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ABSTRACT

The recent advancement of Artificial Intelligence Generated Content (AIGC) has
led to significant strides in modeling human interaction, particularly in the context
of multimodal dialogue. While current methods impressively generate realistic
dialogue in speech and vision modalities, challenges remain in multimodal condi-
tional dialogue generation. This paper focuses on the natural alignment between
speech, vision, and text, aiming at expressive dialogue generation through multi-
modal conditional control. Since existing datasets lack the richness and diversity
in dialogue expressiveness, we introduce a novel multi-modal dialogue annotation
pipeline to exploit meaningful dialogues from movies and TV series with fine-
grained annotations across multi-modalities. The resultant dataset, MM-DIA,
provides over 360 hours and 54,700 dialogues, facilitating the Multi-modal Di-
alogue Generation task through explicit control over style-controllable dialogue
speech synthesis. While the proposed benchmark, MM-DIA-BENCH, containing
309 dialogues that are highly expressive with visible dual/single speaker scenes,
supporting the evaluation of implicit cross-modal control through downstream
multi-modal dialogue generation tasks to assess the audio-visual style consistency
across modalities. Our experiments demonstrate the effectiveness of our data in
enhancing style controllability and reveal limitations in current frameworks’ abil-
ity to replicate human interaction expressiveness, providing new insights and chal-
lenges for multi-modal conditional dialogue generation. Code, demo and data will
be released at: https://mmdiaiclr26.github.io/mmdiaiclr26/.

1 INTRODUCTION

Dialogue has long been considered one of the most natural forms of human interaction, involv-
ing multiple communication channels such as text, speech, vision, gestures, and etc. In the AIGC
era, multimodal dialogue has become increasingly important for a wide range of applications in
human–computer interaction, social computing, and film-making.

Existing research in multimodal dialogue primarily falls into two directions: (1) Semantic
generation, which emphasizes producing coherent and contextually appropriate responses, as in
large-scale dialogue systems, e.g., ChatGPT (OpenAI et al.). (2) Modality rendering, which projects
the given semantics into output modalities such as speech (Zhu et al., 2025; Zhang et al., 2024) and
motion (Kong et al., 2025b). However, both directions over-emphasize the transmission of dialogue
content, while neglecting systematic modeling of interaction style controllability, resulting in limited
expressiveness and controllability of the generated outputs.

To achieve expressive and controllable multimodal dialogue generation, several key challenges have
been raised: (1) Lack of high-quality native multimodal dialogue data. Existing large-scale mul-
timodal dialogue datasets, as shown in Tab. 1, face limitations in data source diversity and modality
coverage, hindering their ability to capture the full complexity of multimodal interactions and of-
fering limited expressiveness and generalizability. (2) Lack of scalable annotation methods for
interaction-level semantics. Collecting naturally occurring dialogues with synchronized text, au-
dio, and visual modalities is costly and complex. Existing datasets such as MELD (Poria et al.,
2019) and MC-EIU (Liu et al., 2024b) provide human-labeled categorical emotion or intent annota-
tions, but they are costly, limited in scope, and not easily extensible, failing to capture the nuanced,
continuous nature of human interactions. (3) Lack of systematic benchmarks and evaluation pro-
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Figure 1: An example of a movie dialogue clip with sentence- and dialogue-level annotations in the
MM-DIA and MM-DIA-BENCH datasets, highlighting multimodal dialogue interaction details. The
right-hand side illustrates three examples dialogue-related cross-modal generation tasks involving
text, audio, and vision, with both explicit (Task 1) and implicit control (Task 2, Task 3).

tocols. While existing tasks like semantic coherence and temporal alignment are well-established,
new benchmarks and evaluation protocols tailored for emerging capabilities, such as dialogue-level
controllability, are still lacking.

This paper seeks to address these gaps by constructing a large-scale expressive multimodal dia-
logue dataset, introducing new annotation paradigms, and establishing systematic benchmarks for
controllable multimodal dialogue generation.

To compensate for the limited scale of high-quality multi-modal dialogue datasets, we develop an
automatic data curation pipeline targeted for extracting dialogues with synchronized (text, audio,
vision) streams and fine-grained interaction-level annotations, from in-the-wild movies and TV se-
ries. To resolve the challenges posed by complex scene transitions and audio-visual asynchrony,we
devote special efforts to advancing dialogue boundary segmentation and multimodal speaker iden-
tification. To support controllability across diverse application scenarios, we define two comple-
mentary paradigms of “dialogue expressiveness”: (1) Affective Triplet, consisting of Relationship,
Interaction Type, and Emotional State, that jointly model role shaping, conversational dynamics, and
emotional evolution; and (2) Freestyle Description, capturing per-speaker, turn-level style trajecto-
ries. Through extensive validation, we demonstrate that our pipeline achieves human-level quality
in annotation consistency and reliability.

Applying the proposed data pipeline to over 700 hours of movies and TV series, we present a diverse,
balanced, and interaction-rich multi-modal dialogue dataset, MM-DIA, which is characterized by
360.26 hours, 54,700 clips of highly expressive, contextually rich, and interaction-heavy dialogues.
MM-DIA provides fine-grained annotation on various dialogue aspects, such as non-verbal sound,
speaker identity and emotional dynamics at the individual and collective levels. To our best knowl-
edge, MM-DIA is the first dataset to specifically center on dialogue expressiveness across multiple
modalities.

Leveraging this dataset, we formally introduce Multimodal Dialogue Generation (MDG) as a con-
ditional generation paradigm. Given multi-modal conversational context (text, audio, vision), gen-
erate multi-modal dialogue behaviors (one or more modalities) that not only ensure cross-modal
alignment but also support conditional controllability with respect to interaction-level variables. To
operationalize this controllability, we distinguish between two complementary forms: (1) explicit
control, where style is specified through natural language prompts, and (2) implicit control, where
conditions are conveyed through other modalities or structural cues.

For the explicit prompt control, we introduce the task of Style-controllable Dialogue Speech Syn-
thesis (Task 1, as shown in Fig. 1), which directly supports generation of dialogue speech from
the freestyle natural language description. With the supervised finetuning on MM-DIA data, current

2
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Table 1: Comparison of the MM-DIA dataset with existing dialogue-related datasets across do-
main, scale, modality, annotation, and open-source (OS). Modality includes text (T ), vision (V),
and audio (A), with audio-visual details on speaker identity (S-ID), non-verbal annotations (N-V),
and speaker visibility (S-V).

Domain Dataset
Scale Modality Audio-visual Details Annotation

OS
#Clip #Utt. #Dur.(h) T V A S-ID N-V S-V Granularity Label

Spoken Dia. OpenDialogue (Zhu et al., 2025) 1M 6.5M 6.8K ✓ ✗ ✓ ✓ ✗ ✗ Dialogue None ✓

Textual Dia.
OpenViDial 2.0 (Wang et al., 2021) - 5.6M - ✓ ✓ ✗ ✗ ✗ ✗ Dialogue None ✓

YTD-18M (Han et al., 2023) 18M - - ✓ ✓ ✗ ✗ ✗ ✓ Dialogue None ✓

Text-to-Video
OpenVid-1M (Nan et al., 2025) 1M - 2.1K ✓ ✓ ✗ ✗ ✗ ✗ Scene Desc. ✓

Captain Cinema (Xiao et al., 2025) - 300K 500.0 ✓ ✓ ✗ ✓ ✗ ✗ Shot Desc. ✗

MM Dia. Und.
MELD (Poria et al., 2019) 1.4K 14K 13.6 ✓ ✓ ✓ ✓ ✗ ✓ Sentence Tag ✓

MC-EIU (Liu et al., 2024b) 5.0K 56K 53.0 ✓ ✓ ✓ ✓ ✗ ✓ Sentence Tag ✓

Movie Gen. MovieBench (Wu et al., 2025) 16.0K 61K 69.2 ✓ ✓ ✓ ✓ ✗ ✗ Shot/Scene Desc. ✓

MM Dia. Gen. MM-DIA (Ours) 54.7K 449K 360.3 ✓ ✓ ✓ ✓ ✓ ✓ Dia./Sent. Desc./Tag ✓

MM Dia. Gen. MM-DIA-BENCH (Ours) 309 1,851 1.7 ✓ ✓ ✓ ✓ ✓ ✓ Dia./Sent. Desc./Tag ✓

spoken dialogue models are able to generate high quality spoken dialogue with superior performance
in intelligibility, speaker turn-taking accuracy, and emotional tone that adheres to the control of style
instruction.

For the implicit cross-modal control, we introduce the following two tasks: (1) Vision-conditioned
Dialogue Speech (Task 2 in Fig. 1), which highlights the ability to generate coherent, contextu-
ally accurate speech aligned with turn-taking visual sequences. (2) Speech-driven Dialogue Video
Generation, which focuses on generating videos capturing the essence of dialogue speech. Both
of them require modeling implicit multimodal conditions and cross-modal generation, substantially
increasing data demands and system complexity. This motivates us to introduce these tasks as open
benchmarks for future research. Building on MM-DIA, we establish MM-DIA-BENCH, a diverse
and balanced benchmark of 309 highly expressive dual-speaker dialogues with ensured speaker vis-
ibility. This benchmark is designed to evaluate style consistency in audio-visual communication
throughout the dialogue turns, addressing a gap in traditional video evaluation, which often over-
looks the assessment of cross-modal style consistency. Experiments reveal the limitations of current
frameworks in audio-visual consistency when replicating the expressiveness of human interaction,
offering new insights and challenges in cross-modal conditional dialogue generation.

2 RELATED WORKS

2.1 MULTIMODAL DIALOGUE DATASETS

Table 2: Comparison between MM-DIA and existing
TV/Movie-sourced datasets in the annotation framework.

Dataset Source Segmentation Anno. Input Anno. Tool

MELD (Poria et al., 2019) TV Human V + A + T Human
MC-EIU (Liu et al., 2024b) TV Human V + A + T Human

MovieBench (Wu et al., 2025) Movie Vision-based I + A + T GPT-4o
MM-DIA (Ours) TV/Mov. Multi-modal V + I + A + T Gemini 2.5-pro

In recent years, multimodal dialogue
datasets have been pivotal for advanc-
ing research in multimodal AI sys-
tems. A significant number of ex-
isting dialogue datasets (Han et al.,
2023; Zhu et al., 2025) provide
valuable resources for training and
evaluating dialogue systems. How-
ever, they primarily focus on sin-
gle modality interactions, presenting
challenges for further multimodal alignment and style control. In contrast, the web sourced video
datasets (Ju et al., 2024; Wang et al., 2024; Nan et al., 2025) offer richer audio-visual data, but
mainly feature casual chitchat or designated situational dialogues, limiting their diversity for flexible
prompt control in multimodal dialogue. Similarly, movie-sourced video datasets (Han et al., 2024;
Wu et al., 2025) offer a wealth of audiovisual content yet typically present unclear delineations of
dialogue boundaries. To address these gaps, we introduces a novel multi-modal-based framework
catering for dialogue-level style annotation, as shown in Tab. 2. Specifically, our approach focuses
on synchronized audio-visual input instead of only key-frame image sequences (I), contribute to the
development of richer, more versatile datasets for advancing multimodal dialogue research.

3
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Figure 2: Framework of the Movie/TV-sourced in-the-wild data curation pipeline for multi-modal
dialogue extraction with fine-grained interaction-level annotations.

2.2 DIALOGUE GENERATION FROM MULTI-MODALITY

Human interaction is fundamentally shaped by verbal exchanges, with dialogue serving as the small-
est and most structured unit of social communication. In speech, recent advances in spoken dialogue
generation (Labs, 2025; Ju et al., 2025; Zhu et al., 2025) capture realistic turn-taking and multi-
speaker timbres (Boson AI, 2025), enabling more natural exchanges. In vision, progress in short
movie generation (Xiao et al., 2025) supports high-fidelity multi-shot scenes, consistent charac-
ter appearances (Liu et al., 2024a; Zhou et al., 2024), and immersive transitions (Blattmann et al.,
2023; Zhang et al., 2023), producing coherent visual narratives. To enhance realism through syn-
chronized facial movements, various talking video generation systems (Ki et al., 2025; Cui et al.,
2025; Ji et al., 2025) are proposed. These advances establish the modality-specific foundations for
conveying semantic information in dialogue. Yet, the challenge of flexibly controlling the interplay
among speech, vision, and text for coherent and expressive multimodal multi-speaker dialogue re-
mains largely unexplored. In this paper, we fill this gap by introducing a dataset and benchmarks for
controllable, expressive multimodal dialogue.

3 MM-DIA: A LARGE-SCALE EXPRESSIVE MULTIMODAL DIALOGUE
DATASET

Movies and TV series are two of the richest artistic forms that feature carefully crafted, context-
sensitive performances. Dialogues from these sources exhibit stronger emotion, heightened tension,
and greater resemblance to everyday interactions. However, the pursuit of strong cinematic sensory
effects also poses challenges for data processing. Frequent background sounds, dramatic bursts,
or ambiguous murmurs hinder the accuracy of automatic speech recognition (ASR), while artistic
camera movements create complex audio-visual asynchrony, e.g., voiceovers or flashbacks, com-
plicating dialogue boundary detection and speaker identification. As a result, a more cautious and
comprehensive approach to the utilization of multi-modal information for various tasks is necessary,
as introduced in following sections.

3.1 PIPELINE ORIENTATION WITH DATA PREPARATION

In preparation of the dataset, we collect original movie & TV data from multiple public available
sources, while the some of the official subtitle (SRT) files are unavailable. Although automatic
speech recognition (ASR) can provide corrected time-stamped transcriptions of spoken content, the
high word error rates associated with ASR, especially in complex movies and TV series, is unsatis-
factory. To ensure high-quality subtitle due to the inherent trade-off between time correctness and
content accuracy and further enlarge the dataset, we additionally crawled some multi-sourced uncal-
ibrated subtitle files, combining them with ASR results to perform precise synchronization between
the timestamps and the content. Selecting the matched specific ASR segments and subtitle entries as

4
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anchor points, we perform translation operations to adjust time and duration differences in the uncal-
ibrated subtitle timestamps with minimal discrepancies. The qualified subtitle with low variance in
discrepancy are double-checked by human to ensure usability. With the corrected timestamps from
the calibrated subtitle, we extract the keyframe sequence from each subtitle line as representative for
the upcoming dialogue boundary detection.

3.2 MULTI-MODAL-BASED DIALOGUE EXTRACTION

The automatic extraction of continuous dialogue from movies & TVs is challenging due to complex
cinematic visuals. Dialogue boundaries often differ from shot or scene boundaries, as conversations
may span multiple shots or shift within a single long scene. To address this, we introduce a tolerance-
enhanced scene boundary detection method that first applies a Vision-Language Model (VLM) to
identify scene continuity, followed by a Large Language Model (LLM) to refine in-scene dialogue
boundaries.

Unlike traditional frame-to-frame matching methods (Wu et al., 2025; Xiao et al., 2025), our ap-
proach incorporates a buffer mechanism with a dynamic keyframe pool, allowing the model to bridge
momentary visual disruptions such as rapid camera shifts, flashbacks, or perspective changes. This
improves robustness in maintaining dialogue continuity across complex scenes. Based on the re-
sulting scene-level segmentation, we further leverage subtitles and LLM-based semantic filtering to
extract meaningful dialogue segments, particularly in long scenes exceeding 90 seconds. By com-
bining visual and textual cues, the framework achieves coherent and accurate dialogue extraction,
ensuring the integrity of multimodal context.

3.3 SENTENCE-LEVEL FINE-GRAINED ANNOTATION

Based on the dialogue boundaries determined by the previous two steps, we divide the movie into
short dialogue segments. Next, we determine the attribution of the dialogue speech by assigning
speaker identity to each line of dialogue. However, due to the unsatisfactory accuracy of speaker
diarization in the audio modality, and the fact that movies and TV shows not always have visible
speaker, visual modality-based active speaker detection is not very effective. Since it is difficult to
accurately determine the speaker attribution for each line using only traditional automatic tools, we
use Gemini-2.5-flash to assign the speaker based on the audio-visual synchronized video segments
and dialogue subtitles. Geimini is prompted with the main character bank of the movie to recognize
speakers, it will otherwise identify the speakers with their on-screen persona. Additionally, we label
the non-verbal sounds or vocalizations during the dialogue process through this step to better capture
the fine-grained details of dialogue expressiveness and context-related nuances. For downstream
dialogue-related tasks like talking head generation, we further use the Insightface package to label
the visibility of speakers that belong to the main characters in the corresponding keyframes.

3.4 DIALOGUE-LEVEL EXPRESSIVENESS ANNOTATION

Table 3: Detailed statistics for MM-DIA and
MM-DIA-BENCH. Scored from Gemini/Human.
Statistic MM-DIA MM-DIA-BENCH

Total Dialogues 54,700 309
Total Turns 449,138 1,851
Total Duration (h) 360.26 1.69

Avg. Spk. / Dia. 2.29 2.00
Avg. Dur. / Dia. (s) 23.71 19.69
Avg. Turns / Dia. 8.21 5.99
Avg. Dur. / Turn (s) 2.89 3.29
Avg. Turns / Spk. / Dia. 3.59 3.00
Avg. Rounds of Speaker Changes / Dia. 4.28 4.09

Speaker Visibility Partial All
Avg. Score on Emotion Intensity 6.76 / 5.22 7.81 / 5.74
Avg. Score on Volatility of Emotion Flow 5.32 / 4.36 7.45 / 5.68

To enable systematic study of complex,
interaction-level dialogue behaviors, we define
the so-called “dialogue expressiveness” as what
is consistent across modalities in a dialogue that
makes it expressive beyond the semantic con-
tent. Two complementary paradigms of “dia-
logue expressiveness” are proposed:

(1) Affective Triplet Control, consisting of
Relationship, Interaction Type, and Emotional
State, that jointly model role shaping, conver-
sational dynamics, and emotional evolution. It
enables the precise control with the desired sce-
nario of dialogue.

(2) Description Control, capturing per-speaker, turn-level style trajectories. It enables the sepa-
rate control over speakers, even the fine-grained emotion flow among the dialogue within the same
speaker.

5
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Figure 3: Distributions of (a) Dual-speaker Gender, (b) Relationship, and (c) Interaction Type among
MM-DIA.

These paradigms cover common refined tag-based control as well as freestyle description-based
natural language control forms. Given the speakers bank with the audio-visual synchronized video
segments, we use Gemini-2.5-pro to annotate both paradigms of the dialogue expressiveness. To
further quantify the abstract expressiveness, we also annotate the global emotional intensity of the
dialogue as a whole and the local emotional volatility that occur at the level of individual speakers
during the conversation. For instance, if a conversation remains consistently high-energy and intense
throughout, the emotion intensity would be rated as high, while the emotion volatility would be low.

3.5 MM-DIA WITH MM-DIA-BENCH

Applying the data pipeline and annotation paradigms to over 700 hours data, including over 200
movies and 9 TV series, the resultant multi-modal dialogue dataset, MM-DIA, is characterized by
360.26 hours, 54,700 clips of highly expressive, contextually rich, and interaction-heavy dialogues,
accompanied with fine-grained annotation on various dialogue aspects, such as non-verbal sound,
speaker identity and emotional dynamics at the individual and collective levels. It is the first dataset
to specifically center on dialogue-level expressiveness across multi-modalities. Fig. 3 further shows
the balanced distribution of MM-DIA from multiple Affective triplet perspective. It is interesting
to observe the corresponding connection between “Relationships” and “Interaction Type”. For in-
stance, the Workplace is the most common setting in happening Commands and Questioning, while
people are more likely to engage in Emotion Release and Banter in Intimate relationships. The
distribution further confirms the high consistency between the data and real-life distributions

Subsequently, we establish MM-DIA-BENCH, a diverse and balanced benchmark with carefully se-
lected 309 instances of highly-expressive dual-speaker dialogues with assurance for speaker visibil-
ity. It meets the criteria of different kinds of downstream tasks in cross-modal dialogue generation.
With the two invited annotators scoring on 100 random clips from each part of the data, as shown
in Tab. 3, the results indicate that both Gemini and humans agree that MM-DIA-BENCH achieves a
higher score in quantized dialogue expressiveness.

3.6 VALIDATION OF THE ANNOTATION SYSTEM AND DATASET

To validate the quality of the annotation system, we conduct a series of through evaluation (see Ap-
pendix. A.2) on each step component, demonstrating that our pipeline achieves human-level quality
in annotation consistency and reliability.

4 MULTIMODAL DIALOGUE GENERATION TASKS

In this section, we first introduce a unified formulation of Multimodal Dialogue Generation
(MDG). Based on this framework, we then present three representative task definitions, each instan-
tiating MDG under different control conditions and output modalities. These formulations establish
the foundation for subsequent evaluation protocols and experiments.
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4.1 PROBLEM FORMULATION

To enable systematic study of multimodal dialogue behaviors, we formalize the task of
MDG as a conditional generation problem. Given a multimodal conversational context C =
{ctext, caudio, cvision}, the goal is to generate multimodal dialogue behaviors Y = {ytext, yaudio, yvision}
that are (i) semantically coherent with the input context, (ii) aligned across modalities, and (iii) con-
trollable with respect to interaction-level variables. Formally, MDG can be expressed as modeling
a conditional distribution: P (Y | C,Z), where Z denotes explicit/implicit control variables for di-
alogue style. This formulation unifies diverse downstream tasks such as style-controllable dialogue
speech synthesis, keyframe-conditioned speech synthesis, and speech-driven dialogue video gener-
ation, providing a foundation for systematic benchmarking of controllable multimodal dialogue.

4.2 TASK 1: STYLE-CONTROLLABLE DIALOGUE SPEECH SYNTHESIS

Definition. Given a dialogue transcript T = {c1, c2, . . . , cn} and an explicit style condition Zexp ∈
({(cR, cI , cE)} ∪ L∗), i.e., either an Affective Triplet schema or a free-form natural language
description, the goal is to synthesize a multi-speaker dialogue audio stream A: A = f(Zexp, T ).
Unlike conventional approaches that generate utterances turn by turn and concatenate them, we
directly model A as a continuous dialogue speech sequence with embedded speaker changes but
without explicit turn-taking boundaries, similar to Zero-Shot Dialogue Generation (ZSDG) (Zhang
et al., 2024).

Challenges. Compared with conventional Controllable Text-To-Speech (CTTS) and ZSDG, our task
presents several unique challenges: (i) generating a continuous single-pass end-to-end dialogue au-
dio stream that naturally encodes rich multi-speaker interactions beyond turn-level concatenation;
(ii) maintaining coherence and consistency across successive speakers, such as preserving role iden-
tity and interactional dynamics throughout the conversation; and (iii) supporting multi-level control-
lability, ranging from global conditions specified by structured triplets (e.g., relationship, interaction
type, affective state) to fine-grained per-speaker expressive trajectories, such as emotional flow and
intensity variation across dialogue turns.

4.3 TASK 2: VISION-CONDITIONED DIALOGUE SPEECH SYNTHESIS

Definition. Let I = {I1, . . . , Ik} be a temporally ordered sequence of keyframes that capture
speakers’ appearance, facial expressions, and scene context, together with temporal-aligned dialogue
transcripts T = {T1, . . . , Tk}. The goal is to infer contextual style S(I) from the visual sequence
and generate multi-speaker dialogue speech A: Â = g(S(I), T ) = g(Z imp, T ), where Z imp = ψ(I)
encodes implicit interaction-level conditions (e.g., relationship, interaction type, emotional state).
This task instantiates MDG with Y = {aud} under implicit controllability.

Challenges. Compared with explicit prompt-based control, this task requires the model to (i) reli-
ably infer interactional variables from visual cues such as appearance, posture, and scene compo-
sition; (ii) capture temporal dependencies across the keyframe sequence to reflect evolving interac-
tional dynamics in generated speech; and (iii) align inferred styles with textual content T so that the
synthesized audio remains both semantically faithful and contextually expressive.

4.4 TASK 3: DIALOGUE VIDEO GENERATION

Definition. Given dialogue audioA and the corresponding transcript T , the objective is to synthesize
a dialogue video V̂ that is temporally synchronized with speech and affectively consistent with
dialogue semantics: V̂ = h(A, T, Z), where Z may include explicit style prompts or implicit cues
inferred from prosody, turn-taking, and affective dynamics. This task instantiates MDG with Y =
{vis}.

Challenges. Compared with text-to-video(T2V) tasks and single talking head generation, our task
introduces three key challenges: (i) multi-speaker identity and scene continuity under rapid shot
changes and partial visibility; (ii) multi-granularity audio–visual alignment—from lip–audio sync
and utterance-level prosody/gesture to dialogue-level expressiveness (relationship, interaction type,
affective state), often under weak/implicit control; and (iii) long-range cinematic reasoning to faith-
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fully stage interactions (who, how, where), requiring shot planning and blocking beyond what stan-
dard quality or lip-sync metrics specify.

5 BENCHMARKING IN MULTIMODAL DIALOGUE GENERATION

In this section, we conduct several experiments to verify the effectiveness of MM-DIA and MM-
DIA-BENCH on supporting the proposed multimodal generation tasks. Experiment results show that
MM-DIA enables high-quality style-controllable spoken dialogue generation under explicit control,
while MM-DIA-BENCH reveals key limitations of existing frameworks under implicit cross-modal
control, offering new insights and challenges for future research.

5.1 EXPERIMENTS ON EXPLICIT CONTROL IN DIALOGUE SPEECH SYNTHESIS

A. Evaluation Settings.

1. Test sets: We prepared three test sets referred to as Hard, Test, and Out-of-Domain respectively.
The Hard set is a superset of MM-DIA-BENCH containing 598 clips of highly-expressive data
across MM-DIA. The remaining scope of MM-DIA is then randomly sampled into Train, Valid and
Test by 90% : 5% : 5%. To further detect the generalizability, we curated another Out-of-Domain set
with 60 clips of human-refined dialogue annotations. All experiment inference is conducted twice,
taking the Description and Affective Triplet as style control for each.

2. Metrics: To evaluate the performance of the synthesized dialogue speech intrigued by MM-DIA,
we established a dedicated evaluation from the speech, dialogue, and controllability-level.

Speech Quality: Word Error Rate (WER) and UTMOS (Takaaki et al., 2022) access the intelligibility
and the overall quality of speech.

Dialogue Quality: Speaker Turn-Taking Accuracy (cpWER) and Speaker Aware Similarity (saSIM)
respectively represent the intra-speaker similarity and inter-speaker timbre transition accuracy in
spoken dialogue generation.

Expressiveness Controllability: Since there are no appropriate objective metrics to reflect the consis-
tency between the text prompt and speech, we conduct subjective evaluation, including Human-Mos
Score on the general quality and instruction-following capability. Inspired by MoonCast (Ju et al.,
2025), we further involve Gemini-as-Judge for large quantities of nuance evaluation across Spon-
taneity, Coherence, Intelligibility, Quality, Timbre Similarity, and Instruction Following Capability.
The Human Mos experiment Additionally, we calculate the mean recall accuracy on the label at-
tributes of relationship and interaction type.

B. Baseline Models & Implementation Details.

To validate the effectiveness of MM-DIA, we perform supervised finetuning of pretrained backbones
on our dataset with explicit style supervision, enabling controllability at both the global (triplet) and
local (description) levels. We select two state-of-the-art pretrained backbones: Higgs-Audio-V2-
Base (Boson AI, 2025) and Dia-1.6B (Labs, 2025). Both models support single-pass dialogue
speech generation. Notably, Higgs-Audio-V2 allows flexible conditional inputs across multiple
tasks, whereas Dia-1.6B is optimized for dialogue synthesis but does not natively support condi-
tional inputs. To enable controllability, we introduce a lightweight adapter module that projects
explicit style embeddings into Dia-1.6B’s decoder.

C. Evaluation Results

Experimental results from Tab. 4 and Tab. 9 shows that spoken dialogue generation models out-
perform in generating high-quality style-controllable dialogue after supervised fine-tuning on MM-
DIA while both tables exhibit a consistent trend. The supervised fine-tuning on Higgs-Audio-V2
successfully decreases the word error rate in the single-turn inference of multi-turn dialogue gen-
eration. The obvious reduction in cpWER indicates that the accuracy of dialogue tone conversion
has significantly improved. In both subjective metrics and recall rate indicators, the models after
SFT show notable advantages. These findings suggest that MM-DIA has helped the model generate
more accurate and coherent dialogue while improving the ability to control styles effectively. We
can also observe some slight reduction and sa-SIM metrics, suggesting the trade-off that while the
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Table 4: Experimental results of Dialogue Speech Synthesis with Description as style prompt.

Model
Speech-Quality Dialogue-Quality Human-MOS Gemini-as-Judge

WER↓ UTMOS↑ sa-SIM↑ cp-WER↓ Qual.↑ Instr. Follow.↑ Spont.↑ Coher.↑ Intellig.↑ Similar.↑ Qual.↑ Instr. Follow.↑

Dia-Base 19.991 2.272 0.389 51.713 2.410±0.940 2.500±0.890 3.993 4.335 4.446 3.738 4.248 3.807

Dia-SFT 29.071 1.974 0.447 57.813 2.890±0.690 2.880±0.710 3.626 4.071 4.171 3.590 3.971 3.598

Higgs-Audio-V2-Base 31.251 3.093 0.475 104.867 3.580±0.560 3.110±0.600 3.313 3.96 4.276 4.021 3.874 4.012

Higgs-Audio-V2-SFT 4.450 3.280 0.447 33.765 4.440±0.290 4.130±0.520 4.277 4.881 4.965 4.640 4.851 4.707

Table 5: Experimental results of Vision-conditioned Dialogue Speech Synthesis.

Model
Speech-Quality Dialogue-Quality Label-Recall Gemini-as-Judge

WER↓ UTMOS↑ sa-SIM↑ cp-WER↓ Mean acc ↑ Spont.↑ Coher.↑ Intellig.↑ Similar.↑ Qual.↑ Instr. Follow.↑

HarmoniVox 21.223 3.5704 0.62 30.981 40.47 1.790 3.390 4.238 1.657 1.895 2.410

Cascaded Gemini + Higgs 5.781 3.3245 0.499 16.267 42.33 3.081 4.129 4.927 2.605 3.21 3.347

Cascaded GPT + Higgs 5.793 3.4384 0.476 14.583 52.17 3.326 4.000 4.978 3.022 3.587 3.522

model has become better at generating dialogue with specific tones or styles, it might sacrifice some
degree of generality or semantic accuracy in certain cases, since the domain shift in movie-sourced
data brings challenges in preserving universal textual coherence and high-quality semantic fidelity.

5.2 EXPERIMENTS ON VISION-CONDITIONED DIALOGUE SPEECH SYNTHESIS

A. Evaluation Settings

1. Test sets: We use 132 clips from MM-DIA-BENCH, which guarantee single speaker visibility in
each keyframe for the model to distinguish the utterance speaker.

2. Evaluation Metrics: Since Task 2 shares the same output paradigm as Task 1, we preserve
most metrics while slightly modifying prompts for Gemini to compares the alignment in dialogue
expressiveness between the speech and visual sequence.

B. Baseline Models & Implementation Details We implement several representative baseline mod-
els for comparison: (1) HarmoniVox (Zhou et al., 2025). This model implicitly infers the avatar’s
internal states from a visual image I , projects them into a talking style representation S, and then
synthesizes speech audio A conditioned on S. We adopt sentence-level inference in our experi-
ments and concatenate corresponding utterances into complete dialogue. (2) Cascaded VLM +
Higgs-Audio-SFT. We employ a strong vision-language model (e.g., GPT-5, Gemini-2.5-pro) to
first generate descriptive style prompts in human interaction from the visual dialogue context. These
prompts are then cascaded into Higgs-Audio-V2-SFT for speech synthesis.

C. Evaluation Results

As shown in Tab. 5, although most data preserved stable performance in basic speech and dialogue
metrics, the subjective score in Gemini-as-Judge appears to have a significant decline compared to
the value. in Tab. 5. It mainly collapses into an uncontrollable spoken dialogue generation modal,
but dismiss the style cue attached through the modality alignment. This initial experiment illustrates
the limited capability of the existing frameworks in effectively interpreting the cross-modal human
interaction style.

5.3 EXPERIMENTS ON DIALOGUE VIDEO GENERATION

Please refer to Appendix A.5 for detailed information.

6 CONCLUSION

In this paper, we propose MM-DIA, the first large-scale highly-expressive multi-modal dialogue
dataset for the task of Multimodal Dialogue Generation, and the corresponding dual-speaker bench-
mark MM-DIA-BENCH for the evaluation of cross-modal conditional generation tasks. Experi-
ments demonstrate that MM-DIA enhances the style controllability of dialogue generation model
and MM-DIA-BENCH reveals the limitation in current cross-modal style consistency.
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REPRODUCIBILITY STATEMENT

We provide the MM-DIA dataset, a large-scale multimodal dialogue corpus, and the MM-DIA-
BENCH benchmark, both of which are integral to our research on style-controllable multimodal dia-
logue generation. Our experimental code and data curation pipeline will be made publicly available
upon acceptance of the paper. The models and algorithms used in this paper can be reproduced us-
ing the provided dataset and benchmark, with all necessary details regarding model configurations,
training procedures, and evaluation protocols included.

ETHICS STATEMENT

The MM-DIA and MM-DIA-BENCH datasets include multimodal data sourced from movies and
TV series, some of which may contain commercial content. We do not release the video or audio
clips themselves; instead, we provide annotations (e.g., transcript, affective triplet, dialogue de-
scription, speaker identity, keyframe with active speaker, etc.d) and the methods used to generate
them. Researchers are encouraged to obtain the corresponding media content independently and
align it with the provided timestamps. For any further queries or information, readers are welcome
to contact us.

We acknowledge the potential for biases inherent in the media content used and are committed to
addressing these in future versions of the dataset by incorporating more diverse sources and refining
our annotation methods.

LLM USAGE DISCLOSURE

We used GPT-5 for grammar checking and improving the clarity of sections 1 through 6 in this
manuscript. All technical content, experimental design, and analysis are original human work. The
LLM suggestions were manually reviewed and modified to ensure that they align with the paper’s
objectives and maintain technical accuracy.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS FOR DIALOGUE EXTRACTION

The automatic extraction of continuous dialogue in movies presents a challenge due to the inherent
complexity of cinematic visuals. Notably, dialogue boundary is different from the shot or scene
boundary. As a dialogue usually continues across multi-shot view, while multiple dialogues may
happen sequentially in a long scene with the alternative in speaker composition or naturally change
in topic. Therefore, we first introduce a tolerance-enhanced scene boundary detection method with
Vision Language Model (VLM), following by Large Language Model (LLM) to determine the in-
scene dialogue boundary.

Unlike static video content, movies often feature rapid camera shifts, inserted footage, and changes
in perspectives. Traditional frame-to-frame scene continuation detection methods (Wu et al., 2025;
Xiao et al., 2025), which are often based on direct visual comparison between adjacent frames,
struggle to cope with these momentary disruptions, resulting in abrupt scene splits and false dialogue
transitions. We introduce a buffer mechanism to dynamically update a keyframe pool of the current
scene. Let P = {p1, p2, . . . , pm} represent the dynamic set of most representative keyframes from
the current scene S = {st−n, . . . , st−1, st}, VLM uses the updated keyframes P to perform sparse
comparisons of the similarity between the P and the frame st+b after a certain buffer interval b.
Whenever the match fails, it falls back to the subsequent frame st+1 through binary search. Once
the match is successful, sparse comparisons start from the new end frame, recognizing the passed
frames within the same scene. Meanwhile, the keyframe pool P is updated the by replacing a most
similar frame within the pool with the new st+b.

S′ = {st−n, . . . , st+b}, P ′ = P ∪ {st+b} \ {pmost similar}, if VLM(P, st+b) = True.

The buffer spanning multiple frames, together with the memory pool, enables the algorithm to
”bridge” temporary interruptions instead of triggering incorrect scene boundaries. This allows the
algorithm to maintain the continuity of dialogue scenes over longer periods, providing greater re-
silience to the complex visual dynamics of movies.

With the resultant division from the vision modality at scene-level, we further extract relevant dia-
logue segments from the corresponding subtitle based on semantic meaning, especially to the long
scene over 90 seconds. LLM is used to precisely extract meaningful dialogue within the correct
scope. The framework effectively merges both visual and textual information to achieve robust
dialogue extraction, ensuring the integrity and coherence of the dialogue context.

A.2 VALIDATION RESULTS OF THE ANNOTATION SYSTEM AND DATASET

1. Evaluation of the correctness in movie-subtitle synchronization.

With the official version of subtitle stands for the ground truth of content and human judgment on
correctness of timestamps boundaries, the calibrated subtitle performs balanced in low word error
with high time accuracy, successfully enlarge the dataset. Notably, both ASR and official subtitle
tend to present the line slightly earlier than the actual time, while the start time is usually correct.
As a result, we slightly extend the audio up to the next starting time in the subsequent training.

2. Evaluation on the buffer mechanism in boundary detection.

Firstly, we conduct human evaluation on a random sampled test set with six movies, with the re-
ported boundary extraction accuracy to be 95.2%, comparing to 86.3% on the traditional frame-by-
frame scene continuation detection methods.

As to the ablation study on the proposed buffer mechenism, inspired by the Intersection over Union
(IoU) metric commonly used in Object Detection, we introduce a new metric called F1Overlap to
represent the similarity between two continuous segmentation of a same sequence of clips, expressed
as {A}, {B}:

Using A as the reference segmentation, for the n intervals in A, we take the corresponding interval
in B that has the maximum overlap with it to calculate the percentage of the total overlapping
duration of these n overlaps in A, denoted as P (A,B). Formally, this can be written as: P (A,B) =
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Table 6: TimeStamp accuracy and WER of
different subtitle version.

Data Source TimeStamp Accuracy WER

ASR 0.871 0.34

SRT-Uncalibrated 0.179 0.43

SRT-Calibrated 0.857 0.03

SRT-Official 0.870 0.00

Table 7: Completeness and Hallucination of
Dialogue Annotation from Qwen-72B, GPT-
5 & Gemini-2.5-pro.

Annotation Model Comp. ↑ Hall. ↓

Non-verbal Sound
Qwen 1.25 2.12
GPT 1.18 1.00
Gemini 4.66 1.22

Affective Triplet
Qwen 3.45 2.56
GPT 3.66 2.20
Gemini 4.76 1.38

Description
Qwen 3.15 2.76
GPT 3.60 2.16
Gemini 4.72 1.44

Table 8: Ablation study on the buffer b with Qwen 7B and Qwen 72B model as VLM.

F1 Overlap b=1 2 3 4 5

Qwen 7B 0.771 0.866 0.841 0.839 0.836
Qwen 72B 0.947 0.975 0.977 0.978 0.979

∑n
i=1 Overlap(Ai,Bmax)∑n

i=1 Duration(Ai)
. Similarly, we reverse the roles ofA andB to compute P (B,A). The similarity

between the two segmentations is then computed using the F1 score of P (A,B) and P (B,A):
F1Overlap = 2 × P (A,B)×P (B,A)

P (A,B)+P (B,A) . The F1Overlap metric prevents extreme segments, whether
excessively dense or sparse, from receiving a high P score based on a single perspective. As shown
in Tab. ??, we leverage Qwen 72B with b = 3 to balance the time and performance.

3. Quality evaluation on the dialogue annotation.

Following MovieBench Wu et al. (2025), we invite two human annotators to evaluate the perfor-
mance of Gemini annotation in the data curation pipeline, from the perspective of Completeness
and Hallucination. Annotators are asked to score 1 to 5 for the three kinds of annotation of 100
randomly sampled movie/TV clips from MM-DIA. As indicated in Tab. 7, in comparision with
Qwen 72B and GPT 5 (which instead takes sequential frames and audio as video input), Gemini
outperforms in most aspects with the best interpretation of the movie style.

A.3 METRICS EXPLANATION IN TASK 1.

Speech Quality: WER, UTMOS.

We used the official implmentation from Zhu et al. (2025) to compute Word Error Rate (WER) and
UTMOS, accessing the intelligibility and the overall quality of speech.

Dialogue Quality: cpWER, saSIM.

Speaker Turn-Taking Accuracy (cpWER) is computed by firstly concatenating all speech utterances
by the same speaker after processing the speaker diarization to the generated spoken dialogue, then
picking up the lowest WER among all the permutations of the generated transcripts with the con-
catenated ground truth.

Speaker Aware Similarity (saSIM) is acquired by computing mean speaker similarity among the
permutations of each speaker’s utterance after conducting the Montreal-Forced-Alignment.

A.4 EXPERIMENTAL RESULTS OF DIALOGUE SPEECH SYNTHESIS WITH AFFECTIVE
TRIPLET AS STYLE PROMPT.
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Table 9: Experimental results of Dialogue Speech Synthesis with Affective Triplet as style prompt.

Model
Speech-Quality Dialogue-Quality Label-Recall Gemini-as-Judge

WER↓ UTMOS↑ sa-SIM↑ cp-WER↓ Mean acc ↑ Spont.↑ Coher.↑ Intellig.↑ Similar.↑ Qual.↑ Instr. Follow.↑

Dia-Base 19.991 2.272 0.389 51.713 0.210 3.452 4.000 4.161 4.016 3.887 4.113

Dia-SFT 33.178 1.941 0.430 117.947 0.237 3.636 4.118 4.187 3.910 3.962 4.014

Higgs-Audio-V2-Base 39.684 3.066 0.461 75.847 0.352 3.169 3.816 4.075 3.843 3.704 3.850

Higgs-Audio-V2-SFT 5.265 3.286 0.459 33.134 0.428 4.031 4.820 4.967 4.610 4.636 4.809

A.5 EXPERIMENTS ON DIALOGUE VIDEO GENERATION

A. Evaluation Settings

1. Test sets: We construct our evaluation splits from MM-DIA. We automatically screen dialogue
clips and retain those with exactly one visible speaker in frame and an unobstructed face, yielding
133 dialogues. This set is curated to cover all annotated relationships and interaction types in MM-
DIA, ensuring broad semantic coverage for cross-modal alignment assessment.

2. Evaluation Metrics:

We evaluate along three axes: video quality (Fréchet Video Distance, FVD (Unterthiner et al.,
2019)), lip-speech synchronization (LSE-C and LSE-D (Chung & Zisserman, 2016)), and cross-
modal semantics/alignment. We adopt the model-as-judge pipeline introduced in Sec. 5.1 to score
Spontaneity, Coherence, Intelligibility, Similarity, Overall Quality, and Instruction Following, to
quantify how well the generated dialogue videos align with the speech modality—from low-level
timing (lip–speech sync) and utterance-level prosody/expressiveness to dialogue-level semantics
(e.g., staging, flow, and instruction following). In addition, we report label accuracy/recall on Re-
lationship and Interaction Type to test whether generated scenes faithfully reflect dialogue-level
interpersonal semantics.

B. Baseline Models & Implementation Details

Because no system currently performs end-to-end dialogue-to-video generation, we evaluate two
practical families:

• SI2V (Speaker-Image-to-Video). We split dialogue-level movie clips into sentence-level segments
and drive the corresponding speaker images with each utterance, then concatenate per-sentence
clips into dialogue videos. Given that SI2V models use reference keyframes, we do not evaluate
relationship/scene accuracy here; we focus on lip sync and expressiveness alignment.

• T2V (Text-to-Video). Using sentence-level fine-grained and dialogue-level expressiveness anno-
tations in MM-DIA, we construct rich text prompts to condition multi-speaker scene synthesis.
Since audio is not explicitly input, we do not score lip sync for T2V; instead, we emphasize
relationship/interaction and expressiveness alignment. During model-as-judge, we provide the
corresponding audio for Gemini to evaluate the cross-modality alignment.

C. Evaluation Results

All experiments are conducted on MM-DIA-BENCH dialogue clips with visible dyads and diverse
expressiveness to ensure comparable shot complexity across systems.

Results in Tab. 10 show that no current system adequately solves dialogue video generation. Despite
rich prompts, T2V models capture only a portion of high-level dialogue semantics; accurate staging
of interaction scenes and who-interacts-with-whom remains unreliable. SI2V systems attain higher
Coherence/Intelligibility/Quality on average, but Instruction Following and fine-grained Spontaneity
alignment fluctuate across long dialogues.

To summarize, SI2V pipelines are complex and depend on keyframes; practical deployment will
require coupling with keyframe generation to approach end-to-end usage. Additionally, small face
extents and occlusions in natural dialogue shots make lip-sync brittle, often producing artifacts.
Meanwhile, T2V systems lack explicit audio conditioning, making it difficult to synchronize with
speech timing and match vocal expressiveness; they also underperform at faithfully reconstructing
relationships and interaction patterns.
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Table 10: Experimental results of Dialogue Video Synthesis.

Model
Visual-Quality Lip-Sync Label-Recall Gemini-as-Judge

FVD↓ LSE-C↑ LSE-D↓ ACC-Rela. ↑ ACC-Interact.↑ Spont.↑ Coher.↑ Intellig.↑ Similar.↑ Qual.↑ Instr. Follow.↑

FLOAT (Ki et al., 2025) 572.187 4.805 9.502 - - 2.703 2.405 3.050 3.339 2.248 3.050

MultiTalk (Kong et al., 2025b) 124.543 5.305 8.795 - - 4.524 4.388 4.612 4.689 4.922 4.631

Sonic (Ji et al., 2025) 117.096 4.986 8.503 - - 4.592 4.583 4.750 4.800 4.833 4.750

Wan-2.2 S2V (Wan et al., 2025) 154.261 4.288 9.873 - - 4.205 4.116 4.357 4.589 4.652 4.384

HunyuanVideo (Kong et al., 2025a) 335.591 - - 47.97% 13.82% 2.089 4.553 4.049 2.968 4.309 2.293

Wan-2.2 T2V (Wan et al., 2025) 300.092 - - 53.66% 18.70% 3.114 4.634 4.602 3.732 4.423 3.268

Ground Truth - 6.275 8.333 100.00% 100.00% 4.892 4.971 4.961 4.931 5.000 4.902

Overall, neither family is yet adequate for dialogue video generation. The results validate our bench-
mark design: quality and lip-sync alone are insufficient; cross-modal semantic alignment must be
measured explicitly to drive progress. Future work should target: (1) End-to-end dialogue-to-video
modeling that unifies keyframe planning, character visibility, lip/body sync, and scene continuity;
(2) Multi-granularity alignment learning using sentence-level and dialogue-level expressiveness la-
bels (relationship, interaction type, affect); (3) Cross-modal semantic discriminators that penalize
misalignment during training; and (iv) Long-range dependence & shot planning for controllable
staging in multi-speaker scenes, consistent with expressiveness schema in MM-DIA.

A.6 PSEUDO-CODE FOR MOVIE-SUBTITLE SYNCHRONIZATION

Algorithm 1 Subtitle Scene Segmentation with VLM
Require: Subtitle file srt, Video file video, Step size step, Buffer size buffer
Ensure: List of dialogue ranges

1: Load VLM model (Qwen2.5-VL-7B-Instruct) ParseScriptSrt
2: Extract subtitle blocks with index and timecode
3: return list of blocks ExtractFramevideo, timecode
4: Compute midpoint timestamp
5: Use ffmpeg to extract frame image
6: return image path IsContinuationframes
7: Prompt VLM with frames to check scene continuity
8: if last frame matches context then
9: return True

10: else
11: return False
12: end if
13: Initialize ranges list
14: for each block i do
15: Try to extend range by comparing future blocks using VLM
16: Allow up to step ahead, using up to buffer context frames
17: if continuation fails then
18: finalize current segment
19: end if
20: end for
21: return ranges
22: Save ranges to JSON output
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A.7 EXPLANATION OF RELATIONSHIP AND INTERACTION TYPE CATEGORIES

Table 11: Explanation of Relationship Categories with Typical Labels

Relationship Explanation and Example
Workplace Refers to professional relationships and environments, including

people within a work setting.
Example: Colleague, Boss, Manager, Coworker, Client.

Friends A relationship between individuals characterized by mutual af-
fection, trust, and companionship outside of family and work.
Example: Buddy, Pal, Companion, Mate, Peer.

Intimate Relationships of a more personal and romantic nature, typically
involving emotional and physical closeness.
Example: Boyfriend, Girlfriend, Partner, Spouse, Fiancé.

Family Relationships defined by blood ties or marriage, including ex-
tended family members.
Example: Mother, Father, Sibling, Uncle, Cousin.

Adversarial Relationships characterized by opposition or conflict, often in-
volving rivalry or animosity.
Example: Enemy, Opponent, Rival, Antagonist, Competitor.

Individual A relationship with oneself, or a solitary state where interaction
with others is minimal or nonexistent.
Example: Solo, Loner, Isolated, Monologue.

Social Encompasses a wide range of social roles and interactions, from
professional settings to casual encounters.
Example: Teacher, Doctor, Neighbor, Stranger, Host, Cus-
tomer.

Authority Relationships based on power and control, typically involving
leadership, governance, and decision-making.
Example: King, Judge, Mayor, President, General.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.8 EXPLANATION OF INTERACTION CATEGORIES WITH TYPICAL LABELS

Table 12: Explanation of Interaction Categories with Typical Labels

Interaction Type Explanation and Example
Suggesting The act of convincing someone to believe or do something

through reasoning or emotional appeal.
Example: Persuasion, Convincing, Negotiation.

Conflict A state of disagreement or confrontation, often involving tension
or hostility.
Example: Argument, Disagreement, Accusation.

Questioning Asking questions to gain information, clarify doubts, or provoke
thought.
Example: Inquiry, Interrogation, Probing.

Narration The act of narrating a story or personal experience, often to en-
tertain or inform.
Example: Storytelling, Flashback, Monologue.

Explanation Providing detailed information or clarification on a topic to en-
sure understanding.
Example: Justification, Diagnosis, Clarification.

Commands Issuing direct orders or instructions to prompt action.
Example: Orders, Demands, Instruction.

Dynamic Cross-talk A back-and-forth exchange of dynamic dialogue, often with in-
terruptions or interjections.
Example: Interjection, Interruption.

Sympathizing Offering comfort or support to someone, often to alleviate con-
cerns or anxiety.
Example: Comfort, Support, Encouragement.

Rejection Dismissing or refusing a request, idea, or proposal.
Example: Refusal, Dismissal, Avoidance.

Banter Playful, often teasing, interaction intended to entertain or create
rapport.
Example: Teasing, Flirting, Joke.

Authority Power The use of authority or control to direct others’ actions, often in
a commanding or corrective manner.
Example: Domination, Criticism, Intervention.

Performance Delivering a structured or formal presentation, speech, or an-
nouncement to an audience.
Example: Presentation, Speech, Announcement.

Reflection Reflecting on one’s thoughts, feelings, or experiences, often
leading to a moment of realization.
Example: Introspection, Revelation, Discovery.

Emotion Release Expressing emotions, often related to frustration, anxiety, or re-
lief.
Example: Venting, Confession.

Invitation Extending a request for someone to join an event or activity.
Example: Invitation, Offer.

A.9 TYPICAL CASES IN MULTI-SOURCED MOVIE SUBTILE ALIGNMENT

The unmatched subtitles are obvious through the time discrepancy sequences. The upper plot shows
the start time discrepancy between anchor point start times in the subtitle and the ASR results. The
lower plot shows the duration discrepancy.
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(a)

(b)

(c)

Figure 4: (a) A bad case of Subtitle with edited movie segments. (b) A bad case of Subtitle with
edited movie speed. and (c) A good case of Subtitle with potential usability with time translation.
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