

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM NATURAL ALIGNMENT TO CONDITIONAL CON- TROLLABILITY IN MULTIMODAL DIALOGUE

Anonymous authors

Paper under double-blind review

ABSTRACT

The recent advancement of Artificial Intelligence Generated Content (AIGC) has led to significant strides in modeling human interaction, particularly in the context of multimodal dialogue. While current methods impressively generate realistic dialogue in speech and vision modalities, challenges remain in multimodal conditional dialogue generation. This paper focuses on the natural alignment between speech, vision, and text, aiming at expressive dialogue generation through multimodal conditional control. Since existing datasets lack the richness and diversity in dialogue expressiveness, we introduce a novel multi-modal dialogue annotation pipeline to exploit meaningful dialogues from movies and TV series with fine-grained annotations across multi-modalities. The resultant dataset, MM-DIA, provides over 360 hours and 54,700 dialogues, facilitating the Multi-modal Dialogue Generation task through explicit control over style-controllable dialogue speech synthesis. While the proposed benchmark, MM-DIA-BENCH, containing 309 dialogues that are highly expressive with visible dual/single speaker scenes, supporting the evaluation of implicit cross-modal control through downstream multi-modal dialogue generation tasks to assess the audio-visual style consistency across modalities. Our experiments demonstrate the effectiveness of our data in enhancing style controllability and reveal limitations in current frameworks' ability to replicate human interaction expressiveness, providing new insights and challenges for multi-modal conditional dialogue generation. Code, demo and data will be released at: <https://mmdiaiclr26.github.io/mmdiaiclr26/>.

1 INTRODUCTION

Dialogue has long been considered one of the most natural forms of human interaction, involving multiple communication channels such as text, speech, vision, gestures, and etc. In the AIGC era, multimodal dialogue has become increasingly important for a wide range of applications in *human-computer interaction, social computing, and film-making*.

Existing research in multimodal dialogue primarily falls into two directions: (1) Semantic generation, which emphasizes producing coherent and contextually appropriate responses, as in large-scale dialogue systems, e.g., ChatGPT (OpenAI et al.). (2) Modality rendering, which projects the given semantics into output modalities such as speech (Zhu et al., 2025; Zhang et al., 2024) and motion (Kong et al., 2025b). However, both directions over-emphasize the transmission of dialogue content, while neglecting systematic modeling of interaction style controllability, resulting in limited expressiveness and controllability of the generated outputs.

To achieve expressive and controllable multimodal dialogue generation, several key challenges have been raised: (1) **Lack of high-quality native multimodal dialogue data**. Existing large-scale multimodal dialogue datasets, as shown in Tab. 1, face limitations in data source diversity and modality coverage, hindering their ability to capture the full complexity of multimodal interactions and offering limited expressiveness and generalizability. (2) **Lack of scalable annotation methods for interaction-level semantics**. Collecting naturally occurring dialogues with synchronized text, audio, and visual modalities is costly and complex. Existing datasets such as MELD (Poria et al., 2019) and MC-EIU (Liu et al., 2024b) provide human-labeled categorical emotion or intent annotations, but they are costly, limited in scope, and not easily extensible, failing to capture the nuanced, continuous nature of human interactions. (3) **Lack of systematic benchmarks and evaluation pro-**

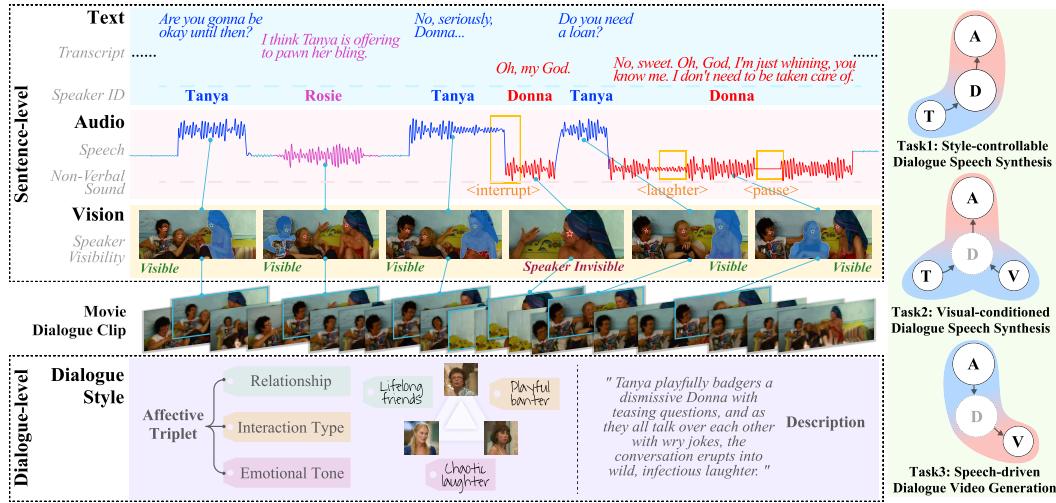


Figure 1: An example of a movie dialogue clip with sentence- and dialogue-level annotations in the MM-DIA and MM-DIA-BENCH datasets, highlighting multimodal dialogue interaction details. The right-hand side illustrates three examples dialogue-related cross-modal generation tasks involving text, audio, and vision, with both explicit (*Task 1*) and implicit control (*Task 2*, *Task 3*).

tocols. While existing tasks like semantic coherence and temporal alignment are well-established, new benchmarks and evaluation protocols tailored for emerging capabilities, such as dialogue-level controllability, are still lacking.

This paper seeks to address these gaps by constructing a large-scale expressive multimodal dialogue dataset, introducing new annotation paradigms, and establishing systematic benchmarks for controllable multimodal dialogue generation.

To compensate for the limited scale of high-quality multi-modal dialogue datasets, we develop an automatic data curation pipeline targeted for extracting dialogues with synchronized (text, audio, vision) streams and fine-grained interaction-level annotations, from in-the-wild movies and TV series. To resolve the challenges posed by complex scene transitions and audio-visual asynchrony, we devote special efforts to advancing dialogue boundary segmentation and multimodal speaker identification. To support controllability across diverse application scenarios, we define two complementary paradigms of “dialogue expressiveness”: (1) **Affective Triplet**, consisting of *Relationship*, *Interaction Type*, and *Emotional Tone*, that jointly model role shaping, conversational dynamics, and emotional evolution; and (2) **Freestyle Description**, capturing per-speaker, turn-level style trajectories. Through extensive validation, we demonstrate that our pipeline achieves human-level quality in annotation consistency and reliability.

Applying the proposed data pipeline to over 700 hours of movies and TV series, we present a diverse, balanced, and interaction-rich multi-modal dialogue dataset, MM-DIA, which is characterized by 360.26 hours, 54,700 clips of highly expressive, contextually rich, and interaction-heavy dialogues. MM-DIA provides fine-grained annotation on various dialogue aspects, such as non-verbal sound, speaker identity and emotional dynamics at the individual and collective levels. To our best knowledge, MM-DIA is the first dataset to specifically center on dialogue expressiveness across multiple modalities.

Leveraging this dataset, we formally introduce Multimodal Dialogue Generation (MDG) as a conditional generation paradigm. Given multi-modal conversational context (text, audio, vision), generate multi-modal dialogue behaviors (one or more modalities) that not only ensure cross-modal alignment but also support conditional controllability with respect to interaction-level variables. To operationalize this controllability, we distinguish between two complementary forms: (1) *explicit control*, where style is specified through natural language prompts, and (2) *implicit control*, where conditions are conveyed through other modalities or structural cues.

For the explicit prompt control, we introduce the task of **Style-controllable Dialogue Speech Synthesis** (*Task 1*, as shown in Fig. 1), which directly supports generation of dialogue speech from the freestyle natural language description. With the supervised finetuning on MM-DIA data, current

108
 109
 110
 111
 112
 113 Table 1: Comparison of the MM-DIA dataset with existing dialogue-related datasets across do-
 114 main, scale, modality, annotation, and *open-source* (OS). Modality includes *text* (\mathcal{T}), *vision* (\mathcal{V}),
 115 and *audio* (\mathcal{A}), with audio-visual details on *speaker identity* (S-ID), *non-verbal annotations* (N-V),
 116 and *speaker visibility* (S-V).

Domain	Dataset	Scale			Modality			Audio-visual Details			Annotation		OS
		#Clip	#Utt.	#Dur.(h)	\mathcal{T}	\mathcal{V}	\mathcal{A}	S-ID	N-V	S-V	Granularity	Label	
Spoken Dia.	OpenDialogue (Zhu et al., 2025)	1M	6.5M	6.8K	✓	✗	✓	✓	✗	✗	Dialogue	None	✓
Textual Dia.	OpenVidDial 2.0 (Wang et al., 2021)	-	5.6M	-	✓	✓	✗	✗	✗	✗	Dialogue	None	✓
	YTD-18M (Han et al., 2023)	18M	-	-	✓	✓	✗	✗	✗	✓	Dialogue	None	✓
Text-to-Video	OpenVid-1M (Nan et al., 2025)	1M	-	2.1K	✓	✓	✗	✗	✗	✗	Scene	Desc.	✓
	Captain Cinema (Xiao et al., 2025)	-	300K	500.0	✓	✓	✗	✓	✗	✗	Shot	Desc.	✗
MM Dia. Und.	MELD (Poria et al., 2019)	1.4K	14K	13.6	✓	✓	✓	✓	✗	✓	Sentence	Tag	✓
	MC-EIU (Liu et al., 2024b)	5.0K	56K	53.0	✓	✓	✓	✓	✗	✓	Sentence	Tag	✓
Movie Gen.	MovieBench (Wu et al., 2025)	16.0K	61K	69.2	✓	✓	✓	✓	✗	✗	Shot/Scene	Desc.	✓
MM Dia. Gen.	MM-DIA (Ours)	54.7K	449K	360.3	✓	✓	✓	✓	✓	✓	Dia/Sent.	Desc/Tag	✓
MM Dia. Gen.	MM-DIA-BENCH (Ours)	309	1,851	1.7	✓	✓	✓	✓	✓	✓	Dia/Sent.	Desc/Tag	✓

125 spoken dialogue models are able to generate high quality spoken dialogue with superior performance
 126 in intelligibility, speaker turn-taking accuracy, and emotional tone that adheres to the control of style
 127 instruction.

128 For the implicit cross-modal control, we introduce the following two tasks: (1) **Vision-conditioned**
 129 **Dialogue Speech** (Task 2 in Fig. 1), which highlights the ability to generate coherent, contextu-
 130 ally accurate speech aligned with turn-taking visual sequences. (2) **Speech-driven Dialogue Video**
 131 **Generation**, which focuses on generating videos capturing the essence of dialogue speech. Both
 132 of them require modeling implicit multimodal conditions and cross-modal generation, substantially
 133 increasing data demands and system complexity. This motivates us to introduce these tasks as open
 134 benchmarks for future research. Building on MM-DIA, we establish MM-DIA-BENCH, a diverse
 135 and balanced benchmark of 309 highly expressive dual-speaker dialogues with ensured speaker vis-
 136 ibility. This benchmark is designed to evaluate style consistency in audio-visual communication
 137 throughout the dialogue turns, addressing a gap in traditional video evaluation, which often over-
 138 looks the assessment of cross-modal style consistency. Experiments reveal the limitations of current
 139 frameworks in audio-visual consistency when replicating the expressiveness of human interaction,
 140 offering new insights and challenges in cross-modal conditional dialogue generation.

2 RELATED WORKS

2.1 MULTIMODAL DIALOGUE DATASETS

141 In recent years, multimodal dialogue
 142 datasets have been pivotal for advanc-
 143 ing research in multimodal AI sys-
 144 tems. A significant number of ex-
 145 isting dialogue datasets (Han et al.,
 146 2023; Zhu et al., 2025) provide
 147 valuable resources for training and
 148 evaluating dialogue systems. How-
 149 ever, they primarily focus on sin-
 150 gle modality interactions, presenting
 151 challenges for further multimodal alignment and style control. In contrast, the web sourced video
 152 datasets (Ju et al., 2024; Wang et al., 2024; Nan et al., 2025) offer richer audio-visual data, but
 153 mainly feature casual chitchat or designated situational dialogues, limiting their diversity for flexible
 154 prompt control in multimodal dialogue. Similarly, movie-sourced video datasets (Han et al., 2024;
 155 Wu et al., 2025) offer a wealth of audiovisual content yet typically present unclear delineations of
 156 dialogue boundaries. To address these gaps, we introduce a novel multi-modal-based framework
 157 catering for dialogue-level style annotation, as shown in Tab. 2. Specifically, our approach focuses
 158 on synchronized audio-visual input instead of only key-frame image sequences (\mathcal{I}), contribute to the
 159 development of richer, more versatile datasets for advancing multimodal dialogue research.
 160

161
 162 Table 2: Comparison between MM-DIA and existing
 163 TV/Movie-sourced datasets in the annotation framework.

Dataset	Source	Segmentation	Anno. Input	Anno. Tool
MELD (Poria et al., 2019)	TV	Human	$\mathcal{V} + \mathcal{A} + \mathcal{T}$	Human
MC-EIU (Liu et al., 2024b)	TV	Human	$\mathcal{V} + \mathcal{A} + \mathcal{T}$	Human
MovieBench (Wu et al., 2025)	Movie	Vision-based	$\mathcal{I} + \mathcal{A} + \mathcal{T}$	GPT-4o
MM-DIA (Ours)	TV/Mov.	Multi-modal	$\mathcal{V} + \mathcal{I} + \mathcal{A} + \mathcal{T}$	Gemini 2.5-pro

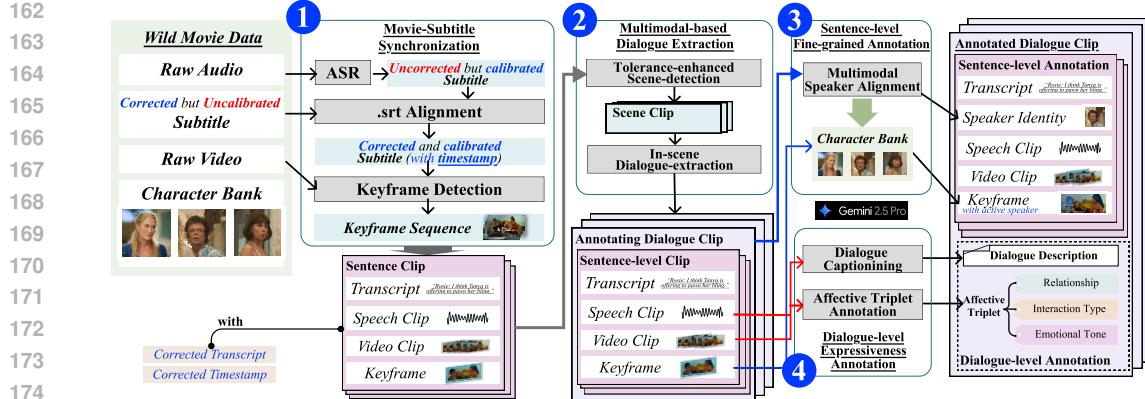


Figure 2: Framework of the Movie/TV-sourced in-the-wild data curation pipeline for multi-modal dialogue extraction with fine-grained interaction-level annotations.

2.2 DIALOGUE GENERATION FROM MULTI-MODALITY

Human interaction is fundamentally shaped by verbal exchanges, with dialogue serving as *the smallest and most structured unit* of social communication. In speech, recent advances in spoken dialogue generation (Labs, 2025; Ju et al., 2025; Zhu et al., 2025) capture realistic turn-taking and multi-speaker timbres (Boson AI, 2025), enabling more natural exchanges. In vision, progress in short movie generation (Xiao et al., 2025) supports high-fidelity multi-shot scenes, consistent character appearances (Liu et al., 2024a; Zhou et al., 2024), and immersive transitions (Blattmann et al., 2023; Zhang et al., 2023), producing coherent visual narratives. To enhance realism through synchronized facial movements, various talking video generation systems (Ki et al., 2025; Cui et al., 2025; Ji et al., 2025) are proposed. These advances establish the modality-specific foundations for conveying semantic information in dialogue. Yet, the challenge of flexibly controlling the interplay among speech, vision, and text for coherent and expressive multimodal multi-speaker dialogue remains largely unexplored. In this paper, we fill this gap by introducing a dataset and benchmarks for controllable, expressive multimodal dialogue.

3 MM-DIA: A LARGE-SCALE EXPRESSIVE MULTIMODAL DIALOGUE DATASET

Movies and TV series are two of the richest artistic forms that feature carefully crafted, context-sensitive performances. Dialogues from these sources exhibit stronger emotion, heightened tension, and greater resemblance to everyday interactions. However, the pursuit of strong cinematic sensory effects also poses challenges for data processing. Frequent background sounds, dramatic bursts, or ambiguous murmurs hinder the accuracy of automatic speech recognition (ASR), while artistic camera movements create complex audio-visual asynchrony, e.g., voiceovers or flashbacks, complicating dialogue boundary detection and speaker identification. As a result, a more cautious and comprehensive approach to the utilization of multi-modal information for various tasks is necessary, as introduced in following sections.

3.1 PIPELINE ORIENTATION WITH DATA PREPARATION

In preparation of the dataset, we collect original movie & TV data from multiple public available sources, while the some of the official subtitle (SRT) files are unavailable. Although automatic speech recognition (ASR) can provide corrected time-stamped transcriptions of spoken content, the high word error rates associated with ASR, especially in complex movies and TV series, is unsatisfactory. To ensure high-quality subtitle due to the inherent trade-off between time correctness and content accuracy and further enlarge the dataset, we additionally crawled some multi-sourced uncalibrated subtitle files, combining them with ASR results to perform precise synchronization between the timestamps and the content. Selecting the matched specific ASR segments and subtitle entries as

216 anchor points, we perform translation operations to adjust time and duration differences in the uncalibrated subtitle timestamps with minimal discrepancies. The qualified subtitle with low variance in
 217 discrepancy are double-checked by human to ensure usability. With the corrected timestamps from
 218 the calibrated subtitle, we extract the keyframe sequence from each subtitle line as representative for
 219 the upcoming dialogue boundary detection.
 220

222 3.2 MULTI-MODAL-BASED DIALOGUE EXTRACTION

224 The automatic extraction of continuous dialogue from movies & TVs is challenging due to complex
 225 cinematic visuals. Dialogue boundaries often differ from shot or scene boundaries, as conversations
 226 may span multiple shots or shift within a single long scene. To address this, we introduce a tolerance-
 227 enhanced scene boundary detection method that first applies a Vision-Language Model (VLM) to
 228 identify scene continuity, followed by a Large Language Model (LLM) to refine in-scene dialogue
 229 boundaries.
 230

231 Unlike traditional frame-to-frame matching methods (Wu et al., 2025; Xiao et al., 2025), our ap-
 232 proach incorporates a buffer mechanism with a dynamic keyframe pool, allowing the model to bridge
 233 momentary visual disruptions such as rapid camera shifts, flashbacks, or perspective changes. This
 234 improves robustness in maintaining dialogue continuity across complex scenes. Based on the re-
 235 sulting scene-level segmentation, we further leverage subtitles and LLM-based semantic filtering to
 236 extract meaningful dialogue segments, particularly in long scenes exceeding 90 seconds. By com-
 237 bining visual and textual cues, the framework achieves coherent and accurate dialogue extraction,
 238 ensuring the integrity of multimodal context.
 239

240 3.3 SENTENCE-LEVEL FINE-GRAINED ANNOTATION

241 Based on the dialogue boundaries determined by the previous two steps, we divide the movie into
 242 short dialogue segments. Next, we determine the attribution of the dialogue speech by assigning
 243 speaker identity to each line of dialogue. However, due to the unsatisfactory accuracy of speaker
 244 diarization in the audio modality, and the fact that movies and TV shows not always have visible
 245 speaker, visual modality-based active speaker detection is not very effective. Since it is difficult to
 246 accurately determine the speaker attribution for each line using only traditional automatic tools, we
 247 use Gemini-2.5-flash to assign the speaker based on the audio-visual synchronized video segments
 248 and dialogue subtitles. Geimini is prompted with the main character bank of the movie to recognize
 249 speakers, it will otherwise identify the speakers with their on-screen persona. Additionally, we label
 250 the non-verbal sounds or vocalizations during the dialogue process through this step to better capture
 251 the fine-grained details of dialogue expressiveness and context-related nuances. For downstream
 252 dialogue-related tasks like talking head generation, we further use the Insightface package to label
 253 the visibility of speakers that belong to the main characters in the corresponding keyframes.
 254

255 3.4 DIALOGUE-LEVEL EXPRESSIVENESS ANNOTATION

256 To enable systematic study of complex,
 257 interaction-level dialogue behaviors, we define
 258 the so-called “dialogue expressiveness” as what
 259 is consistent across modalities in a dialogue that
 260 makes it expressive beyond the semantic con-
 261 tent. Two complementary paradigms of “dia-
 262 logue expressiveness” are proposed:
 263

264 (1) **Affective Triplet Control**, consisting of
 265 *Relationship*, *Interaction Type*, and *Emotional*
 266 *State*, that jointly model role shaping, conver-
 267 sational dynamics, and emotional evolution. It
 268 enables the precise control with the desired sce-
 269 nario of dialogue.

270 (2) **Description Control**, capturing per-speaker, turn-level style trajectories. It enables the sepa-
 271 rate control over speakers, even the fine-grained emotion flow among the dialogue within the same
 272 speaker.
 273

274 Table 3: Detailed statistics for MM-DIA and
 275 MM-DIA-BENCH. Scored from Gemini/Human.

Statistic	MM-DIA	MM-DIA-BENCH
Total Dialogues	54,700	309
Total Turns	449,138	1,851
Total Duration (h)	360.26	1.69
Avg. Spk. / Dia.	2.29	2.00
Avg. Dur. / Dia. (s)	23.71	19.69
Avg. Turns / Dia.	8.21	5.99
Avg. Dur. / Turn (s)	2.89	3.29
Avg. Turns / Spk. / Dia.	3.59	3.00
Avg. Rounds of Speaker Changes / Dia.	4.28	4.09
Speaker Visibility	Partial	All
Avg. Score on Emotion Intensity	6.76 / 5.22	7.81 / 5.74
Avg. Score on Volatility of Emotion Flow	5.32 / 4.36	7.45 / 5.68

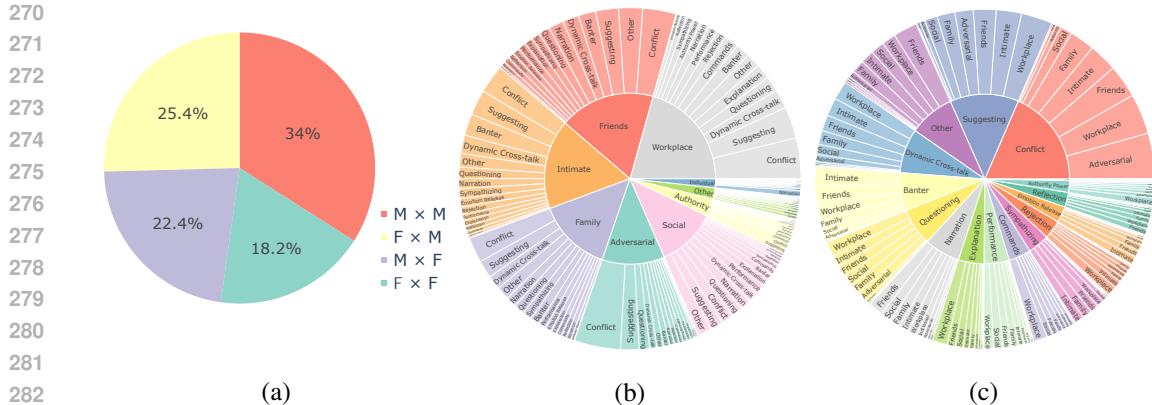


Figure 3: Distributions of (a) Dual-speaker Gender, (b) Relationship, and (c) Interaction Type among MM-DIA.

These paradigms cover common refined tag-based control as well as freestyle description-based natural language control forms. Given the speakers bank with the audio-visual synchronized video segments, we use Gemini-2.5-pro to annotate both paradigms of the dialogue expressiveness. To further quantify the abstract expressiveness, we also annotate the global emotional intensity of the dialogue as a whole and the local emotional volatility that occur at the level of individual speakers during the conversation. For instance, if a conversation remains consistently high-energy and intense throughout, the emotion intensity would be rated as high, while the emotion volatility would be low.

3.5 MM-DIA WITH MM-DIA-BENCH

Applying the data pipeline and annotation paradigms to over 700 hours data, including over 200 movies and 9 TV series, the resultant multi-modal dialogue dataset, MM-DIA, is characterized by 360.26 hours, 54,700 clips of highly expressive, contextually rich, and interaction-heavy dialogues, accompanied with fine-grained annotation on various dialogue aspects, such as non-verbal sound, speaker identity and emotional dynamics at the individual and collective levels. It is the first dataset to specifically center on dialogue-level expressiveness across multi-modalities. Fig. 3 further shows the balanced distribution of MM-DIA from multiple Affective triplet perspective. It is interesting to observe the corresponding connection between “Relationships” and “Interaction Type”. For instance, the *Workplace* is the most common setting in happening *Commands* and *Questioning*, while people are more likely to engage in *Emotion Release* and *Banter* in *Intimate* relationships. The distribution further confirms the high consistency between the data and real-life distributions

Subsequently, we establish MM-DIA-BENCH, a diverse and balanced benchmark with carefully selected 309 instances of highly-expressive dual-speaker dialogues with assurance for speaker visibility. It meets the criteria of different kinds of downstream tasks in cross-modal dialogue generation. With the two invited annotators scoring on 100 random clips from each part of the data, as shown in Tab. 3, the results indicate that both Gemini and humans agree that MM-DIA-BENCH achieves a higher score in quantized dialogue expressiveness.

3.6 VALIDATION OF THE ANNOTATION SYSTEM AND DATASET

To validate the quality of the annotation system, we conduct a series of through evaluation (see Appendix. A.2) on each step component, demonstrating that our pipeline achieves human-level quality in annotation consistency and reliability.

4 MULTIMODAL DIALOGUE GENERATION TASKS

In this section, we first introduce a unified formulation of **Multimodal Dialogue Generation (MDG)**. Based on this framework, we then present three representative task definitions, each instantiating MDG under different control conditions and output modalities. These formulations establish the foundation for subsequent evaluation protocols and experiments.

324
325

4.1 PROBLEM FORMULATION

326 To enable systematic study of multimodal dialogue behaviors, we formalize the task of
 327 MDG as a conditional generation problem. Given a multimodal conversational context $\mathcal{C} = \{c^{\text{text}}, c^{\text{audio}}, c^{\text{vision}}\}$, the goal is to generate multimodal dialogue behaviors $\mathcal{Y} = \{y^{\text{text}}, y^{\text{audio}}, y^{\text{vision}}\}$
 328 that are (i) *semantically coherent* with the input context, (ii) *aligned across modalities*, and (iii) *controllable*
 329 with respect to interaction-level variables. Formally, MDG can be expressed as modeling
 330 a conditional distribution: $P(\mathcal{Y} | \mathcal{C}, \mathcal{Z})$, where \mathcal{Z} denotes explicit/implicit control variables for
 331 dialogue style. This formulation unifies diverse downstream tasks such as style-controllable dialogue
 332 speech synthesis, keyframe-conditioned speech synthesis, and speech-driven dialogue video genera-
 333 tion, providing a foundation for systematic benchmarking of controllable multimodal dialogue.
 334

335
336

4.2 TASK 1: STYLE-CONTROLLABLE DIALOGUE SPEECH SYNTHESIS

337 **Definition.** Given a dialogue transcript $T = \{c_1, c_2, \dots, c_n\}$ and an explicit style condition $Z^{\text{exp}} \in$
 338 $(\{(c^{\mathcal{R}}, c^{\mathcal{T}}, c^{\mathcal{E}})\} \cup \mathcal{L}^*)$, i.e., either an Affective Triplet schema or a free-form natural language
 339 description, the goal is to synthesize a multi-speaker dialogue audio stream A : $A = f(Z^{\text{exp}}, T)$.
 340 Unlike conventional approaches that generate utterances turn by turn and concatenate them, we
 341 directly model A as a continuous dialogue speech sequence with embedded speaker changes but
 342 without explicit turn-taking boundaries, similar to *Zero-Shot Dialogue Generation* (ZSDG) (Zhang
 343 et al., 2024).

344

Challenges. Compared with conventional *Controllable Text-To-Speech* (CTTS) and ZSDG, our task
 345 presents several unique challenges: (i) generating a continuous single-pass end-to-end dialogue au-
 346 dio stream that naturally encodes rich multi-speaker interactions beyond turn-level concatenation;
 347 (ii) maintaining coherence and consistency across successive speakers, such as preserving role iden-
 348 tity and interactional dynamics throughout the conversation; and (iii) supporting multi-level control-
 349 lability, ranging from global conditions specified by structured triplets (e.g., relationship, interaction
 350 type, affective state) to fine-grained per-speaker expressive trajectories, such as emotional flow and
 351 intensity variation across dialogue turns.

352

353

4.3 TASK 2: VISION-CONDITIONED DIALOGUE SPEECH SYNTHESIS

354

355 **Definition.** Let $I = \{I_1, \dots, I_k\}$ be a temporally ordered sequence of keyframes that capture
 356 speakers' appearance, facial expressions, and scene context, together with temporal-aligned dialogue
 357 transcripts $T = \{T_1, \dots, T_k\}$. The goal is to infer contextual style $S(I)$ from the visual sequence
 358 and generate multi-speaker dialogue speech A : $\hat{A} = g(S(I), T) = g(Z^{\text{imp}}, T)$, where $Z^{\text{imp}} = \psi(I)$
 359 encodes implicit interaction-level conditions (e.g., relationship, interaction type, emotional state).
 360 This task instantiates MDG with $Y = \{\text{aud}\}$ under *implicit controllability*.

361

Challenges. Compared with explicit prompt-based control, this task requires the model to (i) reli-
 362 ably infer interactional variables from visual cues such as appearance, posture, and scene compo-
 363 sition; (ii) capture temporal dependencies across the keyframe sequence to reflect evolving interac-
 364 tional dynamics in generated speech; and (iii) align inferred styles with textual content T so that the
 365 synthesized audio remains both semantically faithful and contextually expressive.

366

367

4.4 TASK 3: DIALOGUE VIDEO GENERATION

368

369 **Definition.** Given dialogue audio A and the corresponding transcript T , the objective is to synthesize
 370 a dialogue video \hat{V} that is temporally synchronized with speech and affectively consistent with
 371 dialogue semantics: $\hat{V} = h(A, T, Z)$, where Z may include explicit style prompts or implicit cues
 372 inferred from prosody, turn-taking, and affective dynamics. This task instantiates MDG with $Y =$
 373 $\{\text{vis}\}$.

374

375

376

377

Challenges. Compared with text-to-video(T2V) tasks and single talking head generation, our task
 introduces three key challenges: (i) multi-speaker identity and scene continuity under rapid shot
 changes and partial visibility; (ii) multi-granularity audio-visual alignment—from lip–audio sync
 and utterance-level prosody/gesture to dialogue-level expressiveness (relationship, interaction type,
 affective state), often under weak/implicit control; and (iii) long-range cinematic reasoning to faith-

378 fully stage interactions (who, how, where), requiring shot planning and blocking beyond what stan-
 379 dard quality or lip-sync metrics specify.
 380

381 382 5 BENCHMARKING IN MULTIMODAL DIALOGUE GENERATION

383 In this section, we conduct several experiments to verify the effectiveness of MM-DIA and MM-
 384 DIA-BENCH on supporting the proposed multimodal generation tasks. Experiment results show that
 385 MM-DIA enables high-quality style-controllable spoken dialogue generation under explicit control,
 386 while MM-DIA-BENCH reveals key limitations of existing frameworks under implicit cross-modal
 387 control, offering new insights and challenges for future research.
 388

389 390 5.1 EXPERIMENTS ON EXPLICIT CONTROL IN DIALOGUE SPEECH SYNTHESIS

391 392 A. Evaluation Settings.

393 1. *Test sets*: We prepared three test sets referred to as *Hard*, *Test*, and *Out-of-Domain* respectively.
 394 The *Hard* set is a superset of MM-DIA-BENCH containing 598 clips of highly-expressive data
 395 across MM-DIA. The remaining scope of MM-DIA is then randomly sampled into *Train*, *Valid* and
 396 *Test* by 90% : 5% : 5%. To further detect the generalizability, we curated another *Out-of-Domain* set
 397 with 60 clips of human-refined dialogue annotations. All experiment inference is conducted twice,
 398 taking the Description and Affective Triplet as style control for each.

399 2. *Metrics*: To evaluate the performance of the synthesized dialogue speech intrigued by MM-DIA,
 400 we established a dedicated evaluation from the speech, dialogue, and controllability-level.

401 *Speech Quality*: Word Error Rate (*WER*) and *UTMOS* (Takaaki et al., 2022) access the intelligibility
 402 and the overall quality of speech.

403 *Dialogue Quality*: Speaker Turn-Taking Accuracy (*cpWER*) and Speaker Aware Similarity (*saSIM*)
 404 respectively represent the intra-speaker similarity and inter-speaker timbre transition accuracy in
 405 spoken dialogue generation.

406 *Expressiveness Controllability*: Since there are no appropriate objective metrics to reflect the consistency
 407 between the text prompt and speech, we conduct subjective evaluation, including *Human-Mos*
 408 *Score* on the general quality and instruction-following capability. Inspired by MoonCast (Ju et al.,
 409 2025), we further involve *Gemini-as-Judge* for large quantities of nuance evaluation across Spontaneity,
 410 Coherence, Intelligibility, Quality, Timbre Similarity, and Instruction Following Capability.
 411 The Human Mos experiment Additionally, we calculate the mean recall accuracy on the label attributes
 412 of relationship and interaction type.

413 414 B. Baseline Models & Implementation Details.

415 To validate the effectiveness of MM-DIA, we perform supervised finetuning of pretrained backbones
 416 on our dataset with explicit style supervision, enabling controllability at both the global (triplet) and
 417 local (description) levels. We select two state-of-the-art pretrained backbones: Higgs-Audio-V2-
 418 Base (Boson AI, 2025) and Dia-1.6B (Labs, 2025). Both models support single-pass dialogue
 419 speech generation. Notably, Higgs-Audio-V2 allows flexible conditional inputs across multiple
 420 tasks, whereas Dia-1.6B is optimized for dialogue synthesis but does not natively support conditional
 421 inputs. To enable controllability, we introduce a lightweight adapter module that projects
 422 explicit style embeddings into Dia-1.6B’s decoder.

423 424 C. Evaluation Results

425 Experimental results from Tab. 4 and Tab. 9 shows that spoken dialogue generation models out-
 426 perform in generating high-quality style-controllable dialogue after supervised fine-tuning on MM-
 427 DIA while both tables exhibit a consistent trend. The supervised fine-tuning on Higgs-Audio-V2
 428 successfully decreases the word error rate in the single-turn inference of multi-turn dialogue
 429 generation. The obvious reduction in cpWER indicates that the accuracy of dialogue tone conversion
 430 has significantly improved. In both subjective metrics and recall rate indicators, the models after
 431 SFT show notable advantages. These findings suggest that MM-DIA has helped the model generate
 432 more accurate and coherent dialogue while improving the ability to control styles effectively. We
 433 can also observe some slight reduction and sa-SIM metrics, suggesting the trade-off that while the

432 Table 4: Experimental results of Dialogue Speech Synthesis with **Description** as style prompt.
433

434 Model	435 Speech-Quality		436 Dialogue-Quality		437 Human-MOS				438 Gemini-as-Judge			
	439 WER↓	440 UTMOS↑	441 sa-SIM↑	442 cp-WER↓	443 Qual.↑	444 Instr. Follow.↑	445 Spont.↑	446 Coher.↑	447 Intellig.↑	448 Similar.↑	449 Qual.↑	450 Instr. Follow.↑
Dia-Base	19.991	2.272	0.389	51.713	2.410 ± 0.940	2.500 ± 0.890	3.993	4.335	4.446	3.738	4.248	3.807
Dia-SFT	29.071	1.974	0.447	57.813	2.890 ± 0.690	2.880 ± 0.710	3.626	4.071	4.171	3.590	3.971	3.598
Higgs-Audio-V2-Base	31.251	3.093	0.475	104.867	3.580 ± 0.560	3.110 ± 0.600	3.313	3.96	4.276	4.021	3.874	4.012
Higgs-Audio-V2-SFT	4.450	3.280	0.447	33.765	4.440 ± 0.290	4.130 ± 0.520	4.277	4.881	4.965	4.640	4.851	4.707

439 Table 5: Experimental results of Vision-conditioned Dialogue Speech Synthesis.
440

441 Model	442 Speech-Quality				443 Dialogue-Quality		444 Label-Recall			445 Gemini-as-Judge				
	446 WER↓	447 UTMOS↑	448 sa-SIM↑	449 cp-WER↓	450 Mean_acc ↑	451 Spont.↑	452 Coher.↑	453 Intellig.↑	454 Similar.↑	455 Qual.↑	456 Instr. Follow.↑			
HarmoniVox	21.223	3.5704	0.62	30.981	40.47	1.790	3.390	4.238	1.657	1.895	2.410			
Cascaded Gemini + Higgs	5.781	3.3245	0.499	16.267	42.33	3.081	4.129	4.927	2.605	3.21	3.347			
Cascaded GPT + Higgs	5.793	3.4384	0.476	14.583	52.17	3.326	4.000	4.978	3.022	3.587	3.522			

447 model has become better at generating dialogue with specific tones or styles, it might sacrifice some
448 degree of generality or semantic accuracy in certain cases, since the domain shift in movie-sourced
449 data brings challenges in preserving universal textual coherence and high-quality semantic fidelity.

450 5.2 EXPERIMENTS ON VISION-CONDITIONED DIALOGUE SPEECH SYNTHESIS

451 A. Evaluation Settings

452 1. *Test sets*: We use 132 clips from MM-DIA-BENCH, which guarantee single speaker visibility in
453 each keyframe for the model to distinguish the utterance speaker.

454 2. *Evaluation Metrics*: Since Task 2 shares the same output paradigm as Task 1, we preserve
455 most metrics while slightly modifying prompts for Gemini to compares the alignment in dialogue
456 expressiveness between the speech and visual sequence.

457 **B. Baseline Models & Implementation Details** We implement several representative baseline models
458 for comparison: (1) **HarmoniVox** (Zhou et al., 2025). This model implicitly infers the avatar’s
459 internal states from a visual image I , projects them into a talking style representation S , and then
460 synthesizes speech audio A conditioned on S . We adopt sentence-level inference in our experiments
461 and concatenate corresponding utterances into complete dialogue. (2) **Cascaded VLM +**
462 **Higgs-Audio-SFT**. We employ a strong vision-language model (e.g., GPT-5, Gemini-2.5-pro) to
463 first generate descriptive style prompts in human interaction from the visual dialogue context. These
464 prompts are then cascaded into Higgs-Audio-V2-SFT for speech synthesis.

465 C. Evaluation Results

466 As shown in Tab. 5, although most data preserved stable performance in basic speech and dialogue
467 metrics, the subjective score in Gemini-as-Judge appears to have a significant decline compared to
468 the value. in Tab. 5. It mainly collapses into an uncontrollable spoken dialogue generation modal,
469 but dismiss the style cue attached through the modality alignment. This initial experiment illustrates
470 the limited capability of the existing frameworks in effectively interpreting the cross-modal human
471 interaction style.

472 5.3 EXPERIMENTS ON DIALOGUE VIDEO GENERATION

473 Please refer to Appendix A.5 for detailed information.

474 6 CONCLUSION

475 In this paper, we propose MM-DIA, the first large-scale highly-expressive multi-modal dialogue
476 dataset for the task of Multimodal Dialogue Generation, and the corresponding dual-speaker benchmark
477 MM-DIA-BENCH for the evaluation of cross-modal conditional generation tasks. Experiments
478 demonstrate that MM-DIA enhances the style controllability of dialogue generation model
479 and MM-DIA-BENCH reveals the limitation in current cross-modal style consistency.

486 REFERENCES
487

488 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
489 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
490 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
491 (CVPR), pp. 22563–22575, June 2023.

492 Boson AI. Higgs Audio V2: Redefining Expressiveness in Audio Generation. <https://github.com/boson-ai/higgs-audio>, 2025. GitHub repository. Release blog available
493 at <https://www.boson.ai/blog/higgs-audio-v2>.

494

495 Joon Son Chung and Andrew Zisserman. Out of time: automated lip sync in the wild. In *Asian*
496 Conference on Computer Vision, pp. 251–263. Springer, 2016.

497

498 Jiahao Cui, Hui Li, Yun Zhan, Hanlin Shang, Kaihui Cheng, Yuqi Ma, Shan Mu, Hang Zhou,
499 Jingdong Wang, and Siyu Zhu. Hallo3: Highly dynamic and realistic portrait image animation
500 with video diffusion transformer. In *Proceedings of the IEEE/CVF Conference on Computer*
501 *Vision and Pattern Recognition*, pp. 21086–21095, 2025.

502

503 Seungju Han, Jack Hessel, Nouha Dziri, Yejin Choi, and Youngjae Yu. Champagne: Learning real-
504 world conversation from large-scale web videos. In *Proceedings of the IEEE/CVF International*
505 *Conference on Computer Vision (ICCV)*, pp. 15498–15509, October 2023.

506

507 Tengda Han, Max Bain, Arsha Nagrani, Gü̈l Varol, Weidi Xie, and Andrew Zisserman. Autoad
508 iii: The prequel - back to the pixels. In *Proceedings of the IEEE/CVF Conference on Computer*
509 *Vision and Pattern Recognition (CVPR)*, pp. 18164–18174, June 2024.

510

511 Xiaozhong Ji, Xiaobin Hu, Zhihong Xu, Junwei Zhu, Chuming Lin, Qingdong He, Jiangning Zhang,
512 Donghao Luo, Yi Chen, Qin Lin, et al. Sonic: Shifting focus to global audio perception in
513 portrait animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
514 *Recognition*, pp. 193–203, 2025.

515

516 Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu Xiong, Qiang
517 Xu, and Ying Shan. Miradata: A large-scale video dataset with long durations and structured
518 captions. In *Advances in Neural Information Processing Systems*, volume 37, pp. 48955–48970.
Curran Associates, Inc., 2024.

519

520 Zeqian Ju, Dongchao Yang, Jianwei Yu, Kai Shen, Yichong Leng, Zhengtao Wang, Xu Tan, Xinyu
521 Zhou, Tao Qin, and Xiangyang Li. MoonCast: High-quality zero-shot podcast generation, 2025.
522 URL <http://arxiv.org/abs/2503.14345>.

523

524 Taekyung Ki, Dongchan Min, and Gyeongsu Chae. Float: Generative motion latent flow matching
525 for audio-driven talking portrait, 2025. URL <https://arxiv.org/abs/2412.01064>.

526

527 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
528 Bo Wu, Jianwei Zhang, Katrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, An-
529 dong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song,
530 Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai
531 Li, Weiyang Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-
532 tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Song-
533 tao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar
534 Zhong. Hunyuanvideo: A systematic framework for large video generative models, 2025a. URL
<https://arxiv.org/abs/2412.03603>.

535

536 Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen,
537 and Wenhan Luo. Let them talk: Audio-driven multi-person conversational video generation,
538 2025b. URL <http://arxiv.org/abs/2505.22647>.

539 N. Labs. Dia: A tts model capable of generating ultra-realistic dialogue in one pass. <https://github.com/nari-labs/dia>, 2025. Accessed: 2025-09-20.

540 Chang Liu, Haoning Wu, Yujie Zhong, Xiaoyun Zhang, Yanfeng Wang, and Weidi Xie. Intelligent
 541 grimm - open-ended visual storytelling via latent diffusion models. In Proceedings of the
 542 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6190–6200,
 543 June 2024a.

544 Rui Liu, Haolin Zuo, Zheng Lian, Xiaofen Xing, Björn W. Schuller, and Haizhou Li. Emotion and
 545 intent joint understanding in multimodal conversation: A benchmarking dataset, 2024b. URL
 546 <http://arxiv.org/abs/2407.02751>.

548 Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang,
 549 and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. In
 550 Proceedings of the International Conference on Learning Representations (ICLR), 2025. URL
 551 <https://openreview.net/forum?id=j7kdXSrISM>.

553 OpenAI, Josh Achiam, and Adler. GPT-4 technical report. URL <http://arxiv.org/abs/2303.08774>.

555 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 556 Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations. In
 557 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
 558 527–536, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
 559 v1/P19-1050.

561 Saeki Takaaki, Xin Detai, Nakata Wataru, Tomoki Koriyama, Shinnosuke Takamichi, and Hi-
 562 roshi Saruwatari. UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022. In
 563 Interspeech 2022, pp. 4521–4525, 2022.

564 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 565 and Sylvain Gelly. Towards accurate generative models of video: A new metric and challenges,
 566 2019. URL <https://arxiv.org/abs/1812.01717>.

568 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 569 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 570 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 571 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 572 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 573 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 574 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 575 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 576 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models,
 577 2025. URL <https://arxiv.org/abs/2503.20314>.

578 Shuhe Wang, Yuxian Meng, Xiaoya Li, Xiaofei Sun, Rongbin Ouyang, and Jiwei Li. OpenViDial
 579 2.0: A larger-scale, open-domain dialogue generation dataset with visual contexts, 2021. URL
 580 <http://arxiv.org/abs/2109.12761>.

582 Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
 583 Chen, Yaohui Wang, Ping Luo, Ziwei Liu, Yali Wang, Limin Wang, and Yu Qiao. Internvid:
 584 A large-scale video-text dataset for multimodal understanding and generation. In Proceedings
 585 of the International Conference on Learning Representations (ICLR), 2024. URL <https://openreview.net/forum?id=MLBdiWu4Fw>.

587 Weijia Wu, Mingyu Liu, Zeyu Zhu, Xi Xia, Haoen Feng, Wen Wang, Kevin Qinghong Lin, Chun-
 588 hua Shen, and Mike Zheng Shou. Moviebench: A hierarchical movie level dataset for long
 589 video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 590 Recognition (CVPR), pp. 28984–28994, June 2025.

592 Junfei Xiao, Ceyuan Yang, Lvmin Zhang, Shengqu Cai, Yang Zhao, Yuwei Guo, Gordon Wetzstein,
 593 Maneesh Agrawala, Alan Yuille, and Lu Jiang. Captain cinema: Towards short movie generation,
 2025. URL <http://arxiv.org/abs/2507.18634>.

594 Leying Zhang, Yao Qian, Long Zhou, Shujie Liu, Dongmei Wang, Xiaofei Wang, Midia Yousefi,
 595 Yanmin Qian, Jinyu Li, Lei He, Sheng Zhao, and Michael Zeng. Covomix: Advancing zero-
 596 shot speech generation for human-like multi-talker conversations. In A. Globerson, L. Mackey,
 597 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 598 Processing Systems*, volume 37, pp. 100291–100317. Curran Associates, Inc., 2024.

599 Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang,
 600 Deli Zhao, and Jingren Zhou. I2vgen-XL: High-quality image-to-video synthesis via cascaded
 601 diffusion models, 2023. URL <http://arxiv.org/abs/2311.04145>.

602

603 Songtao Zhou, Xiaoyu Qin, Yixuan Zhou, Qixin Wang, Zeyu Jin, Zixuan Wang, Zhiyong Wu, and
 604 Jia Jia. Harmonivox: Painting voices to match the avatar’s soul. In *Proceedings of the 33rd ACM
 605 International Conference on Multimedia*, MM ’25, 2025.

606

607 Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion: Con-
 608 sistent self-attention for long-range image and video generation. In A. Globerson, L. Mackey,
 609 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 610 Processing Systems*, volume 37, pp. 110315–110340. Curran Associates, Inc., 2024.

611 Han Zhu, Wei Kang, Liyong Guo, Zengwei Yao, Fangjun Kuang, Weiji Zhuang, Zhaoqing Li,
 612 Zhifeng Han, Dong Zhang, Xin Zhang, Xingchen Song, Long Lin, and Daniel Povey. ZipVoice-
 613 dialog: Non-autoregressive spoken dialogue generation with flow matching, 2025. URL <http://arxiv.org/abs/2507.09318>.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

REPRODUCIBILITY STATEMENT

650
651
652
653
654
655

We provide the MM-DIA dataset, a large-scale multimodal dialogue corpus, and the MM-DIA-BENCH benchmark, both of which are integral to our research on style-controllable multimodal dialogue generation. Our experimental code and data curation pipeline will be made publicly available upon acceptance of the paper. The models and algorithms used in this paper can be reproduced using the provided dataset and benchmark, with all necessary details regarding model configurations, training procedures, and evaluation protocols included.

656
657
658

ETHICS STATEMENT

659
660
661
662
663
664
665

The MM-DIA and MM-DIA-BENCH datasets include multimodal data sourced from movies and TV series, some of which may contain commercial content. We do not release the video or audio clips themselves; instead, we provide annotations (e.g., transcript, affective triplet, dialogue description, speaker identity, keyframe with active speaker, etc.) and the methods used to generate them. Researchers are encouraged to obtain the corresponding media content independently and align it with the provided timestamps. For any further queries or information, readers are welcome to contact us.

666
667
668
669

We acknowledge the potential for biases inherent in the media content used and are committed to addressing these in future versions of the dataset by incorporating more diverse sources and refining our annotation methods.

670
671

LLM USAGE DISCLOSURE

672
673
674
675
676

We used GPT-5 for grammar checking and improving the clarity of sections 1 through 6 in this manuscript. All technical content, experimental design, and analysis are original human work. The LLM suggestions were manually reviewed and modified to ensure that they align with the paper's objectives and maintain technical accuracy.

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A APPENDIX**
703704 **A.1 IMPLEMENTATION DETAILS FOR DIALOGUE EXTRACTION**
705706 The automatic extraction of continuous dialogue in movies presents a challenge due to the inherent
707 complexity of cinematic visuals. Notably, dialogue boundary is different from the shot or scene
708 boundary. As a dialogue usually continues across multi-shot view, while multiple dialogues may
709 happen sequentially in a long scene with the alternative in speaker composition or naturally change
710 in topic. Therefore, we first introduce a tolerance-enhanced scene boundary detection method with
711 Vision Language Model (VLM), following by Large Language Model (LLM) to determine the in-
712 scene dialogue boundary.
713714 Unlike static video content, movies often feature rapid camera shifts, inserted footage, and changes
715 in perspectives. Traditional frame-to-frame scene continuation detection methods (Wu et al., 2025;
716 Xiao et al., 2025), which are often based on direct visual comparison between adjacent frames,
717 struggle to cope with these momentary disruptions, resulting in abrupt scene splits and false dialogue
718 transitions. We introduce a buffer mechanism to dynamically update a keyframe pool of the current
719 scene. Let $P = \{p_1, p_2, \dots, p_m\}$ represent the dynamic set of most representative keyframes from
720 the current scene $S = \{s_{t-n}, \dots, s_{t-1}, s_t\}$, VLM uses the updated keyframes P to perform sparse
721 comparisons of the similarity between the P and the frame s_{t+b} after a certain buffer interval b .
722 Whenever the match fails, it falls back to the subsequent frame s_{t+1} through binary search. Once
723 the match is successful, sparse comparisons start from the new end frame, recognizing the passed
724 frames within the same scene. Meanwhile, the keyframe pool P is updated by replacing a most
725 similar frame within the pool with the new s_{t+b} .
726

727
$$S' = \{s_{t-n}, \dots, s_{t+b}\}, \quad P' = P \cup \{s_{t+b}\} \setminus \{p_{\text{most_similar}}\}, \quad \text{if } \text{VLM}(P, s_{t+b}) = \text{True}.$$

728

729 The buffer spanning multiple frames, together with the memory pool, enables the algorithm to
730 "bridge" temporary interruptions instead of triggering incorrect scene boundaries. This allows the
731 algorithm to maintain the continuity of dialogue scenes over longer periods, providing greater re-
732 silience to the complex visual dynamics of movies.
733734 With the resultant division from the vision modality at scene-level, we further extract relevant dia-
735 logue segments from the corresponding subtitle based on semantic meaning, especially to the long
736 scene over 90 seconds. LLM is used to precisely extract meaningful dialogue within the correct
737 scope. The framework effectively merges both visual and textual information to achieve robust
738 dialogue extraction, ensuring the integrity and coherence of the dialogue context.
739740 **A.2 VALIDATION RESULTS OF THE ANNOTATION SYSTEM AND DATASET**
741742 **1. Evaluation of the correctness in movie-subtitle synchronization.**
743744 With the *official* version of subtitle stands for the ground truth of content and human judgment on
745 correctness of timestamps boundaries, the calibrated subtitle performs balanced in low word error
746 with high time accuracy, successfully enlarge the dataset. Notably, both ASR and official subtitle
747 tend to present the line slightly earlier than the actual time, while the start time is usually correct.
748 As a result, we slightly extend the audio up to the next starting time in the subsequent training.
749750 **2. Evaluation on the buffer mechanism in boundary detection.**
751752 Firstly, we conduct human evaluation on a random sampled test set with six movies, with the re-
753 ported boundary extraction accuracy to be 95.2%, comparing to 86.3% on the traditional frame-by-
754 frame scene continuation detection methods.
755756 As to the ablation study on the proposed buffer mechanism, inspired by the Intersection over Union
757 (IoU) metric commonly used in *Object Detection*, we introduce a new metric called $F1_{Overlap}$ to
758 represent the similarity between two continuous segmentation of a same sequence of clips, expressed
759 as $\{A\}, \{B\}$:
760761 Using A as the reference segmentation, for the n intervals in A , we take the corresponding interval
762 in B that has the maximum overlap with it to calculate the percentage of the total overlapping
763 duration of these n overlaps in A , denoted as $P(A, B)$. Formally, this can be written as: $P(A, B) =$
764

756
757
758 Table 6: TimeStamp accuracy and WER of
759 different subtitle version.
760

Data Source	TimeStamp Accuracy	WER
ASR	0.871	0.34
SRT-Uncalibrated	0.179	0.43
SRT-Calibrated	0.857	<u>0.03</u>
SRT-Official	<u>0.870</u>	0.00

761
762
763
764
765
766
767
768
769
770 Table 7: Completeness and Hallucination of
771 Dialogue Annotation from Qwen-72B, GPT-
772 5 & Gemini-2.5-pro.
773
774
775
776

Annotation	Model	Comp. ↑	Hall. ↓
Non-verbal Sound	Qwen	1.25	2.12
	GPT	1.18	1.00
	Gemini	4.66	1.22
Affective Triplet	Qwen	3.45	2.56
	GPT	3.66	2.20
	Gemini	4.76	1.38
Description	Qwen	3.15	2.76
	GPT	3.60	2.16
	Gemini	4.72	1.44

770 Table 8: Ablation study on the buffer b with Qwen 7B and Qwen 72B model as VLM.
771

<i>F1_Overlap</i>	$b=1$	2	3	4	5
Qwen 7B	0.771	0.866	0.841	0.839	0.836
Qwen 72B	0.947	0.975	0.977	0.978	0.979

777 $\frac{\sum_{i=1}^n \text{Overlap}(A_i, B_{\max})}{\sum_{i=1}^n \text{Duration}(A_i)}$. Similarly, we reverse the roles of A and B to compute $P(B, A)$. The similarity
778 between the two segmentations is then computed using the F1 score of $P(A, B)$ and $P(B, A)$:
779 $F1_{Overlap} = 2 \times \frac{P(A, B) \times P(B, A)}{P(A, B) + P(B, A)}$. The $F1_{Overlap}$ metric prevents extreme segments, whether
780 excessively dense or sparse, from receiving a high P score based on a single perspective. As shown
781 in Tab. ??, we leverage Qwen 72B with $b = 3$ to balance the time and performance.
782

783 3. Quality evaluation on the dialogue annotation.

784 Following MovieBench [Wu et al. \(2025\)](#), we invite two human annotators to evaluate the performance
785 of Gemini annotation in the data curation pipeline, from the perspective of **Completeness**
786 and **Hallucination**. Annotators are asked to score 1 to 5 for the three kinds of annotation of 100
787 randomly sampled movie/TV clips from MM-DIA. As indicated in Tab. 7, in comparision with
788 Qwen 72B and GPT 5 (which instead takes sequential frames and audio as video input), Gemini
789 outperforms in most aspects with the best interpretation of the movie style.
790

791 A.3 METRICS EXPLANATION IN TASK 1.

792 *Speech Quality: WER, UTMOS.*

793 We used the official implmentation from [Zhu et al. \(2025\)](#) to compute Word Error Rate (WER) and
794 UTMOS, accessing the intelligibility and the overall quality of speech.
795

796 *Dialogue Quality: cpWER, saSIM.*

797 Speaker Turn-Taking Accuracy (cpWER) is computed by firstly concatenating all speech utterances
798 by the same speaker after processing the speaker diarization to the generated spoken dialogue, then
799 picking up the lowest WER among all the permutations of the generated transcripts with the
800 concatenated ground truth.
801

802 Speaker Aware Similarity (saSIM) is acquired by computing mean speaker similarity among the
803 permutations of each speaker’s utterance after conducting the Montreal-Forced-Alignment.
804

805 A.4 EXPERIMENTAL RESULTS OF DIALOGUE SPEECH SYNTHESIS WITH **AFFECTIVE** 806 **TRIPLET** AS STYLE PROMPT.

810 Table 9: Experimental results of Dialogue Speech Synthesis with **Affective Triplet** as style prompt.
811

812 Model	813 Speech-Quality		814 Dialogue-Quality		815 Label-Recall		816 Gemini-as-Judge					
	817 WER↓	818 UTMOS↑	819 sa-SIM↑	820 cp-WER↓	821 Mean_acc ↑	822 Spont.↑	823 Coher.↑	824 Intellig.↑	825 Similar.↑	826 Qual.↑	827 Instr. Follow.↑	828
Dia-Base	19.991	2.272	0.389	51.713	0.210	3.452	4.000	4.161	4.016	3.887	4.113	4.113
Dia-SFT	33.178	1.941	0.430	117.947	0.237	3.636	4.118	4.187	3.910	3.962	4.014	4.014
Higgs-Audio-V2-Base	39.684	3.066	0.461	75.847	0.352	3.169	3.816	4.075	3.843	3.704	3.850	3.850
Higgs-Audio-V2-SFT	5.265	3.286	0.459	33.134	0.428	4.031	4.820	4.967	4.610	4.636	4.809	4.809

829 **A.5 EXPERIMENTS ON DIALOGUE VIDEO GENERATION**830 **A. Evaluation Settings**

831 *1. Test sets:* We construct our evaluation splits from MM-DIA. We automatically screen dialogue
832 clips and retain those with exactly one visible speaker in frame and an unobstructed face, yielding
833 133 dialogues. This set is curated to cover all annotated relationships and interaction types in MM-
834 DIA, ensuring broad semantic coverage for cross-modal alignment assessment.

835 *2. Evaluation Metrics:*

836 We evaluate along three axes: *video quality* (Fréchet Video Distance, FVD (Unterthiner et al.,
837 2019)), *lip-speech synchronization* (*LSE-C* and *LSE-D* (Chung & Zisserman, 2016)), and *cross-
838 modal semantics/alignment*. We adopt the model-as-judge pipeline introduced in Sec. 5.1 to score
839 *Spontaneity*, *Coherence*, *Intelligibility*, *Similarity*, *Overall Quality*, and *Instruction Following*, to
840 quantify how well the generated dialogue videos align with the speech modality—from low-level
841 timing (lip–speech sync) and utterance-level prosody/expressiveness to dialogue-level semantics
842 (e.g., staging, flow, and instruction following). In addition, we report label accuracy/recall on *Re-
843 lationship* and *Interaction Type* to test whether generated scenes faithfully reflect dialogue-level
844 interpersonal semantics.

845 **B. Baseline Models & Implementation Details**

846 Because no system currently performs end-to-end dialogue-to-video generation, we evaluate two
847 practical families:

- 848 • SI2V (Speaker-Image-to-Video). We split dialogue-level movie clips into sentence-level segments
849 and drive the corresponding speaker images with each utterance, then concatenate per-sentence
850 clips into dialogue videos. Given that SI2V models use reference keyframes, we do not evaluate
851 relationship/scene accuracy here; we focus on lip sync and expressiveness alignment.
- 852 • T2V (Text-to-Video). Using sentence-level fine-grained and dialogue-level expressiveness annotations
853 in MM-DIA, we construct rich text prompts to condition multi-speaker scene synthesis.
854 Since audio is not explicitly input, we do not score lip sync for T2V; instead, we emphasize
855 relationship/interaction and expressiveness alignment. During model-as-judge, we provide the
856 corresponding audio for Gemini to evaluate the cross-modality alignment.

857 **C. Evaluation Results**

858 All experiments are conducted on MM-DIA-BENCH dialogue clips with visible dyads and diverse
859 expressiveness to ensure comparable shot complexity across systems.

860 Results in Tab. 10 show that no current system adequately solves dialogue video generation. Despite
861 rich prompts, T2V models capture only a portion of high-level dialogue semantics; accurate staging
862 of interaction scenes and who-interacts-with-whom remains unreliable. SI2V systems attain higher
863 *Coherence/Intelligibility/Quality* on average, but *Instruction Following* and fine-grained *Spontaneity*
864 alignment fluctuate across long dialogues.

865 To summarize, **SI2V** pipelines are complex and depend on keyframes; practical deployment will
866 require coupling with keyframe generation to approach end-to-end usage. Additionally, small face
867 extents and occlusions in natural dialogue shots make lip-sync brittle, often producing artifacts.
868 Meanwhile, **T2V** systems lack explicit audio conditioning, making it difficult to synchronize with
869 speech timing and match vocal expressiveness; they also underperform at faithfully reconstructing
870 relationships and interaction patterns.

Table 10: Experimental results of Dialogue Video Synthesis.

Model	Visual-Quality		Lip-Sync		Label-Recall		Gemini-as-Judge					
	FVD↓	LSE-C↑	LSE-D↓	ACC-Rela. ↑	ACC-Interact.↑	Spont.↑	Coher.↑	Intellig.↑	Similar.↑	Qual.↑	Instr. Follow.↑	
FLOAT (Ki et al., 2025)	572.187	4.805	9.502	-	-	2.703	2.405	3.050	3.339	2.248	3.050	
MultiTalk (Kong et al., 2025b)	124.543	5.305	8.795	-	-	4.524	4.388	4.612	4.689	4.922	4.631	
Sonic (Ji et al., 2025)	117.096	4.986	8.503	-	-	4.592	4.583	4.750	4.800	4.833	4.750	
Wan-2.2 S2V (Wan et al., 2025)	154.261	4.288	9.873	-	-	4.205	4.116	4.357	4.589	4.652	4.384	
HunyanVideo (Kong et al., 2025a)	335.591	-	-	47.97%	13.82%	2.089	4.553	4.049	2.968	4.309	2.293	
Wan-2.2 T2V (Wan et al., 2025)	300.092	-	-	53.66%	18.70%	3.114	4.634	4.602	3.732	4.423	3.268	
Ground Truth	-	6.275	8.333	100.00%	100.00%	4.892	4.971	4.961	4.931	5.000	4.902	

Overall, *neither* family is yet adequate for dialogue video generation. The results validate our benchmark design: quality and lip-sync alone are insufficient; cross-modal semantic alignment must be measured explicitly to drive progress. Future work should target: (1) End-to-end dialogue-to-video modeling that unifies keyframe planning, character visibility, lip/body sync, and scene continuity; (2) Multi-granularity alignment learning using sentence-level and dialogue-level expressiveness labels (relationship, interaction type, affect); (3) Cross-modal semantic discriminators that penalize misalignment during training; and (iv) Long-range dependence & shot planning for controllable staging in multi-speaker scenes, consistent with expressiveness schema in MM-DIA.

A.6 PSEUDO-CODE FOR MOVIE-SUBTITLE SYNCHRONIZATION

Algorithm 1 Subtitle Scene Segmentation with VLM

Require: Subtitle file srt, Video file video, Step size step, Buffer size buffer

Ensure: List of dialogue ranges

```

1: Load VLM model (Qwen2.5-VL-7B-Instruct) ParseScriptSrt
2: Extract subtitle blocks with index and timecode
3: return list of blocks ExtractFramevideo, timecode
4: Compute midpoint timestamp
5: Use ffmpeg to extract frame image
6: return image path IsContinuationframes
7: Prompt VLM with frames to check scene continuity
8: if last frame matches context then
9:   return True
10: else
11:   return False
12: end if
13: Initialize ranges list
14: for each block i do
15:   Try to extend range by comparing future blocks using VLM
16:   Allow up to step ahead, using up to buffer context frames
17:   if continuation fails then
18:     finalize current segment
19:   end if
20: end for
21: return ranges
22: Save ranges to JSON output

```

918 A.7 EXPLANATION OF RELATIONSHIP AND INTERACTION TYPE CATEGORIES
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

947 Table 11: Explanation of Relationship Categories with Typical Labels

948 Relationship	949 Explanation and Example
949 Workplace	950 Refers to professional relationships and environments, including 951 people within a work setting. 952 Example: <i>Colleague, Boss, Manager, Coworker, Client.</i>
952 Friends	953 A relationship between individuals characterized by mutual af- 954 fection, trust, and companionship outside of family and work. 955 Example: <i>Buddy, Pal, Companion, Mate, Peer.</i>
955 Intimate	956 Relationships of a more personal and romantic nature, typically 957 involving emotional and physical closeness. 958 Example: <i>Boyfriend, Girlfriend, Partner, Spouse, Fiancé.</i>
958 Family	959 Relationships defined by blood ties or marriage, including ex- 960 tended family members. 961 Example: <i>Mother, Father, Sibling, Uncle, Cousin.</i>
961 Adversarial	962 Relationships characterized by opposition or conflict, often in- 963 volving rivalry or animosity. 964 Example: <i>Enemy, Opponent, Rival, Antagonist, Competitor.</i>
963 Individual	964 A relationship with oneself, or a solitary state where interaction 965 with others is minimal or nonexistent. 966 Example: <i>Solo, Loner, Isolated, Monologue.</i>
966 Social	967 Encompasses a wide range of social roles and interactions, from 968 professional settings to casual encounters. 969 Example: <i>Teacher, Doctor, Neighbor, Stranger, Host, Cus- 970 tomer.</i>
970 Authority	971 Relationships based on power and control, typically involving 972 leadership, governance, and decision-making. 973 Example: <i>King, Judge, Mayor, President, General.</i>

972 A.8 EXPLANATION OF INTERACTION CATEGORIES WITH TYPICAL LABELS
973

974

975

976

977

Table 12: Explanation of Interaction Categories with Typical Labels

Interaction Type	Explanation and Example
Suggesting	The act of convincing someone to believe or do something through reasoning or emotional appeal. Example: <i>Persuasion, Convincing, Negotiation.</i>
Conflict	A state of disagreement or confrontation, often involving tension or hostility. Example: <i>Argument, Disagreement, Accusation.</i>
Questioning	Asking questions to gain information, clarify doubts, or provoke thought. Example: <i>Inquiry, Interrogation, Probing.</i>
Narration	The act of narrating a story or personal experience, often to entertain or inform. Example: <i>Storytelling, Flashback, Monologue.</i>
Explanation	Providing detailed information or clarification on a topic to ensure understanding. Example: <i>Justification, Diagnosis, Clarification.</i>
Commands	Issuing direct orders or instructions to prompt action. Example: <i>Orders, Demands, Instruction.</i>
Dynamic Cross-talk	A back-and-forth exchange of dynamic dialogue, often with interruptions or interjections. Example: <i>Interjection, Interruption.</i>
Sympathizing	Offering comfort or support to someone, often to alleviate concerns or anxiety. Example: <i>Comfort, Support, Encouragement.</i>
Rejection	Dismissing or refusing a request, idea, or proposal. Example: <i>Refusal, Dismissal, Avoidance.</i>
Banter	Playful, often teasing, interaction intended to entertain or create rapport. Example: <i>Teasing, Flirting, Joke.</i>
Authority Power	The use of authority or control to direct others' actions, often in a commanding or corrective manner. Example: <i>Domination, Criticism, Intervention.</i>
Performance	Delivering a structured or formal presentation, speech, or announcement to an audience. Example: <i>Presentation, Speech, Announcement.</i>
Reflection	Reflecting on one's thoughts, feelings, or experiences, often leading to a moment of realization. Example: <i>Introspection, Revelation, Discovery.</i>
Emotion Release	Expressing emotions, often related to frustration, anxiety, or relief. Example: <i>Venting, Confession.</i>
Invitation	Extending a request for someone to join an event or activity. Example: <i>Invitation, Offer.</i>

1019 A.9 TYPICAL CASES IN MULTI-SOURCED MOVIE SUBTITLE ALIGNMENT
1020

1021

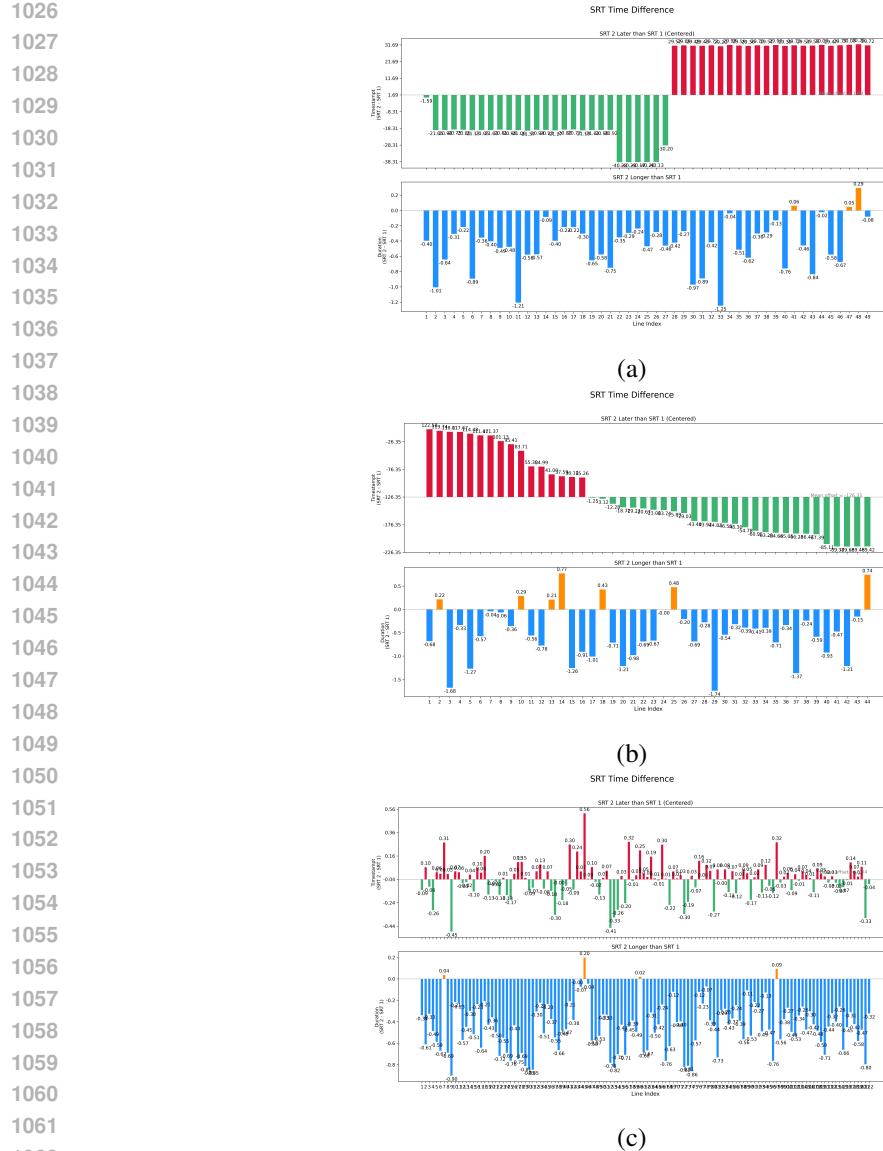
1022

1023

1024

1025

The unmatched subtitles are obvious through the time discrepancy sequences. The upper plot shows the start time discrepancy between anchor point start times in the subtitle and the ASR results. The lower plot shows the duration discrepancy.



1063 Figure 4: (a) A bad case of Subtitle with edited movie segments. (b) A bad case of Subtitle with
1064 edited movie speed. and (c) A good case of Subtitle with potential usability with time translation.