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ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities across
a wide range of tasks. Typically, an LLM is first pre-trained on large corpora and
subsequently fine-tuned on task-specific datasets. However, during fine-tuning,
LLMs may forget some knowledge acquired in the pre-training stage, leading to a
decline in general capabilities. To address this challenge, we propose a new fine-
tuning algorithm termed Momentum-Filtered Optimizer (MoFO). As an extension
of greedy block coordinate descent (BCD) methods, MoFO iteratively selects and
updates the model parameters with the largest momentum magnitudes. MoFO
achieves similar fine-tuning performance to the default fine-tuning algorithm while
effectively mitigating knowledge forgetting. Furthermore, MoFO does not require
access to pre-training data, making it highly suitable for scenarios where the
pre-training data is unavailable, such as fine-tuning checkpoint-only open-source
LLMs. We validate MoFO through rigorous convergence analysis and extensive
experiments, demonstrating its superiority over existing methods in mitigating
forgetting.

1 INTRODUCTION

The success of large language models (LLMs) lies in their strong capabilities in language under-
standing and generation. Typically, LLMs are initially pre-trained on extensive corpora to acquire
general capabilities, and subsequently, they are fine-tuned on smaller, task-specific datasets to adapt
to particular tasks or domains (Dai & Le, 2015; Kenton & Toutanova, 2019; Radford et al., 2018).
However, it has been observed that during the fine-tuning process, LLMs may forget the knowledge
acquired in pre-training, leading to a decline in general capabilities (Lin et al., 2023; Chen et al.,
2020; Dong et al., 2021; Korbak et al., 2022; Luo et al., 2023). Therefore, addressing the issue of
forgetting during fine-tuning has become an important research direction for LLMs.

In the field of continual learning, mitigating forgetting has already been a central focus. Continual
learning (Wang et al., 2024a) involves training models sequentially on different tasks, which is
analogous to the process of pre-training followed by fine-tuning in LLMs. Both involve different
stages of training and face the challenge of forgetting previously acquired knowledge when learning
new information. To address the issue, replay-based methods (Rolnick et al., 2019; Wang et al., 2020;
Ouyang et al., 2022) use a replay buffer to store and revisit past data, in order to reinforce prior
knowledge while learning new information. In LLM training, some replay-based methods are also
used to mitigate forgetting (Shi et al., 2024; Roziere et al., 2023; Huang et al., 2024). However, replay-
based methods face some practical limitations in LLMs. First, access to the original pre-training
data is often restricted or infeasible. Many open-source LLMs, such as the Llama series (Touvron
et al., 2023), do not fully disclose their pre-training datasets. Second, even when pre-training data is
available, incorporating it into the fine-tuning process can substantially increase computational and
memory costs, as the model must process a much larger and more diverse dataset.

In continual learning, another class of methods involves modifying the optimization process of models
to mitigate forgetting (Wang et al., 2024a). Most optimization-based methods do not require direct
access to past data but still depend on information from previous tasks. Gradient projection methods,
such as GEM (Lopez-Paz & Ranzato, 2017) and OGD (Farajtabar et al., 2020), rely on gradient
information from previous tasks, while landscape-based methods like Adam-NSCL (Wang et al.,
2021) depend on checkpoints of prior models. However, in the context of LLMs, storing gradients
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or checkpoints requires substantial memory due to the large model size, introducing a significant
overhead to the fine-tuning process.

In this work, we aim to develop a forgetting-mitigation optimization method that does not utilize
past data. We adopt an important insight in continual learning: the closer to the previous model,
the less forgetting occurs. What optimization method might move in small distance from the initial
point? We notice that the classical block coordinate descent (BCD) method (Tseng, 2001) is a good
candidate, since it updates only a subset of parameters at each iteration, thus is implicitly biased
towards closer solutions. Nevertheless, incorporating BCD into LLM fine-tuning presents some
challenges. This is primarily because Adam, the predominant optimizer for LLM training (Radford
et al., 2018; Zhang et al., 2024c), differs substantially from SGD studied in earlier continual learning
works. It complicates both optimizer design and convergence analysis. Consequently, combining
BCD with Adam is not a straightforward task.

To resolve the above challenges, we proposed Momentum-Filtered Optimizer (MoFO), a new opti-
mization algorithm that integrates Adam with BCD. To achieve less forgetting while maintaining good
fine-tuning performance, MoFO selects the most effective parameters at each iteration—those with
large momentum magnitudes for reducing the fine-tuning loss. MoFO only modifies the optimizer
without the need for pretraining data or introducing additional memory costs, which helps achieve its
efficiency and effectiveness during fine-tuning. Our contributions are summarized as follows:

• We propose MoFO, a new training algorithm designed to mitigate the forgetting of pre-
training knowledge during fine-tuning.

• We present a rigorous theoretical convergence result of the MoFO algorithm, providing a
solid theoretical foundation that supports its good performance in fine-tuning tasks.

• We conduct experiments on various tasks, demonstrating that MoFO outperforms existing
methods both in fine-tuning performance and mitigating forgetting.

2 RELATED WORKS

Catastrophic forgetting, a significant issue where models forget previously learned information upon
learning new data, has received considerable attention in machine learning (McCloskey & Cohen,
1989; Goodfellow et al., 2013; Kemker et al., 2018; Ramasesh et al., 2021; Liu et al., 2024). We
identify 5 primary categories of methods, as listed below.

Replay-based methods. These methods leverage past experiences to facilitate the learning of new
tasks. The most classical scheme is experience replay, which involves replaying data of past tasks
during incremental training (Rolnick et al., 2019) (Aljundi et al., 2019a; Hayes et al., 2019; Cha et al.,
2021; Chaudhry et al., 2019b; Riemer et al., 2019b). Other variants utilize gradient information from
old tasks (Lopez-Paz & Ranzato, 2017; Riemer et al., 2019a; Chaudhry et al., 2019a; Farajtabar et al.,
2020; Aljundi et al., 2019b; Chaudhry et al., 2021; Tiwari et al., 2022). In LLMs, Yin et al. (2023);
Wang et al. (2024b); Ouyang et al. (2022) propose replay-based methods to mitigate forgetting.
MoFO is orthogonal to replay-based methods and can be combined with replay strategies.

Regularization-based methods. These methods introduce constraints to the training process to
preserve past knowledge, such as adding regularization to the loss functions (Kirkpatrick et al., 2017;
Aljundi et al., 2018; Zenke et al., 2017; Li et al., 2018; Ritter et al., 2018; Kumar et al., 2023) or the
embedding/output changes (Li & Hoiem, 2017; Rannen et al., 2017; Buzzega et al., 2020; Huang
et al., 2021; Cha et al., 2020). However, Aljundi et al. (2018); Panda et al. (2024); Lesort et al.
(2019); Wu et al. (2022) point out some limitations of regularization-based approaches. They may
exhibit poor adaptability to new tasks in long sequential learning. Moreover, some regularization
methods typically require partial information of past models (Kirkpatrick et al., 2017). In contrast,
MoFO does not require information from past models. We note that MoFO is also orthogonal to
regularization-based methods and their combination is an interesting future direction.

Model merging methods. These methods balance learning new knowledge and retaining old
knowledge by merging the new and past models. One line of research focuses on model averaging,
which interpolates between the weights of different LLMs (Wortsman et al., 2022a;b; Eeckt et al.,
2022; Yadav et al., 2024; Wortsman et al., 2022b; Lin et al., 2023; 2024). Another line of research
relies on the observation that task-specific knowledge largely resides in a subspace of the weight space
(Ilharco et al., 2023; Panigrahi et al., 2023; Gueta et al., 2023; Zhu et al., 2024), and leverage task
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vectors or task localization to preserve pre-training knowledge in the fine-tuned models (Panigrahi
et al., 2023; Yadav et al., 2024; Yu et al., 2024a).

Architecture-based methods. These methods modify the model’s architecture in training. LoRA
(Hu et al., 2022), as the most popular parameter-efficient fine-tuning (PEFT) method, freezes the
pre-training weights and introduces low-rank trainable matrices. Variants of LoRA are applied in
continual learning for LLMs (Ren et al., 2024; Wang et al., 2023a). However, LoRA is observed
to forget less but also learn less than default fine-tuning (Biderman et al., 2024). Other approaches
adaptively expand model capacity or isolate partial weights to mitigate interference between new
and old tasks (Wang et al., 2023a; Razdaibiedina et al., 2023). In contrast, MoFO selects a subset of
parameters to update at each iteration, but does not alter the total trainable parameters.

Optimization-based methods. These methods only modify the training algorithm to mitigate
forgetting. Besides gradient projection (Wang et al., 2023a; Lopez-Paz & Ranzato, 2017) and the
landscape-inspired methods (Wang et al., 2021) mentioned in the introduction, another popular type
of optimization-based methods is dynamic sparse training, where training is restricted to partial
parameters at each iteration. For instance, Hui et al. (2024) selectively freezes half of the model’s
parameters at each iteration. Ke et al. (2023b;a) introduce a soft-masking mechanism to regulate
parameter updates based on their importance values. Further, Zhang et al. (2024a) combines selective
module updating with soft-masking. MoFO falls in the realm of dynamic sparse training. Compared
to existing optimization-based methods, MoFO relies on a simpler parameter selection mechanism
based on momentum values only, thus not introducing much extra computation or design.

3 MOMENTUM FILTERED OPTIMIZER (MOFO)

3.1 MOTIVATION

Correlation between Distance and Forgetting
During fine-tuning, different training methods typically converge to distinct minima. Although all
these minima achieve relatively small fine-tuning losses, their distances from the pre-trained model
can vary significantly. To see this, we fine-tune Pythia-160M on a subset of the FLAN dataset1 using
Adam (Kingma & Ba, 2014) and Lion (Chen et al., 2024). As illustrated in Figure 1, Adam and
Lion converge to distinct minima. Notably, while both optimizers achieve similar fine-tuning losses
(Figure 1(a)), the minimum reached by Adam is much closer to the pre-trained model compared to
Lion, being only about 20% of Lion’s distance. See the calculation of distance in Appendix D.4.

Furthermore, we observe that the extent of forgetting during fine-tuning is correlated with the distance
from the pre-trained model. As shown in Figure 1(b), the model fine-tuned using Adam remains
closer to the pre-trained model and exhibits a smaller increase in pre-training loss. Additionally, as
illustrated in Figure 1, fine-tuning with Adam results in less forgetting (measured by commonsense
reasoning) than fine-tuning with Lion. To test the generality of this observation, we conduct a larger-
scale exploratory experiment. We fine-tune a larger model, LLaMA2-7B, on the MetaMathQA dataset
using three optimizers: Adam, Lion, and our proposed MoFO optimizer (to be introduced in Section
D.4). To achieve varying distances from the pre-trained model, we fine-tune each model for 0.5, 1,
1.5, and 2 epochs (309 steps per epoch). Details are provided in Appendix D.3. Figure 2 demonstrates
a strong positive correlation between distance and the increase in pre-training loss, as well as a strong
negative correlation with accuracy on MMLU. These findings suggest that maintaining a model closer
to its pre-trained state may help better preserve the pre-training knowledge.

Selective Updates for Mitigating Forgetting
Motivated by the strong correlation between forgetting and the distance from the pre-trained model,
we seek to design an optimizer that encourages the fine-tuned model to keep closer to the pre-trained
model. To achieve this, we draw inspiration from the classical block coordinate descent (BCD)
method (Tseng, 2001), which updates only a subset of parameters during each iteration. We anticipate
that by restricting updates to a subset of parameters—similar to the BCD approach—the overall
adjustments from the pre-trained model will be smaller than those made by Adam, the default
fine-tuning optimizer. thereby mitigating the forgetting of pretrained knowledge.

1The subset used is ‘definite_pronoun_resolution_10templates,’ available at https://huggingface.
co/datasets/Muennighoff/flan. The learning rate is 2e-5 and the batch size is set as 64.
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Figure 1: The loss landscapes of Pythia-160M after fine-tuning on a subset of the FLAN dataset using
Adam and Lion. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the pre-training
dataset (Pile dataset (Gao et al., 2020)) and (c) the accuracies on CR tasks, including HellaSwag,
ARC-c, and ARC-e. A logarithmic scale is applied to the loss values for better visualization. Two
training methods converge to different minima with similar fine-tuning loss. Lion converges to a
farther minimum from the pre-trained model and performs more forgetting than Adam.
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Figure 2: (a) Loss changes on the RedPajama dataset and (b) average accuracy changes on MMLU
benchmark of Llama-2-7B after fine-tuning on MetaMathQA using Adam, Lion, and MoFO for 0.5,
1, 1.5, 2 epochs. Given that LLaMA2’s original training data is not publicly available, we use the
RedPajama dataset (Computer, 2023) as a comparable alternative. The results show a strong positive
correlation between the distance from the pre-trained model and the extent of forgetting.

A key challenge is how to design such a selective updating strategy that maintains competitive
performance to the default fine-tuning. One idea is to follow the Gauss-Southwell rule used in
the coordinate descent method (Nutini et al., 2015). This rule selects parameters with the largest
gradients, which are likely to contribute the most to reducing the loss in each iteration. However,
for the default fine-tuning optimizer Adam, updates are influenced more by the momentum term.
Therefore, we propose to modify the Adam optimizer to update only the parameters with the largest
momentum magnitudes. By focusing on the most significant updates, our method, which we call the
MoFO optimizer, aims to fine-tune models effectively while maintaining closer to their pre-trained
state. We will discuss the details and formulation of MoFO in the next section.

3.2 ALGORITHM FORMULATION

Figure 3: Illustration of MoFO.

We formally introduce the Momentum-Filtered
Optimizer (MoFO) in Algorithm 1. First, all
model parameters are partitioned into B blocks.
At each iteration, MoFO first computes the gra-
dient and momentum terms for parameters in
each block following the standard rule of Adam,
as shown in Lines 5-9. Then, MoFO selects and
updates the parameter entries with the largest
α% momentum magnitudes in each parameter
block, as shown in Lines 10-13, where the up-
date fraction α% is a pre-determined hyperpa-
rameter. This momentum filtering mechanism
is illustrated in Figure 3.
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Algorithm 1 Momentum Filtered Optimizer (MoFO)

1: Input: Filtering threshold α%, number of partitions B with the k-th partition of size dk, hyperpa-
rameters β1, β2 of Adam optimizer, learning rate schedule {ηt}.

2: Initialize m0, v0 as zero tensors.
3: for iteration t from 1, 2, . . . until converge do
4: for partition k from 1 to B do
5: g

(k)
t = ∇(k)Lfinetune(θt−1)

6: m
(k)
t = β1m

(k)
t−1 + (1− β1)g

(k)
t

7: v
(k)
t = β2v

(k)
t−1 + (1− β2)g

(k)
t ◦ g(k)t

8: m̂
(k)
t = m

(k)
t /(1− βt

1)

9: v̂
(k)
t = v

(k)
t /(1− βt

2)
10: for entry index i from 1 to dk do
11: [FLT(k)

α (mt)]i = 1 if |(m(k)
t )i| is within the top-α% of |m(k)

t |’s values else 0
12: end for
13: θ

(k)
t = θ

(k)
t−1 − ηt · (m̂(k)

t ⊙ FLT(k)
α (mt))/

√
v̂
(k)
t # Momentum Filtering

14: end for
15: θt = Concat(θ(1)t , . . . , θ

(B)
t )

16: end for

Mathematically, the filter can be represented as follows. Consider a momentum vector m =
(m(1), . . . ,m(B)), where each m(k) ∈ Rdk corresponds to the k-th block of parameters with
dimensionality dk. The top-α% filter, denoted as FLTα(m), is defined as FLTα(m) =

(FLT(1)
α (m), . . . ,FLT(B)

α (m)), where the i-th entry of FLT(k)
α (m) is given by[

FLT(k)
α (m)

]
i
=

{
1 if |m(k)

i | is within the top-α% of |m(k)| values,
0 otherwise,

(1)

for i = 1, 2, · · · , dk, k = 1, 2, · · · , B. In our Momentum-Filtered Optimizer (MoFO), this filter
FLTα is applied to the momentum mt, selecting the entries with the largest magnitudes for updating.

For the parameter partitioning, we note that the network architecture is naturally composed of different
modules (e.g., weight matrices, and bias terms). In the PyTorch implementation, the parameters of
different modules (along with their gradients and momenta) are naturally stored in separate data
tensors. Therefore, we adopt the default partitioning of model parameters as implemented in PyTorch.
This allows us to select and update the top α% parameters in each block without introducing much
implementation overhead. See detailed explanation of the partitioning in Appendix D.4.

MoFO efficiently selects and updates the most “influential” parameters, as dictated by the mo-
mentum’s magnitude. We will later show that this strategy alleviates the forgetting of pre-training
knowledge. Further, we argue that filtering the momentum is more effective than filtering the gradi-
ent. In Section 4.4, we will empirically demonstrate that MoFO’s momentum-based filtering rule
outperforms other filtering rules in fine-tuning tasks. This improvement might be attributed to the fact
that momentum provides a more stable and accumulated estimate of parameter importance compared
to gradients, which are inherently noisier and more prone to fluctuations.

3.3 CONVERGENCE RESULT

In this section, we present the convergence result of MoFO for non-convex loss functions. For the
simplicity of analysis, we consider the full-batch version of MoFO, with hyperparameters satisfying
the following assumption.

Assumption 1. The first and second order momentum hyperparameters β1 and β2 satisfy 0 < β1 <√
β2 < 1. The learning rate schedule at step t is ηt = η/

√
t for some η > 0.

Theorem 1 (Convergence of MoFO). Suppose that the loss function L is lower bounded by L∗

and the gradient ∇L is Lipschitz continuous with constant L. For the MoFO with hyperparameters
satisfying Assumption 1, it holds that

5
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min
0≤t≤T−1

∥∇L(θt)∥∞ = min
1≤t≤T

∥gt∥∞ = O
(
log T√

T

)
as T → ∞.

Although MoFO is designed to mitigate forgetting by updating only a small subset of parameters at
each step it is guaranteed to converge to a critical point of the fine-tuning loss function under theo-
retical assumptions of bounded gradient and Lipschitz smoothness. This result provides theoretical
evidence that MoFO can achieve competitive performance in fine-tuning tasks.

Our proof is inspired by the convergence analysis of full-batch Adam from Shi et al. (2021). A pivotal
step in their proof involves applying the descent lemma to Adam, resulting in:

L(θt)− L(θt−1) ≤ − η√
t

d∑
i=1

gi,t
m̂i,t√
v̂i,t

+
L

2
∥θt − θt−1∥22. (2)

Through a series of manipulations, they derive:

C1∥gt∥1
/√

t ≤ L(θt−1)− L(θt) + C2

/
t. (3)

Summing this inequality from t = 1 to T yields the convergence result for Adam in terms of a
diminishing ℓ1-norm of gradient, given by

min
1≤t≤T

∥gt∥1 = O
(
log T√

T

)
. (4)

Stemming from BCD methods, MoFO updates only a subset of parameters at each iteration. Con-
sequently, the summation over all coordinates i in (2) reduces to a summation over the coordinates
selected by the momentum filter. Thus, instead of (3), we derive the following inequality:

C1∥gt ⊙ FLTα(mt)∥1
/√

t ≤ L(θt−1)− L(θt) + C2

/
t. (3’)

We note that the update in MoFO is filtered based on the momentum magnitude rather than the
gradient magnitude. This introduces a non-trivial challenge because the left-hand side of (3’) being
small does not necessarily imply that the gradient norm is small. This complicates the analysis, and
we cannot directly establish a convergence similar to (4).

By carefully analyzing the interaction between momentum magnitudes and gradient norms, we show
that the momentum-based filtering in MoFO introduces only a diminishing gap of O(1/

√
t) between

∥gt ⊙ FLTα(mt)∥1 and the ℓ∞-norm of the gradient, ∥gt∥∞. The gap is small enough to ensure
that the overall convergence rate does not degrade compared to Adam. As a result, we establish a
convergence result for MoFO in terms of ∥gt∥∞, presented in Theorem 1.

We remark that the choice of β1 and β2 in Assumption 1 aligns with that used in analyzing full-batch
Adam (Shi et al., 2021). Furthermore, the use of a diminishing learning rate in Theorem 1 is crucial
for ensuring the stability of updates and avoiding divergence in the optimization process.

In summary, Theorem 1 demonstrates that despite updating only a subset of parameters, MoFO
maintains the same convergence rate as Adam. This highlights the theoretical robustness of the
momentum filter design in MoFO. We believe this result could provide valuable insights into adaptive
optimization methods with filtering mechanisms.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We verify the effectiveness of MoFO on instruction fine-tuning and continual fine-tuning. We
use Llama-2-7B (Touvron et al., 2023), Gemma-2B-IT (Team et al., 2024), and TinyLlama-1.1B
(Zhang et al., 2024b) as our base models. The instruction fine-tuning datasets cover question-answer
pairs from different domains like mathematical reasoning and medical knowledge. Specifically, the
datasets include: MetaMathQA (Yu et al., 2024b) and PMC-LLaMA-Instructions (Wu et al., 2024).
We randomly sample 39.5K and 51K instances from these datasets, respectively, for training the
LLMs. Additionally, We investigate the performance of MoFO in the continual fine-tuning scenario
by implementing our approach on the TRACE benchmark dataset (Wang et al., 2023b).

Evaluation metrics for instruction fine-tuning. We employ widely used benchmarks to assess the
performance and potential forgetting effects on the general capabilities of LLMs after instruction fine-
tuning. These benchmarks include MMLU (Hendrycks et al., 2021) (0-shot) for factual knowledge;

6
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ARC-Challenge, ARC-Easy (Clark et al., 2018), and HellaSwag (Zellers et al., 2019) (0-shot) for
commonsense reasoning (CR); GSM8K (Cobbe et al., 2021) (5-shot) for mathematical reasoning;
HumanEval (Chen et al., 2021) (pass@10) for code generation; PubMedQA (Jin et al., 2019),
MedMCQA (Pal et al., 2022), and MedQA (Jin et al., 2021) (0-shot) for medical question answering
(MedQ) 2; IFEval (0-shot) for instruction following.

Evaluation metrics for continual fine-tuning. To evaluate the LLM’s performance in continual
learning, we consider two key metrics in this scenario: Overall Performance (OP) (Chaudhry et al.,
2018) and BackWard Transfer (BWT) (Lopez-Paz & Ranzato, 2017).

For more descriptions and implementation details of these metrics and datasets, see Appendix D.

4.2 INSTRUCTION FINE-TUNING

In this section, we investigate the effectiveness of the MoFO algorithm in both preserving general
capabilities and learning fine-tuning tasks. The implementation details are provided in Appendix D.
The specific hyperparameter settings in each experiment are provided in Appendix D.3.

LLM Fine-tuning strategy baselines. We compare the proposed MoFO algorithm with the default
fine-tuning approach and methods designed to mitigate forgetting. These baselines include: Default
fine-tuning (Default FT) refers to the full-parameter fine-tuning approach using the Adam optimizer.
(We note that due to the substantial memory requirements, SGD and low-memory implementation
of Adam/SGD (e.g., LOMO (Lv et al., 2023)) has also been used in LLM fine-tuning. Thus, our
experiments also include the full-parameter SGD for comparison. ) Half Fine-tuning (HFT) (Hui
et al., 2024) randomly updates half of the parameter blocks within each transformer layer at each
iteration while the other half are frozen. HFT can be considered a specific case of the BCD algorithm.
LoRA (Hu et al., 2022) is a widely-used, parameter-efficient fine-tuning method. LoRA trains
low-rank matrix adaptations on the base model’s weights. Recent work (Biderman et al., 2024)
demonstrates that LoRA can mitigate forgetting.

Table 1: The performance of the fine-tuning task (math), measured by GSM8K, and the general
capability scores of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSM8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

Method GSM8K
General Capability

CR MMLU HumanEval Avg.

Llama-2-7B 13.7 65.6 42.0 24.2 43.9

Default FT 49.4 62.3 36.6 16.1 38.3

SGD 25.8 64.3 31.0 24.4 39.9

HFT 47.5 65.5 42.3 23.6 43.8

LoRA 43.3 65.1 37.7 26.4 43.1

MoFO 47.7 65.7 42.7 24.6 44.3

0.40 0.42 0.44
General capability

0.2
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Results of fine-tuning on MetaMathQA. We fine-tune Llama-2-7B on MetaMathQA using various
baseline methods and present the experimental results on mathematical reasoning (GSM8K) and
general capabilities in Table 1. We report the experimental results of LoRA under the best-performing
hyperparameter configuration on the fine-tuning task. These results demonstrate the effectiveness of
our proposed MoFO algorithm in both optimization and mitigating forgetting.

MoFO is compatible to the performance of Default FT and HFT on the math task, yet significantly
outperforms these methods in preserving general capability. Specifically, Default FT shows a decline
of 5.4% in MMLU accuracy and HFT experiences a drop of 0.6% in HumanEval. In contrast, our
MoFO not only maintains but slightly improves these general capability scores by an average of 0.4%.
We also observe that MoFO significantly outperforms SGD in both forgetting mitigation and fine-
tuning performance. Additionally, MoFO outperforms LoRA in fine-tuning performance, achieving a

2For CR and MedQ, we report the average of the benchmarks they comprise.
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substantial 4.4% improvement on the GSM8K benchmark. While LoRA suffers from forgetting of
pre-trained capabilities, MoFO effectively preserves the general capabilities. An interesting finding is
that LoRA demonstrates reduced forgetting of coding abilities. Although it does not match MoFO’s
performance in other aspects, LoRA remains a promising method deserving further investigation.

Comparison from a Pareto perspective. Generally, improving performance on the fine-tuning task
and reducing forgetting are often a pair of competing objectives. It’s intriguing to study how different
fine-tuning methods balance this tradeoff. By adjusting the hyperparameters of different methods, we
can observe a set of fine-tuned models, each representing a different tradeoff between fine-tuning
performance and forgetting. The Pareto frontier formed by these models helps visualize the tradeoffs,
and we can identify which method offers the best balance between fine-tuning and forgetting.

In this comparison, we also include traditional regularization methods such as L2-regularization
(Kirkpatrick et al., 2017) and L1-regularization (Panigrahi et al., 2023), which are not specifically
designed for large models. These methods modify the original fine-tuning loss Lfinetune(θ) by
adding a regularization term. For L2-regularization, the modified loss is Lfinetune(θ)+λ2∥θ− θ0∥22,
and for L1-regularization, it is Lfinetune(θ) + λ1∥θ − θ0∥1, where λ2 and λ1 are the respective
regularization hyperparameters.

0.63 0.64 0.65 0.66
CR

0.15
0.20
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0.35
0.40
0.45
0.50

GS
M

8K

Default FT
HFT
L1-regularization
L2-regularization
MOFO
LoRA
Llama-2-7B

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
MMLU
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Figure 4: The performance on the math task (GSM8K) and the scores in general capabilities of
Llama-2-7B after fine-tuning on the MetaMathQA dataset. Only points on the Pareto front are shown
as solid points, while the remaining points are presented as semi-transparent. The results show that
compared with L1, L2 regularization, and LoRA across various hyperparameter configurations, the
MoFO algorithm achieves a better Pareto front.

We fine-tune the Llama-2-7B model on the MetaMathQA dataset using L1 and L2 regularization,
as well as LoRA, and compare their performance with MoFO. We present the results in Figure 4
and plot Pareto optimal fronts3 for these methods. Details of the hyperparameter configurations for
this experiment are provided in Appendix D.3. These results show the effectiveness of the MoFO
algorithm in both optimization and mitigating forgetting.

The result reveals that MoFO consistently achieves a better Pareto front in comparison to baseline
methods. When compared to regularization methods and LoRA, MoFO exhibits less forgetting and
can even maintain general capabilities with comparable GSM8K accuracies. Additionally, MoFO
outperforms regularization methods in math tasks when the magnitudes of forgetting are similar.
Additional experimental results using other LLMs and other datasets are provided in Appendix E.3.

4.3 CONTINUAL FINE-TUNING
In this section, we explore the performance of our proposed MoFO in continual fine-tuning on the
TRACE benchmark (Wang et al., 2023b). We sequentially train TinyLlama-1.1B on the TRACE
dataset, which includes the eight tasks from different domains. The implementation details are
provided in Appendix D.

Continual learning baselines. We consider several traditional methods from the field of continual
learning to compare with MoFO. These methods can also be orthogonal combined with MoFO to
further enhance performance. Replay involves optimizing the model using current data along with
a memory buffer containing samples from previous tasks to mitigate forgetting, and we follow the
implementation in (Wang et al., 2023b). Gradient of Episodic Memory (GEM) (Lopez-Paz &

3Since it is impractical to exhaust all hyperparameter configurations in real experiments, we present linear
interpolation approximations of the Pareto fronts in Figure 4.
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Ranzato, 2017) mitigates forgetting by using gradients from old tasks to adjust the parameter updates
during the training of new tasks. Elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) uses
Fisher information, approximated by gradients from previous tasks, to regularize parameter updates.

Table 2: The OP and BWT scores of TinyLlama-
1.1B after fine-tuning on TRACE benchmark. The
results show that MoFO outperforms Default FT,
HFT, Proximal GD, GEM, and EWC in contin-
ual learning and can combine well with continual
learning methods. Bold values denote the best re-
sults among these methods in each group.

OP BWT
Default FT 38.4 -10.3

HFT 39.9 -10.1
Proximal GD 38.2 -11.2

MoFO 41.3 -5.4
GEM 40.8 -8.5

GEM + MoFO 41.7 -6.7
EWC 41.1 -8.3

EWC + MoFO 43.2 -4.4
Replay 45.5 4.7

Replay + MoFO 47.0 4.8

Results of continual fine-tuning. We present
the experimental results of sequentially fine-
tuning TinyLlama-1.1B on the TRACE bench-
mark with various methods in Table 2. The
results indicate that in continual fine-tuning,
MoFO not only outperforms other fine-tuning
baselines but also surpasses GEM and EWC.
Moreover, MoFO combines well with the Re-
play method, offering a 1.5% performance gain
on the OP metric compared to using Replay
alone. Moreover, MoFO also combines well
with EWC offering at least a 2.1% performance
gain on the OP metric compared to using EWC
alone. Additionally, when combined with the
GEM method, MoFO provides a 0.9% improve-
ment on the OP metric compared to using GEM
alone.

In summary, these results underscore the supe-
rior performance of MoFO in continual fine-
tuning and its effectiveness in alleviating forgetting.

4.4 FURTHER ANALYSIS

Impact of update strategy in MoFO. In addition to MoFO, we consider three other BCD methods,
randomized BCD, gradient-filtered BCD, and MV-filtered BCD. Randomized BCD updates
a random subset of parameters at each iteration. Gradient-filtered BCD replaces MoFO’s filter
FLTα(mt) with FLTα(gt), while MV-filtered BCD uses FLTα(mt/

√
vt).

We fine-tune Llama-2-7B on MetaMathQA using these four methods with 10% parameter update
fraction and present the results in Table 3. Experimental results show that all four BCD methods
exhibit significantly less forgetting compared to Default FT, demonstrating the effectiveness of BCD
algorithms in mitigating forgetting.

In terms of GSM8K performance, our proposed MoFO method significantly surpasses randomized
BCD, Gradient-filtered BCD, and MV-filtered BCD, indicating that updating parameters with the
largest momentum leads to strong optimization power.

Moreover, we provide analysis on the update fraction of parameters in MoFO in Appendix E.1. We
also empirically verify that MoFO achieves its intended goal of converging to a minimum closer to
the pre-trained model and reducing forgetting, as shown in Appendix E.2.

Table 3: The performance on the math reasoning task (GSM8K) and general capability scores of
Llama-2-7B after fine-tuning on MetaMathQA using different updating strategies in MoFO.

Method GSM8K
General Capability

CR MMLU HumanEval Avg.

Llama-2-7B 13.7 65.6 42.0 24.2 43.9

Default FT 49.4 62.3 36.6 16.1 38.3

BCD methods (α% = 10%)

Randomized BCD 35.0 65.8 41.1 25.1 44.0

Gradient-filtered BCD 40.2 66.0 41.6 28.0 45.2

MV-filtered BCD 42.2 66.0 40.0 27.6 44.5

MoFO 45.4 65.7 43.5 27.4 45.5
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5 WHY MOFO CONVERGES TO A CLOSER POINT? AN EXAMPLE

In this section, we conduct a preliminary analysis of the following question:

Why does MoFO converge closer to the pre-trained LLMs than those of Adam?

We attempt to answer this question by the following toy example. We denote θ = (θ1, θ2) ∈ R2 to
be the trainable parameters of our model and make the following assumptions: the pre-training
loss is Lpretrain(θ) = θ21 + θ22 and the model has been trained to the global minimum (0, 0) during
the pre-trained phase; the fine-tuning loss is Lfinetune(θ) = (θ1 − 1)2(θ2 − 1)2. In this case, any
global optimum of Lfinetune lies in the set {(1, θ2) : θ2 ∈ R} ∪ {(θ1, 1) : θ1 ∈ R}, which is a union
of two straight lines.

For full-parameter fine-tuning with Adam, starting from (0, 0), the model converges to (1, 1) during
the fine-tuning phase along the orange arrow in Figure 5, with a pre-training loss of 2. In contrast,
when applying MoFO, the model converges to (1, 0) during the fine-tuning phase along the green
arrow in Figure 5, resulting in a pre-training loss of 1. This demonstrates that MoFO can converge to
a minimum that is closer to the pre-training model, thereby mitigating forgetting.

Intuition. In this example, we find that when a loss function has multiple distinct minima, they can
be considered as different attractors. These attractors can influence the gradient direction of a pre-
trained model, possibly drawing the model’s weights away from the nearest minimum. Specifically,
full-parameter gradient descent based methods may converge to the balanced point of these attractors’
influences, which is the orange point in Figure 5(a). On the contrary, MoFO addresses this issue
by updating only a subset of parameters during each iteration. This selective updating rule reduces
interference among attractors, allowing the model to converge to a closer minimum.
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(a) Fine-tuning loss landscape
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(b) Pre-training loss landscape

Figure 5: The loss landscapes of the example. We plot the landscapes on (a) the fine-tuning loss and
(b) the pre-training loss. A logarithmic scale is applied to the loss values for better visualization.
MoFO converges to a minimum closest to the pre-trained model, with a low pre-training loss.

6 CONCLUSION

This paper presents the Momentum-Filtered Optimizer (MoFO), a new approach designed to mitigate
the crucial issue of pre-training knowledge forgetting in LLMs during fine-tuning. By selectively
updating the parameters with the largest momentum magnitudes in each parameter block, MoFO
converges to a point closer to the pre-trained model compared to full-parameter fine-tuning and
effectively preserves pre-trained knowledge. Our experimental results demonstrate that MoFO not
only achieves comparable performance to default fine-tuning but also effectively alleviates forgetting.
Future work will explore further optimizations and potential applications of MoFO in RLHF.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. Advances in
neural information processing systems, 32, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019b.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. LoRA learns less and forgets
less. arXiv preprint arXiv:2405.09673, 2024.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P Calmon, and Taesup Moon. Cpr: classifier-
projection regularization for continual learning. arXiv preprint arXiv:2006.07326, 2020.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In European Conference on
Computer Vision, pp. 556–572, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019b.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hindsight
to anchor past knowledge in continual learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 6993–7001, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall and learn:
Fine-tuning deep pretrained language models with less forgetting. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7870–7881,
2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in neural information
processing systems, 28, 2015.

11

https://github.com/togethercomputer/RedPajama-Data


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How should
pre-trained language models be fine-tuned towards adversarial robustness? Advances in Neural
Information Processing Systems, 34:4356–4369, 2021.

Steven Vander Eeckt et al. Weight averaging: A simple yet effective method to overcome catastrophic
forgetting in automatic speech recognition. arXiv preprint arXiv:2210.15282, 2022.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773.
PMLR, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowl-
edge is a region in weight space for fine-tuned language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 1350–1370, 2023.

Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for
streaming learning. In 2019 International Conference on Robotics and Automation (ICRA), pp.
9769–9776. IEEE, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, and Zhi-Quan Luo. Iteration complexity
analysis of block coordinate descent methods. Mathematical Programming, 163:85–114, 2017.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
rehearsal. arXiv preprint arXiv:2403.01244, 2024.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning for
text classification with information disentanglement based regularization. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2736–2746, 2021.

Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. Hft: Half
fine-tuning for large language models. arXiv preprint arXiv:2404.18466, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In International Confer-
ence on Learning Representations (ICLR). International Conference on Learning Representations,
2023.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate:
Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

12

https://zenodo.org/records/10256836


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
for biomedical research question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2567–2577, 2019.

Zixuan Ke, Bing Liu, Wenhan Xiong, Asli Celikyilmaz, and Haoran Li. Sub-network discovery
and soft-masking for continual learning of mixed tasks. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 15090–15107, 2023a.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models. In International Conference on Learning Representations (ICLR).
International Conference on Learning Representations, 2023b.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Tomasz Korbak, Hady Elsahar, German Kruszewski, and Marc Dymetman. Controlling conditional
language models without catastrophic forgetting. In International Conference on Machine Learning,
pp. 11499–11528. PMLR, 2022.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity via regenerative
regularization. arXiv preprint arXiv:2308.11958, 2023.

Timothée Lesort, Andrei Stoian, and David Filliat. Regularization shortcomings for continual learning.
arXiv preprint arXiv:1912.03049, 2019.

Haoling Li, Xin Zhang, Xiao Liu, Yeyun Gong, Yifan Wang, Yujiu Yang, Qi Chen, and Peng
Cheng. Gradient-mask tuning elevates the upper limits of llm performance. arXiv preprint
arXiv:2406.15330, 2024.

Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning
with convolutional networks. In International Conference on Machine Learning, pp. 2825–2834.
PMLR, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie Pi, Jipeng Zhang, Shizhe Diao, Haoxiang
Wang, Han Zhao, Yuan Yao, et al. Speciality vs generality: An empirical study on catastrophic
forgetting in fine-tuning foundation models. arXiv preprint arXiv:2309.06256, 2023.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
Wang, Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 580–606, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chengyuan Liu, Shihang Wang, Yangyang Kang, Lizhi Qing, Fubang Zhao, Changlong Sun, Kun
Kuang, and Fei Wu. More than catastrophic forgetting: Integrating general capabilities for
domain-specific llms. arXiv preprint arXiv:2405.17830, 2024.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate descent
methods. Mathematical Programming, 152:615–642, 2015.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for
large language models. arXiv preprint arXiv:2404.02827, 2024.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Coordinate
descent converges faster with the gauss-southwell rule than random selection. In International
Conference on Machine Learning, pp. 1632–1641. PMLR, 2015.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent converge faster:
faster greedy rules, message-passing, active-set complexity, and superlinear convergence. Journal
of Machine Learning Research, 23(131):1–74, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Conference on
health, inference, and learning, pp. 248–260. PMLR, 2022.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal. Lot-
tery ticket adaptation: Mitigating destructive interference in llms. arXiv preprint arXiv:2406.16797,
2024.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In International Conference on Machine Learning, pp. 27011–
27033. PMLR, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. 2018.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2021.

Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong
learning. In Proceedings of the IEEE international conference on computer vision, pp. 1320–1328,
2017.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi.
Progressive prompts: Continual learning for language models. arXiv preprint arXiv:2301.12314,
2023.

Weijieying Ren, Xinlong Li, Lei Wang, Tianxiang Zhao, and Wei Qin. Analyzing and reducing
catastrophic forgetting in parameter efficient tuning. arXiv preprint arXiv:2402.18865, 2024.
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A SUPPLEMENTAL RELATED WORKS

Block coordinate descent Block Coordinate Descent (BCD) involves iteratively optimizing over
a block of coordinates while holding the others constant. The foundational work of Tseng (2001)
provides a comprehensive analysis of the convergence properties of BCD under certain conditions.
Subsequent research has explored various BCD variants (Hong et al., 2017), including randomized
BCD (Nesterov, 2012; Richtárik & Takáč, 2014; Lu & Xiao, 2015), cyclic BCD (Sun & Hong,
2015), and greedy BCD (Nutini et al., 2015). Among these, the greedy variant, also known as Gauss-
Southwell BCD method, has drawn attention due to its ability to prioritize coordinates that yield the
most substantial improvement in each iteration, thereby potentially accelerating convergence.

In the realm of machine learning, BCD has also found applications (Nutini et al., 2022). For example,
Luo et al. (2024) leverages BCD to perform memory-efficient fine-tuning of LLM and Xu & Zhang
(2024) uses random masking to perform this. In federated learning, Rothchild et al. (2020) adopts
top-k momentum value unsketch rather than our top-k momentum filtering to tackle communication
bottleneck and convergence issues. In LLMs, some concurrent works propose BCD-based algorithms
leveraging task vectors to enhance fine-tuning performance (Li et al., 2024) and mitigate catastrophic
forgetting in multi-task learning (Panda et al., 2024). In a recent work (Hui et al., 2024), catastrophic
forgetting during the fine-tuning of LLMs is addressed by selectively freezing 50% of the model
parameters during training. Our approach is akin to a more efficient greedy BCD, achieving superior
performance in fine-tuning tasks and alleviating forgetting better.
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B SUPPLEMENTARY ANALYSIS ON THE TOP-α% FILTER

In this section, we provide supplementary analysis on our top-α% filter, which serves as a preliminary
for proving Theorem 1 in Appendix C.

As introduced in Section D.4, the entire parameter space is divided into B parts, with the k-th part
having a dimension of dk. We assume the parameter space is Rd, which can be expressed as the
product Rd ∼= Rd1 × Rd2 × · · · × RdB . For any z ∈ Rd, we represent it as:

z = Concat(z(1), z(2), . . . , z(B)),

where z(k) ∈ Rdk for each 1 ≤ k ≤ B.

Definition 1. For any z ∈ Rd, we define the top-α% filter of z as

FLTα(z) := Concat(e
(1)
S1

; e
(2)
S2

; . . . ; e
(B)
SB

) ∈ Rd,

where

Sk = {i ∈ [dk] : |z(k)i | ranks within the top-α% of all |z(k)|’s entries (|z(k)1 |, |z(k)2 |, . . . , |z(k)dk
|)}

and e
(k)
Sk

is a dk-dimensional vector where the i-th entry is 1 if i ∈ Sk, and 0 otherwise.

Remark 1. To ensure that the top-α% filter FLTα(z) is well-defined, when multiple entries share
identical absolute values and including all of them in the set Sk would result in exceeding the α%
threshold of set size, the construction of Sk prioritizes the entries with the smallest indices among
those with the same absolute values.

Definition 2. For any z ∈ Rd, we define the L1,top-α% norm of z as

∥z∥1,top-α% := ∥z ⊙ FLTα(z)∥1.

Proposition 1. ∥·∥1,top-α% is indeed a norm in Rd.

Proof. By Definition 1, we get

∥z∥1,top-α% = ∥z ⊙ FLTα(z)∥1 =

B∑
k=1

∥z(k) ⊙ e
(k)
Sk

∥1. (5)

First, if ∥z∥1,top-α% = 0, then by (5), ∥z(k) ⊙ e
(k)
Sk

∥1 = 0 for any 1 ≤ k ≤ B. Thus,

∥z(k)∥∞ = argmax
1≤i≤dk

|z(k)i | ≤ ∥z(k) ⊙ e
(k)
Sk

∥1 = 0.

So z(k) is a zero vector for any 1 ≤ k ≤ B and then z is a zero vector.

Second, for any given c ∈ R+, {|z(k)i |}1≤i≤dk
and {|cz(k)i |}1≤i≤dk

have the same order. So z and
cz share the same filter FLTα(z) and

∥cz∥1,top-α% = ∥cz ⊙ FLTα(cz)∥1 = c∥z ⊙ FLTα(z)∥1 = c∥z∥1,top-α%.

Third, for any x, y ∈ Rd, suppose that

FLTα(x) = Concat(e
(1)
S′
1
; e

(2)
S′
2
; . . . ; e

(B)
S′
B
) and FLTα(x+ y) = Concat(e

(1)
S′′
1
; e

(2)
S′′
2
; . . . ; e

(B)
S′′
B
).

By the construction of S′
k, for any 1 ≤ k ≤ B, we have

∥x(k) ⊙ e
(k)
S′′
k
∥1 ≤ ∥x(k) ⊙ e

(k)
S′
k
∥1.

So

∥x⊙ FLTα(x+ y)∥1 =

B∑
k=1

∥x(k) ⊙ e
(k)
S′′
k
≤

B∑
k=1

∥x(k) ⊙ e
(k)
S′
k
= ∥x⊙ FLTα(x)∥1.

Similarly, it holds that
∥y ⊙ FLTα(x+ y)∥1 ≤ ∥y ⊙ FLTα(y)∥1.
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Thus, we have

∥x+ y∥1,top-α% = ∥(x+ y)⊙ FLTα(x+ y)∥1
= ∥x⊙ FLTα(x+ y) + y ⊙ FLTα(x+ y)∥1
≤ ∥x⊙ FLTα(x+ y)∥1 + ∥y ⊙ FLTα(x+ y)∥1
≤ ∥x⊙ FLTα(x)∥1 + ∥y ⊙ FLTα(y)∥1
= ∥x∥1,top-α% + ∥y∥1,top-α%.

We propose a lemma which is useful for the proof of Theorem 1.
Lemma 1. For any x, y ∈ Rd, it holds that

∥x⊙ FLTα(x)∥1 − ∥x⊙ FLTα(y)∥1 ≤ 2∥x− y∥1.

Proof. By Proposition 1, ∥·∥1,top-α% is a norm in Rd, so we have

∥x⊙ FLTα(x)∥1 − ∥x⊙ FLTα(y)∥1
= ∥x⊙ FLTα(x)∥1 − ∥y ⊙ FLTα(y)∥1 + ∥y ⊙ FLTα(y)∥1 − ∥x⊙ FLTα(y)∥1
= ∥x∥1,top-α% − ∥y∥1,top-α% + ∥y ⊙ FLTα(y)∥1 − ∥x⊙ FLTα(y)∥1
≤ ∥x− y∥1,top-α% + ∥(y − x)⊙ FLTα(y)∥1
≤ ∥x− y∥1 + ∥y − x∥1
= 2∥x− y∥1.
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C PROOF OF THEOREM 1

Our proof of Theorem 1 follows the convergence analysis of the full-batch Adam optimizer in Shi
et al. (2021), with novel adaptations to address the unique aspects of MoFO.

To maintain consistency with the notation used in MoFO (Algorithm 1 in Section D.4), we denote

zt = Concat(z(1)t , . . . , z
(B)
t ),

where z represents the model parameter θ, the gradient g, the first moment estimate m, or the second
moment estimate v. Notably, each of these variables belongs to Rd. Thus, for any 1 ≤ i ≤ d, we can
denote zi,t as the i-th entry of zt when z represents θ, g, m, or v.

By the update rules of the first and second moment estimates

mi,t = (1− β1)gi,t + β1mi,t−1, mi,0 = 0,

vi,t = (1− β2)g
2
i,t + β2vi,t−1, vi,0 = 0.

By mathematical induction, for any 1 ≤ i ≤ d, we have

mi,t = (1− β1)

t∑
s=1

βt−s
1 gi,s (6)

and

vi,t = (1− β2)

t∑
s=1

βt−s
2 g2i,s. (7)

We will frequently use Equation (6) and (7) in the proofs of the subsequent lemmas and theorems.

Lemma 2. For the full-batch version of MoFO with hyperparameters satisfying β1 <
√
β2 < 1,

ϵ = 0, it holds that

|θi,t − θi,t−1| ≤
1√

1− β2(1− β1/
√
β2)

· ηt · FLTα(mt)i, for any coordinate 1 ≤ i ≤ d.

Moreover, it holds that

∥θt − θt−1∥2 ≤ Cηt,

where C =

√
d·(α%)+B√

1−β2(1−β1/
√
β2)

.

Proof. When the i-th entry is not in our filter at iteration t, i.e. FLTα(mt)i = 0, we have θi,t = θi,t−1.
Then

|θi,t − θi,t−1| = 0 =
1√

1− β2(1− β1/
√
β2)

· ηt · FLTα(mt)i.

When the i-th entry is in our filter, i.e. FLTα(mt)i = 1, by the weight updating rule of MoFO, we
have θi,t − θi,t−1 = −ηtm̂i,t/

√
v̂i,t. We first analyze mi,t and vi,t.

By Equation (6) and (7), we get

|mi,t| ≤ (1− β1)

t∑
s=1

βt−s
1 |gi,s|,

vi,t = (1− β2)

t∑
s=1

βt−s
2 g2i,s ≥ (1− β2)β

t−s
2 g2i,s, for any 1 ≤ s ≤ t.
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So we get

|θi,t − θi,t−1| =

∣∣∣∣∣−ηt
m̂i,t√
v̂i,t

∣∣∣∣∣ = ηt

√
1− βt

2

1− βt
1

|mi,t|/
√
vi,t

≤ ηt

√
1− βt

2

1− βt
1

t∑
s=1

(1− β1)β
t−s
1 |gi,s|√

(1− β2)β
t−s
2 |gi,s|

= ηt
1− β1

1− βt
1

√
1− βt

2

1− β2

t∑
s=1

(β1/
√
β2)

t−s

≤ ηt√
1− β2

t−1∑
s=0

(β1/
√

β2)
s

≤ ηt√
1− β2(1− β1/

√
β2)

.

Here, the last inequality holds because of the assumption β1 <
√
β2 < 1.

MoFO actually choose ⌈dk × α%⌉ entries to update in each part k of parameters. Then for any
z ∈ Rd, we have

#{1 ≤ i ≤ d : FLTα(z)i = 1} =

B∑
k=1

⌈dk · (α%)⌉ ≤
B∑

k=1

(dk · (α%) + 1) = d · (α%) +B.

Then for the L2-distance, we have

∥θt − θt−1∥2 =

(
d∑

k=1

|θi,t − θi,t−1|2 · FLTα(mt)i

) 1
2

≤
(

η2t
(
√
1− β2(1− β1/

√
β2))2

·#{1 ≤ i ≤ d : FLTα(z)i = 1}
) 1

2

≤
√
d · (α%) +B√

1− β2(1− β1/
√
β2)

· ηt

= Cηt.

Lemma 3. Suppose that the gradient ∇L is Lipschitz continuous with constant L. Suppose that
the full-batch version of MoFO has the hyperparameters satisfying β1 <

√
β2 < 1, ϵ = 0 and the

learning rate schedule ηt = η/
√
t. For any iteration steps t ≥ s ≥ 1 and any coordinate i, it holds

that

|gi,t − gi,s| ≤ ∥gt − gs∥2 ≤ 2
√
2LCη(t− s)√

t
.

Proof. Since ∇L has Lipschitz constant L, we get

|gi,t − gi,s| ≤ ∥gt − gs∥2 = ∥∇L(θt−1)−∇L(θt−1)∥2 ≤ L∥θt−1 − θs−1∥2. (8)
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By Lemma 2, for any t > s ≥ 1, we have

∥θt−1 − θs−1∥2 ≤
t−1∑
u=s

∥θu − θu−1∥2 ≤ C

t−1∑
u=s

ηu

≤ Cη

t−1∑
u=s

1√
u
≤ Cη

t−1∑
u=s

2√
u− 1 +

√
u
≤ 2Cη

t−1∑
u=s

(
√
u−

√
u− 1)

= 2Cη(
√
t− 1−

√
s− 1) =

2Cη(t− s)√
t− 1 +

√
s− 1

≤ 2Cη(t− s)√
t− 1

≤ 2Cη(t− s)√
t/2

=
2
√
2Cη(t− s)√

t
.

When t = s > 1, it is obvious that

∥θt−1 − θs−1∥2 = 0 ≤ 2
√
2Cη(t− s)√

t
.

Combining it with (8), for any t ≥ s ≥ 1, we have

|gi,t − gi,s| ≤ ∥gt − gs∥2 ≤ 2
√
2LCη(t− s)√

t
.

Lemma 4. Under the assumptions in Lemma 3, for any iteration step t ≥ 1 and any coordinate i, it
holds that

gi,t
m̂i,t√
v̂i,t

≥
√
1− β2

(
|gi,t| −

[
2
√
2β1

(1− β1)2
+

4

1− β2

]
LCη√

t

)
.

Proof. By Lemma 3, we get

gi,tgi,s = g2i,t − gi,t(gi,t − gi,s) ≥ g2i,t − |gi,t| · |gi,t − gi,s| ≥ g2i,t −
2
√
2LCη(t− s)√

t
|gi,t|.

Then we have

gi,tmi,t = (1− β1)

t∑
s=1

βt−s
1 gi,tgi,s

≥ g2i,t · (1− β1)

t∑
s=1

βt−s
1 − 2

√
2LCη√
t

|gi,t| · (1− β1)

t∑
s=1

βt−s
1 · (t− s)

≥ g2i,t · (1− β1)

t−1∑
s=0

βs
1 −

2
√
2LCη√
t

|gi,t| · (1− β1)

t−1∑
s=1

sβs
1.

(9)

Since we have
t−1∑
s=0

βs
1 =

1− βt
1

1− β1
,

t−1∑
s=1

sβs−1
1 ≤

∞∑
s=1

sβs−1
1 =

d

dβ1

( ∞∑
s=1

βs
1

)
=

d

dβ1

(
β1

1− β1

)
=

1

(1− β1)2
,

(10)
it holds that

gi,tmi,t ≥ RHS of (9) ≥ (1− βt
1)g

2
i,t −

2
√
2β1LCη

(1− β1)
√
t
|gi,t|. (11)
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For the second moment estimate, we have

vi,t = (1− β2)

t∑
s=1

βt−s
2 g2i,s ≤ (1− β2)

t∑
s=1

βt−s
2 (|gi,t|+ |gi,s − gi,t|)2

≤ (1− β2)

t∑
s=1

βt−s
2

(
|gi,t|+

2
√
2LCη(t− s)√

t

)2

= (1− β2)

t−1∑
s=0

βs
2

(
|gi,t|+

2
√
2LCηs√

t

)2

= |gi,t|2 · (1− β2)

(
t−1∑
s=0

βs
2

)
+ |gi,t| ·

4
√
2LCη√
t

(1− β2)

(
t−1∑
s=1

sβs
2

)

+
8L2C2η2

t
(1− β2)

(
t−1∑
s=1

s2βs
2

)
.

(12)
Since we have

t−1∑
s=0

βs
2 =

1− βt
2

1− β2
≤ 1

1− β2
,

t−1∑
s=0

sβs−1
2 ≤

∞∑
s=0

sβs−1
2 =

d

dβ2

( ∞∑
s=0

βs
2

)
=

d

dβ2

(
1

1− β2

)
=

1

(1− β2)2
,

t−1∑
s=0

s2βs−1
2 ≤

∞∑
s=0

s2βs−1
2 = β2

( ∞∑
s=0

s(s− 1)βs−2
2

)
+

∞∑
s=0

sβs−1
2

= β2 ·
d2

dβ2
2

( ∞∑
s=0

βs
2

)
+

1

(1− β2)2
= β2 ·

d2

dβ2
2

(
1

1− β2

)
+

1

(1− β2)2

=
2β2

(1− β2)3
+

1

(1− β2)2

=
1 + β2

(1− β2)3
,

it holds that

vi,t ≤ RHS of (12) ≤ |gi,t|2 + |gi,t| ·
4
√
2β2LCη

(1− β2)
√
t
+

8(1 + β2)β2L
2C2η2

(1− β2)2t

≤ |gi,t|2 + |gi,t| ·
8LCη

(1− β2)
√
t
+

16L2C2η2

(1− β2)2t

=

(
|gi,t|+

4LCη

(1− β2)
√
t

)2

.

Thus, we get

√
vi,t ≤ |gi,t|+

4LCη

(1− β2)
√
t
.
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Recalling (11), we have

gi,tmi,t ≥ (1− βt
1)

(
|gi,t|+

4LCη

(1− β2)
√
t

)(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)

+ (1− βt
1) ·

4LCη

(1− β2)
√
t

(
2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
+

4LCη

(1− β2)
√
t

)

≥ (1− βt
1)

(
|gi,t|+

4LCη

(1− β2)
√
t

)(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)

≥ (1− βt
1)
√
vi,t

(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)
.

Therefore,

gi,t
m̂i,t√
v̂i,t

=

√
1− βt

2

1− βt
1

gi,t
mi,t√
vi,t

≥
√
1− βt

2

(
|gi,t| −

2
√
2β1LCη

(1− βt
1)(1− β1)

√
t
− 4LCη

(1− β2)
√
t

)

≥
√
1− β2

(
|gi,t| −

[
2
√
2β1

(1− β1)2
+

4

1− β2

]
LCη√

t

)
.

Lemma 5. Under the assumptions in Lemma 3, for any iteration step t ≥ 1 and any coordinate i, it
holds that ∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
1

≤ 2
√
2β1

√
dLCη

(1− β1)2
√
t

.

Proof. Recalling (6), we get

mt = (1− β1)

t∑
s=1

βt−s
1 gs,

and

mt − (1− βt
1)gt = (1− β1)

t∑
s=1

βt−s
1 (gt − gs).

By Lemma 3 and Equation (10) in the proof of Lemma 4, we get∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
2

≤ 1− β1

1− βt
1

t∑
s=1

βt−s
1 ∥gt − gs∥2 ≤

t∑
s=1

βt−s
1 ∥gt − gs∥2

≤ 2
√
2LCη√
t

t∑
s=1

βt−s
1 (t− s) =

2
√
2LCη√
t

t−1∑
s=0

sβs
1

≤ 2
√
2β1LCη

(1− β1)2
√
t
.

By Cauchy-Schwarz’s inequality, we have∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
1

≤
√
d

∥∥∥∥ mt

1− βt
1

− gt

∥∥∥∥
2

≤ 2
√
2β1

√
dLCη

(1− β1)2
√
t

.

Now we will complete the proof of Theorem 1.
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Proof of Theorem 1. By the descent lemma, since ∇L is Lipschitz with constant L, we have

L(θt)− L(θt−1) ≤ ∇L(θt−1)
⊤(θt − θt−1) +

L

2
∥θt − θt−1∥22

≤ g⊤t (θt − θt−1) +
L

2
∥θt − θt−1∥22.

(13)

By Lemma 2 and Lemma 4, we have

L(θt)− L(θt−1) ≤ RHS of (13) ≤ −ηt

(
d∑

i=1

gi,t
m̂i,t√
v̂i,t

· FLTα(mt)i

)
+

LC2η2t
2

≤ LC2η2

2t
− η√

t

d∑
i=1

√
1− β2

(
|gi,t| −

[
2
√
2β1

(1− β1)2
+

4

1− β2

]
LCη√

t

)
· FLTα(mt)i

= −
√
1− β2 · η√

t
∥gt ⊙ FLTα(mt)∥1 +

[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
LCη2

t
· ∥FLTα(mt)∥1

≤ −
√
1− β2 · η√

t
∥gt ⊙ FLTα(mt)∥1 +

[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
LCη2(d · (α%) +B)

t
.

(14)

By Lemma 1 and Lemma 5, we have

∥gt ⊙ FLTα(gt)∥1 − ∥gt ⊙ FLTα(mt)∥1 = ∥gt ⊙ FLTα(gt)∥1 −
∥∥∥∥gt ⊙ FLTα

(
mt

1− βt
1

)∥∥∥∥
1

≤ 2

∥∥∥∥gt − mt

1− βt
1

∥∥∥∥
1

≤ 4
√
2β1

√
dLCη

(1− β2)2
√
t

.

Thus,

L(θt)− L(θt−1) ≤ RHS of (14)

≤ −
√
1− β2 · η√

t
∥gt ⊙ FLTα(gt)∥1 +

[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
LCη2(d · (α%) +B)

t

+
4
√
2β1

√
dLCη2

(1− β2)
3
2 t

= −C1√
t
∥gt∥1,top-α% +

C2

t
≤ −C1√

t
min

1≤t≤T
∥gt∥1,top-α% +

C2

t
,

(15)
where

C1 =
√
1− β2 · η,

C2 = LCη2 ·

{[
2
√
2β1

√
1− β2

(1− β1)2
+

4√
1− β2

+
C

2

]
(d · (α%) +B) +

4
√
2β1

√
d

(1− β2)
3
2

}
.

Taking the summation of (14) from 1 to T , we get

L∗ − L(θ0) ≤ L(θT )− L(θ0) =
T∑

t=1

L(θt)− L(θt−1)

≤ −C1

(
T∑

t=1

1√
t

)
· min
1≤t≤T

∥gt ⊙ FLTα(gt)∥1 + C2

T∑
t=1

1

t
.
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Since
T∑

t=1

1√
t
≥

T∑
t=1

2√
t+

√
t+ 1

=

T∑
t=1

2(
√
t+ 1−

√
t) = 2(

√
T + 1− 1),

T∑
t=1

1

t
= 1 +

T−1∑
t=1

1

t+ 1
≤ 1 +

T−1∑
t=1

∫ t+1

t

1

u
du ≤ 1 +

∫ T

1

1

u
du = 1 + log T,

we get

min
0≤t≤T−1

∥∇L(θt)∥∞ = min
1≤t≤T

∥gt∥∞ ≤ min
1≤t≤T

∥gt∥1,top-α%

≤
L(θ0)− L∗ + C2

∑T
t=1

1
t

C1

∑T
t=1

1√
t

≤ L(θ0)− L∗ + C2(1 + log T )

2C1(
√
T + 1− 1)

= O
(
log T√

T

)
.
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D IMPLEMENTATION DETAILS

D.1 DATASETS FOR FINE-TUNING.

MetaMathQA (Yu et al., 2024b). This dataset comprises 395K math question-answer pairs. Nu-
merous studies indicate that LLMs significantly enhance performance metrics on mathematical
benchmarks such as GSM8K after fine-tuning on this dataset. We randomly select 10% of this dataset
for training LLMs, which includes 39.5K question-answer pairs.

PMC-LLaMA-Instructions (Wu et al., 2024). This dataset comprises 514K instruction-response
pairs. Fine-tuning LLMs on this dataset has been shown to enhance performance on medical NLP
tasks, such as PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), and MedQA (Jin et al.,
2021). We randomly sampled 51K instances with prompt lengths less than 750 characters for training
our models.

TRACE benchmark dataset (Wang et al., 2023b). TRACE benchmark is designed with a com-
prehensive set of 8 distinct tasks across various domains, including domain-specific knowledge,
multilingual proficiency, code generation, and mathematical reasoning.

D.2 EVALUATION METRICS FOR INSTRUCTION FINE-TUNING

We employ a comprehensive suite of widely used benchmarks to assess the performance and potential
catastrophic forgetting effects on the general capabilities of LLMs after instruction fine-tuning. The
benchmarks are as follows:

• Factual knowledge (MMLU): We use the Massive Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al., 2021) to evaluate factual knowledge across 57 di-
verse subjects, ranging from STEM fields and the humanities to social sciences. Evaluations
are performed using 8-bit precision with the open-instruct implementation, and by following
the setup of (Hui et al., 2024), we report the 0-shot accuracy.

• Common sense reasoning (CommonSense): To measure the commonsense reasoning
capabilities of LLMs, we employ the widely recognized benchmarks ARC-Challenge, ARC-
Easy (Clark et al., 2018), and HellaSwag (Zellers et al., 2019), collectively referred to as the
Commonsense benchmark. We use the average of their metrics as the evaluation, conducting
assessments using the LM Eval Harness framework (Gao et al., 2023) and reporting the
0-shot accuracy based on the "acc_norm, none" metric.

• Mathematical Reasoning (GSM8K): We assess mathematical reasoning capability using
GSM8K (Cobbe et al., 2021), which consists of 8.5K high-quality grade school math
problems. Evaluations are conducted on the test set using the LM Eval Harness framework
prompting in a 5-shot setting, reporting the "exact_match, flexible-extract" metric.

• Code Generation (HumanEval): We adopt HumanEval (Chen et al., 2021), comprising
164 unique programming problems, to evaluate the coding capabilities of LLMs. For chat
experiments, we use the vLLM framework with the open-instruct implementation and report
the pass@10 performance.

• Medical Question Answering (MedQ): To assess medical knowledge, we utilize three
benchmarks—PubMedQA (Jin et al., 2019), MedMCQA (Pal et al., 2022), and MedQA
(Jin et al., 2021). Evaluations are performed using the LM Eval Harness framework. For
PubMedQA, we report the "acc, none" metric; for MedMCQA and MedQA, we report the
"acc_norm, none" metric.

• Instruction Following (IFEval): We evaluate the instruction-following ability of LLMs
using the IFeval benchmark. Evaluations are conducted with the LM Eval Harness imple-
mentation, and we report the "inst_level_strict_acc, none" metric.

All benchmarks—including CommonSense, GSM8K, PubMedQA, MedMCQA, MedQA, and IFe-
val—are evaluated using the LM Eval Harness framework (Gao et al., 2023), following their default
settings unless specified otherwise.
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D.3 HYPERPARAMETER CONFIGURATIONS

Instruction fine-tuning. In our instruction fine-tuning experiments, we follow the implementation of
Ivison et al. (2023). For instruction fine-tuning, we set the maximum sequence length to 1024, the
global batch size to 128, and we train the model for 2 epochs. For the Llama-2-7B model, we use a
learning rate of 2e-5, with a cosine decay learning rate scheduler. The learning rate is set to 2e-5 for
fine-tuning both the Llama-2-7B-Chat model on the MetaMathQA dataset and the Gemma-2B-IT
model, while a learning rate of 1e-5 is used for fine-tuning the Llama-2-7B-Chat model on the
PMC-LLaMA-Instruct dataset; all these settings employ a warm-up ratio of 0.03 and a cosine decay
learning rate scheduler. For LoRA, we set the learning rate as 1e-4. The other hyperparameters in the
experiments are as follows.

Fine-tuning Llama-2-7B on MetaMathQA.

• Learning rate: 2e-5.

• Update fraction of MoFO: α% = 15%.

• LoRA: r = 4, 16, 64, 256. We report the best-performing hyperparameter configuration for
the fine-tuning task in Table 1, which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on PMC-LLaMA-Instruct.

• Learning rate: 1e-5.

• Update fraction of MoFO: α% = 10%.

• LoRA: r = 16, 256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table 5, which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on MetaMathQA.

• Learning rate: 2e-5.

• Update fraction of MoFO: α% = 15%.

• LoRA: r = 16, 256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table 7, which, in this case, is r = 256.

Fine-tuning Gemma-2B-IT on MetaMathQA.

• Learning rate: 2e-5.

• Update fraction of MoFO: α% = 5%.

• LoRA: r = 16, 256, 512. We report the best-performing hyperparameter configuration for
the fine-tuning task in Table 6, which, in this case, is r = 512.

Hyperparameters in the Pareto comparison. To provide a comprehensive comparison, we explore
various hyperparameter settings for λ1, λ2, LoRA’s rank, and the update fraction α% in MoFO in
Figure 4. Specifically, we set λ1 as 1e-4, 1e-5, 1e-6, 1e-7, while λ2 is set as 1e-2, 5e-3, 1e-3, 5e-4,
and 1e-4. The update fraction α% in MoFO is set as 5%, 10%, 15%, 20%, 40%, 80%. The rank of
LoRA is set as 4, 16, 64, 256.

Continual fine-tuning. In our continual fine-tuning experiments, we follow the default settings of the
TRACE benchmark. We sequentially train TinyLlama-1.1B on the TRACE benchmark datasets: C-
STANCE, FOMC, MeetingBank, Py150, ScienceQA, NumGLUE-cm, NumGLUE-ds, and 20Minuten
for 5, 3, 7, 5, 3, 5, 5, and 7 epochs, respectively. We use a learning rate of 1e-5 with a cosine decay
schedule and a batch size of 64. The parameter update fraction for MoFO is set to 5%.

All experiments are conducted on four A800 (80GB) GPUs.

D.4 MORE EXPLANATION ON THE PARTITIONING AND CALCULATION OF DISTANCE

Partitioning. We use the default partitioning scheme in PyTorch’s Transformer implementation.
Different types of parameters within the Transformer, such as query (Q), key (K), value (V) weights
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for attention heads, and feed-forward network (FFN) weights, are divided into separate partitions.
Notably, in the default PyTorch implementation, within a layer, the query (Q) weights of all attention
heads are grouped into a single partition. The same applies to the key (K) and value (V) weights. Our
momentum-based filtering mechanism is applied to each partition individually.

Calculation of distance. Following the notation in Section , we suppose that the parameter parameters
are partitioned into

θ = (θ(1), θ(2), . . . , θ(B)).

Denote the pre-trained model by θ0 and the fine-tuned model by θ.

First, we calculate the relative change of parameters ∥θ(k)−θ
(k)
0 ∥

∥θ(k)
0 ∥

in each partition k ∈ {1, 2, . . . , B}.

Second, we compute the distance from the pre-trained model θ0 to the fine-tuned model θ by averaging
the relative changes across all partitions, defined as:

D(θ, θ0) =
1

B

B∑
k=1

∥θ(k) − θ
(k)
0 ∥

∥θ(k)0 ∥
.
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E ADDITIONAL EXPERIMENTS

E.1 IMPACT OF THE UPDATE FRACTION

In this section, we first investigate the impact of the update fraction of parameters in the MoFO
algorithm at each iteration, and then explore the effects of different update strategies within MoFO.
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(b) Llama-3.2-3B
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(c) Llama-2-7B

Figure 6: The performance of LLMs with different sizes on the math reasoning task (GSM8K) after
fine-tuning on MetaMathQA using MoFO with different update fractions (α%) of parameters. Results
show that across models of different sizes, setting the fraction α% to approximately 20% allows
MoFO to reach fine-tuning performance similar to the default FT (with up to 3% performance drop).
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(c) Llama-2-7B

Figure 7: Average accuracy changes on MMLU, HumanEval, Commonsense Reasoning benchmarks
compared to the pre-trained LLMs of different sizes after fine-tuning on MetaMathQA using MoFO
with different update fractions (α%) of parameters. Larger LLMs tend to retain their pre-training
knowledge more effectively when fine-tuned with MoFO, even when using smaller fractions of
parameter updates.

Impact of update fraction of parameters in MoFO. Following the setting in Section 4.2, we
fine-tune Llama-3.2-1B, Llama-3.2-3B, and Llama-2-7B on the MetaMathQA dataset using MoFO
with varying update fractions of parameters at each iteration for 2 epochs. The experimental results
of math reasoning (GSM8K) and average general capability performance changes are presented in
Figure 6 and Figure 7.

The parameter update fraction affects the fine-tuning performance. Figure 6 shows that larger
update fractions can improve MoFO’s optimization effectiveness. Furthermore, in Llama-2-7B and
Llama-3.2-3B, MoFO with a 5% parameter update fraction is sufficient to achieve nearly 90% of the
performance of Default FT. Besides, experimental results show that setting the update fraction as α
to approximately 20% enables MoFO to attain fine-tuning performance comparable to the default FT
across various model sizes.

The parameter update fraction also affects the preservation of general capabilities. Figure 7 indicates
that larger LLMs effectively maintain their pre-training knowledge when fine-tuned with MoFO,
especially when using update fraction α less than 10%. Beyond the threshold of 20%, further
increases in the parameter update fraction lead to a decline in general capabilities. Despite this,
MoFO still forgets significantly less than Default FT in larger LLMs.
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(a) Loss landscape on fine-tuning dataset
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Figure 8: The loss landscapes of Pythia-160m after fine-tuning on a subset of the FLAN dataset using
Adam optimizer and MoFO. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the
pre-training dataset (Pile). A logarithmic scale is applied to the loss values for better visualization.
We find that MoFO, reaching a closer point to the pre-trained model, has minimal fine-tuning loss
and lower pre-training loss, compared to Adam.

Table 4: Pythia-160m’s performance on common sense tasks, after being fine-tuned with the Adam
optimizer and MoFO. The results indicate that MoFO significantly mitigates catastrophic forgetting.
Bold values denote the best results among these optimizers.

HellaSwag ARC-easy ARC-challenge Average

Pythia-160m 30.1 39.6 23.8 31.2

Adam 28.3 37.4 22.1 29.3

MoFO 29.9 42.0 22.9 31.6

In summary, MoFO can preserve pre-training knowledge and significantly enhance fine-tuning
performance by choosing a moderate update fraction, avoiding the extremes of too small or too large
fractions.

E.2 VALIDATING MOFO’S IMPACT ON PRESERVING PRE-TRAINING KNOWLEDGE THROUGH
PROXIMITY

In this section, we empirically examine whether MoFO achieves its intended goal of converging to a
minimum closer to the pre-trained model and mitigating forgetting mentioned in Section 3.

Our exploratory experiment shows that MoFO indeed converges to a minimum closer to the pre-
training model. As shown in Figure 8(a), both MoFO and the Adam optimizer achieve minimal
fine-tuning loss, indicating that switching from Adam to MoFO does not lead to performance
degradation. Moreover, the distance from the pre-trained model to the minimum reached by MoFO is
approximately 20% of that reached by the default Adam optimizer.

Our experiment demonstrates that the reduced parameter movement achieved by MoFO effectively
mitigates the forgetting of pre-training knowledge. As shown in Figure 8(b), the fine-tuned model
using MoFO experiences a smaller increase in pre-training loss. Additionally, Table 4 shows that
MoFO achieves higher accuracy on commonsense reasoning tasks, indicating less forgetting.

E.3 MORE EXPERIMENTAL RESULTS IN INSTRUCTION FINE-TUNING

Results of fine-tuning on PMC-LLaMA-Instruct. We fine-tune Llama-2-7B-Chat on the PMC-
LLaMA-Instructions dataset using various baseline methods and present the experimental results on
medical question answering (MedQ) and general capabilities in Table 5. Since the MMLU benchmark
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Table 5: The performance on the fine-tuning task (medical QA task), measured by MedQ, and general
capability scores of Llama-2-7B-Chat after fine-tuning on the PMC-LLaMA-Instruct dataset. The
figure on the right visualizes both MedQ accuracy and general capability scores. The results show
that MoFO achieves comparable performance in the MedQ while significantly mitigating forgetting
of general capabilities. Bold values denote the best results among these methods.

Method MedQ
General Capability

CR IFEval HumanEval Avg.

Llama-2-7B-Chat 49.8 65.6 41.4 24.3 43.8

Default FT 54.3 64.6 32.1 20.6 39.1

HFT 54.4 65.2 33.5 23.1 40.6

LoRA 54.2 64.4 33.9 23.5 40.6

MoFO 54.3 65.5 41.1 24.1 43.6 0.375 0.400 0.425 0.450
General capability

0.48

0.50

0.53

0.55

M
ed

Q

Llama2-7b-chat

Default FT
HFT
LoRA
MOFO

already contains medical-related instances (Hendrycks et al., 2021), which may lead to improved
performance after fine-tuning, we instead use IFEval to assess general capabilities.

MoFO performs well on the fine-tuning task of medical QA. It achieves compatible performance
compared to Default FT and HFT. In terms of general capabilities, MoFO demonstrates the least
degradation compared to other baselines, with an average accuracy reduction of only 0.2%. Specifi-
cally, on the IFEval benchmark, our method only exhibits a minor reduction of 0.3%, while Default
FT, HFT, and LoRA experience significant degradations ranging from 7.5% to 9.3%. On code
generation (HumanEval) tasks and commonsense reasoning (CR) benchmarks, our method also only
exhibits a minor reduction less than 0.2%.

Table 6: The performance of the fine-tuning task (math), measured by GSM8K, and the general
capability scores of Gemma-2B-IT after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSM8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

Method GSM8K
General Capability

CR IFeval HumanEval Avg.

Gemma-2B-IT 11.4 57.6 33.6 31.5 40.9

Default FT 42.0 52.1 24.3 20.6 32.3

HFT 41.5 53.9 24.1 21.2 33.1

LoRA 40.6 54.4 26.1 29.8 36.8

MoFO 42.1 55.0 28.7 29.1 37.6
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Results of Gemma-2B-IT fine-tuning on MetaMathQA. We also explore how MoFO performs
in other LLMs. Specifically, we fine-tune Gemma-2B-IT on MetaMathQA using various baseline
methods and present the experimental results on mathematical reasoning (GSM8K) and general
capabilities in Table 6. The experimental results demonstrate that MoFO achieves comparable
performance of the fine-tuning task to Default FT and HFT across different models. In terms of
general capabilities, MoFO exhibits significantly less forgetting compared to other baselines. This
result demonstrates the versatility of the MoFO algorithm.

We also fine-tune the Llama-2-7B-Chat on the MetaMathQA dataset. The results are presented in
Table 7. The results demonstrate that our approach achieves performance comparable to Default FT
and HFT while exhibiting less forgetting compared to baseline methods.

In summary, our MoFO algorithm shows competitive performance in instruction fine-tuning while
preserving the general capabilities, effectively alleviating forgetting.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 7: The performance of the fine-tuning task (math), measured by GSM8K, and the general
capability scores of Llama-2-7B-chat after fine-tuning on the MetaMathQA dataset. The figure on the
right visualizes both GSM8K accuracy and general capability scores. The results show that MoFO
achieves comparable performance in the fine-tuning task, while significantly mitigating forgetting of
general capabilities. Bold values denote the best results among these methods.

Method GSM8K
General Capability

CR IFeval HumanEval Avg.

Llama-2-7B-Chat 13.7 65.6 41.4 24.3 43.8

Default FT 48.4 62.8 30.7 15.6 36.4

HFT 46.9 63.4 31.8 20.0 38.4

LoRA 45.3 63.9 35.6 21.0 40.2

MoFO 47.1 64.0 37.1 21.7 40.9
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E.4 TRANING PROCESS OF MOFO

In this subsection, we analyze the differences between the training processes of MoFO and the default
SFT.
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Figure 9: The GSM8K accuracy achieved during the fine-tuning of Llama-2-7B on the MetaMathQA
dataset. The update fraction of MoFO is α% = 15%.

Following the setting in Section 4.2, we present the GSM8K accuracy achieved during the fine-
tuning of Llama-2-7B on the MetaMathQA dataset with different methods in Figure 9. The results
demonstrate that the MoFO method can achieve training effectiveness comparable to the default
fine-tuning approach.

E.5 COMPARISON WITH MORE FINE-TUNING METHODS

In this subsection, we compare our proposed method with the Heterogeneous Model Averaging
(HMA) (Lin et al., 2024). HMA approach evenly divides the LLM into three parts—the input part,
the middle part, and the output part—and averages these parts with different ratios. To facilitate a
comprehensive comparison, following the setting in Section 4.2, we evaluate the fine-tuning and
forgetting mitigation performance for different HMA strategies. We select 15 different combinations
of averaging ratios for different parts as follows: {(0.05, 0.2, 0.35), (0.1, 0.2, 0.3), (0.2, 0.2, 0.2), (0.3,
0.2, 0.1), (0.35, 0.2, 0.05), (0.3, 0.5, 0.7), (0.4, 0.5, 0.6), (0.5, 0.5, 0.5), (0.6, 0.5, 0.4), (0.7, 0.5, 0.3),
(0.65, 0.8, 0.95), (0.7, 0.8, 0.9), (0.8, 0.8, 0.8), (0.9, 0.8, 0.7), (0.95, 0.8, 0.65)}. We plot the results to
construct a Pareto front in Figure 10.

Results show that our proposed method, MoFO achieves a more effective Pareto front compared to
the baselines.
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Figure 10: The performance on the math task (GSM8K) and the scores in Commonsense Reasoning
of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that the MoFO
algorithm achieves a better Pareto front. The pink triangle represents the model obtained through
HMA.

35


	Introduction
	Related Works
	Momentum Filtered Optimizer (MoFO)
	Motivation
	Algorithm Formulation
	Convergence Result

	Experiments
	Experimental Settings
	Instruction Fine-Tuning
	Continual Fine-Tuning
	Further Analysis

	Why MoFO Converges to a Closer Point? An example
	Conclusion
	Supplemental Related Works
	Supplementary Analysis on the Top-% Filter
	Proof of Theorem 1
	Implementation Details
	Datasets for Fine-Tuning.
	Evaluation Metrics for Instruction Fine-Tuning
	Hyperparameter Configurations
	More Explanation on the partitioning and Calculation of distance

	Additional Experiments
	Impact of the Update Fraction
	Validating MoFO's Impact on Preserving Pre-training Knowledge through Proximity
	More Experimental Results in Instruction Fine-Tuning
	Traning Process of MoFO
	Comparison with more fine-tuning methods


