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ABSTRACT

Autoregressive conditional image generation models have emerged as a domi-
nant paradigm in text-to-image synthesis. These methods typically convert images
into one-dimensional token sequences and leverage the self-attention mechanism,
which has achieved remarkable success in natural language processing, to capture
long-range dependencies, model global context, and ensure semantic coherence.
However, excessively long contexts during inference lead to significant memory
overhead caused by KV-cache and computational delays. To alleviate these chal-
lenges, we systematically analyze how global semantics, spatial layouts, and fine-
grained textures are formed during inference, and propose a novel training-free
context optimization method called Adaptive Dynamic Sparse Attention (ADSA).
Conceptually, ADSA dynamically identifies historical tokens crucial for main-
taining local texture consistency and those essential for ensuring global semantic
coherence, thereby efficiently streamlining attention computation. Additionally,
we introduce a dynamic KV-cache update mechanism tailored for ADSA, reduc-
ing GPU memory consumption during inference by approximately 50%. Exten-
sive qualitative and quantitative experiments demonstrate the effectiveness and
superiority of our approach in terms of both generation quality and resource effi-
ciency.

1 INTRODUCTION

Built upon a standard decoder-only autoregressive architecture, large language models (LLMs) (Su
et al., 2024; Bai et al., 2023; Touvron et al., 2023a;b; Bi et al., 2024; OpenAI, 2023) generate text by
sequentially predicting the most likely next token, achieving advanced language understanding and
natural, human-like interactions. Inspired by this success, the autoregressive framework has been
further extended beyond text, giving rise to powerful models capable of generating high-quality im-
ages and videos (Li et al., 2024a; Chang et al., 2022; 2023). These autoregressive models employ
specially designed tokenizers (van den Oord et al., 2017; Tian et al., 2024; Chen et al., 2025; Qiu
et al., 2025; Chen et al., 2024; Ma et al., 2025; Li et al., 2024b) to transform images into one-
dimensional token sequences, adopting the same sequential probabilistic modeling approach used
in text generation. This sophisticated process redefines visual content generation as a step-by-step
token prediction task, where each visual patch is generated sequentially. Leveraging the strengths of
self-attention, contextual learning, and cross-modal knowledge, this unified paradigm offers excep-
tional scalability and flexibility, enabling models to directly produce coherent, high-fidelity visual
content from textual descriptions, thereby breaking new ground in cross-modal generation tasks.

However, the high computational cost of autoregressive models, especially when handling long
sequences, poses a significant challenge. The quadratic complexity of conventional attention mech-
anisms leads to substantial memory consumption and increased computational overhead, limiting
their scalability. To mitigate this issue, extensive research (Xiao et al., 2024a; Liu et al., 2025)
has focused on efficient context computation techniques and KV-cache designs for LLMs, includ-
ing sparse attention patterns, kernel-based approximations, and the replacement of attention layers
with linear-complexity state-space models. While these methods can effectively reduce compu-
tational overhead, they often necessitate architectural modifications and model retraining, limiting
their direct applicability to existing models. An alternative line of research has focused on enhancing
inference efficiency by dynamically pruning redundant key-value vectors, thereby reducing memory
consumption without altering the model architecture. However, these techniques have shown lim-
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Cache length: 1024 Cache length: 768 (-25%) Cache length: 640 (-37%) Cache length: 512 (-50%)

Prompt: "A blue Porsche 356 in glowing style."

Prompt: "A portrait photo of a kangaroo wearing an orange hoodie and sunglasses in glowing style. "

Cache length:384((-62%)

Figure 1: Achieving up to a 50% reduction in maximum context length during inference with our
method. Samples are generated using LlamaGen, with the first column employing standard self-
attention, while the remaining columns showcase the efficiency of dynamic sparse attention.

ited effectiveness in visual generation tasks. This limitation arises from the fundamental difference
between text tokens and image tokens. Analyzing this from the perspective of information entropy
per token, experimental results from Sparse Transformers (Child et al., 2019) show that for a 16×16
image patch, the total information content is approximately 26,291 bits. In contrast, in natural lan-
guage processing (NLP) tasks, where the vocabulary size is V = 65536, the average information
entropy of each token is log2 65536 = 16 bits. This stark disparity means that the information
encapsulated within a single image token vastly exceeds that of a text token. Simply put, while a
single word can convey nearly complete semantic information, an image patch alone cannot
provide a similar level of understanding. This fundamental difference makes the direct application
of text-based context optimization techniques to image generation inherently challenging.

Figure 2: The attention scores of
visual tokens in the LlamaGen-XL.

Despite their inherently high entropy, image tokens exhibit
strong spatial locality (He et al., 2024), with neighboring pix-
els frequently sharing similar visual characteristics. Empirical
evidence, as illustrated in Fig. 2, further validates this observa-
tion, showing that a substantial portion of attention is consis-
tently directed toward tokens positioned in the same column
of the preceding row. This observation indicates that not all
tokens in the context hold equal importance. While gen-
erating the current token, the model primarily relies on local
tokens to accurately capture texture and details, while previ-
ous tokens mainly provide global layout and semantic context.
Consequently, a locally constrained yet globally semantic-
aware attention mechanism could significantly enhance both
the efficiency and quality of autoregressive image generation.
Motivated by these insights, we propose Adaptive Dynamic
Sparse Attention (ADSA), a training-free strategy designed
to significantly reduce the effective context length to minimize
computational complexity in autoregressive models during inference. As illustrated in Fig. 3, ADSA
retains the earliest image tokens to preserve global stylistic context while employing windowed at-
tention to model local dependencies. It further adapts its attention patterns dynamically based on the
information density of previously generated tokens. To further improve computational efficiency,
we introduce a dynamic KV-cache update strategy that complements this sparse attention design.
Unlike conventional approaches that maintain a full-length cache throughout inference, our method
initializes the cache with only half the length and updates it adaptively during inference, signifi-
cantly reducing GPU memory usage without compromising generation quality. Results in Fig. 1
demonstrate that by selectively attending to the most informative tokens, ADSA effectively reduces
computational complexity while maintaining high-quality outputs.
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Previous Next Previous Previous PreviousNext Next Next

Dense Attention Window Attention Window + Prefix 
Attention

Window + Prefix + Select 
Attention

Figure 3: Dense Attention exhibits a time complexity of O(T 2), with computational overhead in-
creasing rapidly as the sequence length grows. Window Attention mitigates memory overhead by
calculating key-value pairs for only the most recent L tokens, providing efficient inference. How-
ever, its performance sharply degrades once the earliest tokens’ keys and values are discarded. Win-
dow Attention with Prefix partially alleviates this issue by reconstructing the key-value states from
the most recent L tokens for each new token while preserving the influence of initial tokens. Adap-
tive Dynamic Sparse Attention dynamically adjusts the context during inference, selectively incor-
porating high-semantic-density image tokens, effectively mitigating the performance degradation.

2 RELATED WORKS

Text-to-Image with Autoregressive Models. Autoregressive text-to-image generation methods
(Pang et al., 2024; He et al., 2025; Yu et al., 2025; Fan et al., 2024) reframe image synthesis as a next-
token prediction process, generating images sequentially, token by token. These models employ a
tokenizer to convert visual data into discrete tokens, which are then processed by a transformer us-
ing causal attention to maintain coherent image generation. Prominent methods, including VQGAN
(Yu et al., 2022), DALL-E (Ramesh et al., 2021), and LlamaGen (Sun et al., 2024), leverage this
framework by adopting GPT-style decoder-only architectures, effectively extending their text gen-
eration capabilities to visual synthesis. In contrast, some methods (Li et al., 2025) deviate from the
standard raster order, opting for a random token generation strategy. This allows these models to si-
multaneously perform image synthesis and editing tasks, offering greater flexibility and control. By
transforming two-dimensional images into one-dimensional token sequences, these models achieve
strong text-image alignment. However, they often face limitations in the form of rigid generation
orders and high computational costs, particularly when dealing with complex scenes.

Efficient Context Computation in LLM. Efficient context computation (Zhu et al., 2025; Gu et al.,
2025) remains a critical and persistent challenge for large language models (LLMs), where models
are typically trained on short contexts but are expected to maintain robust and consistent perfor-
mance over significantly longer sequences during inference. To address this, state-of-the-art meth-
ods such as StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Xiao et al., 2024a) have intro-
duced a Λ-shaped attention window, enabling nearly unlimited input lengths by adaptively balanc-
ing global and local context focus. LongHeads (Lu et al., 2024) attempt to extend context through
chunkwise retrieval from the middle cache. Other approaches, including MInference (Jiang et al.,
2024) and RetrievalAttention (Liu et al., 2024), employ dynamic cache selection strategies to accel-
erate inference, yet they primarily enhance speed without directly addressing the challenge of robust
context extrapolation. However, due to the fundamental differences between text and image modal-
ities—where text tokens are compact and low in entropy, while image tokens are dense and high in
entropy—these NLP-based strategies are not directly applicable to autoregressive image generation
models. In contrast, we introduce Adaptive Dynamic Sparse Attention (ADSA), a training-free,
context-optimized attention mechanism specifically tailored for image tokens. ADSA dynamically
reduces context length by selectively retaining the most informative tokens, effectively minimizing
computational complexity while preserving global semantic consistency and local texture details.
Notably, ADSA achieves these optimizations without the need for model retraining, making it a
versatile and scalable solution for autoregressive image generation tasks.
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3 ANALYSIS

To uncover the intrinsic content and structural control mechanisms of AR models, we conducted a
systematic experimental analysis, focusing on their attention dynamics and sequential sensitivity.

3.1 HOW IS THE OVERALL STYLE FORMED?

Figure 4: Early tokens define the global
visual style and color palette.

We conceptualize autoregressive continuous probabilistic
modeling as a path exploration problem. We hypothe-
size that the tokens generated during the initial stages,
despite their inherent high uncertainty, critically deter-
mine the trajectory of the image generation process, par-
ticularly influencing global style and color tone. This
phenomenon arises fundamentally from the causal atten-
tion mechanism in transformer architectures, where early-
generated tokens directly influence all subsequent token
generations, thereby dominating the global structural and
stylistic characteristics. In contrast, later-stage tokens pri-
marily rely on local contextual dependencies, responsible
for ensuring smooth color transitions and consistent local
textures within individual image patches, with minimal
impact on the overall image structure. This distinction emphasizes the significant role of early-stage
tokens in establishing the global coherence and stylistic uniformity of generated images. To em-
pirically validate this hypothesis, we conducted extensive experiments by generating images from a
consistent textual prompt across multiple random seeds while methodically fixing the initial 5% of
tokens. As shown in Fig. 4, the generated images consistently demonstrated highly similar global
style and color tones, aligning well with our hypothesis. These observations strongly support our
assertion regarding the decisive and consistent influence of initial-stage tokens on the final output.

3.2 HOW ARE THE FINE-GRAINED TEXTURES AND COLORS FORMED?

We observe that in autoregressive models like LlamaGen, tokens tend to assign higher attention
weights to those in close proximity during attention computation. As illustrated in Fig. 2, the atten-
tion score assigned to a token generally decreases as the distance from the current token increases.
This effect is particularly evident in the raster-order generation scheme, where each image token
not only maintains a strong attention score with its immediately preceding token but also exhibits
periodic local dependencies with tokens separated by a fixed interval. This behavior directly aligns
with the two-dimensional spatial structure of images, where adjacent pixels along both horizontal
and vertical axes demonstrate strong local correlations.

3.3 HOW ARE THE CONTENT CONSISTENCY AND CONTINUITY MAINTAINED?

Due to the inherent disparity in information density between image tokens and text tokens, the ef-
fectiveness of windowed attention varies significantly across modalities. As shown in Fig. 5, text
generation typically benefits from a fixed-size attention window (e.g., 3 tokens), which is often suf-
ficient to provide rich semantic context. Within such a window, the model can easily recover prior
content—for example, the phrase “blue car” clearly indicates that a blue car has already been de-
scribed, thereby anchoring the scene’s primary object. In stark contrast, image generation faces a
fundamentally different challenge. A fixed attention window containing 3 image tokens, each repre-
senting a small patch of pixels, conveys very limited visual information. Even if all patches contain
predominantly blue pixels, the model cannot reliably infer whether these correspond to a blue car,
a background region, or an unrelated object. Unlike text tokens—which are semantically discrete
and inherently meaningful—image tokens are low-level and lack explicit semantic grounding. As
a result, the model is constrained to enforcing only local coherence, such as consistent color and
texture across neighboring regions, but remains incapable of capturing high-level structures or rec-
ognizing previously generated objects. This limitation frequently results in semantic drift, redundant
generation, and incoherent scene composition.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Other long text description about 
image… A beautiful blue car 356.

Window Casual 
LLM

Window Casual
Vision LLM

1 2 3 … n n n
blue car 356 We know that the 

car has been 
already  generated.

…
Patch Patch

c

c

Window context

We don’t know that 
the car has 

been generated.

Early Steps resultsLater Steps results
Patch

Multi-step
inference

…

Figure 5: Comparison of Information Density Between Text Tokens and Image Tokens in Window
Attention. The figure illustrates the fundamental difference in semantic information density between
text tokens and image tokens within a fixed attention window.

3.4 IS IT NECESSARY TO CACHE ALL KEY-VALUE PAIRS?

KV-cache substantially improves decoding efficiency in autoregressive models by avoiding redun-
dant attention computations, reducing complexity from quadratic (O(T 2)) to linear (O(T )) with
respect to sequence length T . However, complete caching of KV pairs significantly increases mem-
ory usage, causing sharp GPU memory overheads for long sequences. Existing multimodal under-
standing tasks typically prune visual tokens based on attention scores. In contrast, for autoregressive
image generation, as illustrated in Fig. 2 and 5, tokens with high attention scores often cluster lo-
cally. Direct attention-based pruning thus risks weakening global semantic coherence, leading to
repetitive generation and semantic degradation.

4 PROPOSED METHOD

4.1 ADAPTIVE DYNAMIC SPARSE ATTENTION

Self-attention
With RoPE

Embedding

Feed Forward
With Norm

0

Updated KV cache

1 5 6 7 8…

0

Previous KV cache

1 5 6 7 8…

K

V

Q

9

Next Updated token: 9

1 3 5 9TopK-V

K,V Q

Output

0

Prefix Select

7 8

Local

Initial Tokens

Selected-Previous Tokens

Local Tokens

Figure 6: The Overview of Our Method.

As discussed in Sections 3.1, 3.2, and 3.3, maintaining the
overall consistency and coherence of generated images
requires leveraging image tokens from multiple preced-
ing stages as contextual references. To achieve this while
preserving high generation quality and efficiently reduc-
ing context length, we propose Adaptive Dynamic Sparse
Attention (ADSA), as shown in Fig. 6. Unlike con-
ventional static sparse attention mechanisms used in large
language models (LLMs), ADSA adopts an adaptive con-
text selection strategy that dynamically adjusts based on
the specific needs of each generation stage. This adap-
tive design enables the model to selectively focus on the
most important tokens, ensuring both computational effi-
ciency and superior image synthesis quality. Specifically,
we define the long image input sequence as I = {It}h×w

t=1
where each token at time step t is associated with a corre-
sponding key kt and value vt. Thus, the key-value cache
(KV-cache) is defined as follows:Kcache = {k1, k2, k3, . . . , kt}, Vcache = {v1, v2, v3, . . . , vt}. At
each inference step t, we categorize the features stored in the KV-cache into three dynamically de-
fined regions. The first n tokens serve as the prefix, capturing the initial context that establishes the
global style and semantic foundation of the image. Next, the most recent m tokens closest to the
current step t are designated as the local region, ensuring fine-grained consistency and continuity
in the generated content. The remaining tokens, located between the prefix and local regions, are
classified as previous tokens, providing a broader contextual view. This process can be formally
expressed as follows:

Kcache = [Kprefix,KPrevious,Klocal] , Vcache = [Vprefix,VPrevious,Vlocal] . (1)

Given that RoPE positional encoding is applied to the Q and K features, emphasizing positional
dependencies, while the V features primarily capture the semantic content of tokens, we propose
a TopK-V filtering method to efficiently reduce the length of previous tokens. Specifically, before
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Figure 7: The Overview of Our Proposed Dynamic Sparse KV-Cache Updating Strategy.

computing attention, we calculate the cosine similarity among the V features in the KV-cache:

Sij =
vi · vj

∥vi∥∥vj∥
, for vi, vj ∈ Vprevious, i ̸= j, Sii = 0. (2)

The average similarity score for each token is then calculated as:

Si =
1

t− 1

t∑
j=1,j ̸=i

Sij . (3)

We then identify the K tokens with the lowest average similarity scores, ensuring semantic diversity
among the retained tokens. Formally, this selection process is defined as:

Iselect = argminI⊆{1,2,...,t},|I|=K

∑
i∈I

Si. (4)

Based on this selection, we obtain the filtered key and value sets:
Kselect = {ki : i ∈ Iselect}, Vselect = {vi : i ∈ Iselect}. (5)

This Top-K selection strategy ensures that the remaining tokens capture a wider and more diverse
range of semantic information. By discarding the least similar tokens, the method introduces greater
contextual diversity, enhancing the overall semantic richness. This adaptive filtering mechanism
strikes an optimal balance between context length and semantic diversity, facilitating the generation
of images that are both contextually coherent and rich in detail.

4.2 DYNAMIC SPARSE KV-CACHE UPDATING

As illustrated in Fig. 7, existing methods maintain a fixed-length key-value (KV) cache during infer-
ence, where the feature representations of newly generated image tokens are appended to the end of
the cache at each step. The entire cache resides in GPU memory throughout the generation process,
leading to considerable computational and memory overhead. In contrast, we introduce a more com-
pact KV-cache mechanism that behaves identically to the baseline when the cache is not full. Once
the cache reaches its capacity, we compute pairwise token similarity using Equations equation 2
and equation 3, and evict the most redundant token—i.e., the one most similar to others—before
inserting the newly generated token. Meanwhile, all generated image tokens are offloaded to CPU
memory during inference and only transferred back to the GPU for final image decoding, substan-
tially reducing GPU memory consumption without compromising generation quality.

5 EXPERIMENTS

To evaluate our method, we integrate it with the state-of-the-art autoregressive visual generation
model, LlamaGen. For text-guided image generation, we generate 30,000 images and measure
semantic alignment using CLIP scores (Radford et al., 2021) on the MS-COCO 2014 validation set
with CLIP ViT-B/32. For class-conditional generation on ImageNet, we report Fréchet Inception
Distance (FID) (Heusel et al., 2017) as the primary metric, alongside Inception Score (IS) (Salimans
et al., 2016) and Precision/Recall to assess fidelity and diversity. All experiments were run on a
single NVIDIA RTX 4090 GPU (48 GB).
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Table 1: Quantitative evaluation on the ImageNet 256 × 256 benchmark.

Models FID↓ IS↑ Precision↑ Recall↑ KV Cache↓ Context↓
GigaGAN (Kang et al., 2023) 3.45 225.5 0.84 0.61 - -
LDM-4 (Rombach et al., 2022) 3.60 247.7 - - - 4096
MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 - -
MaskGIT-re (Chang et al., 2022) 4.02 355.6 0.80 0.51 - -
LlamaGen-XL (Sun et al., 2024) 2.62 244.08 0.80 0.57 576 576
ADSA-384 2.58 245.50 0.80 0.57 384 (-33.3%) 384 (-33.3%)
ADSA-256 2.64 245.78 0.80 0.57 256 (-55.6%) 256 (-55.6%)

Table 2: Quantitative evaluation on the MS-COCO dataset.

Models CLIP Score↑ KV Cache↓ Context↓
LlamaGen-XL (Sun et al., 2024) 0.287 1024 1024
ADSA-768 0.287 768 (-25%) 768 (-25%)
ADSA-640 0.287 640 (-37.5%) 640 (-37.5%)
ADSA-512 0.286 512 (-50%) 512 (-50%)

5.1 QUANTITATIVE RESULTS

Class-conditional Image Generation. In this subsection, we conduct a quantitative evaluation
of class-conditional image generation using the LlamaGen-C2I-XL model, with a focus on the Im-
ageNet 256 × 256 benchmark. In line with previous work, we generate images at a resolution of
384 × 384, resulting in a maximum context length of 576 during sampling, and subsequently resize
them to 256 × 256 for evaluation. To assess the effectiveness of our method, we employ ADSA to
selectively reduce the context to 384 and 256, respectively. As shown in Table 1, the ADSA-384
configuration achieves the best performance, even surpassing the baseline model with full context
computation. ADSA-256 reduces the context length by more than half, resulting in only a slight
increase of 0.02 in FID, while attaining the best performance in the IS metric.

Text-conditional Image Generation. In this subsection, we comprehensively evaluate text-
conditional image generation using the LlamaGen-T2I-XL model on the widely-used MSCOCO
dataset. Following prior work, we generate 512 × 512 images with a maximum context length of
1024. Leveraging ADSA, we progressively reduce the context length to 768, 640, and 512 tokens.
As shown in Table 2, our method effectively reduces the context by selectively removing redundant
tokens, while the CLIP scores of the generated images remain nearly unchanged, clearly demon-
strating that our approach maintains strong semantic alignment with the given text prompts despite
the substantially reduced context.

GPU Memory-efficient Image Generation. Our method substantially reduces GPU memory us-
age during autoregressive image generation by dynamically managing KV-cache updates, without
compromising output quality. As shown in Fig. 9, when the batch size is small, memory consump-
tion is dominated by model parameters. However, as the batch size increases, KV-cache becomes
the primary bottleneck. Our approach achieves nearly 50% memory savings on both the ImageNet
and MS-COCO datasets, demonstrating strong generalization and scalability across diverse settings.

Table 3: Results of ablation studies.

prefix select local FID↓ IS↑ Precision↑ Recall↑
× ✓ ✓ 7.41 163.61 0.70 0.60
✓ × ✓ 2.70 249.29 0.80 0.57
✓ ✓ × 51.07 41.62 0.37 0.47
✓ ✓ ✓ 2.58 245.50 0.80 0.57

Ablation. To assess the con-
tribution of the three distinct to-
kens in our method, we con-
ducted a comprehensive abla-
tion study. Specifically, we per-
formed quantitative experiments
on ImageNet using LlamaGen-
C2I-XL, systematically remov-
ing each of the three tokens to evaluate their individual impact. As shown in Table 3, the complete
ADSA method achieved the best performance. Notably, the largest performance drop occurred when
the local token was removed, as the absence of local attention severely disrupted the locality of the
image, leading to a substantial degradation in the high-frequency details of the generated images.
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Figure 9: Shorter KV-cache lengths consistently reduce GPU memory usage across various datasets.
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Figure 10: Samples generated by the LlamaGen-C2I-XL model using a next-token prediction
paradigm under various dynamic sparse attention configurations.

5.2 QUALITATIVE VISUALIZATIONS
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Figure 8: User study results.

Class-conditional Image Generation. As shown in
Fig. 10, our method generates high-quality images that
seamlessly align with human cognition, preserving fine
and intricate details even when the maximum context
length is significantly reduced by half, given a specified
generation category.

Text-conditional Image Generation. This subsection
presents representative 512 × 512 image samples gener-
ated using our adaptive dynamic sparse attention mecha-
nism. We examine the impact of reducing the maximum
context length during inference from 1024 to 768, 640,
and 512. As illustrated in Fig. 11, our method effectively
reduces the context length for attention computation dur-
ing inference, resulting in a significant decrease in memory consumption without any perceptible
loss in image quality. Notably, we observed an unexpected yet intriguing phenomenon: as the con-
text length is systematically and progressively shortened, the attention scores exhibit less smoothing
from irrelevant tokens. This leads to a remarkable enhancement of high-frequency details in the
generated images, contributing to a substantial improvement in their visual fidelity.
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Context length: 1024 Context length: 768 Context length: 640 Context length: 512

A majestic dragon soaring above snow-capped mountains, breathing a stream of blue fire.

"A peaceful Japanese Zen garden with a stone lantern, a koi pond, and cherry blossoms gently falling.

"A magical forest with glowing mushrooms and fireflies, a crystal-clear stream winding through the trees."

A tranquil snowy village at night, with warm light glowing from the cottage windows."

Figure 11: Samples generated by the LlamaGen-T2I-XL model using a next-token prediction
paradigm under various dynamic sparse attention configurations.

User-Study. To evaluate the impact of our method on image quality, we conducted a user study
with 48 GPT-generated text prompts guiding the LlamaGen-T2I-XL model. Ten users rated all the
generated images. As shown in Fig. 8, all ADSA variant models performed well in text matching,
effectively aligning the generated content with the descriptions. The visual quality of the images
was consistently high, indicating their strong visual appeal.

6 CONCLUSION

In this paper, we introduce ADSA, a training-free sparse attention method that optimizes context us-
age during image generation, significantly reducing computational overhead without compromising
image quality. ADSA exploits the visual structure of autoregressive models by dynamically eval-
uating token relevance and selectively computing attention. Experiments demonstrate that ADSA
effectively halves the context length in LlamaGen, often improving generation quality. Future work
will explore optimizing KV-cache management for further memory efficiency.
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ETHICS STATEMENT

All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
interventions with human participants or personally identifiable information. We use only publicly
available datasets under their original licenses and follow the terms of use. Potential risks and our
mitigations are summarized below:

• Privacy & Security. We do not collect or release any personal data. When showing quali-
tative examples, all images/videos are from public datasets; any sensitive content is filtered.

• Bias & Fairness. We report results on multiple benchmarks and provide detailed settings to
facilitate external auditing. We acknowledge possible dataset biases and encourage follow-
up evaluation on broader demographics and domains.

• Dual Use / Misuse. The method could be misused to enable undesired large-scale labeling
or surveillance. To reduce misuse, we release only research artifacts (code/configs) and
exclude any tools for scraping or re-identifying individuals.

• Legal Compliance. We comply with licenses of all third-party assets (code, models, and
datasets) and cite their sources. Any additional third-party terms are respected.

• Research Integrity. We document preprocessing, training recipes, and evaluation proto-
cols; random seeds and hyperparameters are provided to enable reproducibility.

Where applicable, institutional review information is withheld for double-blind review and can be
provided after acceptance.

REPRODUCIBILITY STATEMENT

We include training and evaluation details in the main paper and Appendix. Concretely: (i) all
hyperparameters, optimization settings, and compute budgets; (ii) full data preprocessing and splits.
Complete code and training logs will be open-sourced upon paper acceptance.
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A MORE RESULTS

To better demonstrate the robustness of our model, we present additional experimental results as
shown in Figure 12 and Figure 13.

Figure 12: Text-conditional 512×512 image generation on ChatGPT-prompt.
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Figure 13: Text-conditional 512×512 image generation on ChatGPT-prompt.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DISCLOSURE OF LARGE LANGUAGE MODEL (LLM) USAGE

In this paper, we used Large Language Models (LLMs) to assist in various aspects of the writing
process. Specifically, LLMs were employed to help polish the writing, improve clarity, and enhance
the overall presentation of the text. The models were utilized to provide suggestions for improving
the grammar, coherence, and flow of certain sections of the manuscript. This assistance was integral
to the refinement of the paper’s language, but all scientific content, methodology, and conclusions
were independently developed by the authors. The use of LLMs is limited to language-related tasks
and does not extend to the intellectual contributions to the research findings or data analysis.
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