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ABSTRACT

Recent advances in large multi-modal generative models have demonstrated
impressive capabilities in multi-modal generation, including image and video gen-
eration. These models are typically built upon multi-step frameworks like diffusion
and flow matching, which inherently limits their inference efficiency (requiring
40-100 Number of Function Evaluations (NFEs)). While various few-step methods
aim to accelerate the inference, existing solutions have clear limitations. Prominent
distillation-based methods, such as progressive and consistency distillation, either
require an iterative distillation procedure or show significant degradation at very
few steps (< 4-NFE). Meanwhile, integrating adversarial training into distillation
(e.g., DMD/DMD?2 and SANA-Sprint) to enhance performance introduces training
instability, added complexity, and high GPU memory overhead due to the auxiliary
trained models. To this end, we propose TWINFLOW, a simple yet effective frame-
work for training 1-step generative models that bypasses the need for distillation
from pre-trained models and avoids standard adversarial training, making it ideal
for building large-scale, efficient models. On text-to-image tasks, our method
achieves a GenEval score of 0.83 in 1-NFE, outperforming strong baselines like
SANA-Sprint (a GAN loss-based framework) and RCGM (a consistency-based
framework). Notably, we demonstrate the scalability of TWINFLOW by
transforming Qwen-Image-20B—the current largest open-source multi-modal
generative model—into an efficient few-step generator. With just 1-NFE, our
approach matches the performance of the original 100-NFE model on both the
GenEval and DPG-Bench benchmarks, reducing computational cost by 100x with
minor quality degradation. Our code and models will be made publicly available.



Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Modern generative paradigms—including diffusion (Ho et al., 2020; Song et al., 2020a), flow
matching (Lipman et al., 2022; Ma et al., 2024), and consistency models (Song et al., 2023; Lu &
Song, 2024)—have achieved state-of-the-art performance, forming the backbone of leading image
and video generation systems (Peebles & Xie, 2023; Ho et al., 2022; Chen et al., 2024c; Xie et al.,
2024a). Despite their success, these methods share a critical drawback: both training and sampling
demand substantial computational resources. This challenge is magnified in the era of large-scale
models (ModelTC, 2025). For these systems, efficient sampling is paramount, as the continuous, long-
term cost of inference often surpasses the one-time training cost, directly impacting their economic
viability and practical deployment (ModelTC, 2025; Xie et al., 2025a).

Numerous research efforts aim to accelerate generative inference by reducing the number of sampling
steps. Early single-step methods, like Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), often suffered from unstable training dynamics. To accelerate the multi-step diffusion models,
various distillation techniques have been introduced. These range from student-teacher methods,
where a compact model learns to emulate a larger one in fewer steps (Salimans & Ho, 2022; Meng
et al., 2022), to distribution matching distillation (e.g., DMD variants (Yin et al., 2024b;a)), which
uses adversarial training to directly align the model’s output distribution with the real data. In
parallel, a powerful new paradigm of consistency models (Song et al., 2023) and their variants, such
as LCM (Luo et al., 2023) and PCM (Wang et al., 2024a), has emerged, explicitly designed for
high-quality generation in very few steps.

Despite their progress, existing few-step methods face a difficult trade-off between simplicity, effi-
ciency, and quality. (a) Complexity and instability: As summarized in Tab. 1, adversarial methods
such as GANs and DMD require auxiliary networks (e.g., discriminators) or frozen teacher models.
This not only introduces training instability and sensitivity to hyperparameters but also increases
architectural complexity and memory overhead (c.f. Fig. 2b), hindering their scalability to large mod-
els. (b) Performance degradation: Conversely, methods that train from scratch without adversarial
guidance (Luo et al., 2023; Yin et al., 2024a), such as consistency models, often exhibit a sharp
decline in quality at very low NFEs (< 4) (Chen et al., 2025b). In summary, we posit that existing
methods either suffer from training instability, or require additional/frozen models (see our Tab. 1),
which limits their simplicity and scalability in training large models.

Table 1: Comparison of different few-step generative modeling methods on their minimal dependence of
auxiliary trained model and frozen teacher model. Prior 1-step/few-step methods such as GAN requires a
trained discriminator, diffusion/consistency distillation* requires a frozen teacher model, DMD requires training
an auxiliary score function for fake data and a frozen teacher model, DMD2" trains a GAN discriminator and a
fake score function at the same time. Our TWINFLOW achieves 1-step generation without depending on auxiliary
trained or frozen models, offering high simplicity.

. #Auxiliary #Frozen

Method Generation type trained model teacher model
GAN (Goodfellow et al., 2014) 1-step 1 0
Diffusion models (Ho et al., 2020) multi-step 0 0

Flow matching models (Lipman et al., 2022) multi-step 0 0
Diffusion distillation (Salimans & Ho, 2022) few-step 0 1
Consistency training & distillation (Song et al., 2023) 1-step, few-step 0

Distribution matching distillation (Yin et al., 2024b;a)  1-step, few-step 1,2 1
TWINFLOW (Ours) 1-step, few-step 0 0

To address these challenges, we propose TWINFLOW, a simple yet effective one-step generative
training framework built on a novel twin-trajectory concept. By extending the standard time interval
fromt € [0,1] tot € [—1, 1], we conceptualize two trajectories originating from the noise distribution.
The positive branch (¢ > 0) maps noise to real data while the negative branch (f < 0) maps the same
noise to “fake” data, enabling simultaneous learning of both transformations. Our learning objective
is to minimize the discrepancy between the velocity fields of these two trajectories (see Fig. 16b).
This forces the model to learn a more robust and direct mapping from noise to data, thereby enhancing
1-step generation performance in a self-supervised manner. As highlighted in Tab. 1, a key advantage
of TWINFLOW is its simplicity, as it requires no auxiliary trained networks or frozen teacher models.
Extensive experiments at different scales demonstrate the effectiveness of TWINFLOW, including
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(a) TWINFLOW overview. The standard flow is on
the right side (solid lines), its twin (dashed lines) is on (b) GPU memory comparison. Directly adopting
the left side. The core of our method is to minimize of DMD2 and SANA-Sprint suffers from OOM when ap-
the difference between the velocity fields (Ay) of the plying to ultra-large models. Our method can be easily
standard flow and its twin flow. applied to train Qwen-Image-20B.

Figure 2: Overview of our TWINFLOW and training GPU memory comparison. The GPU memory usage is
measured on 1024 x 1024 resolution on Qwen-Image-20B (LoRA tuning) and SANA-1.6B.

text-to-image generation (cf. Sec. 4.2 & Sec. 4.3) on large models like Qwen-Image-20B (Wu et al.,
2025a). 2-NFE visualizations on Qwen-Image-20B are given in Fig. 1. Our key contributions are:

(a) Simple yet effective 1-step generation framework. We propose a one-step generation frame-
work that does not need auxiliary trained models (GAN discriminators) or frozen teacher models
(different/consistency distillation), thereby eliminating GPU memory cost, allowing for more
flexible and scalable training on large models.

(b) Strong 1-NFE performance on text-to-image task. Built on the any-step framework, TWIN-
FLOW achieves strong text-to-image performance with only 1-NFE, achieving 0.83 GenEval
score, surpassing SANA-Sprint (0.72) and RCGM (0.80).

(c) Effective application on large models. By applying TWINFLOW, we successfully bring
1/2-NFE generation capabilities to Qwen-Image-20B, the largest open-source multi-modal
generation model. We achieve GenEval score of 0.86 and DPG score of 86.52 (1-NFE); GenEval
0.87 and DPG Score 87.64 (2-NFE), which are highly competitive with the original 100-NFE
scores of 0.87 and 88.32.

2 PRELIMINARIES

Given a dataset D, let p(x) represent its data distribution and p(x|c) the conditional distribution given
a condition c. Generative models aim to learn a transformation from a simple source distribution,
p(z), such as the standard Gaussian distribution A/(0, I), to the complex target distribution, p(x).

Any-step generative model framework. A recent framework, RCGM (Sun & Lin, 2025), intro-
duces a unified formulation for the any-step generation framework, covering paradigms like multi-step
generative models (Ho et al., 2020; Song et al., 2020b; Lipman et al., 2022) and few-step generative
models (Song et al., 2023; Lu & Song, 2024; Frans et al., 2024; Geng et al., 2025; Sun et al., 2025).
In this framework, a prediction function can be generally defined as f(x¢,7) := x, — X4, which
predicts the target point x,. from the current point x; along a specific PF-ODE trajectory. The unified
training objective for any-step models is given by:

N
Fo(xt,tn1) Zfe—(xt“tiﬂ)])] Y

i=1

dx; 1
LB = B oy ld (a# A

where x; = a(t)z + y(t)x, z ~ N(0,I), t ~ U(0,T), t; ~ U(t;—1,0), and d(-,-) is a metric
function. Under flow matching objective and linear transport, we have fq(x¢,7) = Fo(x¢, ) (t—7),
where F'g is a neural network, F'y- is the no grad version. Equation (1) demonstrates how both
multi-step and few-step frameworks can be seen as specific instances of the broader any-step
framework, which we will detail below. In practice, we use Network (x_t, t, r) as the
implementation of Fg(x¢, ).

Multi-step generative models. Diffusion (Ho et al., 2020; Song et al., 2020b) and flow matching
models (Lipman et al., 2022) can be derived from the RCGM framework. By setting N = 0, the
objective in (1) reduces to their respective training objectives, where the predict function becomes
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f(x¢,t — At) in the limit At — 0. During sampling, these models iteratively solve the PF-ODE
by integrating the velocity field d%, starting from a noise sample x; ~ p(z) at ¢ = 1 and ending at
t = 0 to obtain samples from p(x).

Few-step generative models. Few-step models are also instances of the RCGM framework, typ-
ically corresponding to N = 1 case: (1) setting t; = ¢t — At, At — 0 and t, = 0 recovers the
objective for consistency models (Song et al., 2023; Lu & Song, 2024); (2) setting 1 € (t2,t)
corresponds to shortcut models (Frans et al., 2024), where the predict function is defined as
f(xe,7) < f(x¢,8) + f(x,,5) and r = to € [0,t]; (3) setting t1 = ¢t — At (with At — 0)
yields the MeanFlow objective (Geng et al., 2025).

In summary, the RCGM framework offers a unified perspective that integrates both multi-step and few-
step paradigms, facilitating their analysis and application. See more related work discussion in Sec. B.

3 METHODOLOGY

Current few-step methods within the any-step framework (Sec. 2) struggle to achieve high-quality
one-step generation without resorting to a GAN loss, which adds significant complexity. To solve this,
we propose TWINFLOW, a simple and self-contained approach that enhances one-step performance
directly within the any-step flow matching framework. Our key idea is the introduction of twin
trajectories, which create an internal self-adversarial signal and thus eliminate the need for an external
GAN loss (Sec. 3.1). The method works by minimizing a difference between a “fake” and a “real”
velocity field, which should ideally be zero (Sec. 3.2). We conclude by demonstrating how to integrate
TWINFLOW into the broader any-step framework and provide practical designs in Sec. 3.3.

3.1 TWIN TRAJECTORY FOR SELF-ADVERSARIAL TRAINING

A key innovation of our method is the introduction of twin trajectories, which feature time-steps
symmetric around ¢ = 0 (see Fig. 16b). This structure creates a self-contained, discriminator-free
adversarial objective designed to directly enhance one-step generation performance.

Creating self-adversarial objective. The standard learning process operates on a time interval
t € [0, 1]: real data x is perturbed by x1**! = a(t)z + v(t)x, where z ~ N'(0,1), t ~ U(0,1). To
create our self-adversarial objective (as well as the twin trajectories), we extend this time interval
from ¢ € [0, 1] to ¢t € [—1, 1]. The negative half of this interval, ¢t € [—1, 0], is designated for learning
a generative path from noise to “fake” data produced by the model itself.

Specifically, we task the network to learn the generative path to its own outputs. We take a fake
sample x'2k¢ generated by the model, i.e. x'*¢ = %, = Fy(x}°*!, 1), and construct a corresponding
“fake trajectory”, in which its perturbed version is defined as x{#¢ = a(t')zfke + y(t/)xfake,
zfake ~ A(0,1), and #' ~ U(0, 1). Here z** is a different noise, which does not need to be the
same as z. The network is then trained with the following flow matching objective on this trajectory,

using negative time inputs —t' € [—1,0]:
L£(0)agy = Exrake geaxe 1/ [d (F@ (Xi?ke, —t/), zlake _ Xfake)} , 2

where d(-, ) is a metric function. Minimizing this loss teaches the network to learn the negative
time condition and the transformation from noise to fake data distribution, setting the stage for the
rectification loss described in the next section.

3.2 RECTIFYING REAL TRAJECTORY VIA VELOCITY MATCHING

Ideally, we want the twin trajectories to match with each other. As established in Sec. 3.1, the
distributions pr,ke and prea; correspond to trajectories parameterized by the negative and positive
time intervals, respectively. Inspired by DMD (Yin et al., 2024b), we can treat this as a distribution
matching problem. For any perturbed sample x;, we aim to minimize the KL divergence between
these two distributions:

DKL (pfake”preal) = IEjx,,,z,t [IOg (%)] = IExt,z,t [7 (Ingreal(Xt) - Ingfake(Xt))] . (3)

4
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Velocity matching as distribution matching. Taking the gradient of (3), we derive:

Vo Dx1(Prake||Preal) = VoEx, 2.t [10g Dake (X¢) — 108 Preat (Xt)]

_ V.E Olog prake(xt) Ox¢  Ologpreai(xt) 0%t
T Vet % 00 % 90
aXt
= VG]Ext,Lt (vxt 1Og Pfake (Xt) - th 10g preal(xt) ) 870 s (4)

Sfake (Xt) — Sreal (Xt)

where s(+) is the score of the respective distribution. The relationship between the score and the
velocity field F'g under linear transport («(t) = t,v(t) = 1 — t) is given by (see proof in App. D.1):
xe+9(1t) - Fo(xe,t)  x¢+(1—1) Fo(x,t)

s(x¢) = O = r . &)

Substituting this relationship from (5) into the KL gradient (4) yields:
_Xf, + (1 —f) . Fg(xt,—t) o

o _X¢+(1—T)F3(X¢7t) aXt
VQDKL - VB]Ext,z,t |:< n ( t ) o6
11—t 0
= VoEx, 2, _a=Y . ( Fo(x¢,—t) — Fo(x¢,t) )th ; (6)
t —_—  — 2/ 00

Vfakc(xt-, 7t) Vreal (Xt7 t)

where the model is conditioned on —t for the fake trajectory and on ¢ for the real one. For simplicity,
we denote this velocity difference (see Fig. 16b) as:

Av (xt) ‘= Vfake (xty 7t) - Vreal(xt7 t) . (7)

This derivation recasts the original distribution matching problem into a more practical velocity
matching problem. We now show how to formulate this into a tractable rectification loss below.

Rectification loss derivation. To derive the rectification loss, we first instantiate the gra-
dient (6) using the setup in Sec. 3.1. In this setting, the network’s prediction X; serves as
the clean example, and consequently, the perturbed variable x; in (6) corresponds to the

fake sample x{7¢. The velocity difference Ay (x;) defined in (7) is therefore instantiated as

Av (Xjfg?‘ke) = Vfake (ng,ike’ _t/) - Vreal(x?}ke7 t/)
. . . .. . oxtyke . -
Under this setup, the Jacobian term in (6) is instantiated as ”:,;9 and simplified to:

aXi‘?ke B O(Q(t,)zfake—F’Y(t,)xfake) - 8(a(t/)zfake +’Y(f/))€f) - 0F9(X§em7t)
00 00 00 N 00 ’

®)

The KL gradient in (6) thus takes the form of an expectation over the inner product (A (xf#*¢), %).

To construct a tractable loss that produces this gradient structure, we employ the stop-gradient
operator, sg(+). This motivates the following rectification loss:

L(e)mctify = IEXt’Xfakc’zfakc,t/ [d (Fg (X;:eal, t), Sg [Av (X{?ke) + Fg (X{eal, t)] )] 5 (9)

where d(-, -) is a metric function. Minimizing Lcctif, encourages the model to straighten the genera-
tive trajectories from noise to the data distribution. This rectification allows the entire integration
process to be accurately approximated with large step sizes, enabling few-step or 1-step generation.

3.3 THE TWINFLOW OBJECTIVE WITH PRACTICAL DESIGNS

Integration with the any-step framework. Our method TWINFLOW trains a single model to
excel at both multi-step and few-step generation. This is achieved by combining two complementary
objectives with conflicting demands:
* The self-adversarial loss (£(0).qy in (2)) promotes high-fidelity, multi-step generation by extend-
ing the training dynamics to the interval ¢ € [—1, 0].
¢ The rectification loss (E(e)rectify in (9)) optimizes for few-step efficiency by directly straightening
the noise-to-data trajectory, enabling rapid, high-quality synthesis.
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This creates a dual objective: the model must be both a precise multi-step sampler and an efficient
few-step generator. This leads to application of the any-step framework introduced in Sec. 2, which
unifies the demands of (2) and (9). We adopt /N =2 formulation of (1) to enhance the training stability.
Our final loss combines the base objective with our proposed terms, which we collectively name it
L(0)TwinFlow- The overall loss function in our methodology can be expressed as:

‘C(e) - ['(e)base + (L"(e)adv + L"(e)rectify) == E(e)base + ﬁ(e)TwinFlow . (10)

Practical implementation of mixed loss. The £(0)pase and £(6)TwinFlow Objectives in £(0) im-
pose different requirements on the target time  under the any-step formulation. Specifically, £(0)pase
requires r to be sampled from [0, 1], whereas £(0)Twinriow Necessitates a fixed target time of r = 0.
To accommodate both within a single training step, we partition each mini-batch into two subsets.
A balancing hyperparameter A controls the relative size of these subsets. One portion of the batch is
used to compute £(0)TwinFlow With 7 = 0, while the remainder is used for £(0)p,se With a randomly
sampled r € [0,1]. The value of A thus balances the influence of the two losses on the gradient
updates. Setting A = 0 disables the £(0)TwinFlow term, while larger values increase its contribution.
An ablation study on the impact of ) is available in Fig. 4a.

4 EXPERIMENTS

We demonstrate the effectiveness of our method, TWINFLOW, on two fronts. First, we highlight its
versatility and scalability, we apply TWINFLOW to unified multi-modal models, e.g. Qwen-Image-
20B (Wu et al., 2025a), as shown in Tab. 2. Second, we benchmark it against state-of-the-art (SOTA)
dedicated text-to-image models, with results presented in Tab. 3.

4.1 EXPERIMENTAL SETUP

This section details the experimental setup and evaluation protocol of our proposed methodology.

* Image generation on multimodal generative models. We conduct evaluations on unified multi-
modal models (i.e. takes both texts and images as conditions and capable of generating texts
and images). (1) Network architectures: We apply LoRA (Hu et al., 2022) on Qwen-Image and
freeze the 20B base model. We also do experiments on OpenUni-512 (Wu et al., 2025¢). (2)
Benchmarks: Following recent works (Pan et al., 2025; Chen et al., 2025a; Deng et al., 2025; Wu
et al., 2025a), we use benchmarks in text-to-image generation tasks. For text-to-image generation,
we use GenEval, DPG-Bench (Hu et al., 2024), and WISE (Niu et al., 2025). Other training settings
are detailed in App. C.2.

 Text-to-image generation. For text-to-image generation, we evaluate on dedicated text-to-image
models (i.e. primarily takes texts as condition and only generating images). (1) Network architec-
tures: We use SANA-0.6B/1.6B (Xie et al., 2024a) in our experiments. (2) Benchmarks: Following
SANA-series (Xie et al., 2024a; 2025a), we use GenEval (Ghosh et al., 2023) and DPG-Bench (Hu
et al., 2024) as evaluation metrics. Other training settings are detailed in App. C.3.

4.2 IMAGE GENERATION ON MULTIMODAL GENERATIVE MODELS

We demonstrate TWINFLOW’s scalability by achieving competitive 1-NFE text-to-image generation
on the 20B-parameter Qwen-Image series (Wu et al., 2025a). This breakthrough addresses a critical
gap in the field, as prior few-step approaches are rarely applied on models exceeding 3B parameters
due to instability in GAN-based loss at scale.

Our approach offers two key advantages over state-of-the-art unified multimodal generative models:

(a) TWINFLOW maintains >0.86 GenEval score at 1-NFE on Qwen-Image-20B: surpassing most
multi-step models (w/ 40-100 NFEs), e.g. Bagel (Deng et al., 2025), MetaQuery (Pan et al.,
2025).

(b) TWINFLOW achieves this without auxiliary components or architectural modifications, unlike
competing few-step methods that require distillation or specialized training pipelines (Yin et al.,
2024b;a).

We evaluate the text-to-image generation capabilities of Qwen-Image-TWINFLOW on several standard
benchmarks: GenEval (Ghosh et al., 2023), DPG-Bench (Hu et al., 2024), and WISE (Niu et al., 2025).
Our model demonstrates strong performance across all benchmarks with only 1-NFE, achieving
results that are both competitive and efficient. Detailed results are provided in App. C.2.
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Table 2: System-level comparison of TWINFLOW with unified multimodal models in efficiency and
performance on text-to-image tasks. The best and second best results of 1-NFE and 2-NFE are highlighted. '
means using LLM rewritten prompts for GenEval. Qwen-Image-Lightning* generates almost identical images
for the same prompt when evaluating on GenEval and DPG-Bench.

Image Generation

Method NFE | GenEvalt DPG-Bench ! WISE 1
Chameleon (Team, 2024) - 0.39 - -
SEED-X (Ge et al., 2024) 502 0.49 - -
Show-o (Xie et al., 2024b) 502 0.68 67.27 0.35
Janus-Pro (Chen et al., 2025d) - 0.80 84.19 0.35
MetaQuery-XL (Pan et al., 2025) 30x2 0.78 /0.80" 81.10 0.55
BLIP3-0-8B (Chen et al., 2025a) 30%x2 +50x2 0.84 81.60 0.62
UniWorld-V1 (Lin et al., 2025) 282 0.80/0.84" - 0.55
OpenUni-L-512 (Wu et al., 2025¢) 202 0.85 81.54 0.52
Bagel (Deng et al., 2025) 50x2 0.82/0.887 - 0.52
Show-02-7B (Xie et al., 2025b) 502 0.76 86.14 0.39
OmniGen (Xiao et al., 2024) 50x2 0.70 81.16 -
OmniGen2 (Wu et al., 2025b) 50x2 0.80/0.86" 83.57 -
Qwen-Image (Wu et al., 2025a) 50%2 0.87/0.91R 88.32 0.62
Qwen-Image-Lightning* (ModelTC, 2025) | 1 | 0.85 87.79 0.51
OpenUni-RCGM-512 (Sun & Lin, 2025) 2 0.85 80.15 0.50
OpenUni-RCGM-512 (Sun & Lin, 2025) 1 0.80 76.40 0.45
. 2 0.85 79.82 0.50
OpenUni-TWINFLOW-512 (Ours) 1 083 79.07 048
Qwen-Image-RCGM (Sun & Lin, 2025) 2 0.82 84.09 0.50
Qwen-Image-RCGM (Sun & Lin, 2025) 1 0.52 59.50 0.30
2 0.87/0.91 87.64 0.57
Qwen-Image-TWINFLOW (Ours) 1 0.86/0.90" 86.52 0.54

Evaluation on text-to-image benchmarks. As shown in Tab. 2, Qwen-Image-TWINFLOW achieves
a score of 0.86 on GenEval and 86.52% on DPG-Bench with just 1-NFE, closely matching the original
model’s performance at 100-NFE. Compared to Qwen-Image-Lightning (ModelTC, 2025), a 4-step
distilled model, our model surpasses it across all benchmarks with only 1-NFE. Furthermore, our
model outperforms Qwen-Image-RCGM (Sun & Lin, 2025) on both GenEval and DPG-Bench under
1-NFE and 2-NFE settings, with notable improvements of 0.34T on GenEval, 27.0%" on DPG-Bench,
and 0.25" on WISE under the 1-NFE setting.

We also benchmark Qwen-Image-TWINFLOW against other prominent multi-step unified multimodal
generative models, such as MetaQuery-XL (Pan et al., 2025), BLIP3-0-8B (Chen et al., 2025a), and
Bagel (Deng et al., 2025). Our model consistently surpasses these baselines with 1 or 2-NFE across
all evaluation metrics. Beyond Qwen-Image, we also apply TWINFLOW to OpenUni (Wu et al.,
2025¢), achieving GenEval of 0.80 and DPG-Bench of 76.40 under the 1-NFE setting, which is
also close to its original performance. These findings underscore the versatility and effectiveness of
TwINFLOW across different architectures and scales.

Discussion on open-source community efforts. To the best of our knowledge, Qwen-Image-
Lightning (ModelTC, 2025) is the only open-source few-step model on large models. It is developed
using DMD2 (Yin et al., 2024a) but removing GAN loss. This also indirectly reflects the high cost
associated with using GAN loss. However, we observe that Qwen-Image-Lightning suffers from
severe mode collapse: when given the same prompt but different noise inputs, the generated images
remain nearly identical across runs. This lack of diversity is empirically demonstrated in the visual
comparisons provided in App. E.1.

Exploration on image editing. Due to resource constraints, we conducted a preliminary exploration
of our TWINFLOW'’s capabilities in image editing using a small tuning dataset of approximately 15K
editing pairs. Despite the limited scale, our results (see Tab. 8) demonstrate that TWINFLOW can
convert Qwen-Image-Edit (Wu et al., 2025a) into a 4-NFE editing model. This suggests that with
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NFE=1 NFE=4 NFE=8 NFE=16 NFE=32 NFE=1 NFE=2

Qwen-Image-20B (cfg=4.0) Ours (No cfg)
Figure 3: Visualization of images generated by Qwen-Image and Qwem-Image-TWINFLOW w.r.t. NFEs.
Qwen-Image-TWINFLOW is capable of generating high-quality images with just 1 NFE, which is better than the
original Qwen-Image’s performance at 16 NFEs. Furthermore, when comparing 2-NFE results to the 32-NFE
outputs of Qwen-Image, our method demonstrates better visual details. See prompts in App. E.3.

access to more diverse editing datasets, we anticipate substantial further improvements in both fidelity
and versatility of edited outputs.

4.3 IMAGE GENERATION ON DEDICATED TEXT-TO-IMAGE MODELS

To validate our method’s versatility, we also benchmark it on traditional text-to-image generation. As
shown in Tab. 3, we first benchmark against pretrained multi-step models (typically requiring >40-
NFE). Following the categorization in Tab. 1, we compare against SOTA few-step models, grouped by
their reliance on auxiliary components: those trained with versus without auxiliary models. Critically,
full-parameter tuning on SANA-0.6B/1.6B backbones enables high-fidelity image generation in just
1-2 NFE.

(a) 1-NFE setting: The efficacy of our method is particularly pronounced in the more demanding
1-NFE inference setting. Here, our models (0.6B: 0.83, 1.6B: 0.81 on GenEval) significantly
outperform other leading 1-NFE methods, such as SANA-RCGM (0.78) (Sun & Lin, 2025),
SANA-Sprint (0.76) (Chen et al., 2025b), FLUX-Schnell (0.69) (Labs, 2024), and SDXL-DMD2
(0.59) (Yin et al., 2024a). Notably, our 1-NFE TWINFLOW-0.6B (GenEval: 0.83) exceeds the
generation quality of the 40-NFE SANA-1.5-4.8B (Xie et al., 2025a) model while offering
substantially greater computational efficiency.

(b) 2-NFE setting: In the 2-NFE configuration, TWINFLOW-0.6B achieves a throughput of 6.50
samples/s and a latency of 0.26s, performance metrics comparable to the originally reported
SANA values. On the GenEval benchmark, our model attains a score of 0.84, surpassing not
only the SANA-Sprint series (0.76 and 0.77) but also powerful multi-step models like SANA-1.5
(0.81) and Playground v3 (0.76). Our models also demonstrate competitive performance on
DPG-Bench, with scores of 79.7 for the 0.6B variant and 79.6 for the 1.6B variant.

Our TWINFLOW-0.6B/1.6B achieves state-of-the-art text-to-image generation performance on the
GenEval benchmark using just 1-NFE, surpassing both SANA-Sprint and RCGM. While we slightly
underperform on DPG-Bench relative to SANA-Sprint, due to SANA-Sprint’s reliance on extensive,
proprietary training data. We believe this gap is primarily data-driven and can be effectively closed
by training on larger, higher-quality datasets.

4.4 ABLATION STUDY AND ANALYSIS

Influence of \. As described in Sec. 3.3, A is designed to control the sample distribution of L,,5¢
and LrwinFlow- In Fig. 4a, we visualize the DPG-Bench performance w.r.t. A at I-NFE and 2-NFE.
We observed that as A increases from 0, the performance on DPG-Bench initially increases and then
decreases, reaching its peak at approximately A = 1/3. These results indicate that appropriately
balancing samples in the local batch helps improve the model performance.
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Table 3: System-level comparison of TWINFLOW with text-to-image models in efficiency and performance.
Throughput (batch=10) and latency (batch=1) are benchmarked on a single A100 with BF16 precision. The best
and second best results across 1-NFE are highlighted. T means results tested by ourselves.

Throughput 1

Method NFE | (samples/s)

Latency (s) | | #Params GenEval1 DPG-Bench 1

Pretrained multi-step models

SDXL (Podell et al., 2023) 50%2 0.15 6.5 2.6B 0.55 74.7
PixArt-2 (Chen et al., 2024a) 20%x2 0.40 2.7 0.6B 0.54 80.5
SD3-Medium (Esser et al., 2024b) 28 %2 0.28 4.4 2.0B 0.62 84.1
FLUX-Dev (Labs, 2024) 50%x2 0.04 23.0 12.0B 0.67 84.0
Playground v3 (Liu et al., 2024) - 0.06 15.0 24B 0.76 87.0
SANA-0.6B (Xie et al., 2024a) 202 1.7 0.9 0.6B 0.64 83.6
SANA-1.6B (Xie et al., 2024a) 20x2 1.0 1.2 1.6B 0.66 84.8
SANA-1.5 (Xie et al., 2025a) 202 0.26 4.2 4.8B 0.81 84.7
Lumina-Image-2.0 (Qin et al., 2025) 18x2 - - 2.6B 0.73 87.2
Few-step models (training w/ auxiliary models)
SDXL-DMD2 (Yin et al., 2024a) 2 2.89 0.40 0.9B 0.58 -
FLUX-Schnell (Labs, 2024) 2 0.92 1.15 12.0B 0.71 -
SANA-Sprint-0.6B (Chen et al., 2025b) 2 6.46 0.25 0.6B 0.76 81.51
SANA-Sprint-1.6B (Chen et al., 2025b) 2 5.68 0.24 1.6B 0.77 82.1°
PixArt-DMD (Chen et al., 2024a) 1 4.26 0.25 0.6B 0.45 -
SDXL-DMD2 (Yin et al., 2024a) | 3.36 0.32 0.9B 0.59 -
FLUX-Schnell (Labs, 2024) | 1.58 0.68 12.0B 0.69 -
SANA-Sprint-0.6B (Chen et al., 2025b) 1 7.22 0.21 0.6B 0.72 78.6
SANA-Sprint-1.6B (Chen et al., 2025b) | 6.71 0.21 1.6B 0.76 80.11
Few-step models (training w/o auxiliary models)
SDXL-LCM (Luo et al., 2023) 2 2.89 0.40 0.9B 0.44 -
PixArt-LCM (Chen et al., 2024b) 2 3.52 0.31 0.6B 0.42 -
PCM (Wang et al., 2024a) 2 2.62 0.56 0.9B 0.55 -
SD3.5-Turbo (Esser et al., 2024a) 2 1.61 0.68 8.0B 0.53 -
RCGM-0.6B (Sun & Lin, 2025) 2 6.50 0.26 0.6B 0.85 80.3
RCGM-1.6B (Sun & Lin, 2025) 2 5.71 0.25 1.6B 0.84 79.1
TWINFLOW-0.6B (Ours) 2 6.50 0.26 0.6B 0.84 79.7
TWINFLOW-1.6B (Ours) 2 5.71 0.25 1.6B 0.83 79.6
SDXL-LCM (Luo et al., 2023) 1 3.36 0.32 0.9B 0.28 -
PixArt-LCM (Chen et al., 2024b) 1 4.26 0.25 0.6B 0.41 -
PCM (Wang et al., 2024a) 1 3.16 0.40 0.9B 0.42 -
SD3.5-Turbo (Esser et al., 2024a) 1 2.48 0.45 8.0B 0.51 -
RCGM-0.6B (Sun & Lin, 2025) 1 7.30 0.23 0.6B 0.80 77.2
RCGM-1.6B (Sun & Lin, 2025) 1 6.75 0.22 1.6B 0.78 76.5
TiM (Wang et al., 2025) 1 - - 0.8B 0.67 75.0
TWINFLOW-0.6B (Ours) 1 7.30 0.23 0.6B 0.83 78.9
TWINFLOW-1.6B (Ours) 1 6.75 0.22 1.6B 0.81 79.1

Impact of Lryinriow on different models. We conduct an ablation study to analyze the impact
on text-to-image performance of using LryinrFlow On different models. As illustrated in Fig. 4b,
incorporating LrwinFlow Significantly enhances performance: it improves 1-NFE performance for
the text-to-image task across OpenUni, SANA, and especially Qwen-Image (from 59.50 to 86.52).
Effect of training steps vs. NFE. As illustrated in Fig. 4c, the experimental results demonstrate that
as the number of training steps increases, the “comfort regime” for optimal sampling steps shifts
accordingly. Notably, performance on GenEval improvements are observed across both 1-step and
few-step sampling scenarios, with significant gains achieved as training progresses, which shows the
effectiveness of LTwinFlow-

5 CONCLUSION AND LIMITATIONS

In this paper, we introduce TWINFLOW, a simple yet effective framework for training large-scale
few-step continuous generative models. Our method stands out for its high simplicity compared to
other few-step approaches, such as the DMD-series, as it eliminates the need for auxiliary trained
components like GAN discriminators or frozen teacher models. This design allows for straightforward
1-step or few-step training on large models, making it particularly accessible and efficient. Through
extensive experiments across different scales and tasks, we demonstrate that TWINFLOW delivers high-
quality generation capabilities in text-to-image synthesis on large models. Despite these promising
results, several limitations remain to be addressed. First, the scalability of TWINFLOW to more diverse
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Figure 4: Ablation studies of TWINFLOW. Ablation presented in (a) and (c) are conducted on Qwen-Image-
TwINFLOW. Results shown in (b) are trained on the same dataset but with different models.

tasks, such as image editing, has not been effectively explored. Second, its adaptability to more
diverse modalities, including video and audio generation, requires further validation. Addressing
these challenges could significantly enhance the applicability and performance of TWINFLOW in
broader contexts, paving the way for more robust and versatile generative models.
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6 ETHICS STATEMENT

Our work is conducted in full alignment with the ICLR Code of Ethics, and we are committed to
upholding the principles of transparent and responsible research. This study did not involve human
participants or the use of personal or sensitive data, thereby negating the need for an institutional
ethics review. All datasets utilized are publicly available under their respective licenses, and we have
provided appropriate attribution to their original sources. To foster transparency and enable further
innovation, our implementation code and experimental configurations will be made available. We
also affirm that no conflicts of interest or external funding have influenced this work.

7 REPRODUCIBILITY STATEMENT

To ensure that our findings can be accurately and transparently replicated, we have provided a
comprehensive account of our experimental methodology. Exhaustive details concerning the model
architectures and evaluation protocols are documented in Sec. 4 of the main text and further elaborated
in App. C. Following the acceptance of this paper, we will make our entire source code publicly
available to facilitate verification and future research.
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A USE OF LLMs
This paper only uses LLMs for polishing.

B RELATED WORK

Multi-step generative methods. Diffusion (Ho et al., 2020; Dhariwal & Nichol, 2021) and flow
matching (Lipman et al., 2022) models have shown impressive performance in image generation.
They progressively transport a simple noise distribution to the data distribution, either by reversing
a noising process or integrating a probability-flow ODE. However, this iterative nature introduces
bottleneck in inference efficiency, as generating an image requires numerous sequential evaluation
steps.

Few-step generative methods. Various methods tend to accelerate the sampling process, such as
diffusion distillation (Luhman & Luhman, 2021; Salimans & Ho, 2022) and consistency distilla-
tion (Song et al., 2023; Song & Dhariwal, 2023). They typically train a student model to approximate
the ODE sampling trajectory of a frozen teacher model in fewer sampling steps. While effective at
moderate NFEs, these approaches depend on a frozen teacher, and quality often drops sharply in the
extreme few-step regime (< 4 NFEs). Incorporating GAN-like loss into distillation (e.g., CTM (Kim
et al., 2023), ADD/LADD (Sauer et al., 2024b;a), DMD/DMD?2 (Yin et al., 2024b;a)) can improve
sharpness and alignment at few steps. Yet these frameworks increase training complexity and insta-
bility: they typically introduce auxiliary modules (discriminators, fake-sample score functions) and
still rely on a frozen teacher, leading to higher memory overhead and sensitivity to hyperparameters.
For ultra-large models, this added complexity often translates to out-of-memory failures or brittle
training dynamics.

Few-step applications in large generative models. The tension between speed and quality is
amplified in large-scale systems. For instance, Qwen-Image-20B (Wu et al., 2025a) typically requires
100 NFEs, leading to substantial latency (~40s on a single A100 for 1024 x 1024 resolution). Recent
works distill to cut NFEs while preserving compositionality and aesthetics: LCM-style distillation
for latent models (Luo et al., 2023), large-scale text-to-image distillation pipelines (e.g., PixArt-
Delta (Chen et al., 2024b), SDXL distillation (Lin et al., 2024), FLUX-schnell (Labs, 2024)), and
hybrid frameworks such as SANA-Sprint (Chen et al., 2025b) that combine teacher guidance with
adversarial signals. Recently, Hunyuan-Image-2.1 (Team, 2025) explore MeanFlow (Geng et al.,
2025) for mid-step acceleration (16 NFEs). Nevertheless, when targeting 1-2 NFEs on 1024 x 1024
text-to-image with 10B-20B backbones, these pipelines face practical barriers: dependence on frozen
teachers, extra discriminators or score networks, unstable adversarial training, and prohibitive memory
costs that hinder straightforward scaling.

C DETAILED EXPERIMENTS

C.1 CLASS-CONDITIONAL IMAGE GENERATION ON IMAGENET-1K

Experimental setup. We conduct class-conditional generation experiments on ImageNet-1K at a
256 x 256 resolution, following the data preprocessing protocols from UCGM (Sun et al., 2025). To
ensure a fair comparison with prior works, we utilize the DiT-XL/2 (675M) (Peebles & Xie, 2023; Ma
et al., 2024; Leng et al., 2025) backbone and the standard SD-VAE (Rombach et al., 2022). We assess
image quality using the Fréchet Inception Distance (FID) calculated on 50,000 samples (FID-50K).

Experimental Results. As detailed in Tab. 4, we evaluate the performance of TWINFLOW against
other few-step methods, including GANs, consistency models, and masked/autoregressive mod-
els. Notably, our approach achieves a competitive FID of 2.05 with 2-NFE, outperforming most
distillation-based methods and achieving performance comparable to the state-of-the-art VAR model
but with a significantly more compact model size. We also surpasses MeanFlow-XL/2+ (Geng et al.,
2025) (FID=2.20) while also requiring fewer training epochs (801 vs. 1000).

C.2 DETAILED IMPLEMENTATION ON MULTIMODAL GENERATIVE MODELS

Training Datasets. For training OpenUni (Wu et al., 2025¢) and Qwen-Image (Wu et al., 2025a), we
used the same datasets as in our text-to-image experiments but excluded ShareGPT-4o0-Image (Chen
et al., 2025¢). For Qwen-Image-Edit (Wu et al., 2025a), we used only the part of editing split of the
ShareGPT-40-Image dataset.
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Table 4: Comparison of FID-50K on class-conditional ImageNet-1K (256 x 256).

Method NFE| FID| #Params #Epochs
GANs
BigGAN (Brock et al., 2018) 1 6.95 112M -
GigaGAN (Kang et al., 2023) 1 3.45 569M -
Consistency training & distillation

Shortcut-XL/2 (Frans et al., 2024) 1 10.6 676M 250

4 7.80 676M 250
IMM-XL/2 (Zhou et al., 2025) 1x2 7.77 675M 3840

2x2 5.33 675M 3840
4x2 3.66 675M 3840
8x2 2.77 675M 3840
IMM (w = 1.5) 1x2 8.05 675M 3840
2x2 3.99 675M 3840
4x2 2.51 675M 3840
8x2 1.99 675M 3840

MeanFlow-XL/2 (Geng et al., 2025) 1 343 676M 240
2 2.93 676M 240

MeanFlow-XL/2+ (longer training) 2 2.20 676M 1000

Masked & autoregressive models
MaskGIT (Chang et al., 2022) 8 6.18 227M 300
VAR-d30-re (Tian et al., 2024) 10x2 1.73 2.0B 350
TWINFLOW (Ours)
@SD-VAE 2 2.05 676M 801

Training configurations. We performed full-parameter fine-tuning experiments on OpenUni, using
an image resolution of 512x512. With a batch size of 128, the model was trained for 600,000 steps.
For other training configurations, please refer to Tab. 6.

All experiments on Qwen-Image and Qwen-Image-Edit were conducted using LoRA fine-tuning. We
set the rank (r) and alpha («) to 64 for Qwen-Image, and to 64 and 32, respectively, for Qwen-Image-
Edit. This LoRA setup comprises approximately 420M trainable parameters. A comprehensive list of
training configuration is provided in Tab. 6.

Additional detailed results on GenEval. As detailed in Tab. 5, our Qwen-Image-TWINFLOW
achieves 0.86 with 1-NFE. Notably, when using LLM rewritten prompts, our GenEval score comes to
0.90, which is very close to Qwen-Image-RL (Wu et al., 2025a) (0.91). Significant score increases
are observed in the Colors and Attribute Binding subtasks. This indicates that our model exhibits
enhanced image generation capabilities when processing long input instructions.

Table 5: Detailed evaluation results on GenEval for text-to-image models. Qwen-Image-Lightning are
evaluated with 1-NFE. Tmeans using LLM rewritten prompts for GenEval.

Model (S)E%l:t OTl:]ye()ct Counting Colors Position ‘/};lt;g:z;e Overallt
SEED-X (Ge et al., 2024) 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Emu3-Gen (Wang et al., 2024b) 0.98 0.71 0.34 0.81 0.17 0.21 0.54
JanusFlow (Ma et al., 2025) 0.97 0.59 0.45 0.83 0.53 0.42 0.63
Show-o (Xie et al., 2024b) 0.99 0.80 0.66 0.84 0.31 0.50 0.68
OmniGen (Xiao et al., 2024) 0.98 0.84 0.66 0.74 0.40 043 0.68
Janus-Pro-7B (Chen et al., 2025d) 0.99 0.89 0.59 0.90 0.79 0.66 0.80
OpenUni-512 (Wu et al., 2025c¢) 0.99 0.91 0.77 0.90 0.75 0.76 0.85
Bagel (Deng et al., 2025) 0.99 0.94 0.81 0.88 0.64 0.63 0.82
OmniGen2 (Wu et al., 2025b) 1.00 0.95 0.64 0.88 0.55 0.76 0.80
Show-02-7B (Xie et al., 2025b) 1.00 0.87 0.58 0.92 0.52 0.62 0.76
Qwen-Image (Wu et al., 2025a) 0.99 0.92 0.89 0.88 0.76 0.77 0.87
Qwen-Image-Lightning (ModelTC, 2025) 0.99 0.89 0.85 0.87 0.75 0.76 0.85
OpenUni-TWINFLOW-512 (1-NFE) 0.99 0.91 0.69 0.90 0.79 0.72 0.83
Qwen-Image-TWINFLOW (1-NFE) 1.00 0.91 0.84 0.90 0.75 0.74 0.86
Qwen-Image-TWINFLOW ' (1-NFE) 0.99 0.94 0.87 0.96 0.78 0.83 0.90
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C.3 DETAILED IMPLEMENTATION ON DEDICATED TEXT-TO-IMAGE MODELS

Table 6: Detailed training configurations for experiments on text-to-image models and multimodal
generative models.

Configuration SANA-0.6B SANA-1.6B OpenUni-512 Qwen-Image Qwen-Image-Edit
Optimizer Settings

Optimizer RAdam RAdam AdamW AdamW AdamW
Learning Rate 1x 107 1x1074 1x107* 1x107* 1x107%
Weight Decay 0 0 0 0 0

(81, B2) (0.9, 0.95) (0.9, 0.99) (0.9, 0.95) (0.9, 0.99) (0.9, 0.99)
Training Details

Batch Size 128 128 128 64 24
Training Steps 30000 30000 60000 7000 7000
Learning Rate Scheduler Constant Constant Constant Constant Constant
Gradient Clipping - - - 1.0 1.0
Random Seed 42 42 42 42 42
LoRA r - - - 64 64
LoRA « - - - 64 32
EMA Decay Rate 0.99 0.99 0.99 0 0

Training Datasets. Considering training datasets, we use BLIP-30-60K (Chen et al., 2025a),
Echo-40 (w/o multi-reference split) (Ye et al., 2025), and ShareGPT-4o0-Image (Chen et al., 2025¢).
Together, these three instruction tuning datasets comprise approximately 200,000 text-to-image
samples.

Training configurations. All experiments on SANA-0.6B/1.6B backbones are conducted with
full-parameter tuning. we fine-tuned these two models for 30,000 steps, using batch sizes of 128 and
64 respectively. Other detailed training configurations are provided in Tab. 6.

Additional detailed results on GenEval. We list the detailed results of TWINFLOW-0.6B/1.6B
on GenEval (Ghosh et al., 2023) along with other SOTA multi-step text-to-image models (except
FLUX-Schnell) in Tab. 7. It demonstrates except the overall score, our TWINFLOW-0.6B/1.6B also
outperforms these multi-step models with 1-NFE in sub tasks such as Position (0.6B: 0.84, 1.6B:
0.79) and Attribute Binding (0.6B: 0.70, 1.6B: 0.68).

Table 7: Detailed evaluation results on GenEval for text-to-image models.

Model (S;blﬁlcet Or[b:]yeoct Counting Colors Position %:;al:ﬁtge OverallT
SDXL (Lin et al., 2024) 0.98 0.74 0.39 0.85 0.15 0.23 0.55
PixArt-X (Chen et al., 2024a) 0.98 0.59 0.50 0.80 0.10 0.15 0.52
SD3-Medium (Esser et al., 2024a) 0.98 0.74 0.63 0.67 0.34 0.36 0.62
FLUX-Dev (Labs, 2024) 0.98 0.81 0.74 0.79 0.22 0.45 0.66
FLUX-Schnell (Labs, 2024) 0.99 0.92 0.73 0.78 0.28 0.54 0.71
SD3.5-Large (Esser et al., 2024a) 0.98 0.89 0.73 0.83 0.34 0.47 0.71
Lumina-Image-2.0 (Qin et al., 2025) - 0.87 0.67 - - 0.62 0.73
SANA-0.6B (Xie et al., 2024a) 0.99 0.76 0.64 0.88 0.18 0.39 0.64
SANA-1.6B (Xie et al., 2024a) 0.99 0.77 0.62 0.88 0.21 0.47 0.66
TWINFLOW-0.6B (1-NFE) 0.98 0.90 0.68 0.89 0.84 0.70 0.83
TWINFLOW-1.6B (1-NFE) 0.99 0.88 0.65 0.86 0.79 0.68 0.81

C.4 EXPLORATION ON IMAGE EDITING

We conducted a preliminary exploration of our method on image editing tasks using a subset of
approximately 15,000 square images from Chen et al. (2025c). We fine-tuned the Qwen-Image-Edit
model (Wu et al., 2025a) using LoRA at a fixed 512x512 resolution, with training configurations
detailed in Table 6. Note that we use a low and fixed resolution during training; during testing, we
use a resolution that is the same as the input image size. Our Qwen-Image-Edit-TWINFLOW can
effectively edit images in 2 to 4 NFEs. With 2 NFEs, it achieves a score of 3.47 on the ImgEdit,
surpassing all multi-step models except Qwen-Image-Edit itself.
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Despite the naive usage of the dataset and training strategy, these results highlight the significant
potential of our approach. We believe that with further scaling, our method can achieve strong
performance in a single-step (1-NFE) setting on image editing tasks.

Table 8: Comparison of TWINFLOW with unified multimodal models in performance on image editing
tasks. In GEdit-Bench, G_SC measures Semantic Consistency, G_PQ evaluates Perceptual Quality, and G_O
reflects the Overall Score. All metrics are evaluated by GPT-4.1.

Image Editing
Method NFE | | GEdit-EN (Full set) 1 .
G.SC GpPQ G.o Imekdit?
UniWorld-V1 (Lin et al., 2025) 28x2 4.93 7.43 4.85 3.26
OmniGen (Xiao et al., 2024) 50%x2 5.96 5.89 5.06 2.96
OmniGen2 (Wu et al., 2025b) 50x2 7.16 6.77 6.41 3.44
Step1X-Edit (Liu et al., 2025) 28x2 7.66 7.35 6.97 3.06
Bagel (Deng et al., 2025) 50x2 7.36 6.83 6.52 3.20
Qwen-Image (Wu et al., 2025a) 50x2 8.00 7.86 7.56 4.27
Qwen-Image-Edit-TWINFLOW 4 5.95 6.97 5.91 3.55
Qwen-Image-Edit-TWINFLOW 2 5.94 6.81 5.85 3.47

D THEORETICAL ANALYSIS

D.1 TRANSFORMATION FROM SCORE TO VELOCITY

In this section, we derive the equation between score and velocity. According to Equation 2 in Sun
et al. (2025) with flow matching, we have:

X _ a(t) i FG(Xtat) — d(t) Xt t Fg(Xt,t) — Xt
I (Fo(xi,t),x¢,t) = alt) - 4(t) — a(t) - ~(t) o t-(-1)—1-(1-1))
:W:Xt_t.f"e(xt,t). (11)

According to Theorem 2 in Sun et al. (2025), we have:

x; + % (t) Vi, logp(xs) x4 + % Vi, logpe(xs) % + 12 s(x¢)

fx(FG(Xtat)vxtat) =

() B (1-1) 1=t
(12)
where s(x;) = Vx, log p:(x;). By simple transposition of s(x;) term, we can get:
t2
%_st(xt) =x; —t- Fo(x,1)
= t?s(x¢) = (1 —t) (x¢ — t- Fo(x4,t)) — x¢ = —tx; + (£* — t)Fo(xy, 1)
—t t? —t)F t 1-t)F t
= s(x¢) = xi+ ( = JFo(xt,t) _| Xt +( t) o(x1,1) . (13)

E VISUALIZATION RESULTS

E.1 COMPARISON OF QWEN-IMAGE-TWINFLOW AND QWEN-IMAGE-LIGHTNING

As Fig. 5 shown, our comparative analysis reveals a notable limitation in Qwen-Image-Lightning’s
generation. The model produces images with very low diversity; outputs are often highly similar and
visually repetitive even when initialized with different latent noise. Our Qwen-Image-TWINFLOW
does not exhibit model collapse, demonstrating the ability to generate a rich variety of high-quality
images.
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Ours:
Remains
Diversity

Qwen-Image-
Lighting:
Almost
Identical!

Figure 5: Comparison between Qwen-Image-TWINFLOW and Qwen-Image-Lightning (1-NFE). The
prompts and generated images are sourced from DPG-Bench. We observe that Qwen-Image-Lightning tend to

generate very similar images though noise is different, which hurts diversity. Our model remains diversity and
high quality generation.
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Figure 6: Visualizations of 1-NFE images generated by Qwen-Image-TWINFLOW w.r.t. training steps. In
the early stages of training, our method converges rapidly, and the generated images begin to take shape (200 to
400 steps); as training progresses, our method gradually optimize the visual details (800 to 6400 steps).

E.2 VISUALIZATION RESULTS ACROSS TRAINING STEPS

As illustrated in Fig. 6, our method exhibits a two-stage training dynamic. Initially (200 to 400 steps),
it demonstrates rapid convergence in 1-NFE performance, quickly establishing a strong baseline.
Subsequently (800 to 6400 steps), the training process shifts towards refining finer visual details,
leading to a steady enhancement of image fidelity. This highlights our approach’s efficiency in
achieving strong initial results and its capacity for continued improvement with extended training.
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E.3 SELECTED PROMPTS USED FOR VISUALIZATION

The prompts used to generate the results shown in Fig. 1 and Fig. 3 are detailed in this section to
ensure reproducibility.

A cinematic vertical composition of a bustling street in Central Hong Kong, featuring vibrant red taxis
driving along the road. The scene is framed by towering modern skyscrapers with reflective glass
facades, creating an urban jungle atmosphere. The cityscape glows with neon signs and soft ambient
light, capturing the essence of Hong Kong’s iconic night—time energy. On the road surface, painted
traffic markings texts: "SLOW’. The sky above has a gradient transitioning from deep twilight blue to
warm orange hues near the horizon, adding depth and drama to the image. Rendered in hyper—realistic
style with rich colors, intricate textures, and high contrast lighting for maximum impact.

Classic Baroque—style still life painting, a woven wicker basket overflowing with fresh fruits including red
and green grapes, ripe apples, plums, quinces, and a yellow pear, adorned with grape leaves and vines.
The basket sits on a draped stone or wooden table covered with a dark blue cloth, with scattered fruits
and berries around it. Rich, dramatic lighting highlights the textures and colors of the fruit, creating
deep shadows and soft highlights. A luxurious red curtain drapes in the background, adding depth and
contrast. Realistic, highly detailed, oil painting style, reminiscent of 17th—century Dutch or Flemish
masters such as Jan Davidsz de Heem or Caravaggio. Warm, earthy tones, meticulous attention to
detail, and a sense of abundance and natural beauty. Ultra HD, 4K, cinematic composition.

Clean white brick wall, vibrant colorful spray—paint graffiti covering entire surface: top giant bubble letters *1
Step Generation’, below stacked *TwinFlow’, "Made Easy’ in rainbow palette, fresh wet paint drips,
daylight urban photography, realistic light and shadow. Ultra HD, 4K, cinematic composition.

A close—up realistic selfie of three cats of different breeds in front of the iconic Big Ben, each with a different
expression, taken during the blue hour with cinematic lighting. The animals are close to the camera,
heads touching, mimicking a selfie pose, displaying joyful, surprised, and calm expressions. The
background showcases the complete architectural details of the [landmark], with soft light and a warm
atmosphere. Shot in a photorealistic, cartoon style with high detail.

Starbucks miniature diorama shop. The roof is made of oversized coftee beans, and above the windows is a
huge ’Starbucks’ sign. A vendor is handing coffee to customers, and the ground is covered with many
coffee beans. Handmade polymer clay sculpture, studio macro photograph, soft lighting, shallow depth
of field. Ultra HD, 4K, cinematic composition.

A whimsical scene featuring a capybara joyfully riding a sleek, modern rocket. The capybara is holding a
sign with both hands, the text on the sign boldly and eye—catchingly reading ' QWEN-IMAGE-20B’.
The capybara looks thrilled, sporting a playful grin as it soars through a vibrant sky filled with soft,
pastel clouds and twinkling stars. The rocket leaves a trail of sparkling, colorful smoke behind it, adding
to the magical atmosphere. Ultra HD, 4K, cinematic composition.A still frame from a black and white
movie, featuring a man in classic attire, dramatic high contrast lighting, deep shadows, retro film grain,
and a nostalgic cinematic mood. Ultra HD, 4K, cinematic composition.

Close—up portrait of a young woman with light skin and long brown hair, looking directly at the camera. Her
face is illuminated by dramatic, slatted sunlight casting shadows across her features, creating a pattern
of light and shadow. Her eyes are a striking green, and her lips are slightly parted, with a natural pink
hue. The background is a soft, dark gradient, enhancing the focus on her face. The lighting is warm and
golden. Ultra HD, 4K, cinematic composition.

A field of vibrant red poppies with green stems under a blue sky.

A small blue—gray butterfly with black stripes rests on a white and yellow flower against a blurred green
background.

A grey tabby cat with yellow eyes rests on a weathered wooden log under bright sunlight

E.4 HIGH RESOLUTION VISUALIZATION

In this section, we showcase further qualitative results from Qwen-Image-TWINFLOW to highlight
its generative capabilities. To ensure an unbiased representation, the generation prompts were chosen
at random, and the resulting visualizations are presented without curation or cherry-picking.

E.5 1-NFE VISUALIZATION
E.6 50-NFE VISUALIZATION
E.7 FAKE TRAJECTORY VISUALIZATION

22




Under review as a conference paper at ICLR 2026

Figure 7: Visualization of Qwen-Image-TWINFLOW (NFE=4). Each image is of 1328 x 1328 resolution.

23



Under review as a conference paper at ICLR 2026

>

VUL
T

WL

)

UL

Figure 8: Visualization of Qwen-Image-TWINFLOW (NFE=4). Each image is of 1328 x 1328 resolution.
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Figure 9: Visualization of Qwen-Image-TWINFLOW (NFE=4). Each image is of 1328 x 1328 resolution.
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Figure 10: Visualization of Qwen-Image-TWINFLOW (NFE=4). Each image is of 1328x 1328 resolution.
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Figure 11: Visualization of Qwen-Image-TWINFLOW (NFE=4). Each image is of 1328x 1328 resolution.

27



Under review as a conference paper at ICLR 2026

Figure 12: Visualization of Qwen-Image-TWINFLOW (NFE=1). Each image is of 13281328 resolution.
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Figure 13: Visualization of Qwen-Image-TWINFLOW (NFE=50). Each image is of 1328 x 1328 resolution.
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Figure 14: Visualization of Qwen-Image-TWINFLOW (NFE=50). Each image is of 1328 x 1328 resolution.
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Figure 15: Visualization of the fake trajectory (NFE=20). The fake images have significant visual difference
comparing to real images.

Table 9: Comparison of full-parameter training efficiency and performance between TWINFLOW and
baselines on text-to-image tasks using Qwen-Image 20B. The raw setting denotes that the generator, real score,
and fake score are instantiated as separate models using FSDP-v2; this configuration leads to OOM. Therefore,
for VSD, SiD, and DMD, the fake score estimator is implemented using LoRA (r = 64) to ensure memory
feasibility. x indicates severe diversity degradation (mode collapse), characterized by nearly identical outputs on
GenEval and DPG-Bench. For sCM and MeanFlow, the Jacobian-Vector Product (JVP) is approximated via
finite differences.

Method NFEL | Genbval 1 DPG-Beneh ] WISE 1
VSD (Wang et al., 2023) (raw) - OOM OOM OOM
DMD (Yin et al., 2024b) (raw) - OOM OOM OOM
SiD (Zhou et al., 2024) (raw) - OOM ooM OOM
VSD (Wang et al., 2023) ; 8:% 2‘6‘;‘1‘2 8%421
DMD* (Yin et al., 2024b) ; 8:2(1) ﬁijéé 8232
SiD* (Zhou et al., 2024) é 8;32 SZ;S?; 8:1%
sCM (Lu & Song, 2024) (JVP-free) g 8:23 2221 82345‘
MeanFlow (Geng et al., 2025) (JVP-free) g gig gggf 8;4;
RCGM (Sun & Lin, 2025) (N = 1) ; 3;;‘2 QZS 8;2&
RCGM (Sun & Lin, 2025) (N = 2) ; 8:?2 ;2;5? 8%
RCGM (Sun & Lin, 2025) (N = 3) ; 8:% ;ﬁg 81;7;;
Ours (N = 1) ; 8:;3 gg:;g 8:13
Ours (N = 2) é 8:22 222§§ 8;
Ours (N = 3) ) 089 S04 036
Ours (N = 2, longer training) ; ggg g;gg gg;
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(c) TwinFlow + FM loss

(b) TwinFlow + base loss
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Figure 16: Visualization of RCGM, TwinFlow + base loss, and TwinFlow + FM loss on MNIST (NFE
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