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ABSTRACT

With large volumes of unlabeled data and limited annotation budgets, Semi-
Supervised Learning (SSL) has become a preferred approach in many deep learn-
ing tasks. However, most previous studies have primarily focused on utilizing
labeled and unlabeled data for model training to improve performance, while the
efficient selection of samples for annotation under budgetary constraints has of-
ten been overlooked.To fill this gap, we propose an efficient sample selection
methodology named Unleashing the Power of Annotation (UPA). By adopting
a modified Frank-Wolfe algorithm to minimizing a novel criterion α-Maximum
Mean Discrepancy (α-MMD), UPA selects a representative and diverse subset for
annotation from the unlabeled data. Furthermore, we demonstrate that minimiz-
ing α-MMD enhances the generalization ability of low-budget learning. Exper-
iments show that UPA consistently improves the performance of several popu-
lar SSL methods, surpassing various prevailing Active Learning (AL) and Semi-
Supervised Active Learning (SSAL) methods even under constrained annotation
budgets.

1 INTRODUCTION

Recent years have witnessed the great success of deep learning for a variety of supervised tasks,
including image classification (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy et al., 2020; Liu
et al., 2021a). However, these advances often rely heavily on large sets of high-quality labeled data.
Unfortunately obtaining such data, especially in areas like finance, healthcare, and education where
expert labeling is needed, can be both costly and challenging. To alleviate this hindrance, more
research started to focus on Semi-Supervised Learning (SSL) (Berthelot et al., 2019b; Xie et al.,
2020a; Zhang et al., 2021), which improves model performance with the help of large amounts of
unlabeled data.

In semi-supervised learning, both the knowledge within unlabeled data and the supervision signals
from labeled data are essential for its effectiveness (Xie et al., 2020a; Wang et al., 2022d). And
our empirical evidence (see Sec. 4.3) shows that selecting labeled data significantly affects the final
results, especially with very limited annotation budgets. Therefore, choosing which sample to label
is crucial in the realm of SSL.

Previous SSL approaches have employed two common strategies for sample selection (Berthelot
et al., 2019b;a; Wang et al., 2022b). One is random sampling from the entire dataset which may
introduce imbalanced class distributions and inadequate coverage of the overall data distribution,
resulting in poor performance. The other is random sampling within each class (a.k.a. stratified
sampling), but it is not practical in real-world scenarios where label for each sample is unknown.

Semi-Supervised Active Learning (SSAL) seems to be a potential solution to the above issues by
selecting the most suitable samples for annotation in each iteration of training inspired by Active
Learning (AL) algorithms (Sener & Savarese, 2018). It also benefits significantly from unlabeled
data, which in turn enhances the model’s learning capability and prediction accuracy (Wang et al.,
2022b; Guo et al., 2021). Nevertheless, analogous to AL methods, SSAL methods rely on initially
randomly labeled data and require multiple rounds of sample selection for labeling, which may

1



Under review as a conference paper at ICLR 2024

potentially introduce harmful bias into the selection process and increase annotation budget (Xie
et al., 2023).

In order to address the above issues, we propose an efficient sampling method named Unleashing the
Power of Annotation (UPA) that requests annotations only once and is decoupled from the down-
stream tasks. Specifically, inspired by the concept of Maximum Mean Discrepancy (MMD) (Gretton
et al., 2006), we design a novel criterion named α-MMD that is to be minimized to strikes a bal-
ance between the representativeness and diversity via a trade-off parameter α, which ensures that
the selected data distributes similarly with the entire unlabeled dataset and is not excessively con-
centrated. By using a modified Frank-Wolfe algorithm called Generalized Kernel Herding without
Replacement (GKHR), we can get an efficient approximate solution to this minimization problem.

We prove that under certain Reproducing Kernel Hilbert Space (RKHS) assumption, α-MMD
bounds the difference between training with a low versus an unlimited labeling budget, implying that
our method could theoretically enhance the generalization ability of low-budget learning. We also
give a theoretical assessment for GKHR with some supplementary numerical experiments, showing
that GKHR performs well under low-budget setting. Additionally, we find an optimal interval for
the value of the trade-off parameter α to ensure that the selected data remains representativeness.

Furthermore, we benchmark on our sample selection with several popular SSL frameworks on the
public datasets CIFAR-10/100 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011). Exten-
sive experiments show that UPA outperforms other sample selection methods across different SSL
frameworks. Remarkably, even with a constrained annotation budget, UPA demonstrates competi-
tive performance against established AL and SSAL methods when applied to the SSL frameworks.

The main contributions of this article are as follows: (1) We propose UPA, a methodology for un-
supervised sample selection, by minimizing a novel criterion α-MMD which evaluates representa-
tiveness and diversity of selected samples. Under low-budget setting, we develop a fast and efficient
algorithm GKHR for optimization. (2) We prove that our method benefits the generalizability of
the trained model under certain assumptions, and rigorously establish an optimal interval for the
trade-off parameter α to guarantee the representativeness of selected data. (3) We conduct extensive
benchmarking for UPA across several popular SSL frameworks. The results demonstrate superior
sample efficiency compared to alternative sample selection strategies. Moreover, even under fewer
annotation budgets, UPA outperforms widely used AL/SSAL approaches when applied to the SSL
frameworks.

2 RELATED WORK

2.1 SEMI-SUPERVISED LEARNING

Semi-Supervised Learning effectively utilizes sparse labeled data and abundant unlabeled data for
model training. Consistency Regularization (Sajjadi et al., 2016; Laine & Aila, 2016; Tarvainen &
Valpola, 2017; Xie et al., 2020a), Pseudo-Labeling (Lee et al., 2013; Xie et al., 2020b) and their hy-
brid strategies (Sohn et al., 2020; Zhang et al., 2021; Wang et al., 2022d) are commonly used in SSL.
Consistency Regularization makes sure the model’s output stays stable even when there’s noise or
small changes in the input, usually from the data augmentation. This approach fosters output con-
sistency, as illustrated by Unsupervised Data Augmentation (UDA) (Xie et al., 2020a) deploying
a single and weak augmentation. Pseudo-Labeling, adhering to entropy minimization, integrates
high-confidence data pseudo-labels directly into training. Lee et al. (2013) adopt the maximum
confidence prediction in a batch of unlabeled samples as a pseudo-label, which has the maximum
predicted probability. Moreover, an integrative approach that combines the aforementioned strate-
gies can also achieve substantial results, such as Fixmatch (Sohn et al., 2020), Flexmatch (Zhang
et al., 2021) and Freematch (Wang et al., 2022d). Even though these techniques have proven effec-
tive, semi-supervised learning usually involves random label selection, which could hinder optimal
results. Hence, we aim to create a more efficient strategy for sample selection, with the goal of
enhancing these methods’ performance.
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2.2 ACTIVE LEARNING

Active learning (AL) aims to optimize the learning process by selecting informative samples for
labeling, reducing reliance on large labeled datasets. There are two different criteria for sample
selection: uncertainty and diversity. Uncertainty sampling, selects samples about which the cur-
rent model is most uncertain. Earlier studies utilized posterior probability (Lewis & Catlett, 1994;
Wang et al., 2016), entropy (Joshi et al., 2009; Luo et al., 2013), and classification margin (Tong &
Koller, 2001) to estimate uncertainty. Recent research estimates uncertainty by calculating training
loss directly (Huang et al., 2021; Yoo & Kweon, 2019) or evaluating influence on model perfor-
mance (Freytag et al., 2014; Liu et al., 2021b). However, uncertainty sampling methods may exhibit
performance disparities across different models, leading researchers to focus on diversity sampling
which aims to align the distribution of selected samples with that of unlabeled ones. For instance,
Sener & Savarese (2018) formulate the sample selection process from a theoretical standpoint, cast-
ing it as a k-Center problem, leading to the proposal of the CoreSet algorithm. Sinha et al. (2019)
harness the power of adversarial networks to discern between labeled and unlabeled samples. Mah-
mood et al. (2021) solve the sample selection problem by Generalized Benders Decomposition algo-
rithm which minimizes the Wasserstein distance between selected samples and unlabeled pool. Cho
et al. (2022) select the most informative samples by maximizing the prediction difference across
multiple classifiers. Contrasting with these aforementioned AL methods, which typically necessi-
tate iterative rounds of sample selection tightly coupled with model training, UPA stands out as a
model-agnostic algorithm. Notably, it streamlines the process by ensuring annotations are selected
in a singular step.

3 METHODOLOGY

In this section, we will introduce our method on the unsupervised sample selection task. Firstly we
formulate the task and the concept of representativeness and diversity in Sec. 3.1. Then we quantify
the representativeness and diversity by only one criterion called α-Maximum Mean Discrepancy
(α-MMD) in Sec. 3.2. Next, we propose a sampling algorithm called Generalized Kernel Herding
without Replacement (GKHR) for our task, and conduct a brief study on its theoretical properties
and empirical performance in Sec. 3.3. Finally, we introduce our strategies for choosing a proper
kernel and give a optimal interval for parameter α to preserve the representativeness of selected data
in Sec. 3.4.

3.1 FORMULATION OF UNSUPERVISED SAMPLE SELECTION TASK

Let X be the unlabeled data space, Y be the label space, H be a hypothesis set which consists of
hypotheses h : X → Y , and Xn = {xi}i∈[n] ⊂ X is the full unlabeled dataset. In order to reduce
the labelling budget, there is a sampling algorithm A that selects m ≤ n unlabeled data {xi}i∈Im

from Xn, where |Im| = m is an index set that is contained in [n]. The selected samples are denoted
by XIm

= {xi}i∈Im
. Once the selected samples XIm

are obtained, we can get access to the true
labels of them, and then derive a set of training data S = {(xi, yi)}i∈Im

. We can finally find a
hypothesis hS from hypothesis setH using training data S.

We propose two fundamental settings for our task before introducing the main goal. The first one
is the low-budget setting, we only consider the case when m/n ≤ 0.2 in the following context,
including the numerical study on the sampling algorithm and the experiments. The second one is
the without-replacement setting, since unsupervised sample selection task is always regarded as a
combinatorial optimization problem (Sener & Savarese, 2018; Mahmood et al., 2021; Wang et al.,
2022a), where we must ensure that the selected samples are different from each other.

In our task, the sampling algorithm A is blind to the hypothesis set H, and therefore it is a model-
agnostic algorithm. Our main goal is to find a sampling strategy associate with a algorithm A such
that the selected samples enjoy both representativeness and diversity, which are two fundamental
criteria we employ here. Representativeness is designed to ensure that the selected samples distribute
similarly with the entire unlabeled dataset. In contrast, diversity is critical in preventing an excessive
concentration of selected samples in high-density areas of the original instance set, thus promoting
an inclusive representation across the entire data landscape.
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3.2 QUANTIFICATION OF REPRESENTATIVENESS AND DIVERSITY

To quantify the representativeness of XIm to Xn, we may introduce a metric to measure the distance
between them, where larger distance implies lower representativeness. In this paper, we use the
Maximum Mean Discrepancy (MMD) for measuring the representativeness of selected samples.
Proposed by (Gretton et al., 2006), MMD is formally defined below:

Definition 1. Let P,Q be two Borel probability measure on Rd. Suppose f is sampled from the unit
ball in a reproducing kernel Hilbert space (RKHS) H associated with its reproducing kernel k(·, ·),
i.e., ∥f∥H ≤ 1, then the MMD between P and Q is defined by

MMD2
k(P,Q) := sup

∥f∥H≤1

(∫
fdP −

∫
fdQ

)2

=E [k (X,X ′) + k (Y, Y ′)− 2k(X,Y )]

(1)

where X,X ′ ∼ P and Y, Y ′ ∼ Q are independent copies.

We can derive the empirical version of MMD that is able to measure the distance between XIm
=

{xi}i∈Im and Xn = {xi}ni=1 if we substitute P,Q by the empirical distribution constructed by
XIm ,Xn in (1):

MMD2
k(XIm

,Xn) :=
1

n2

n∑
i=1

n∑
j=1

k (xi,xj) +
1

m2

∑
i∈Im

∑
j∈Im

k (xi,xj)−
2

mn

n∑
i=1

∑
j∈Im

k (xi,xj)

(2)
When k is a characteristic kernel, i.e., µ →

∫
X k(·,x)dµ(x) for any Borel probability measure µ

on X , MMD becomes a proper metric in the space of all Borel probability measure (Muandet et al.,
2017), making itself a good choice for measuring the representativeness. Moreover, if the kernel k
is a radial kernel with k(x,y) = ψ (∥x− y∥) where ψ is a bounded decreasing function on R+,
k could be regarded as a criterion of similarity between two samples. Additionally, k should be
positive definite so that it corresponds to a unique RKHS. Therefore, in the following context, we
assume the kernel k is positive definite, characteristic and radial.

Define

D(XIm
) =

1

m2

∑
i∈Im

∑
j∈Im

k (xi,xj) , D(XIm
,Xn) =

1

mn

n∑
i=1

∑
j∈Im

k (xi,xj)

then regarding k as a similarity criterion, D(XIm) evaluates the self-similarity of XIm , and
D(XIm ,Xn) evaluates the similarity between XIm and Xn, while the former one can be inter-
preted as the quantification of diversity of selected samples. Since (2) can be rewritten by

MMD2
k(XIm

,Xn) = D(Xn) +D(XIm
)− 2D(XIm

,Xn)

then MMD is indeed a function of XI that contains a diversity term. Thus we can define a new con-
cept called the α-MMD by reweighting each term in (1),(2) to measure the both representativeness
and diversity of selected data, and the preference for the diversity of selected samples is determined
by a single parameter α.

Definition 2. Following the settings in Definition 1, the α-MMD between distribution P and Q is
defined by

MMD2
k,α(P,Q) := sup

∥f∥H≤1

(∫
fdP − α

∫
fdQ

)2

= E
[
k (X,X ′) + α2k (Y, Y ′)− 2αk(X,Y )

]
(3)

and for XIm
= {xi}i∈Im

and Xn = {xi}ni=1,

MMD2
k,α(XIm ,Xn) :=

α2

n2

n∑
i=1

n∑
j=1

k (xi,xj) +
1

m2

∑
i∈Im

∑
j∈Im

k (xi,xj)−
2α

mn

n∑
i=1

∑
j∈Im

k (xi,xj)

(4)
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In the following, we provide an explanation for the capability of α-MMD to quantify representa-
tiveness and diversity from the perspective of regularization. By definition, minimizing α-MMD is
equivalent to minimizing

Eα(XIm
,Xn) := D(XIm

)− 2D(XIm
,Xn)︸ ︷︷ ︸

(∗)

+

(
1

a
− 1

)
D(XIm

)︸ ︷︷ ︸
(∗∗)

(5)

where (∗) is the objective function for minimizing MMD, (∗∗) is the diversity regularizer with a
parameter α controls the trade-off between representativeness and diversity in the regularization. To
be more specific, larger value of α implies larger punishment on the diversity. Therefore, minimizing
the α-MMD between the selected samples and the full dataset where α ≤ 1 is a proper strategy to
preserve the representativeness and diversity.

Recall the core-set approach in Sener & Savarese (2018), i.e., for any h ∈ H,

R(h) ≤ R̂S(h) + |R(h)− R̂T (h)|+ |R̂T (h)− R̂S(h)|
where T is the full labeled dataset and S ⊂ T is the core set, R(h) is the expected risk of h,
R̂T (h), R̂S(h) are empirical risk of h on T, S. The first term R̂S(h) is unknown before we label
that selected samples, the second term |R(h) − R̂T (h)| is regarded as the generalization bound
which does not depend on the core set, therefore we only need to minimize the third term |R̂T (h)−
R̂S(h)| called core-set loss to control the upper bound of R(h). Actually, the core-set loss can be
upper bounded by α-MMD under certain assumptions, implying that our approach could benefit the
generalizability of the trained model.
Theorem 3.1. Let H1 be a hypothesis set that contains some hypotheses h : X → Y , and let
the loss function ℓ be squared loss, i.e., ℓ(h(x), y) = (h(x) − y)2. Assume that the labelled data
T = {(xi, yi)}ni=1 are i.i.d. sampled from a random vector (X,Y ) defined on X × Y . Let H2,H3

be two RKHS containing real-valued functions on X , which are associated with bounded positive
definite kernel k2, k3, further assume E(Y |X) ∈ H2 with norm bounded by Km, Var(Y |X) ∈ H3

with norm bounded by Ks, and H1 is a RKHS associated with bounded positive definite kernel k1
where the norm of any h ∈ H1 is bounded by Kh, then for any selected samples S ⊂ T , there exists
a positive constant Kc such that the following inequality holds

|R̂T (h)− R̂S(h)| ≤ Kc(MMDk,α(XS ,XT ) + (1− α)
√
K)2

where α ≤ 1, 0 ≤ maxx∈X k(x,x) ≤ K, k = k21 + k1k2 + k3, XS ,XT are projections of S, T on
X .

(b) 𝛼-MMD, m=100(a) 𝛼-MMD, m=50 (c) 𝛼-MMD, m=200

(d) MMD, m=50 (e) MMD, m=100 (f) MMD, m=200

Figure 1: Visualization of samples selected by minimizing
α-MMD and MMD, from a 2000-sample-dataset generated
by Gaussian Mixture Model 1 (Appendix A.4).

Remark 1. For the RKHS assump-
tions of conditional expectation and
conditional variance in Theorem 3.1,
they are standard in the literature of
embedding conditional distributions
(Song et al., 2009; Sriperumbudur
et al., 2012). For the RKHS assump-
tion on H1, it is indeed applicable
in many machine learning problem,
such as SVM, kernel ridge regression
and CNN (Bietti & Mairal, 2019). In
general case, Theorem 3.1 does not
always holds, nevertheless, since we
are blind to the hypothesis set H be-
fore training, it can yet be regarded as
a guideline for selecting samples.

3.3 SAMPLING ALGORITHM

In the previous research (Sener & Savarese, 2018; Mahmood et al., 2021; Wang et al., 2022a), se-
lecting unsupervised samples is usually modeled by a combinatorial optimization problem which
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is NP-hard. Follow the idea of Bach et al. (2012), we exploit the convexity of α-MMD, regard
minIm∈[n] Eα(XIm

,Xn) as a continuous convex optimization problem and conduct a iterative min-
imization procedure by Frank-Wolfe algorithm. After rigorous derivation in Appendix A.1, we
obtain the following iterating formula:

I0 = ∅, p = 0,xip+1
∈ argmin

i∈[n]

fIp
(xi), Ip+1 ← Ip ∪ {ip+1}, p← p+ 1 (6)

where fIp(xi) =
∑

j∈Ip
k (x,xj) − αp

∑n
l=1 k(x,xl)/n. Actually, (6) is an extension of kernel

herding in Chen et al. (2012), thus we name the corresponding algorithms of (6) by Generalized
Kernel Herding (GKH), see Algorithm 1. However, same samples could be selected for several
times in GKH, which contradicts the without-replacement setting. Hence, we modify GKH to a new
algorithm called Generalized Kernel Herding without Replacement (GKHR), which selects new
samples besides the selected samples XIm , see Algorithm 2. Its iterating formula is given below:

I0 = ∅, p = 0,xip+1 ∈ argmin
i∈[n]\Ip

fIp(xi), Ip+1 ← Ip ∪ {ip+1}, p← p+ 1 (7)

Clearly, (7) admits no repetitiveness of the elements in selected samples.

Some theoretical and empirical assessments on the performance GKHR are conduct in the follow-
ing. Firstly, the computational complexity of GKHR grows linearly and is O(nm) for m iterations,
since the

∑
j∈Im

k (x,xj) term can be iteratively updated (details see Algorithm 2), reducing the
complexity of each iteration to O(n). Hence, GKHR is a fast algorithm for selecting selected sam-
ples.

As for the convergence property, actually, it is not applicable for GKHR. With n fixed, GKHR it-
erates for at most n times and when m = n, GKHR has a fixed output where XIn

= Xn and
MMD2

k,α (XIn
,Xn) = C2

α. Nevertheless, we have the following theorem to show that the opti-
mization error of GKHR is upper bounded when m is sufficiently small.
Theorem 3.2. Let XIm

be the samples selected by GKHR, then under the following assumption:
for any Ip, 1 ≤ p ≤ m− 1, there exists p+ 1 elements {xjl}

p+1
l=1 in Xn such that

fIp
(xj1) ≤ · · · fIp

(xjp+1
) ≤

∑n
i=1 fIp

(xi)

n
it holds that

MMD2
k,α (XIm

,Xn) ≤ C2
α +B

2 + logm

m+ 1
(8)

where B = 2K, 0 ≤ maxx∈X k(x,x) ≤ K, C2
α = (1− α)2K where K is defined in Lemma A.6.

Remark 2. The assumption is actually an extension of the principle of ”the minimum is never
larger than the mean”. In the unsupervised sample selection task where there is a low-budget setting
such that m/n ≤ 0.2, the assumption still makes sense.

To ensure that GKHR indeed works in our unsupervised data selection task, we conduct some numer-
ical experiments to empirically compare the performance of GKHR with GKH on several datasets
generated by predefined distributions, since GKH is a convergent algorithm and the finite-sample-
size error bound (9) holds without any assumption on the data. The results in Appendix A.4 show
that GKHR and GKH have similar empirical performance on minimizing α-MMD under low-budget
setting, which convince us that GKHR could perform well in the unsupervised sample selection task.

3.4 CHOICE OF KERNEL k AND PARAMETER α

In Sec. 3.2, we claimed that we only consider positive definite, characteristic and radial kernels,
among which Gaussian kernel (or RBF) is the most popular choice in the previous research. In this
paper, we also adopt Gaussian kernel in the experiments. Therefore, another problem arises, that
is how to choose the bandwidth parameter σ. Here we set σ to be the median distance between
samples in the aggregate dataset which is recommended by Gretton et al. (2012), since median is
robust and also compromises between extreme cases. Specifically, for Gaussian kernel k(x,y) =
exp(∥x− y∥22)/σ2, we set

σ = Median({∥x− y∥2|x,y ∈ Xn})

6
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As for choosing α, according to Theorem 3.2 and Lemma A.3, by straightforward deduction we
have

MMDk (XIm ,Xn) ≤ Cα +O

(√
logm

m

)
+ (1− α)

√
K

to upper bound the MMD between the selected samples and the full dataset in low-budget setting.
We can just set 1−

√
1/m ≤ α ≤ 1 so that the upper bound of the MMD would not be larger than

the one of α-MMD in the perspective of order of magnitude.

4 EXPERIMENTS

In this section, we first introduce the datasets used for experiments in Sec. 4.1. Then we explain
the implementation details of our method UPA in Sec. 4.2. Next, we evaluate UPA by integrating
them into two popular SSL methods (FlexMatch (Zhang et al., 2021) and Freematch (Wang et al.,
2022d)) on three benchmarks (CIFAR-10/100 and SVHN) in Sec. 4.3. We also compare against
various AL/SSAL methods in Sec. 4.4. Lastly, we make visualization and quantitative analyses of
our method in Sec. 4.5.

4.1 DATASETS

We choose three common datasets CIFAR-10, CIFAR-100 and SVHN for experiments. CIFAR-10
and CIFAR-100 contain 60,000 images with 10 and 100 categories separately, among which 50,000
images are for training and 10,000 images are for testing; SVHN contains 73,257 images for training
and 26,032 images for testing. The training sets of the above datasets are considered as the unlabeled
dataset for sample selection.

4.2 IMPLEMENTATION DETAILS OF OUR METHOD

First, we leverage the pre-trained image feature extraction capabilities of CLIP (Radford et al.,
2021), which is a vision transformer architecture, to extract features. Subsequently, the [CLS] to-
ken features produced by the model’s final output are employed for sample selection. During the
sample selection phase, the Gaussian kernel function is chosen as the kernel method to compute
the similarity of samples in an infinite-dimensional feature space. The value of σ for the Gaussian
kernel function is set as explained in Sec. 3.4. To ensure diversity in the sampled data, we introduce
a penalty factor given by α = 1 − 1√

m
, where m denotes the numbers of selected samples. Con-

cretely, we set m = {40, 250, 4000} for CIFAR-10, m = {400, 2500, 10000} for CIFAR-100, and
m = {250, 1000} for SVHN. Next, the selected samples are used for two SSL methods which are
trained and evaluated on the three datasets by using the Unified SSL Benchmark (USB) (Wang et al.,
2022c). Specifically, we use Wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) as the backbone
of all SSL methods and SGD with a momentum of 0.9 as optimizer. The initial learning rate is 0.03
with a learning rate decay 0.0005 except for CIFAR-100 where we set 0.001. Finally, we evaluate
the performance with the Top-1 classification accuracy metric on the test set. Experiments are run
on 8*NVIDIA Tesla A100 (40 GB) and 2*Intel 6248R 24-Core Processor. We average our results
over three independent runs. In order to ensure the reproducibility of the experiments, we set certain
random seeds for all experiments.

4.3 COMPARISON WITH OTHER SAMPLING METHODS

In order to verify the effectiveness of our sampling method UPA, we apply UPA on Flexmatch and
Freematch to compare with the following two sampling methods which are widely used in SSL tasks
under different annotation budget conditions:

(1) Random: The samples for annotation are selected randomly over all the available data.

(2) Stratified: The samples for annotation are selected randomly over individual categories evenly.

We report the mean and standard deviation of results over three trials in Table 1 on which we have
several observations: (1) From the perspective of annotation budget, UPA consistently outperforms
random sampling across varying budget constraints. This superiority in performance is evident
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Table 1: Comparison with other sampling methods. Each result shows mean accuracy and standard
deviation over three independent runs. Due to limitations of stratified sampling, results of which are
marked in gray. Numbers in parentheses show improvement over random sampling.

Datasets Budget Flexmatch Freematch
Stratified Random UPA (Ours) Stratified Random UPA(Ours)

CIFAR-10
40 89.6±3.3 90.4±3.2 94.8±0.2 (↑ 4.4) 95.0±0.1 94.3±0.7 95.0±0.1 (↑ 0.7)
250 95.3±0.1 94.5±0.4 95.1±0.5 (↑ 0.6) 95.5±0.3 94.5±0.7 95.6±0.1 (↑ 1.1)
4000 95.6±0.1 95.5±0.2 95.7±0.1 (↑ 0.2) 95.6±0.1 95.5±0.1 95.9±0.3 (↑ 0.4)

CIFAR-100
400 50.4±0.4 45.9±1.1 48.4±0.3 (↑ 2.5) 51.6±0.4 48.1±0.7 48.3±0.5 (↑ 0.2)
2500 67.5±0.5 66.8±1.1 67.3±0.5 (↑ 0.5) 67.5±0.7 66.8±0.8 67.4±0.3 (↑ 0.6)
10000 73.4±0.4 73.0±0.4 73.4±0.1 (↑ 0.4) 73.6±0.5 72.8±0.5 73.1±0.3 (↑ 0.3)

SVHN 250 88.6±1.8 88.0±1.3 91.6±0.5 (↑ 3.6) 92.8±1.3 92.2±2.1 94.5±0.4 (↑ 2.3)
1000 93.5±0.4 94.9±0.6 95.8±0.3 (↑ 0.9) 94.7±0.7 95.4±0.5 96.0±0.3 (↑ 0.6)

even under low budget conditions, manifesting in significant accuracy gains. For instance, when
employing UPA, Flexmatch achieves an accuracy improvement of 4.4% on the CIFAR-10 dataset
with an annotation budget of 40, a 2.5% increase on the CIFAR-100 dataset with a budget of 400,
and a 3.6% rise on the SVHN with a budget of 250. Similarly, Freematch registers an accuracy
enhancement of 1.1% on CIFAR-10 with an annotation budget of 250, and 2.3% on SVHN with
a budget of 250. These results underscore the efficacy of UPA in judiciously selecting samples,
thereby reducing the associated costs of sample labeling. (2) From the perspective of the SSL
framework, UPA demonstrates improvements over random sampling across the SSL frameworks.
This highlights that UPA is model-agnostic, exhibiting notable portability and the proficiency to
operate within diverse SSL frameworks. (3) In the majority of experiments, UPA either approaches
or surpasses the performance of the stratified sampling method. Notably, the stratified sampling
method is practically infeasible given that the category labels of the data are not known a priori.
This shows that UPA is better suited for real-world challenges.

4.4 COMPARISON WITH AL/SSAL METHODS

Table 2: Comparison with AL/SSAL methods on
CIFAR-10.

Methods Budget Acc(%)
Active Learning (AL)
VAAL 7500 86.8
UncertainGCN 7500 86.8
CoreGCN 7500 86.5
MCDAL 7500 87.2
Semi-Supervised Active Learning (SAAL)
CBSSAL 150 87.6
TOD-Semi 7500 87.8
REVIVAL 150 88.0
ActiveFT 500 88.2
Semi-Supervised Learning (SSL) with UPA
FlexMatch+UPA (Ours) 40 94.8
FreeMatch+UPA (Ours) 40 95.0

We compare our method UPA against vari-
ous recent AL/SSAL methods when applied
to two SSL frameworks in terms of budget
and accuracy on CIFAR-10. AL meth-
ods conclude VAAL (Sinha et al., 2019),
UncertainGCN (Caramalau et al., 2021),
CoreGCN (Caramalau et al., 2021) and MC-
DAL (Cho et al., 2022), while SSAL methods
conclude CBSSAL (Gao et al., 2020), TOD-
Semi (Huang et al., 2021), REVIVAL (Guo
et al., 2021) and ActiveFT (Xie et al., 2023). The
experimental results are shown in Table 2 where
the results of AL and SSAL are from Wang et al.
(2022a) and Xie et al. (2023). According to the
results, we have several observations: (1) AL
methods often necessitate significantly larger
labeling budgets, exceeding UPA by a factor
of 125 or more. This is primarily because AL
paradigms are solely dependent on labeled samples not only for classification but also for feature
learning. (2) SSAL methods leverage unlabeled samples, resulting in enhanced label efficiency.
While their performance modestly surpasses traditional AL methods, the improvement is not
substantial. One plausible reason could be that, akin to AL methods, SSAL methods initialize with
randomly labeled samples. This initialization might inadvertently inject detrimental biases during
the early stages of the training procedure. (3) UPA demonstrates notable enhancements in accuracy
while operating under a substantially reduced annotation budget. This highlights proficiency of
UPA in exploiting unlabeled samples during the sample selection phase.

8



Under review as a conference paper at ICLR 2024

4.5 ANALYSIS

4.5.1 VISUALIZATION OF SELECTED SAMPLES

To offer a more intuitive comparison between various sampling methods, we visualized samples
chosen by random, stratified and our methods. We generate 5000 samples from a Gaussian mix-
ture model defined on R2 with 10 components and uniform mixture weights. One hundred samples
are selected from the entire dataset using different sampling methods. The results of visualization
in Figure 2 indicate that: (1) Samples selected by stratified sampling method are more evenly dis-
tributed across different classes compared to the ones selected by random sampling method, given
its explicit reliance on labels. (2) Samples selected by UPA also achieve uniform distribution across
classes, which guarantees comprehensive coverage of the entire dataset. Simultaneously, due to the
introduction of a novel diversity assessment criterion in our method, the selected samples do not
overly cluster within a class, thus avoiding label redundancy.

(a) Random (b) Stratified (c) UPA (ours)

Figure 2: Visualization of selected samples using different sampling methods. Points of different
colors represent samples from different classes, while black points indicate the selected samples.

4.5.2 TRADE-OFF PARAMETER α

Table 3: Effect of different α on CIFAR-100.
The gray result indicates that α is outside the
interval we set, while the black result indi-
cates that α is inside the interval.

α
CIFAR-100

400 2500 10000

0.80 45.7±0.3 66.8±0.2 72.6±0.1
0.90 48.9±0.5 67.1±0.2 72.1±0.3
0.95 48.3±0.5 67.0±0.3 72.5±0.2
0.98 49.0±0.4 67.4±0.3 72.6±0.3
1.00 48.6±0.5 67.0±0.2 73.0±0.1
Ours 48.3±0.5 67.4±0.3 73.1±0.3

We analyze the effect of different trade-off parame-
ter αwith Freematch on CIFAR-100. Table 3 shows
the results of different α where the gray result indi-
cates that the α used in this experiment is outside
the interval we set in Sec. 3.4, i.e. α < 1 − 1√

m
,

while the black result indicates that the α used in
this experiment is within the interval we set, i.e.
1 − 1√

m
≤ α ≤ 1. From Table 3, we can find

that: (1) The results of α within the interval are al-
most better than those outside the interval; (2) The
α that achieve the best performance under different
annotation budgets are within the interval we set.
The above experimental results are in line with our
theoretical derivation in Sec. 3.4.

5 CONCLUSION

In this work, we propose an efficient sampling method UPA to select a subset of data from unla-
beled data for annotation in SSL. The primary innovation of our approach lies in the introduction
of α-MMD, designed to valuate representativeness and diversity of selected samples. Under low-
budget setting, we develop a fast and efficient algorithm GKHR for this problem using Frank-Wolfe
algorithm. Both theoretical analyses and empirical experiments validate the efficacy of UPA. Re-
markably, UPA is a model-agnostic sampling method, necessitating annotations only on an initial
instance, rendering it adaptable across different SSL frameworks and simultaneously reducing anno-
tation budget. We hope that our contribution will draw more attention from the community, fostering
a more expansive perspective on sample selection within SSL.
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A APPENDIX

A.1 ALGORITHMS

Derivation of Generalized Kernel Herding (GKH). Let us firstly define a weighted version of α-
MMD. For any w ∈ Rn such that w⊤1 = 1,

MMD2
k,α,Xn

(w) = w⊤Kw − 2αw⊤p+ α2K

where K = [k(xi,xj)]1≤i,j≤n, K = 1⊤K1/n2, p = (e⊤1 K1/n, · · · , e⊤nK1/n), {ei}ni=1 is the
set of standard basis of Rn, we have for any Ip ⊂ [n],

MMD2
k,α,Xn

(wp) = MMD2
k,α(XIp

,Xn)

where (wp)i = 1/p if i ∈ I, and (wp)i = 0 if not. Therefore, weighted α-MMD is indeed a
generalization of α-MMD. Let

K∗ = K− 2αp1⊤ + α2K11⊤

we obtain the quadratic form expression of generalized α-MMD by MMD2
k,α,Xn

(w) = w⊤K∗w,
where K∗ is strictly positive definite if w ̸= wn and k is a characteristic kernel according to
Pronzato (2021). Recall our low-budget setting and choice of kernel, K∗ is indeed a strictly pos-
itive definite matrix. Thus MMD2

k,α,Xn
is a convex functional w.r.t. w, leading to the fact that

minw⊤1=1 MMD2
k,α,Xn

(w) can be solved by Frank-Wolfe algorithm. Then for 1 ≤ p < n,

sp ∈ argmin
s⊤1=1

s⊤(Kwp − αp) = argmin
ei,i∈[n]

e⊤i (Kwp − αp)

let eip = sp, under uniform step size, we have

wp+1 =

(
p

p+ 1

)
wp +

1

p+ 1
eip

as the update formula of Frank-Wolfe algorithm, which is equivalent to

ip ∈ arg min
i∈[n]

∑
j∈Im

k(xi,xj)− αp
n∑

l=1

k(xi,xl)

for w1, we set w0 = 0. Then we immediately derive the iterating formula in (6).

Algorithm 1 Generalized Kernel Herding

Input: Data set Xn = {x1, · · · ,xn} ⊂ X ; the number of selected samples m < n; a positive
definite, characteristic and radial kernel k(·, ·) on X × X ; trade-off parameter α ≤ 1.

Output: selected samples XIm
= {xi1 , · · · ,xim}.

1: For each xi ∈ Xn calculate µ(xi) :=
∑n

j=1 k(xj ,xi)/n.
2: Set β1 = 1, S0 = 0, I = ∅.
3: for p ∈ {1, · · · ,m} do
4: ip ∈ argmini∈[n] Sp−1(xi)− αµ(xi)

5: For all i ∈ [n], update Sp(xi) = (1− βp)Sp−1 + βpk(xip ,x)
6: Ip+1 ← Ip ∪ {ip}, p← p+ 1, set βp = 1/p.
7: end for

A.2 TECHNICAL LEMMAS

Lemma A.1 (Lemma 2, Pronzato (2021)). Let (tk)k and (αk)k be two real positive sequences and
A be a strictly positive real. If tk satisfies

t1 ≤ A and tk+1 ≤ (1− αk+1) tk +Aα2
k+1, k ≥ 1,

with αk = 1/k for all k, then tk < A(2 + log k)/(k + 1) for all k > 1.
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Algorithm 2 Kernel Herding without Replacement

Input: Data set Xn = {x1, · · · ,xn} ⊂ X ; the number of selected samples m < n; a positive
definite, characteristic and radial kernel k(·, ·) on X × X ; trade-off parameter α ≤ 1.

Output: selected samples XIm
= {xi1 , · · · ,xim}.

1: For each xi ∈ Xn calculate µ(xi) :=
∑n

j=1 k(xj ,xi)/n.
2: Set β1 = 1, S0 = 0, I = ∅.
3: for p ∈ {1, · · · ,m} do
4: ip ∈ argmini∈[n]\Ip

Sp−1(xi)− αµ(xi)

5: For all i ∈ [n]\Ip, update Sp(xi) = (1− βp)Sp−1 + βpk(xip ,x)
6: Ip+1 ← Ip ∪ {ip}, p← p+ 1, set βp = 1/p.
7: end for

Lemma A.2. The selected samples generated by Algorithm 1 satisfies

MMD2
k,α (XIm ,Xn) ≤M2

α +B
2 + logm

m+ 1
(9)

where B = 2K, 0 ≤ maxx∈X k(x,x) ≤ K, M2
α is defined by

M2
α := min

w⊤1=1,w≥0
MMD2

k,α,Xn
(w)

Proof. Following the notations in Appendix A.1, let pα = αp, we could straightly follow the proof
for finite-sample-size error bound of kernel herding with predefined step sizes given by Pronzato
(2021) to derive Lemma A.2, without any other innovation.

Lemma A.3. Let H be a RKHS over X associated with positive definite kernel k, and 0 ≤
maxx∈X k(x,x) ≤ K. Let Xm = {xi}mi=1, Yn = {yj}mj=1, xi,yj ∈ X . Then for any α ≤ 1,

|MMDk,α(Xm,Yn)−MMDk(Xm,Yn)| ≤ (1− α)
√
K

Proof.

|MMDk,α(Xm,Yn)−MMDk(Xm,Yn)|

=

∣∣∣∣∣∣ sup
∥f∥H≤1

 1

m

m∑
i=1

f (xi)−
α

n

n∑
j=1

f (yj)

− sup
∥f∥H≤1

 1

m

m∑
i=1

f (xi)−
1

n

n∑
j=1

f (yj)

∣∣∣∣∣∣
≤ sup

∥f∥H≤1

∣∣∣∣∣1− αn
n∑

i=1

f (yi)

∣∣∣∣∣ =
(
1− α
n

)
sup

∥f∥H≤1

∣∣∣∣∣
n∑

i=1

f (yi)

∣∣∣∣∣
=

(
1− α
n

)
sup

∥f∥H≤1

∣∣∣∣∣∣
n∑

j=1

⟨f, k(·,yj)⟩H

∣∣∣∣∣∣ ≤
(
1− α
n

)
sup

∥f∥H≤1

n∑
j=1

∣∣⟨f, k(·,yj)⟩H
∣∣

≤
(
1− α
n

)
sup

∥f∥H≤1

n∑
j=1

∥f∥H∥k(·,yj)∥H ≤ (1− α)
√
K

Lemma A.4 (Proposition 12.31, Wainwright (2019)). Suppose that H1 and H2 are reproducing
kernel Hilbert spaces of real-valued functions with domains X1 and X2, and equipped with kernels
k1 and k2, respectively. Then the tensor product space H = H1 ⊗ H2 is an RKHS of real-valued
functions with domain X1 ×X2, and with kernel function

k ((x1, x2) , (x
′
1, x

′
2)) = k1 (x1, x

′
1) k2 (x2, x

′
2) .

Lemma A.5 (Theorem 5.7, Paulsen & Raghupathi (2016)). Let f ∈ H1 and g ∈ H2, whereH1,H2

be two RKHS containing real-valued functions onX , which is associated with positive definite kernel
k1, k2 and canonical feature map ϕ1, ϕ2, then for any x ∈ X ,

f(x) + g(x) = ⟨f, ϕ1(x)⟩H1
+ ⟨g, ϕ2(x)⟩H2

= ⟨f + g, (ϕ1 + ϕ2)(x)⟩H1+H2
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where
H1 +H2 = {f1 + f2|fi ∈ Hi}

and ϕ1 + ϕ2 is the canonical feature map ofH1 +H2. Furthermore,

∥f + g∥2H1+H2
≤ ∥f∥2H1

+ ∥g∥2H2

Lemma A.6. For any unlabeled dataset Xn ⊂ X and selected samples XIm
,

MMD2
k,α(Xn,Xn) = (1− α)2K,MMD2

k,α(XIm
,Xn) ≤ (1 + α2)K

where K =
∑n

i=1

∑n
j=1 k(xi,xj)/n

2, K = maxx∈X k(x,x).

Lemma A.6 is immediately proved by the definition of α-MMD.

A.3 PROOF OF THEOREMS

Proof for Theorem 3.1. Firstly, let us denote that H4 = H1 ⊗ H1 + H1 ⊗ H2 + H3, with kernel
k4 = k21 + k1k2 + k3 and canonical feature map ϕ4 = ϕ1 ⊗ ϕ1 + ϕ1 ⊗ ϕ2 + ϕ3.

Under the assumptions in Theorem 3.1, according to Theorem 4 in Song et al. (2009), we have for
any x ∈ X ,

h(x) = ⟨h, ϕ1(x)⟩H1
,E[Y |x] = ⟨E[Y |X], ϕ2(x)⟩H2

,

Var(Y |x) = ⟨Var(Y |X), ϕ3(x)⟩H3

where ϕ1, ϕ2, ϕ3 are canonical feature maps in H1,H2,H3. Denote that m = E[Y |X] and s =
Var(Y |X). Now by definition,

R(h) = E [ℓ(h(x), y)] =

∫
X

∫
Y
ℓ(h(x), y)p(y|x)p(x)dxdy =

∫
X
f(x)p(x)dx

where

f(x) =

∫
Y
(y − h(x))2p(y|x)dy

= Var(Y |x) + 2h(x)E[Y |x] + h2(x)

= ⟨s, ϕ3(x)⟩H3
+ 2 ⟨h, ϕ1(x)⟩H1

⟨m,ϕ2(x)⟩H2
+ ⟨h, ϕ1(x)⟩H1

⟨h, ϕ1(x)⟩H1

= ⟨s, ϕ3(x)⟩H3
+ ⟨2h⊗m, (ϕ1 ⊗ ϕ2)(x)⟩H1⊗H2

+ ⟨h⊗ h, (ϕ1 ⊗ ϕ1)(x)⟩H1⊗H1

= ⟨s+ 2h⊗m+ h⊗ h, ϕ5(x)⟩H4

where the fourth equality holds by Lemma A.4 and the last equality holds by Lemma A.5, then
f ∈ H4, and

∥f∥H4
= ∥s+ 2h⊗m+ h⊗ h∥H4

≤ ∥s∥H4
+ ∥2h⊗m∥H4

+ ∥h⊗ h∥H4

≤ ∥s∥H3
+ 2∥m∥H2

∥h∥H1
+ ∥h⊗ h∥H1⊗H1

= ∥s∥H3
+ 2∥m∥H2

∥h∥H1
+ ∥h∥2H1

≤ K2
h + 2KhKm +Ks

where the second inequality holds by Lemma A.5. Therefore, let β = 1/(K2
h + 2KhKm +Ks) we

have ∥βf∥H4
= β∥f∥H4

≤ 1. Then∣∣∣R̂T (h)− R̂S(h)
∣∣∣

=

∣∣∣∣∫
X
f(x)dPT (x)−

∫
X
f(x)dPS(x)

∣∣∣∣
=(K2

h + 2KhKm +Ks)

∣∣∣∣∫
X
βf(x)dPT (x)−

∫
X
βf(x)dPS(x)

∣∣∣∣
≤(K2

h + 2KhKm +Ks) sup
∥f∥H4

≤1

∣∣∣∣∫
X
f(x)dPT (x)−

∫
X
f(x)dPS(x)

∣∣∣∣
=(K2

h + 2KhKm +Ks)MMDk4(XS ,XT )
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where PT denotes the empirical distribution constructed by XT , so does PS . Recall Lemma A.3,
we have Theorem 3.1.

Proof for Theorem 3.2. Following the notations in Appendix A.1, we further define

w∗ = 1/n,C2
α = MMD2

k,α,Xn
(w∗) = (1− α)2K (10)

ŵ = argmin
1⊤w=1

MMD2
k,α,Xn

(w) = α

(
K−1 − K−111⊤K−1

1⊤K−11

)
p+

K−11

1⊤K−11

Let pα = αp, we have (pα −Kŵ) ∝ 1. Define

∆α(w) := MMD2
k,α,Xn

(w)− C2
α = ĝ(w)− ĝ(w∗)

where ĝ(w) = (w − ŵ)
⊤
K (w − ŵ). The related details for proving the equality are omitted,

since they are completely given by the proof of alternative expression of MMD in Pronzato (2021).
By the convexity of ĝ(·), for j = argmini∈[n]\Ip

fIp
(xi),

ĝ (w∗) ≥ ĝ (wp) + 2 (w∗ −wp)
⊤
K (wp − ŵ) ≥ ĝ (wp) + 2 min

j∈[n]\Ip

(ej −wp)
⊤
K (wp − ŵ)

where the second inequality holds with the assumption in Theorem 3.2

(w∗ − ej)
⊤
K (wp − ŵ) = (w∗ − ej)

⊤
(Kwp − pα)

=

∑n
i=1 fIp

(xi)

n
− fIp(xjp+1) ≥

∑n
i=1 fIp

(xi)

n
− fIp(xj) ≥ 0

therefore, we have for B = 2K,

∆α(wp+1)

=ĝ (wp)− ĝ (w∗) +
2

p+ 1
(ej −wp)

⊤
K (wp − ŵ) +

1

(p+ 1)2
(ej −wp)

⊤
K (ej −wp)

=
p

p+ 1
(ĝ (wp)− ĝ (w∗)) +

1

(p+ 1)2
B =

p

p+ 1
∆α(wp) +

1

(p+ 1)2
B

(11)
where wp+1 = pwp/(p+1)+ej/(p+1), and obviouslyB upper bounds (ej −wp)

⊤
K (ej −wp).

Since α ≤ 1, it holds from Lemma A.6 that

∆α(w1) ≤ MMD2
k,α,Xn

(w1) ≤ (1 + α2)K ≤ B

therefore by Lemma A.1, we have

MMD2
k,α(XIm ,Xn) = MMD2

k,α,Xn
(wp) ≤ C2

α +B
2 + logm

m+ 1

A.4 NUMERICAL STUDIES ON GKHR

Firstly, we define four distributions on R2:

1. Gaussian mixture model 1 which consists of four Gaussian distributions G1, G2, G3, G4

with mixture weights [0.95, 0.01, 0.02, 0.02],

2. Gaussian mixture model 2 which consists of four Gaussian distributions G1, G2, G3, G4

with mixture weights [0.3, 0.2, 0.15, 0.35],

3. Uniform distribution 1 which consists of a uniform distribution defined in a circle with
radius 0.5, and a uniform distribution defined in a annulus with inner radius 4 and outer
radius 6,

4. Uniform distribution 2 defined on [−10, 10]2.
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where

G1 = N
([

1
2

]
,

[
2 0
0 5

])
, G2 = N

([
−3
−5

]
,

[
1 0
0 2

])
G3 = N

([
−5
4

]
,

[
8 0
0 6

])
, G4 = N

([
15
10

]
,

[
4 0
0 9

])
To consistently evaluate the performance gap between GKHR and GKH at the same order of mag-
nitude, we propose the following criterion

D =
D1 −D2

D1 +D2

where D1 = MMD2
k,α(X

(1)
Im
,Xn), D2 = MMD2

k,α(X
(2)
Im
,Xn), X

(1)
Im

is the selected samples from

GKHR and X
(2)
Im

is the selected samples from GKH. Positive value of D implies that GKH outper-
forms GKHR, and negative values ofD implies that GKHR outperforms GKH. Large absolute value
of D shows large performance gap.

The experiments are conducted as follows. We generate 1000,3000,10000,30000 random samples
from the four distributions separately, then use GKHR and GKH for sample selection in the low-
budget setting, i.e., m/n ≤ 0.2. We report the results over ten independent runs in Figure 3, which
shows that although the performance gap tends to grow as m grows, when m is relatively small, the
performance of GKHR is similar to that of GKH.
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(a) n=1000

(b) n=3000

(c) n=10000

(d) n=30000

Figure 3: The performance comparison between GKHR and GKH with different m,n over ten
independent runs. The blue line is the mean value ofD, the red dotted line over (under) the blue line
is the mean value of D plus (minus) its standard deviation, and the pink area is the area between the
upper and lower red dotted lines.
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