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Backdoor Attacks on Bimodal Salient Object Detection with
RGB-Thermal Data

Anonymous Author(s)
∗

Saliency Map Output
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Benign Image Pair

Triggered Image Pair

Figure 1: Saliency maps (right) from clean and backdoor RGBT-SOD models on benign and triggered inputs (left). Trigger
location indicated by red rectangle. Top left map: clean model on both inputs and backdoor model on benign input. Remaining
maps (dashed red) show potential saliency maps from backdoor RGBT-SOD models on triggered inputs.

ABSTRACT
RGB-Thermal salient object detection (RGBT-SOD) plays a critical

role in complex scene recognition fields such as autonomous driv-

ing, yet security research in this area remains limited. This paper

introduces the first backdoor attack targeting RGBT-SOD, gener-

ating saliency maps on triggered inputs that depict non-existent

salient objects chosen by the attacker, or designate no salient region

(all black pixels) or the entire image as a salient region (all white

pixels). We uncover that triggers possess an influence range for

generating non-existent salient objects, supported by a theoretical

approximation provided in this study. Extensive experimental eval-

uations validate the efficacy of our attack in both digital domain

and physical-world scenarios. Notably, our dual-modality backdoor

attack achieves an Attack Success Rate (ASR) of 86.72% with only

5 pairs of images in model training. Despite exploring potential

countermeasures, we find them ineffective in thwarting our at-

tacks, underscoring the urgent need for robust defenses against

sophisticated backdoor attacks in RGBT-SOD systems.

CCS CONCEPTS
• Computing methodologies → Computer vision; • Security
and privacy→ Software and application security.

KEYWORDS
RGB-Thermal Salient Object Detection, Backdoor Attack, Influence

Range

1 INTRODUCTION
Salient object detection (SOD) aims to replicate the rapid perceptual

processes of the human eye, swiftly identifying and segmenting the

most conspicuous regions within an image, referred to as salient
regions. Given an input image, SOD generates either a saliency

map, represented as a grayscale image where brighter areas de-

note higher saliency scores for pixels, or a binary map, indicating

the shapes and positions of detected salient regions: white pixels

(with a value of 1) representing the salient regions and black pixels

(with a value of 0) constituting the background. The SOD process

involves computing the saliency score for each pixel and selecting

a threshold to generate a binary mask or applying normalization

or contrast enhancement to emphasize the salient regions while

suppressing the background in the output saliency map. The exten-

sion of this task to RGB-Thermal (RGBT) salient object detection

(RGBT-SOD) integrates a pair of input images—one in RGB mode

and the other in thermal infrared mode. Thermal infrared images

capture object temperatures and thermal distributions, offering ad-

vantages in overcoming environmental challenges such as low light

or occlusion. The significance of RGBT-SOD extends to diverse

application domains, including but not limited to abnormal object

detection, nocturnal autonomous driving facilitation, and critical

infrastructure monitoring [28]. Despite the importance of both SOD

and RGBT-SOD, the security implications of both single-modal SOD

and RGBT-bimodal SOD models remain underexplored.

Backdoor attacks pose a significant threat to Deep Neural Net-

work (DNN) applications. In such attacks, a small fraction of mali-

ciously crafted training samples containing a concealed trigger is

embedded into a model’s training data. While the resulting model

behaves normally with benign inputs, it produces a specific recog-

nition result designated by the attacker when the trigger is present

in the input. Although backdoor attacks have been widely studied,

with a focus on single-modal RGB data [17, 40, 44], investigations

into backdoor attacks on RGBT-bimodal models or SOD models are

unexplored. In a backdoor attack, the trigger should be designed to

adapt to the modal characteristics of the data [39, 42, 45]. Specifi-

cally, for the backdoor attack on bimodal SOD, the trigger should

be designed to effectively leverage features from both modalities.

In this paper, we introduce the first backdoor attack on SOD,

specifically targeting bimodal RGBT-SOD models. We devise a bi-

modal trigger, manifested as a heating device, which exhibits dis-

tinct characteristics from the environmental background in both

RGB and thermal infrared modes. This trigger can induce backdoor

responses from both modalities of the bimodal SOD model. Figure 1
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illustrates examples of SOD outputs generated by our backdoor

bimodal SODmodel, with and without the application of the trigger

on the same pair of input RGB and thermal infrared images. With-

out the trigger, the model correctly identifies and highlights the

salient region in the output saliency map. However, upon triggering

the input images, the model outputs a saliency map predetermined

by the attacker, showcasing seven different specified saliency maps

representing various shapes and locations of the fabricated salient

object, including two special cases: no salient region for a com-

pletely black image and the entire image flagged as a salient object

for a completely white image.

SOD processes an input image and produces a saliency map as

output. In a backdoor SOD model, the trigger influences pixels’

saliency scores, the threshold, or the normalization or contrast

enhancement to output a specific saliency map designated by the

attacker. This output may manifest as a fabricated salient object

of arbitrary shape or size at a designated location, absence of any

salient region detected, or the entire image beingmarked as a salient

region. Unlike conventional backdoor attacks primarily targeting

classification models, wherein a trigger placed anywhere within an

input image can elicit a desired label with an appropriately trained

backdoor model, a backdoor attack on SOD exhibits a pronounced

spatial relationship between the trigger and the fabricated salient

object determined by the attacker. Each trigger possesses an im-

pact region, dictated by the model’s architecture and configuration,

within which an arbitrary fabricated salient object can be gener-

ated, rendering the backdoor attack feasible. Beyond its boundaries,

the production of a fabricated salient object becomes unattainable,

resulting in the failure of the backdoor attack. Furthermore, two

special saliency maps — one indicating no salient region detected

and the other the entire image identified as a salient object — can be

targeted outputs of a backdoor attack, achievable with the trigger

placed anywhere within input images. We provide both theoretical

analysis and empirical studies elucidating this impact region and

achievable backdoor outputs in our paper.

We conduct an extensive experimental evaluation of our pro-

posed backdoor attack on bimodal SOD models , utilizing three

RGBT-SOD models and three publicly available RGBT datasets.

Our real-world attack achieves an Attack Success Rate (ASR) of

92.00% from various viewing angles. Remarkably, our attack ne-

cessitates minimal poisoning during training; embedding merely

five poisoned image pairs in the training dataset yields a back-

door RGBT-SOD model with an ASR of 86.72%. This injection ratio

of poisoned samples is significantly lower than that required for

single-modality backdoor attacks. Our attack can be successful by

triggering both modalities simultaneously or each modality indi-

vidually. Notably, triggering only the thermal infrared modality

provides an exceptionally stealthy approach, as the trigger remains

invisible, offering a covert means of launching a backdoor attack.

Additionally, we explore various factors influencing the backdoor

attack on RGBT-SOD, including the trigger’s influence range, out-

put saliency map, triggered modality, etc. Furthermore, we evaluate

three potential countermeasures against our proposed backdoor at-

tack. Our study reveals the threat of backdoor attacks on RGBT-SOD

as well as general SOD models and calls for developing effective

countermeasures to thwart them.

Our main contributions can be summarized as follows:

• We introduce the first backdoor attack on SOD, specifically

targeting RGBT-SOD models. Our attack utilizes a trigger

designed to exploit the unique characteristics of bothmodal-

ities, achieving high ASR with minimal poisoning during

training (86.72% ASR with only 5 poisoned image pairs).

• We uncover the limited influence range of a trigger on

fabricated salient objects in backdoor attacks on SOD. To

elucidate this phenomenon, we offer both theoretical anal-

ysis and empirical validation, providing insights into its

underlying mechanisms.

• We conduct extensive experiments to validate the effec-

tiveness of our attack across digital and physical domains.

Additionally, we explore various influencing factors and

evaluate potential defenses against our proposed backdoor

attack. Notably, we demonstrate that our attack can be

executed by triggering both modalities or either one indi-

vidually, with particular emphasis on the stealthiness of

triggering only the thermal infrared modality.

2 RELATEDWORK
2.1 RGBT-SOD
The advancement of deep learning technology has significantly

propelled progress in the field of SOD [14]. Numerous SOD ap-

proaches relying on fully convolutional neural networks have been

proposed. Some methods enhance saliency through recurrent FCN

architectures [37], while others bridge the gap between saliency

predictions and ground truth (GT) by aggregating diverse features,

including hierarchical and contrast features [12], and by alternating

between low-level and high-level features [6]. Binary cross-entropy

loss functions are also employed to refine predictions in challenging

regions [36]. Despite these advancements, existing algorithms face

difficulties in addressing specific challenges, such as adverse imag-

ing conditions. The integration of thermal imaging has introduced

valuable capabilities to many methods, enabling them to comple-

mentmissing information by leveraging the thermal imagingmodal-

ity’s resilience to harsh environmental conditions [15, 23]. Wang

et al. pioneered the construction of the first RGBT-SOD dataset,

introducing a multi-task manifold sorting algorithm [33]. Tu et al.

adopted superpixels as graph nodes and leveraged hierarchical deep

features to learn graph affinity and node saliency [30]. They further

constructed a large-scale dataset of 5000 image pairs, proposing an

effective baseline that employs an attention mechanism to refine

multi-level features from both modalities. Zhang et al. improved

salient object predictions by combining adjacent depth features,

capturing cross-modal features, and integrating multi-level fusion

features [43]. In a recent development, Tu et al. introduced a dual

decoder to address the challenge of multi-level feature interaction.

By facilitating interaction among RGB modality, T modality, and

global context, they achieved more precise RGBT-SOD results [28].

2.2 Backdoor Attack
A backdoor attack involves covertly injecting a backdoor into a

DNN model, which functions normally on benign samples but out-

puts predetermined results set by the attacker upon trigger activa-

tion [11, 20]. In scenarios where the training process lacks full con-

trol, such as in outsourced training or the use of third-party datasets,

2
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backdoor attacks pose significant real-world risks. Attackers gen-

erate backdoor models through "data poisoning" attacks [3, 41] or

"poisoning + training manipulation" attacks [2, 13, 21]. The former

involves poisoning the training data, while the latter poisons both

the training data and modifies the training process. Backdoor at-

tacks differ in their trigger designs and data poisoning methods.

While poisoned data in most backdoor attacks are mislabeled, mak-

ing them detectable by human inspection, clean label backdoor

attacks [25, 31] make poisoned training data look natural with cor-

rect labels, making them hard to differentiate from clean data, even

upon human examination. Existing backdoor attack triggers en-

compass various forms, including single pixels [27], reflective back-

grounds [22], and invisible patterns [16, 46]. However, backdoor

attacks with invisible triggers pose challenges in physical-world at-

tacks. In real-world scenarios, researchers have explored leveraging

actual objects as triggers for implementing backdoor attacks [4, 38].

Notably, the existing body of backdoor attack research primarily

concentrates on vision tasks with the visible light modality, with a

noticeable absence of studies on backdoor attacks on specifically

targeting SOD or RGBT data.

3 PRELIMINARIES
3.1 Attacker’s Goal
The objectives of the attack align with the foundational principles

of general backdoor attacks. The first objective, aimed at ensuring

stealthiness, involves guaranteeing that the backdoor RGBT-SOD

model consistently produces accurate outputs when presented with

benign samples. This objective is intended to conceal the presence

of a backdoor in themodel based on its output. The second objective,

focusing on effectiveness, entails the backdoor RGBT-SOD model

consistently producing incorrect salient regions set by the attacker

in the presence of a specific dual-mode trigger. Achieving this

objective enables attackers to generate misleading and potentially

harmful falsely salient objects, such as segmenting cars as roads.

3.2 Threat Model
Backdoor attacks can manifest in various scenarios, including out-

sourced training, migration of pre-trained models, and utilization

of third-party datasets. As discussed in Section 2.2, these attacks

can be executed through "data poisoning" or "poisoning + training

manipulation" strategies. The latter requires access not only to the

dataset but also to the model training process, resulting in stronger

attack effects, albeit being more challenging to execute than the

former. Drawing inspiration from prior research on backdoor at-

tacks [5, 18], we adopt the "data poisoning" threat model in this

paper. Under this model, attackers gain access to a portion of the

dataset and inject poisoned data into it without manipulating the

training process. While this approach represents a weaker threat

model, it fundamentally exposes vulnerabilities in the RGBT-SOD

model, thereby stimulating further research into its security.

3.3 RGBT-SOD Model
Given 𝑁 sets of RGBT image pairs (𝑀𝑣, 𝑀𝑡 ) = {(𝑀𝑣𝑖 , 𝑀𝑡𝑖 ) |𝑖 =

1, 2, 3, ..., 𝑁 }, where 𝑀𝑣 represents the RGB images under visible

light and𝑀𝑡 represents the corresponding thermal infrared images,

the SOD task predicts saliency maps𝑈 = {𝑈𝑖 |𝑖 = 1, 2, 3, ..., 𝑁 }. Sup-
pose the corresponding ground truths are denoted as 𝐺 = {𝐺𝑖 |𝑖 =
1, 2, 3, ..., 𝑁 }, the Binary Cross-Entropy (BCE) loss between𝑈 and

𝐺 in the SOD task is calculated as follows:

𝐿 (𝑈 ,𝐺 ) = −
𝑁∑︁
𝑖=1

𝑃𝑖∑︁
𝑗=1

(𝐺𝑖 𝑗 ∗ 𝑙𝑜𝑔 (𝑈𝑖 𝑗 ) + (1 −𝐺𝑖 𝑗 ) ∗ (1 − 𝑙𝑜𝑔 (𝑈𝑖 𝑗 ) ) ), (1)

where 𝑃𝑖 is the total number of pixels in the 𝑖-th saliency map.

The RGBT-SOD model employs two independent backbones

to extract features from RGB images and thermal infrared images,

respectively. The saliencymaps from the twomodalities are denoted

as 𝑈𝑣 = {𝑈𝑣𝑖 |𝑖 = 1, 2, 3, ..., 𝑁 } and 𝑈𝑡 = {𝑈𝑡𝑖 |𝑖 = 1, 2, 3, ..., 𝑁 },
respectively. To ensure equal importance of both modalities, the

loss weights for both modalities are set the same, and the features

are complemented by feature aggregation [28, 29]. Consequently,

the dual BCE loss function between the two modal saliency maps

and the ground truth is computed as follows:

𝐿𝑑 = 𝐿(𝑈𝑣,𝐺) + 𝐿(𝑈𝑡 ,𝐺), (2)

The loss function of the global information module, 𝐿𝑔 , and

that of the final predicted saliency map after aggregating bimodal

features, 𝐿𝑓 , both utilize the BCE loss [28, 29, 34]. Additionally,

to enhance the clarity of salient object edges, the smoothing loss

𝐿𝑠 [35] is applied. The final total loss is computed as follows:

𝐿 = 𝐿𝑑 + 𝐿𝑔 + 𝐿𝑓 + 𝛾𝐿𝑠 , (3)

where 𝛾 is typically set to 0.5 based on expert experience. More

details of the loss function can be found in Appendix A.

4 METHODOLOGY
4.1 Trigger Design
For the RGBT-SOD model, feature extraction is performed on a pair

of RGB and thermal infrared images. Therefore, the trigger needs to

exhibit features in both modalities simultaneously to effectively ac-

tivate the bimodal SOD model to produce the mispredicted saliency

map set by attackers. To make the poisoned data less suspicious, the

trigger should be inconspicuous, with a focus on making the RGB

trigger inconspicuous since thermal infrared images are invisible to

humans. The trigger should also contrast with both salient objects

and the background in the scene. For the thermal trigger, we use a

heater to control its temperature to achieve the goal. When heated,

a specific thermal infrared image acts as the thermal trigger to cause

the RGBT-SOD model to predict a saliency map set by attackers.

When not heated, the thermal infrared is inactive, and the thermal

infrared portion of the RGBT-SOD model performs normally.

In our backdoor attack, we exemplarily design two triggers for

each modality, as shown in Figure 2. For RGB triggers, one is an

"EXIT" sticker, suitable for areas where vehicles enter and exit, as

it is inconspicuous in these scenarios. The other is a white sticker,

which is inconspicuous and suitable for common public places.

Regarding thermal triggers, one consists of heating patches, which

are common and inexpensive but heat unevenly and have poor

stability. The other is an electric heater that controls heating with

a button, offering greater stability and flexibility. The active and

inactive states of two thermal triggers are depicted in Figure 3.

3
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4.2 Influence Range of Trigger
In SOD backdoor attacks, triggers can spawn non-existent salient

objects and suppress the salience of visually salient objects. We

observe that in a SOD model, the trigger exhibits an influence

range: triggers can spawn a non-existent salient object only within

a certain range around the trigger while be able to suppress the

salience of visually salient object from detection without such the

range limitation. The following lemma explains the underlying

mechanism and provides the estimation of the effective influence

range of the trigger for spawning fake salient objects.

Lemma 1. Given a SOD model with convolution kernels of size
𝑘 × 𝑘 and the implanted trigger size 𝑎 × 𝑏, and assuming that the
trigger size is 𝑎′ ×𝑏′ in the feature map of the last convolutional layer
of the encoder of the SOD model, the influence range of this trigger
is approximately (𝑎 + (2𝑘 − 2) × (𝑎/𝑎′)) × (𝑏 + (2𝑘 − 2) × (𝑏/𝑏′))
rectangular range with the center of this trigger as the midpoint.

The proof of Lemma 1 is provided in Appendix B.

When the backdoor output saliency map is all black (all salient

objects are suppressed and thus no salient regions can be detected)

or white (i.e., the whole image is a salient region), the decoder with

the global context, when the trigger is applied, would alter global

background saliency or trigger’s saliency relative to the background

to make no salient region detected or the whole image be detected

as a salient region. As a result, the influence range does not affect

trigger’s suppression of salient objects.

4.3 Attack Pipeline
The attack pipeline is shown in Figure 4. Once the trigger is deter-

mined, we select the position where the trigger will be placed in

an image. This location can be arbitrarily chosen within the image.

Subsequently, we randomly select𝑄 = 𝑞×𝑁 (typically 0 ≤ 𝑞 ≤ 0.2)

RGBT image pairs from the training dataset, which consists of 𝑁

pairs of RGBT images. For each image pair (𝑀𝑣 𝑗 , 𝑀𝑡 𝑗 ), the RGB and

thermal triggers are applied to the selected location in the RGB

and thermal infrared images, respectively. To simplify notation, we

rearrange the subscripts of the randomly selected image pairs, and

the resulting poisoned images can be expressed as follows:

(𝑀′
𝑣 𝑗 , 𝑀

′
𝑡 𝑗 ) = (𝑀𝑣 𝑗 + 𝑥𝑣, 𝑀𝑡 𝑗 + 𝑥𝑡 ), ( 𝑗 = 1, 2, . . . , 𝑄), (4)

where 𝑥𝑣 and 𝑥𝑡 represent the RGB trigger and thermal trigger,

respectively.

After generating the poisoned data, we assign a specific saliency

map that the attackers want the backdoor SOD model to predict

on triggered input. This specific saliency map can represent a fake

salient object of a predetermined shape and location (such as circle,

car shape, human shape, etc.), a saliency map consisting of all white

pixels to indicate the entire image as salient, or a saliency map

consisting of all black pixels to indicate no salient region. This

specific saliency map replaces the original ground truths of the

poisoned image pairs for training an RGBT-SOD model, effectively

injecting the backdoor into the resulting model. The association of

the backdoor label can be formulated as follows:

𝑈 ′
𝑗 = 𝑈𝑎, ( 𝑗 = 1, 2, . . . , 𝑄), (5)

where𝑈𝑎 represents the saliency map that attackers want the model

to predict when triggered, with the salient object represented by

white pixels and the background by black pixels.

As mentioned in the preceding subsection and corroborated by

our experimental evaluation, to be presented in Section 5.2, the

fake salient object should fall within the trigger’s influence range.

Otherwise, the backdoor injection into the resulting RGBT-SOD

model would fail.

Following the aforementioned process, we obtain the poisoning

dataset 𝐷𝑝 = {((𝑀′
𝑣 𝑗
, 𝑀′

𝑡 𝑗
),𝑈 ′

𝑗
) | 𝑗 = 1, 2, . . . , 𝑄}. By incorporating

𝐷𝑝 into the training data (replacing the original selected data),

the training process can be viewed as optimizing the following

objective over the training data mixed with the poisoned data:

argmin

𝜃

𝐿 = argmin

𝜃

(𝐿𝑑 (𝐷𝑝 , 𝜃 ) + 𝐿𝑔 + 𝐿𝑓 + 𝛽𝐿𝑠 ), (6)

where 𝐿𝑑 (𝐷𝑝 , 𝜃 ) represents the BCE loss between the saliency map

predicted by the backdoor model and the ground truth, and 𝜃 de-

notes the parameters of the backdoor model. The resulting backdoor

model behaves normally on non-triggered inputs but outputs the

saliency map set by the attacker when triggered.

4
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Figure 5: Examples illustrating the impact of triggers on global saliency. The top row depicts a pair of benign images along
with their predicted saliency maps generated by the "Black" and "White" backdoor RGBT-SOD models, accompanied by their
corresponding output feature maps of the first decoder layer. The bottom row shows the same pair of images with triggers
positioned at the left bottom of each image, along with their resulting prediction outcomes and feature maps.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Settings & Evaluation Metrics
5.1.1 Datasets and Models. To evaluate the effectiveness of the

attack, we select three publicly available RGBT-SOD datasets and

three deep learning-based RGBT-SOD models. The datasets chosen

include VT821 [33], VT1000 [30], and VT5000 [29]. The image sizes

in all three datasets are 640×480 pixels. The selected models include

MIDD-VGG16 [28], MIDD-ResNet50 [28], and [29]. Details of the

selected datasets and models are provided in Appendix C. They can

provide a comprehensive evaluation of the attack’s effectiveness

across different RGBT-SOD scenarios and model architectures.

5.1.2 Attack Settings. In our experiments, the default settings for

the backdoor attack are as follows: We resize the "EXIT sticker +
electric heater" trigger, captured in the real world, to 60 × 42 pixels

and implant it at the same position in both the RGB images and

thermal infrared images. The injection rate is set to 5%. The fake

salient object generated by the backdoor model on triggered inputs

is a "Circle", with the center of the trigger aligned with the center of

the circle and the length of the trigger serving as the diameter. The

default model and dataset used for evaluation are MIDD-VGG16

and VT5000, respectively.

5.1.3 Evaluation Metrics. Backdoor attacks are generally evaluated
with metrics related to the two goals of backdoor attacks described

in Section 3.1 [17, 20, 25]. For stealthiness performance, we use 𝐹𝛽
[1], 𝑆𝛼 [8], E-measure (𝐸) [9], and mean absolute error [24], which

are widely used in the performance evaluation of SOD models.

For the 𝑖-th pair of images, the mean absolute error between the

saliency map and ground truth is expressed as𝑀𝐴𝐸𝑖 . We average

all𝑀𝐴𝐸𝑖 values of the test samples as the evaluation metric𝑀𝐴𝐸.

The details of metrics are given in Appendix D.

For 𝐹𝛽 , 𝑆𝛼 , and 𝐸, higher values indicate better model perfor-

mance. Conversely, for𝑀𝐴𝐸, lower values correspond to superior

model performance. When these four evaluation values of the back-

door model on benign samples are similar to the corresponding

values of the clean model on benign samples, the backdoor model

is said to perform well on stealthiness.

For the evaluation of effectiveness, we employ the commonly

used Attack Success Rate (𝐴𝑆𝑅) in backdoor attacks. We define a

successful attack on 𝑖-th image pair when its 𝑀𝐴𝐸𝑖 between the

saliency map predicted by the backdoor model and the saliency

map set by the attack is less than or equal to 0.005. Thus 𝐴𝑆𝑅 can

be expressed as follows:

𝐴𝑆𝑅 =

∑𝑍
𝑖=1𝐶𝑖

𝑍
∗ 100%, 𝐶𝑖 =

{
1 if 𝑀𝐴𝐸𝑖 ≤ 0.005

0 else
, (7)

where 𝑍 is the total number of image pairs in the testing set.

5.2 Trigger’s Influence Range
First, we analyze scenarios where the triggers affect global saliency.

This occurs when the target salience map on triggered inputs is

completely black, indicating that no salient region is detected, or

completely white, indicating that the entire image is considered a

salient region. Examples of benign and triggered image pairs, along

with their saliency maps produced by our "Black" and "White"

backdoor models, are illustrated in Figure 5, along with their output
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Figure 6: Examples illustrating the influence range of the trigger. The first row displays various positions of the non-existent
salient object set as the ground truth for the poisoned images, with the red rectangular indicating the calculated influence range
of the trigger as per Lemma 1. The second row presents the predicted saliency maps generated by the backdoor RGBT-SOD
model for each position of the non-existent salient object. The third row exhibits the corresponding output feature maps of the
first decoder layer of the models.
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Figure 7: The performance results of the backdoor models for the 8 different distances between the trigger and the non-existent
salient object shown in Figure 6.

feature maps at the first decoder layer of the RGBT-SODmodel. The

"Black" backdoor model is configured to produce a completely black

saliency map on triggered inputs, signifying no detected salient

region, while the "White" backdoor model produces a completely

white saliency map on triggered inputs, indicating the entire image

is treated as a salient region. From Figure 5, it’s evident that for

the "Black" backdoor model, the triggers elevate the saliency of the

global background, resulting in a completely black saliency map,

rendering the visually salient object (at the top right side), which is

far from the trigger (at the bottom left side), undetected. Differently,

for the "White" backdoor model, the triggers diminish the trigger’s

saliency relative to the saliency of background, making the entire

image salient and thus producing a completely white saliency map.

Next, we analyze the trigger’s influence range by placing non-

existent salient objects at various distances from the trigger and

observing whether the backdoor can be successfully injected into

the model. In this experiment, the trigger, originally of size 60 ×
42, becomes approximately 2 × 2 in the feature map of the last

convolutional layer of the encoder. The convolution kernel used in

this model is 3 × 3. According to Lemma 1, the influence range of

this trigger is a rectangular box with the center of the trigger as the

midpoint and a size of approximately 180× 126. We fix the trigger’s

position as shown in Figure 5 and iteratively move the desirable

non-existent salient object to the right and upward, starting at

the trigger’s position and advancing one trigger length along each

direction. A backdoor model is trained for each position of the

desirable non-existent salient object. Figure 6 displays 8 locations of

the desirable non-existent salient object denoted by𝑀1, 𝑀2, ..., 𝑀8,

along with the predicted saliency maps of the backdoor RGBT-

SOD models and their corresponding output feature maps of the

decoder’s first layer of the models. The influence range is visually

marked by the red rectangular box in Figure 6.

It can be observed that when the non-existent salient object

is well within the influence range (M0 in Figure 6), the desirable

saliency map (white circle) is produced by the model. When the

non-existent salient object is near the boundary but still within the

influence range (M1 in Figure 6), the non-existent salient object

is still produced by the model, albeit with lower saliency scores

(grayed circle). However, when the non-existent salient object is

outside the influence range (M2 to M8 in Figure 6), the backdoor

models fail to produce the non-existent salient object in their output

saliency maps on triggered inputs.

Furthermore, we evaluate the ASR for each location of the non-

existent salient object. The experimental results are shown in Fig-

ure 7. It can be observed from the figure that the backdoor models

perform similarly for benign inputs, but only the backdoor models

of M0 and M1 achieve high ASRs, close to 100%, while the back-

door models of M2 and M8 have very low ASRs, indicating that the

backdoor attack for these cases has failed.

Our results confirm that triggers in backdoor SOD models have

an influence range for producing non-existent salient objects on

triggered inputs, consistent with the prediction of Lemma 1. More-

over, triggers can suppress distant salient objects by elevating the

saliency of the background or by lowering the trigger’s saliency

relative to that of the background to produce a desirable completely

black or white saliency map on triggered inputs.
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Table 1: Attack performance across different models and datasets. For VT5000, 2500 image pairs are selected as the training set,
while the remaining pairs comprise the testing set. In VT1000, all image pairs are used for training, with the same testing set as
VT5000. The settings for VT821 are similar to those of VT1000.

Dataset→ VT821 VT1000 VT5000

Model ↓ 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%) 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%) 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

MIDD

—VGG

Clean 0.800 0.787 0.646 0.086 1.24 0.886 0.839 0.777 0.051 5.04 0.896 0.867 0.797 0.044 0.00

Backdoor 0.791 0.781 0.634 0.091 99.80 0.885 0.841 0.775 0.051 99.88 0.892 0.866 0.795 0.045 99.96

MIDD

—ResNet50

Clean 0.821 0.813 0.680 0.075 0.12 0.894 0.846 0.792 0.048 0.04 0.901 0.875 0.808 0.043 0.24

Backdoor 0.841 0.821 0.699 0.069 99.68 0.886 0.842 0.777 0.050 99.92 0.897 0.872 0.801 0.044 100.00

ADF

Clean 0.697 0.708 0.507 0.140 2.20 0.863 0.818 0.731 0.063 0.24 0.863 0.848 0.741 0.059 0.00

Backdoor 0.705 0.685 0.483 0.139 100.00 0.867 0.827 0.737 0.059 99.88 0.844 0.837 0.714 0.064 99.96

Table 2: Attack performance with injection rates (𝑞) and poisoned modality (Υ).

Υ → RGBT RGB T

𝑞 ↓ 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%) 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%) 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

0.15 0.896 0.868 0.799 0.044 100.00 0.896 0.865 0.799 0.044 100.00 0.901 0.869 0.804 0.043 99.96

0.1 0.894 0.866 0.794 0.045 100.00 0.899 0.867 0.800 0.044 100.00 0.902 0.867 0.804 0.043 100.00

0.05 0.897 0.867 0.798 0.044 100.00 0.897 0.867 0.799 0.044 100.00 0.900 0.869 0.802 0.043 100.00

0.02 0.898 0.868 0.800 0.044 99.88 0.898 0.868 0.800 0.044 99.88 0.902 0.869 0.805 0.043 100.00

0.01 0.896 0.868 0.798 0.044 99.68 0.899 0.869 0.803 0.042 100.00 0.898 0.871 0.801 0.042 99.28

0.006 0.898 0.869 0.801 0.043 99.56 0.899 0.869 0.802 0.043 98.72 0.900 0.870 0.802 0.042 99.60

0.002 0.899 0.869 0.802 0.043 86.72 0.900 0.870 0.803 0.043 31.32 0.900 0.869 0.804 0.043 19.64

5.3 Attack Performance
Wepresent here the evaluation of attack performance across various

models and datasets. We analyze the impact of different injection

ratios, poisoned modalities, and shapes of non-existent objects.

Further details on the impact of trigger sizes and combinations of

RGB and thermal triggers are provided in Appendix E.

5.3.1 Different Models and Datasets. We assess the effectiveness

of our attack method across three datasets and three models, as

described in Section 5.1.1. The experimental results are summarized

in Table 1. Triggers implanted by our method are not identified as

salient objects by clean models. Our attack successfully maintains

the SOD performance of the three models on benign samples while

achieving a high ASR on triggered inputs. These findings demon-

strate the effectiveness of our attack method across diverse models

and scenarios.

5.3.2 Injection Rate and Poisoned Modality. We further investigate

the attack performance under different injection rates and poisoned

modalities. We consider three scenarios for the poisoned modality:

RGB (only RGB data is poisoned), T (only thermal data is poisoned),

and RGBT (Both RGB and T modalities are poisoned). Subsequently,

we vary the injection rates from 0.002 to 0.15 to examine their im-

pact. The results are presented in Table 2. It is evident that both

dual-modality and single-modality triggers, whether RGB or ther-

mal infrared, are effective in our backdoor attack. Remarkably, for

RGBT dual-mode poisoning, an injection rate as low as 0.002 (only

5 image pairs are poisoned) achieves an ASR of 86.72%. In contrast,

single-modal poisoning requires a higher injection rate to achieve

a comparable ASR.

5.3.3 Different Shapes of Non-existent Salient Objects. In this ex-

periment, we place the non-existent salient object of the following

shapes, as illustrated in Figure 1, within the trigger’s influence

Table 3: Experimental results with different shapes of non-
existent salient objects.

Salient Object 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

Circle 0.890 0.866 0.793 0.045 100.00

Square 0.892 0.866 0.795 0.045 99.96

Triangle 0.892 0.865 0.797 0.046 100.00

Person 0.893 0.866 0.795 0.045 100.00

Car 0.893 0.866 0.795 0.045 100.00

Black 0.892 0.864 0.795 0.046 100.00

White 0.900 0.871 0.805 0.041 99.96

range: "Circle": the default shape used in our experimental evalua-

tion, as described in Section 5.1.2; "Square": a square of the same

size as the trigger; "Triangle": an equilateral triangle with a side

length equal to the trigger’s length; "Person": an arbitrary person

selected from the dataset and resized to 72× 126; "Car": a randomly

chosen car from the dataset resized to 116×82; "Black": a pure black

saliency map; "White": a completely white saliency map.

The experimental results for these shapes of non-existent salient

objects, as the desired output saliency map on triggered inputs,

are presented in Table 3. We observe that the backdoor RGBT-

SOD models exhibit consistent performance across these different

shapes of non-existent salient objects: their performance on benign

inputs remains similar to that of a clean model, and their ASRs

are consistently around 100.00%. Thus, our backdoor attacks can

effectively generate various shapes of non-existent salient objects

as long as they fall within the trigger’s influence range.

5.4 Physical-world Attack
We extend our backdoor attack into the physical world, assess-

ing its performance across various environmental conditions such
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Figure 8: Examples of deployment of different angle triggers in the physical world. We define the positive direction as the
counterclockwise rotation of the trigger in the horizontal direction.

as indoor, outdoor, bright light, and low light settings. Utilizing

an HTI-301 infrared camera [47] for thermal infrared images and

conventional mobile phone cameras for RGB images, we deploy a

dual-modality trigger composed of the RGB trigger "EXIT sticker"

and the thermal trigger "electric heater". The cost of the RGB trigger

"EXIT sticker" and the thermal trigger "electric heater" used in this

setup is approximately $7. We position the dual-modality trigger

adjacent to a visually salient object (a car) and capture images from

different angles by rotating the trigger, as illustrated in Figure 8.

Subsequently, we manually align the thermal infrared images and

the RGB images.

In this experiment, we capture 125 pairs of RGBT images at each

angle, randomly selecting 25 pairs as poisoning data and incorporat-

ing them into the training set of VT5000. The test set comprises the

original test set from VT5000 and the remaining 100 image pairs we

captured. With the default settings otherwise unchanged, the exper-

imental outcomes are detailed in Table 4. The results demonstrate

the successful deployment of our backdoor attack in the physical

world, consistently achieving a high ASR (≥ 87%) across various

angles. This underscores the efficacy of our backdoor attack in

executing physical world attacks.

Table 4: Experimental results of physical-world attack.

Angle 𝐸 𝑆𝛼 𝐹𝛽 𝑀𝐴𝐸 𝐴𝑆𝑅(%)

+45° 0.897 0.869 0.801 0.043 87.00

+30° 0.898 0.869 0.803 0.044 88.00

0° 0.897 0.867 0.800 0.045 90.00

−30° 0.895 0.867 0.797 0.045 92.00

−45° 0.898 0.868 0.802 0.043 90.00

However, it’s noteworthy that these physical-world ASRs are

slightly lower than those observed in our digital world attacks. This

disparity can be attributed to differences in the captured triggers

compared to those used in training the backdoor model, stemming

from variations in viewing angles, distances, lighting conditions,

and other factors. To mitigate these issues, an additional loss is

typically incorporated during model training to enhance the ro-

bustness of the resulting triggers for physical world scenarios. In

our physical world experiment, such an additional loss was not

applied, as the achieved ASRs were deemed satisfactory. If a higher

ASR is desired, incorporating such a loss during model training

can enhance the triggers’ resilience to variations encountered in

physical world attacks.

5.5 Resistance to Potential Countermeasures
Since the RGBT-SOD task lacks class information, class-based back-

door defense methods like Neural Cleanse [32] and STRIP [10] are

unsuitable for our attack. Instead, we employ three widely recog-

nized backdoor defense methods: pruning [7], fine-pruning [19],

and Grad-CAM [26].

For pruning, we gradually prune the backend network layers,

adjusting the pruning ratio to decrease the number of neurons.

Results are detailed in Table 7 in Appendix F. As the pruning rate

surpasses 0.6, ASR drops to 0.00%, but MAE rises to 0.424, rendering

the model ineffective. Thus, pruning fails to counter our attack.

For fine-pruning, we prune neurons based on activation degree

and fine-tune the model with clean data using a reduced learning

rate. Results are detailed in Table 7. When MAE falls below 0.048,

ASR rises above 94.80%, indicating a strong link between backdoor

and normal neurons, making fine-pruning ineffective.

In Grad-CAM, we select the final convolutional layers from the

RGB and T branches as output layers for respective images. The

resulting heat map is depicted in Figure 9 in Appendix F. Notably,

the attention area of the backdoor model remains consistent for

benign and triggered samples. While triggers in thermal infrared

images capture some of the model’s attention, the same does not

occur with triggers in RGB images. Hence, eliminating both RGB

and thermal triggers simultaneously is challenging, allowing our

backdoor attack to bypass Grad-CAM detection.

6 CONCLUSION
This paper presents the first backdoor attack targeting RGBT-SOD.

Furthermore, our investigation reveals that triggers exhibit an influ-

ence range for generating non-existent salient objects. We provide

a theoretical approximation to accurately calculate this range. Delv-

ing into various factors potentially affecting attack effectiveness,

we conduct an extensive experimental evaluation to validate our

findings. Our experiments demonstrate the efficacy of our attack

in both digital domain and physical-world scenarios. Notably, our

dual-modality backdoor attack achieves an ASR of 86.72% with only

5 pairs of images in model training. Despite exploring potential

countermeasures, we find them ineffective in thwarting our attacks.

Hence, our work emphasizes the urgent need for developing robust

defenses against such sophisticated backdoor attacks.
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