) -30 (1) -03 (0.8) -44 (12.6)

source coding, referred to as The second benchmark involves transmitting the reward directly
to the actor. In our implementation, we assume that the reward at each time step is sent using 32 bits.
It is also possible to consider further quantization of the reward signal, though this may come at the
cost of reduced performance. is compatible with any [RL] algorithm. For our experiments,
we focused on proximal policy optimization (PPO) (Schulman et al, [2017), a de-facto standard
in Additionally, we applied it to other algorithms such as deep Q-learning (DQN) (Mnih et al.|
2013)), soft Q-learning (SQ) (Haarnoja et al.,2017)), and deep deterministic policy gradients (DDPG)
(Lillicrap et al.,|2016). We employ the CleanRL open-source library implementation (Huang et al.,
2022), using the default hyperparameters, if present, for each environment. These include neural
network architecture, learning rate, and other algorithm-specific settings, with the full list provided
in Appendix [C] also entails learning the actor’s policy in a behavioral cloning manner. For
the actor, we utilize the same hyperparameters and architecture as the controller, training the policy
using cross-entropy loss. For the channel simulation method, we opted for ordered random coding
(Theis & Yosri, 2022). To ensure a comprehensive evaluation, we selected a diverse set of environ-
ments that vary in difficulty, type of action spaces (discrete and continuous), type of observations
(fully and partially observable, proprioceptive, and image-based), as well as with single and multi-
ple agents. These environments include CartPole and Pendulum from Classic Control, LunarLander
and BipedalWalker from Box2D, HalfCheetah from MuJoCo, the Atari game Breakout, which were
simulated using the Gymnasium library (Towers et al., 2023)), and CooperativePong and PistonBall
from the PettingZoo library (Terry et al.,2021). The experiments were repeated across 20 indepen-
dent and seeded runs, except for Breakout and CooperativePong, which were performed 8 times; all
reported values are averaged and include the standard deviation.

The single-agent training progress plots are presented in Figure 2] comparing with directly
sending the controller’s actions without channel simulation. The first column describes the con-
troller’s return throughout training; every 10 000 steps, the controller’s policy was evaluated across
30 episodes, recording the mean sum of rewards. The training performance is consistent between
the two approaches in all environments. The final returns of the controller are reported in Table
with standard deviations, showing that the two approaches learn equally effective policies. The
second column in Figure [2] depicts the return of the actor’s policy; that is, a policy learned through
supervised learning (behavioral cloning) by the actor based on the actions communicated by the
controller. It is evaluated in the same manner as the controller’s policy. As previously mentioned,
this policy is not followed during training, but is used in channel simulation to reduce the commu-
nication cost. It is not used for the [ASC] variant during training. In both cases, we observe that
the training trajectories resemble that of the controller’s policy-—the actor learns a useful policy
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Figure 3: Training plots for different multi-agent[RL]environments in the setting.

through behavioral cloning. Depending on the use case, after training, the controller might transmit
its learned policy to the actor, or if the actor’s policy is adequate, no further communication is neces-
sary. The difference between the final performance of the controller’s and actor’s policies is shown
in the third column of Table |4 The next column describes the gap in normalized terms according

to the formula ——— e gap , %. Except for the Breakout environment, the final per-
average final return—random policy return

formance of the actor’s policy is within a few percentage points of the controller’s, demonstrating
that behavioral cloning can serve as an effective alternative to policy transmission. In the LunarLan-
der environment, we observe that achieves the same results as when using PPO and
soft Q-learning. This trend holds across other experiments, detailed in Appendix [A] where we also
evaluate the performance of the DQN algorithm. Further experiments in the appendix include Cart-
Pole with PPO, DQN, and SoftDQN, and Pendulum and HalfCheetah with PPOCont and DDPG,
confirming that[GRASP|remains robust across a variety of environments and [RL]algorithms.

The training plots for multi-agent environments are shown in Figure 3} following the same method-
ology. To further compare different scenarios, we allow both agents in CooperativePong to share
the same policy. While in PistonBall and Spread, only the controller is centralized, and each of the
actors—20 in PistonBall and 3 in Spread—Ilearns its own policy. As in previous experiments, we
observe that[GRASP|and [ASC|achieve similar performance.

The communication cost of the considered alternatives are plotted in the last column of Figures 2]
and[3] For[ASC] the cost of sending discrete actions is calculated as the logarithm of the cardinality
of the action set, while for continuous spaces, we followed the environments’ specifications, which
require 32-bit floats per action dimension. For[GRASP] we used ordered random coding to commu-
nicate samples from the controller’s policy, and calculated the log probability of the selected index
as the communication cost. We observe that[GRASP| consistently outperforms[ASC] often by many
orders of magnitude. The total communication costs are outlined in Table 4] where offers
between 4.2- and 115-fold communication savings compared to[ASC| with a geometric average of
13 times reduction. The most significant savings are observed in environments with continuous ac-
tions. Sending the reward is functionally equivalent to action source coding, with the key difference
being that only the actor’s model is trained. Therefore, the difference between the two is where the
intelligence—-and thus, the computational complexity-—will be placed. Assuming a communica-
tion rate of 32 bits per time step, achieves communication savings ranging from 6.3- to
343-fold, with a geometric average of 41 times less communication than sending the reward.
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Table 2: Communication rate of [GRASP|and [ASC] across [RRL] environments

. ¢ loorith training mean total # of rate
environmen algorithm: 1 ethod KL-div communicated bits reduction
LunarLander PPO ASC 0.003 (0.000) 1.91Mb (0b)

GRASP| 0.006 (0.000) 361.10Kb (1.31Kb) x5.41

ASC  0.074(0.005)  1.91Mb (Ob)
0.109 (0.012)  463.37Kb (10.17Kb)  x4.22

. ASC 0024 (0.001) 122.07Mb (Ob)
BipedalWalker  PPOcont  &2em 0029 (0.001)  1.06Mb (10.28Kb)  x 114.89
ASC

0.067 (0.010)  19.07Mb (Ob)

:

LunarLander SQ

Q
~
>
%]
av}

Breakout PPO ASPl 0.109 (0.019)  3.21Mb(1.02Mb)  x5.95

GR
ASC 0.032 (0.003)  30.23Mb (0Ob)

GRASP| 0.052 (0.001) 1.78Mb (24.42Kb) x17.01
A

GR

CooperativePong PPO

SC 0.025 (0.002)  61.04Mb (Ob)

PistonBall PPOcont ASP| 0057 (0.012)  3.38Mb (41.76Kb)  x18.08
ASC 0037 (0.002) 762.94Mb (Ob)
Spread PPOcont  =RASH 0,058 (0.006)  8.60Mb (52.44Kb)  x88.72

5 LIMITATIONS

To perform channel simulation, both parties require access to a common reference distribution .
In [GRASP] this is achieved by training an additional policy at the actor, which aims to follow the
controller’s policy as closely as possible. The closer the two policies are, the smaller the communi-
cation cost. This requirement introduces increased computational cost at the actor in order to reduce
the communication rate. As previously mentioned, the need for a common distribution () can be
circumvented by periodically transmitting the controller’s current policy to the actor. This approach
can reduce the need for training a separate policy at the actor, but it may lead to periodic spikes in
communication load, depending on the frequency and size of the transmitted policy updates.

[RRT] assumes that both the agent and the controller have access to the same state/observation. In
situations where this is not the case, a common policy cannot be trained, and thus cannot
be implemented. However, there exists a potential avenue due to recent advances in the information
theory literature regarding the error rates of performing channel simulation when the encoder and
decoder do not share the same policies (Li & Anantharam, |2021). It remains to be determined how
best to exploit the different information available to the controller and the actor in such situations to
find a good policy in a computation- and communication-efficient manner.

6 CONCLUSION

In this work, we have introduced the novel problem of in which the reward signal is only avail-
able to a controller, removed from the action-choosing agent, called the actor. The actor relies on
messages transmitted by the controller to decide on its actions. There are two obvious benchmarks:
In the first, the controller conveys the reward signal to the actor, so that the actor can learn the op-
timal policy by applying its favourite [RL] algorithm. In the second, the controller learns the optimal
policy and transmits the optimal action to the actor at each step. Both of these options may become
infeasible when the reward function takes real values or when the action set is prohibitively large
(even continuous). We have proposed a novel alternative method, called[GRASP] based on impor-
tance sampling and behavioral cloning. The controller sends a sample from the desired policy to the
actor, and to further reduce the communication cost, the actor attempts to estimate the controller’s
policy through supervised learning. Our experiments have shown that the proposed method vastly
outperforms the baselines, achieving a 12-fold reduction in communication rate while maintaining
the same reward.
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A ADDITIONAL RESULTS

In this appendix we include other experiments mentioned in the main text. The training plots are
depicted in Figure[d] the end performance is shown in Table 3, and the rate is presented in Table 4.

Table 3: Performance of [GRASP|and [ASC]in various [RRT]environments

. . training controller actor return norm.
environment  algorithm method final final gap return

return return gap (%)
Catbole PO ©RieH S00) 300 0000 0000
Catbole  DON  ERAeH m3en  480GH  le4@l) 3605
Corole SO GRASH 4es(7) 309 47046 11033
Padum  PPOont iy 500 GmsGn  1s0w oa)
Pendulum DDPG l% jgg 82; :%‘9‘? 2213?)6) 22171 Eé§62)1) ;g Eé06?)
Lorlandsr DN GGy 3isy  ooon 2003 6407
HalfCheeish  PPOCont Rsen loss 077y 977053 814G22)  58G7)
HalfCheetsh  DDPG  Ron 4115 (1449) 3765 (1642) 3487 (66.) 840186

Table 4: Communication rate of [GRASP|and [AS( across [RRL|environments

. . training mean total # of rate
environment  algorithm method KL-div communicated bits reduction
oo gl TEOT mamm
ooy (EA0 IR
CartPole SQ % 8:83491 Egiggi gflgg:igg 2(1)3?151(1)) x2.22
Pendulum  PPOcont % 8:8(1)? 28:883 5121'.22651\125 2(6)?8)6Kb) %29.80
Pendulum DDPG % o3 582333 RV 5(1)333.43%) %1037
LunarLander ~ DQN % 0 5818?% 865.53KE 5?173.)1 9Kb)  x2.26
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ooy FSED T
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Figure 4: Training plots for different[RT]environments in the RRL]setting.
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B CHANNEL SIMULATION

The channel simulation method used throughout this work is Ordered Random Coding from [Theis
& Yosri (2022) reproduced in AlgorithmE] for convenience.

Algorithm 3|[GRASP| Actor
Require: P, Q, N
1: t,n,s* +0,1,00

2: w = min, P(x)/Q(x)
3: repeat

4:  z 4+ sample P

5 v+ N/(N—-n+1)
6: s« t-P(2)/Q(z)
7. if s < s* then

8: § s

9: n*<n

10:  end if

1: n<+<n+1
12: until s* <t-worn >N
13: return n*

C TRAINING AND HYPERPARAMETERS

The experiments were performed on four Nvidia RTX 3080 GPUs with 10 GB of memory each,
totaling 200 hours of wall clock time, including preliminary experiments. A single run of CartPole,
Pendulum, LunarLander, and HalfCheetah took between 0.5 to 1.5 hours, BipedalWalker, Spread,
and PistonBall took 4 to 6 hours, while Breakout and CooperativePong took 20 hours. The discount
factor v was set to 0.99 for all environments. The hyperparameters for each

Table 5: Hyperparameter settings for PPO training in[ASC|and [GRASP

) )
S & o 3} v
L N T g S & N ) &
e, & 3 S S 3 = < ) %
§ s 5§ §F § £ § €& 7 & ¢
y § § 5§ § ¢ 5 ¢ %
S < S & %
CartPole-v1 5x10° 4 25x107* 128 4 0.01 10* 095 02 05
LunarLander-v2 10 4 25x107* 128 4 0.01 10* 099 02 05
BreakoutNoFrameskip-v4 107 8 2.5x107* 128 4 0.01 10* 095 0.1 0.5
cooperative_pong_v5 2x107 32 2.5x107* 128 4 001 10* 095 0.1 05
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Table 6: Hyperparameter settings for PPOcont training in[ASC|and [GRASP}

<) )
S £ 5 3} v
s £ § £ § & 4§ F & s
5 5§ F § & § & 7 & ¢
¥y g & s 3 ¢ 5§ & T
S < 5 8 %
Pendulum-v1 5x10° 2 3x107* 2048 10 0 10* 095 02 0.5
BipedalWalker-v3 10% 2 3x107% 2048 10 0 10* 095 0.2 0.5
HalfCheetah-v4 105 4 3x107% 2048 10 0 10* 095 0.2 0.5
pistonball_v6 2x105 20 3x107* 2048 10 0 10* 095 0.1 0.1
simple_spread_v2 5x10° 3 3x107% 4096 10 0 10* 0.95 0.2 0.5

Table 7: Hyperparameter settings for DQN training in[ASC|and [GRASP}
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3 < s

CartPole-v1 5x10° 4 2.5x107* 10 4 001 10* 1 1 005 0.5 10?

LunarLander-v2 10° 4 25x10~% 10 4 001 10* 1 1 0.05 05 104

Table 8: Hyperparameter settings for SQ training in [ASC|and [GRASP}

@ @ @
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CartPole-v1 5%10° 4 2.5x107% 10 4 001 10* 1 1 0.05 05 104

LunarLander-v2  10° 4 25x107% 10 4 001 10* 1 1 025 09 10*

Table 9: Hyperparameter settings for DDPG training in[ASC|and [GRASP]
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Pendulum-vl  5x10° 2 3x107* 1 2 0.01 10% 0.005 0.1 25000 0.5

HalfCheetah-v4  10° 4 3x107* 1 3 0.01 10% 0.005 0.1 25000 0.5
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