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ABSTRACT

Unsupervised domain adaptive hashing transfers knowledge from labeled source
domains to unlabeled target domains, addressing domain shift challenges in real-
world retrieval tasks. Existing methods face two critical limitations: target domain
noise severely misleads model training, and indiscriminate domain alignment
strategies treat all target samples equally, potentially distorting essential feature
structures. We propose an uncertainty-aware adaptive hashing approach that ad-
dresses these challenges through a hierarchical conformal calibration framework.
At the semantic level, we employ conformal inference to generate confidence pre-
diction sets, replacing single pseudo-labels with set-based predictions whose sizes
directly quantify sample reliability for weighted pseudo-label learning and domain
alignment. This enables the model to focus on reliable samples while suppressing
noise. At the representation level, we predict the stability of individual hash bits,
where bit-level confidence guides a robust weighted quantization loss and enables
dynamic weighted Hamming distance during retrieval, fundamentally enhancing
hash code quality and retrieval robustness. Through this hierarchical calibration
mechanism, our method achieves more adaptive and robust cross-domain knowl-
edge transfer. Extensive experiments on multiple benchmark datasets demonstrate
significant improvements over existing approaches, validating the effectiveness
and superiority of our method. The code is anonymously available at this link.

1 INTRODUCTION

Efficient approximate nearest neighbor (ANN) similarity retrieval plays a critical role in recom-
mender systems (Tan et al., 2020), visual search (Pu et al., 2025), and retrieval-augmented genera-
tion (RAG) (Zhao et al., 2024). Deep hashing, which replaces floating-point distance computations
with bitwise operations, offers significant advantages in both retrieval latency and storage costs,
making it a key technology for large-scale retrieval systems (Wang et al., 2017; Luo et al., 2023b;
Cui et al., 2024). The capability of deep learning models to generate semantically discriminative
hash codes has substantially advanced applications.

However, real-world deployment inevitably encounters domain shift: variations in imaging devices,
capture styles, and background distributions cause trained hashing models to exhibit semantic con-
fusion and overconfidence in target domains. To bridge this gap, unsupervised domain adaptive
hashing (UDAH) has attracted considerable attention (Wang et al., 2023c; Venkateswara et al., 2017;
Wang et al., 2023a; Long et al., 2018a; Huang et al., 2021; Wang et al., 2023b; Huang et al., 2020;
He et al., 2019). The objective is to transfer labeled source domain knowledge to unlabeled tar-
get domains. Existing domain adaptive hashing methods typically advance along two pathways:
❶ pseudo-labeling, where models generate supervisory signals for target data based on their own
predictions (Lee et al., 2013; Xia et al., 2021b), and ❷ domain alignment, which aims to minimize
distributional discrepancies between source and target features or adversarial training (Lee et al.,
2019b; Ganin et al., 2016; Zhang et al., 2019; Lu et al., 2023a).

While these methods have achieved commendable progress, their performance is often constrained
by a fundamental limitation: unreliable and heuristic handling of model uncertainty. Existing
approaches suffer from three key issues. ❶ They rely on simple heuristics, such as softmax-based
confidence thresholding, to filter high-quality pseudo-labels and guide alignment (Sohn et al., 2020).
This approach is inherently risky, as softmax scores are not reliable indicators of correctness, as neu-
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ral networks are prone to overconfident yet erroneous predictions, especially for out-of-distribution
samples (Saito & Saenko, 2021; Li et al., 2021), as shown in Figure 1. ❷ They lack verifiable char-
acterization of model uncertainty, with heuristic methods providing no theoretical guarantees and
exhibiting extreme sensitivity to manually-tuned thresholds (Chen et al., 2022). ❸ They treat differ-
ent aspects of uncertainty as a monolithic concept, conflating semantic-level judgment uncertainty
with bit-level representation stability uncertainty without employing targeted strategies.

-1 1 1 1 1 -1
1 -1 1 -1 1 -1
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Figure 1: COLA (right) employs hierarchical calibration to
replace the single pseudo-labels of existing methods (left)
with conformal prediction sets, and weights hash codes with
bit-wise confidence to achieve robust retrieval.

In this work, we argue that unlock-
ing the next generation of power-
ful UDAH requires moving beyond
fragile heuristics toward a princi-
pled, multi-level uncertainty quan-
tification framework. We introduce
Conformal Hierarchical Calibration
Adaptive Hashing (COLA), a novel
paradigm that quantifies and lever-
ages uncertainty from semantic to bit
levels. The core innovation of COLA
lies in its hierarchical conformal calibration framework that provides rigorous statistical guarantees
for uncertainty quantification at both semantic and representation levels.

COLA operates through a synergistic two-tier calibration process, as shown in Figure 1. At the
semantic level, we replace risky point predictions with coverage-controlled prediction sets, whose
sizes serve as natural and rigorous measures of semantic uncertainty, enabling more robust pseudo-
label learning and domain alignment. At the representation level, we introduce a novel bit-level
calibration mechanism specifically designed for hashing. We model the reliability of each individ-
ual bit in generated hash codes through bit stability prediction, yielding fine-grained hash confi-
dence scores. The score could guide weighted quantization losses during training and, crucially,
enable a novel uncertainty-aware weighted Hamming distance during retrieval. Finally, we design
a self-regulating mechanism that aggregates semantic and bit confidences into endogenous control
signals, dynamically balancing pseudo-supervision, domain alignment, and quantization intensity
while significantly reducing hyperparameter sensitivity.

Our main contributions can be summarized as follows: ❶ We design a shift from heuristic
confidence-based methods to uncertainty quantification frameworks with rigorous statistical guar-
antees. ❷ We propose COLA that dissects and addresses uncertainty at both semantic and rep-
resentation levels, yielding more reliable pseudo-supervision and more robust hash codes. ❸ We
introduce an elegant self-regulating mechanism that uses quantified uncertainty to dynamically bal-
ance multi-objective optimization, achieving truly adaptive learning and enhanced training stability.
❹ Extensive experiments on challenging benchmark datasets demonstrate that COLA significantly
outperforms existing state-of-the-art methods.

2 RELATED WORK

Deep Hashing generating compact binary hash codes to preserve the semantic relationships of data
in the Hamming space (Doan et al., 2022; Chen et al., 2024; Tu et al., 2021). This approach signif-
icantly reduces storage and computational requirements, making it critical for large-scale retrieval
systems (Luo et al., 2023a). Current methods can be fall into two types: supervised (Zhan et al.,
2020; Xu et al., 2023; Lu et al., 2023b) and unsupervised (Jin et al., 2020; Wang et al., 2022; Song
et al., 2023; Li et al., 2022; Zhao et al., 2022; Xiao et al., 2023). Unsupervised methods, circumvent
the reliance on labels by exploiting the intrinsic structure of the data. However, exitsing methods’
retrieval accuracy in practical applications is often affected by potential domain shifts.

Unsupervised Domain Adaptive Hashing (UDAH) has emerged as an important research area (Ju
et al., 2024; Tang et al., 2024) to address the challenge of domain shift. UDAH aims to transfer
knowledge from a labeled source domain to an unlabeled target domain (Long et al., 2018b; He
et al., 2022; Lee et al., 2019a). Existing methods typically follow two main strategies: self-learning
and domain alignment. Self-learning methods generate supervision for target data based on the
model’s own prediction (Lee et al., 2013). Domain alignment methods reduce the discrepancy be-
tween domains through adversarial training or distribution matching (Huang et al., 2021; Xia et al.,
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Figure 2: Overview of COLA, a hierarchical conformal calibration framework that addresses un-
certainty in domain adaptive hashing through: (1) Semantic-Level Calibration for handling pseudo-
label noise (3.2), (2) Representation-Level Calibration for enhancing hash code robustness (3.3),
and (3) a Self-Regulating module for dynamically balancing learning objectives (3.4).

2021a). Despite these advances, existing methods exhibit fundamental limitations in handling model
uncertainty, as their strategies are heuristic-driven and inherently unreliable.

Uncertainty in Retrieval. Recent works have explored uncertainty modeling in retrieval. (Warburg
et al., 2021; 2023) proposed Bayesian metric learning to model aleatoric and epistemic uncertainty
via stochastic embeddings. (Tang et al., 2025) utilized probabilistic embeddings for composed
image retrieval. In hashing, (Wang & Zhou, 2023; Wang et al., 2025) introduced generative ap-
proaches to estimate hash code uncertainty. Unlike these model-based methods, our COLA employs
a distribution-free conformal prediction framework. It provides rigorous coverage guarantees un-
der domain shift and hierarchically calibrates uncertainty at both semantic and representation levels
without expensive sampling.

3 METHODOLOGY

3.1 PRELIMINARIES AND OVERVIEW

Problem Definition. This work addresses unsupervised domain adaptive hashing (UDAH). Given a
labeled source domain Ds = {(xs

i , y
s
i )}

ns
i=1 and an unlabeled target domain Dt = {xt

j}
nt
j=1 that share

the same label space but differ in data distribution, we aim to learn a hash function that maps any
input image x to an L-bit binary hash code b ∈ {−1,+1}L. The learned function should ensure that
semantically similar images have closer distances in Hamming space and enable efficient retrieval.

Conformal Prediction Basics. Conformal prediction is a distribution-free framework that con-
structs prediction sets with rigorous statistical guarantees. Given a calibration set and a user-defined
error rate α, it produces a set C(x) for a new input x such that the true label y is contained in C(x)
with probability at least 1−α. This coverage guarantee relies on the exchangeability of data, which
we address in the domain adaptation setting via weighted conformal prediction.

Method Overview. The core framework of COLA is a hierarchical conformal calibration mecha-
nism that constitutes our primary contribution. COLA consists of two progressive calibration levels:

❶ Semantic-level calibration addresses noisy pseudo-labels in the target domain by replacing risky
point predictions with theoretically-grounded conformal prediction sets. The size of these sets rig-
orously quantifies model uncertainty and is directly converted to weights that adaptively suppress

3
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the harmful effects of high-uncertainty samples in pseudo-label learning and domain alignment.
❷ Representation-level calibration deepens uncertainty analysis to bit-level. We predict the sta-
bility of each bit in its generated hash codes. This bit-level confidence guides weighted quantization
loss during training and also during retrieval, fundamentally enhancing hash code robustness.

Beyond these core calibration components, we establish a self-regulating mechanism as an auxil-
iary component. This mechanism uses the real-time uncertainty quantified by both calibration levels
as intrinsic control signals to adjust the learning focus.

3.2 SEMANTIC-LEVEL CONFORMAL CALIBRATION: FROM POINT TO SET

In UDAH, pseudo-label quality fundamentally determines model success. Traditional approaches
typically rely on heuristic strategies, such as confidence thresholding (Lee et al., 2013; Sohn et al.,
2020; Hu et al., 2025), to select high-confidence samples. However, these methods exhibit extreme
sensitivity to threshold settings and often fail to ensure pseudo-label reliability under complex do-
main shifts. To address this fundamental limitation, we introduce conformal prediction theory to
establish a semantically uncertain quantification and utilization mechanism with rigorous statistical
guarantees. Our core insight abandons high-risk point predictions in favor of constructing predic-
tion sets that theoretically cover the true label with probability 1 − α. The size of this prediction
set naturally and rigorously quantifies the predictive uncertainty (encompassing both aleatoric and
epistemic uncertainty) for each sample.

3.2.1 CONFORMALIZATION VIA CALIBRATION SET

To ensure the calibration set is effective for the target domain, especially under significant domain
shifts, we construct it using a targeted selection strategy. First, we extract features for all samples
in both the source domain Ds, and the target domain Dt. We then compute the feature centroid
of the target domain by averaging all of its feature vectors. Subsequently, for each source sample,
we calculate the Euclidean distance between its feature vector and this target centroid. The rcal%
source samples exhibiting the smallest distances are selected to form the calibration set Dcal. rcal
is set to 20% according to Section 4.2. The remaining source samples constitute the training set
Dtr. The targeted selection strategy ensures that our calibration is performed on source data that
closely mirrors the characteristics of the target domain, thereby producing more reliable uncertainty
estimates for the adaptation task.

We define a conformity score s(x, y) = 1 − p̂(y | x) to measure the compatibility between sample
x and its true label y, where p̂(y | x) represents the model’s predicted softmax probability. Lower
scores indicate stronger model confidence in the prediction.

Figure 3: Dynamic α during train-
ing on Office-Home Ar → Re task.

Subsequently, we compute conformity scores for all samples
in Dcal, yielding score collection Scal. Traditional conformal
prediction methods (Vovk et al., 2005; Papadopoulos et al.,
2002; Lei et al., 2018) employ a fixed, user-predefined error
rate α to calculate quantile threshold q̂. However, fixed α fails
to adapt to model capability changes throughout the lengthy
training process. During early training, overly strict α may re-
sult in empty prediction sets, while during later stages, overly
lenient α cannot effectively identify uncertainty.

To overcome this limitation, we design a dynamic α adjust-
ment mechanism based on validation accuracy on the source
domain, linearly transforming α from a static hyperparameter into a dynamic variable αt that evolves
with the model’s performance. To prevent αt from fluctuating dramatically due to single evaluation
variations, we introduce exponential moving average (EMA) for smooth updates, ensuring adjust-
ment process stability. The dynamic α schedule on Office-Home is illustrated in Figure 3.

According to conformal prediction theory, for a new sample xt drawn from the same distribution as
the calibration set, the probability that its true label yt falls within the following prediction set C(xt)
is at least 1− αt:

C(xt) = {y ∈ Y | s(xt, y) ≤ q̂W} , (1)

4
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where q̂W = q̂W(Scal, αt) denotes the weighted quantile threshold. We sort all conformity scores
{s(xi, yi)}ncal

i=1 in ascending order and select the ⌈(ncal + 1)(1− αt)⌉-th value as q̂W.

3.2.2 THEORETICAL ANALYSIS

A critical theoretical question arises when applying conformal prediction in UDAH: standard con-
formal prediction theory requires the calibration data and new test data to be exchangeable, an
assumption that breaks down when distribution shifts exist between source and target domains.
Therefore, we must address the fundamental question: do the theoretical coverage guarantees of
our constructed prediction sets C(xt) remain valid on the target domain?

To answer this question, we provide a theoretical analysis demonstrating that our framework remains
robust under this limitation. As stated in Theorem 3.1, the coverage guarantee does not completely
fail but degrades in a quantifiable and graceful manner.

Theorem 3.1 (Coverage Guarantee under Domain Shift). Let dTV denote the total variation dis-
tance. Suppose (Xtrain, Ytrain) and (Xtest, Ytest) are random samples from the source and target
distributions, respectively. Let q̂W be derived from equation 1. Then, the following coverage guar-
antee holds for the target domain:

P
(
s(Xtest, Ytest) ≤ q̂W

)
≥ 1− αt − dTV (s(Xtrain, Ytrain), s(Xtest, Ytest)) . (2)

If we further assume that the conformal score has a continuous distribution in both domains, then
we also have the upper bound:

P
(
s(Xtest, Ytest) ≤ q̂W

)
≤ 1− αt +

1

n+ 1
+ dTV (s(Xtrain, Ytrain), s(Xtest, Ytest)) . (3)

The proof and related discussion are provided in Appendix E. This theorem serves as the theoretical
foundation of our methodology, revealing the intrinsic logic of synergistic cooperation among vari-
ous modules in our framework. It implies that our subsequent domain alignment work (detailed in
Section 3.2) serves not merely as a heuristic feature distance reduction. By minimizing the feature
distribution differences between source and target domains, we are implicitly minimizing the total
variation distance between their conformity score distributions.

Take Away: Our theoretical analysis demonstrates that conformal prediction coverage guaran-
tees remain bounded under domain shift. The essential role of domain alignment is to actively
reduce the error term in this theoretical bound, making our uncertainty quantification for target
domain samples more precise and reliable.

3.2.3 UNCERTAINTY-DRIVEN ADAPTIVE LEARNING

With this theoretically-grounded and dynamically-adjustable prediction set C(xt), we transform it
into effective signals that guide model adaptive learning.

The semantic confidence weight is theoretically grounded in conformal prediction. By Theorem 3.1,
smaller prediction sets indicate higher model certainty with statistical coverage guarantees. |C(xt)|
serves as a natural and rigorous uncertainty measure. We define its reciprocal as the semantic
confidence weight, which modulates each target sample’s contribution:

wsem
t =

1

|C(xt)|
, ỹt(c) =

p̂(c | xt) · I{c ∈ C(xt)}∑
j∈C(xt)

p̂(j | xt)
. (4)

This soft label ỹt more faithfully reflects the model’s judgment within its confidence range compared
to hard labels, avoiding overly absolute supervision on uncertain samples.

Combining these two mechanisms, we construct the semantically-weighted target domain
pseudo-supervision loss. This loss function achieves dual protection: inter-sample, through wsem

t
to suppress the overall influence of high-uncertainty samples; intra-sample, through ỹt to provide
smoother and more reliable supervision distribution:

Ltarget =
1

|Bt|
∑

xt∈Bt

wsem
t · CE

(
ỹt, p̂(· | xt)

)
. (5)

5
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3.2.4 CONFIDENCE-GUIDED DOMAIN ALIGNMENT

Beyond constructing more robust single-sample supervision for the target domain, we further apply
semantic confidence to guide the macroscopic domain alignment process, correcting the blindness
of traditional alignment methods.

Traditional domain alignment approaches uniformly minimize distributional differences between
source and target domains. However, when the target domain contains numerous semantically am-
biguous boundary samples, forced alignment of these samples may actually distort the semantic
structure of the shared feature space. To address this issue, we first compute the average semantic
confidence within a target batch and use it as a weight for the alignment loss:

w̄sem
Bt

= 1
|Bt|

∑
xt∈Bt

wsem
t , Lalign = w̄sem

Bt
·
∥∥ 1
|Bs|

∑
x∈Bs

ϕ(G(x))− 1
|Bt|

∑
x∈Bt

ϕ(G(x))
∥∥2
2
. (6)

where G(·) denotes the feature extractor and ϕ(·) represents the MMD kernel mapping. This batch-
level macroscopic weighting mechanism operates under the following logic: when a target batch
exhibits low overall confidence, we correspondingly reduce domain alignment intensity to prevent
the model from being misled by these problematic samples. Conversely, we strengthen alignment
when confidence is high. This enables the model to preferentially align core data manifolds with
clear semantics in both domains, achieving more stable and meaningful feature distribution align-
ment that establishes a solid semantic foundation for subsequent high-quality hash code learning.

3.3 REPRESENTATION-LEVEL CALIBRATION: BIT-WISE RELIABILITY MODELING

While semantic-level calibration addresses the reliability of what to learn, representation-level cali-
bration focuses on the intrinsic stability of how to learn hash codes effectively. A high-quality hash
code must not only maintain semantic discriminability but also ensure that each individual bit is ro-
bust and exhibits low redundancy. The flipping of a single unreliable bit can cause dramatic changes
in Hamming distance, severely affecting retrieval precision. Therefore, we extend uncertainty anal-
ysis from the macroscopic semantic level to the microscopic bit level.

Proxy Task for Bit Stability. To quantify the reliability of each bit, we design a self-supervised
proxy task. This design is theoretically motivated: a reliable bit must exhibit sign consistency under
minor perturbations, which naturally aligns with the quantization objective of pushing continuous
values toward ±1. The core assumption is that a robust bit should maintain sign stability when
facing minor perturbations in input data.

Specifically, for each sample xi in the source domain, we obtain its feature vector fi. An augmented
version f ′

i is created by applying Gaussian noise to fi. After passing fi and f ′
i through the hash

layer, they yield continuous pre-hash vectors hi and h′
i. Based on these, we generate a stability label

vi,k for each bit k of hi:
vi,k = I{sign(hi,k) = sign(h′

i,k)} , (7)

where I(·) denotes the indicator function. Then, we introduce a lightweight bit confidence prediction
head Gbit(·) that operates in parallel with the backbone network. It receives image features and
predicts an L-dimensional confidence vector wbit

x,k ∈ [0, 1]L. This head is trained through binary
cross-entropy loss to predict vx,k, which naturally drives the predicted confidence to polarize toward
binary values {0, 1} without requiring explicit thresholds. We employ a separate prediction head
rather than on-the-fly perturbation during inference to ensure retrieval efficiency. Direct perturbation
would require multiple forward passes per query, significantly increasing latency. Our lightweight
head predicts stability in a single pass (O(1)), maintaining the speed advantage of hashing.

3.3.1 CONFIDENCE-GUIDED HASH LEARNING AND RETRIEVAL

The learned bit confidence wbit plays a crucial role in both training and testing phases, enabling
end-to-end uncertainty awareness.

Weighted Quantization Loss. Traditional quantization loss ∥h − sign(h)∥ uniformly penalizes
all bits that deviate from ±1. We leverage bit confidence to weight this loss, making the model
focus more on bits predicted to be stable and reliable during training, while providing greater
tolerance for unstable bits and allowing them more thorough exploration in continuous space.

6
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Figure 4: Bit-level calibration w̄bit

on Office-Home Ar→Re task.

We reweight the quantization term using bit confidence, apply-
ing stronger constraints only on trustworthy bits while reduc-
ing backward noise from unstable bits:

Lquant =
1

|B|L
∑
x∈B

L∑
k=1

stop_grad(wbit
x,k)·max

(
0, 1−|hx,k|

)
,

(8)
where stop_grad prevents the model from circumventing
quantization by manipulating wbit. The dynamics of wbit are
illustrated in Figure 4, where w̄bit is the average of wbit in a
mini-batch.

Retrieval-time  Re-Calibration
-1 1 1 1 1 -1

Query Code

query‑side weights only

1 -1 -1 1 1 -1

1  1 -1 1 1 -1

1 -1  1 1 1  1
Database Codes

...

Figure 5: Illustration of bit-level uncer-
tainty calibration mechanism.

Uncertainty-aware Weighted Hamming Distance.
During retrieval, we leverage the learned bit confidence
to dynamically weight Hamming distance, suppressing
contributions from unreliable bits. We use the bit con-
fidence wbit

q of query sample xq as dynamic weights
to construct a novel distance metric. This ensures that
when computing distances between query and database
samples, bit positions where the query sample itself ex-
hibits uncertainty receive lower weights, naturally re-
ducing the noise impact from unreliable bit flips and
significantly enhancing retrieval robustness:

dUWHD(xq, xd) =

L∑
k=1

wq,k · 1
2

(
1− bq,kbd,k

)
, (9)

where wq,k ∈ [0, 1] represents the bit-level weight derived from query confidence wbit
q . Note that

Eq. 9 utilizes continuous weights primarily for differentiable optimization during training. For effi-
cient large-scale retrieval, we binarize the query weights wq,k ∈ {0, 1} via rounding. This reduces
the metric to a masked Hamming distance, enabling UWHD to be computed via efficient bitwise
operations. As shown in Appendix 5, our method achieves comparable speed to vanilla hashing.
This series of designs enables our model to not only learn hash code generation but also develop
quality assessment capabilities for its own generated hash codes, integrating this assessment ability
throughout the entire lifecycle from learning to application.

3.4 SELF-REGULATING CALIBRATED ADAPTATION: A CLOSED-LOOP LEARNING SYSTEM

We further construct a self-regulating mechanism that transforms these tools from passive to active
components. This mechanism addresses the classic challenge of manually balancing loss weights in
multi-objective optimization by using the model’s real-time uncertainty as intrinsic control signals
to dynamically adjust learning focus, forming an intelligent closed-loop system.

Specifically, we compute the average semantic confidence w̄sem
Bt

and average bit confidence w̄bit
Bt

for
each batch Bt. These aggregated indicators reflect the model’s overall grasp of the current batch
data at the present stage. We use them as inputs to adaptive weights λ(·) to dynamically modulate
the intensity of various loss terms:

λtarget(Bt) = fsem(stop_grad(w̄sem
Bt

)) , λquant(Bt) = fquant(stop_grad(w̄bit
Bt

)) , (10)
where f(·) represents linear scaling functions, and the stop_grad operation ensures these weights
do not directly participate in gradient computation, guaranteeing training stability.

The intuitive logic follows a natural learning progression. During early training, with low w̄sem, re-
sulting in small λtarget and λalign, the model treats pseudo-labels and domain alignment cautiously,
avoiding aggressive adaptation before sufficiently understanding the target domain. This mecha-
nism naturally acts as a warm-up strategy: early in training, high uncertainty leads to low λtarget,
preventing the model from overfitting to noisy pseudo-labels. As the model learns from the source
domain, uncertainty decreases, and the target adaptation gradually engages.

Finally, our total training objective integrates all modules through dynamic balancing via the self-
regulating mechanism:

Ltotal = Lsource + Lbit_head + λtargetLtarget + λalignLalign + λquantLquant (11)

7
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Table 1: Cross-domain retrieval performance (mAP%) comparison on Office-Home and Office-31.

Methods OFFICE-HOME OFFICE-31
Pr→Re Cl→Re Re→Ar Re→Pr Re→Cl Ar→Re Am→Ds Am→We We→Ds Ds→Am We→Am Ds→We Avg.

ITQ 26.81 14.83 25.37 28.19 14.92 25.88 29.55 28.53 58.00 26.83 25.09 58.89 30.24
OCH 18.65 10.27 17.54 20.15 10.05 18.09 24.86 22.49 51.03 22.45 20.79 53.64 24.17
DSH 8.49 5.47 9.67 8.26 5.28 9.69 16.66 15.09 39.24 16.33 13.58 41.07 15.74
SGH 24.51 13.62 22.53 25.73 13.51 22.93 24.98 22.47 53.94 22.17 20.52 56.36 26.94
GraphBit 18.18 16.87 11.51 10.81 18.91 21.32 24.48 23.12 22.09 53.82 21.34 51.43 24.49
GTH-g 20.00 10.99 18.28 21.95 11.68 19.05 23.08 21.20 49.38 19.52 17.41 50.14 23.56
PWCF 34.03 24.22 28.95 34.44 18.42 34.57 39.78 34.86 67.94 35.12 35.01 72.91 38.35
DHLing 48.47 30.81 38.68 45.24 25.15 43.30 41.96 45.10 75.23 42.89 41.74 79.91 46.54
DAPH 27.20 15.29 27.35 28.19 15.29 26.37 32.80 28.66 60.71 28.66 27.59 64.11 31.85
PEACE 53.04 38.72 42.68 54.39 28.36 45.97 46.69 48.89 78.82 46.91 46.95 83.18 51.22
DANCE 53.73 39.03 43.54 55.14 28.87 44.53 44.78 47.66 78.39 46.68 48.61 84.75 51.31
IDEA 59.18 45.71 49.64 61.84 32.77 51.19 48.70 54.43 84.97 53.53 53.71 88.69 57.03
COUPLE 63.94 49.24 54.35 64.29 41.39 54.14 50.27 59.32 85.26 56.04 56.35 88.90 60.29

COLA 67.04 52.65 57.23 67.88 41.71 57.35 52.51 62.08 87.28 58.09 57.60 89.65 62.59

Table 2: Cross-domain retrieval performance (mAP%) comparison on MNIST and USPS.

Methods MNIST → USPS USPS → MNIST
16 32 48 64 96 128 16 32 48 64 96 128 Avg.

ITQ 13.05 15.57 18.54 20.12 23.12 23.89 13.69 17.51 20.40 20.30 22.79 24.59 19.46
OCH 13.73 17.22 19.59 20.18 20.66 23.34 15.51 17.75 18.97 21.50 21.27 23.68 19.45
DSH 20.60 22.21 23.68 24.28 25.73 26.50 19.54 21.22 22.89 23.79 25.91 26.46 23.57
SGH 14.24 16.69 18.72 19.70 21.00 21.95 13.26 17.71 18.22 19.01 21.69 22.09 18.69
GraphBit 13.92 17.86 20.17 20.82 21.32 23.19 15.16 16.82 17.87 19.85 20.10 22.54 19.13
GTH-g 20.45 17.64 16.60 17.25 17.26 17.06 15.17 14.07 15.02 15.01 14.80 17.34 16.47
PWCF 47.47 51.99 51.44 51.75 50.89 59.35 47.14 50.86 52.06 52.18 57.14 58.96 52.60
DHLing 49.24 54.90 56.30 58.28 58.80 59.14 50.14 51.35 53.67 58.65 58.42 59.17 55.67
DAPH 25.13 27.10 26.10 28.51 30.53 30.70 26.60 26.43 27.27 27.99 30.19 31.40 28.16
PEACE 52.87 59.72 60.69 62.84 65.13 68.16 53.97 54.82 58.69 60.91 62.65 65.70 60.51
DANCE 53.18 57.98 61.23 63.15 65.92 68.87 54.31 55.64 57.26 61.49 63.43 66.23 60.72
IDEA 58.89 64.48 65.72 67.48 70.24 74.34 60.99 61.47 65.45 67.97 69.72 72.31 66.59
COUPLE 60.56 66.05 66.23 67.98 73.02 75.12 63.28 64.94 67.44 70.19 72.87 74.62 68.53

COLA 62.21 67.72 67.35 68.91 75.09 77.67 65.11 67.27 69.83 72.94 74.33 76.33 70.40

This design paradigm enables the entire adaptation process to be governed by the model’s own
cognitive state, achieving truly adaptive, robust, and efficient end-to-end learning.

Computational Complexity. The calibration phase requires only one-time sorting and weighted
quantile estimation with complexity O(ncal log ncal), where ncal is the size of the calibration set.
This can be approximately reduced to linear time using quantile sketching algorithms.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on three widely-used cross-domain benchmarks: Office-
Home (Venkateswara et al., 2017), Office-31 (Saenko et al., 2010), and Digits(MNIST (LeCun et al.,
1998) and USPS (Hull, 1994),). We follow the transfer tasks as in previous research (Wang et al.,
2023b; Luo et al., 2025) for fair comparison. More details are provided in Appendix B.

Baselines. We compare our method with state-of-the-art hashing methods, including five unsuper-
vised methods (ITQ (Gong et al., 2012), OCH (Liu et al., 2018), DSH (Jin et al., 2013), SGH (Jiang
& Li, 2015), GraphBit (Wang et al., 2022)) and eight domain-adaptive methods (GTH-g (Zhang
et al., 2019), PWCF (Huang et al., 2020), DHLing (Xia et al., 2021a), DAPH (Huang et al., 2021),
PEACE (Wang et al., 2023a), DANCE (Wang et al., 2023b), IDEA (Wang et al., 2023d), COU-
PLE (Luo et al., 2025)) as baselines. More details can be found in Appendix C.

Implementation Details. To ensure a fair comparison, the model config is set following previous
methods (Wang et al., 2023d; Luo et al., 2025). All experiments are implemented in PyTorch and
conducted on a single NVIDIA Hopper GPU. The hash layer consists of a two-layer MLP, and the
same structure is used for bit head prediction. We use the Adam optimizer, with an initial learning
rate set to 0.001 and a batch size of 32. The training epoch is set to 35. And we set the proportion
of the calibration set to 0.2, the mapping range for α to [0.05, 0.2], and EMA smoothing coefficient
to 0.7 as common practice.
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Table 3: Ablation studies on the Office-Home with 64 bit hash code.

Variants SC RC SR Pr→Re Cl→Re Re→Ar Re→Pr Re→Cl Ar→Re Avg.

COLA (None) 59.65 46.47 49.66 59.56 31.92 47.56 49.14
COLA-SC ✓ 59.92 47.08 49.89 59.81 32.07 47.82 49.43
COLA-RC ✓ 60.83 48.64 51.33 61.22 35.84 52.70 51.76
COLA-SR ✓ 61.41 47.77 52.24 61.69 35.11 51.06 51.55
COLA w/o SC ✓ ✓ 65.13 48.89 54.12 65.97 40.01 53.04 54.53
COLA w/o RC ✓ ✓ 65.95 49.39 56.16 66.87 39.68 53.18 55.21
COLA w/o SR ✓ ✓ 65.25 49.30 53.29 65.62 39.95 55.03 54.74

COLA (Full Model) ✓ ✓ ✓ 67.04 52.65 57.23 67.88 41.71 57.35 57.31

10 15 20 25 30
Calibration set ratio rcal (%)

64

66

68

m
AP

 (%
)

Pr  Re
32 Bit
64 Bit
128 Bit

10 15 20 25 30
Calibration set ratio rcal (%)

56

58
m

AP
 (%

)

Ar  Re
32 Bit
64 Bit
128 Bit

10 15 20 25 30
Calibration set ratio rcal (%)

54

56

58

60

m
AP

 (%
)

Re  Ar
32 Bit
64 Bit
128 Bit

Figure 6: Sensitivity analysis on calibration set ratio rcal.

Figure 7: The t-SNE visualization of 64-bit hash codes on Office-Home dataset; The correlation
heatmap of 16 bit hash codes on Office-Home dataset (Ar → Re).

Evaluation Metrics. We use three standard metrics to assess our COLA: mean Average Precision
(mAP), precision-recall curve, Top-N accuracy curve and Top-N recall curve. The mAPs are used
to represent the overall retrieval performance. The precision-recall curves assess the comprehensive
performance of the method, the TopN accuracy curves, and the Top-N recall curves illustrate the
performance under different retrieval quantities.

4.2 EMPIRICAL RESULTS

Performance Comparison. To comprehensively validate the effectiveness of COLA, we compared
the retrieval performance of all approaches on three benchmark datasets, as shown in Tables 1 and 2.
Table 1 reports the cross-domain retrieval results on Office-Home and Office-31 with a fixed 64-
bit hash code length. Furthermore, we investigated the cross-domain performance of each method
under varying hash code lengths on the USPS and MNIST datasets, and the results are presented
in Table 2. From the results reported in Tables 1 and 2, we observe that COLA consistently and
significantly outperforms existing state-of-the-art approaches, achieving an average improvement
of around 3.3% in retrieval performance. Earlier methods, such as DAPH (Huang et al., 2021),
PEACE (Wang et al., 2023a) generally suffer from inferior performance due to relatively simplistic
domain adaptation strategies. The performance gain of our COLA over advanced baselines can
be largely attributed to its unique hierarchical uncertainty calibration framework. To gain deeper
insights into the effectiveness of our method, we also conduct qualitative analysis experiments. We
compared different approaches using precision-recall curves, Top-N precision curves, and Top-N
recall curves. The more detailed qualitative analysis of these results is provided in the Appendix D.1.

Ablation Study. Table 3 reports the retrieval performance of ablation variants on the Office-Home
dataset. We can conclude that the COLA is of best performance, demonstrating the importance of
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each component. The variant COLA (None) in Table 3 represents the baseline with all three compo-
nents (SC, RC, SR) removed, which serves as a standard UDAH baseline. Disabling semantic-level
calibration leads to a significant performance drop from 57.31% to 54.53% in average mAP. This
underscores the critical role of conformal prediction in quantifying semantic uncertainty to generate
reliable soft pseudo-labels and guide domain alignment. Excluding representation-level calibration
degrades the mAP to 55.21%, which demonstrates the importance of modeling bit-wise reliabil-
ity. These substantial performance degradations empirically validate the necessity of our weighting
mechanisms, with each component contributing meaningfully to the final performance. Also, re-
moving the self-regulating results in a notable performance decrease to 54.74%. This confirms the
benefit of dynamically balancing the learning objectives based on the model’s real-time uncertainty.
We also compared with other variants that contain a single component. Note that the centroid-
based calibration set is essential for the SC module to compute semantic distances, and dynamic
α is inherent to the SR mechanism. Thus, our ablation design properly isolates the contribution
of each component within the coherent framework. More details of the ablation study are in the
Appendix D.2.

Figure 8: Bit-level confidence evolu-
tion during training across different
hash code lengths (32, 64, and 128
bits) on Office-Home dataset. (Art
→ Real World task.)

Uncertainty Analysis. We analysed the bit-level confidence
of target domain across different hash lengths (32, 64, and
128 bits) on Office-Home dataset. From the results shown
in figure 8, we can draw the following conclusions. Firstly,
the bit-level confidence starts near 0.5, reflecting the model’s
random initial state, then sharply drops to near-zero as the
model begins learning and calibrating its uncertainty. Fi-
nally, as the model converges and learns a stable feature rep-
resentation, the confidence rises to a high and stable value.
Secondly, shorter codes (32-bit) achieve a higher final con-
fidence, as each bit must be more informative. Conversely,
longer codes (128-bit) require more time to stabilize, result-
ing in a slower confidence recovery during training. These
experimental results further validate the efficacy and validity
of our proposed uncertainty calibration method.

Sensitivity Analysis. We conduct the sensitivity analysis to evaluate the robustness of our COLA
with respect to the hyperparameter calibration set ratio rcal. The analysis is performed on the Office-
Home dataset with different hash code lengths. As Figure 6 shows, the retrieval performance of
COLA remains stable across a wide range of calibration set ratios. We observe a better performance
when rcal is set to 20%. More details are in Appendix D.3.

Visualization To further understand the semantic structure of the learned representations, we uti-
lize t-SNE visualization to demonstrate the discriminative hash codes on Office-Home. As shown
in Figure 7, COLA can effectively exploit the information capacity of hash codes to learn more
discriminative hash codes, thereby achieving more effective image retrieval.

5 CONCLUSION

To address the unreliable uncertainty handling in existing unsupervised domain adaptive hashing
methods, this paper introduces COLA based on hierarchical conformal calibration. Our approach
abandons traditional heuristic strategies in favor of a principled mechanism with rigorous statistical
guarantees that quantifies uncertainty at both semantic and representation levels, thereby generat-
ing more reliable supervision signals for the target domain and modeling the stability of each hash
bit. Extensive experiments on multiple benchmark datasets validate the superiority of our method,
demonstrating consistent and significant improvements over state-of-the-art approaches. In sum-
mary, COLA provides a more reliable and adaptive solution for cross-domain retrieval tasks through
systematic utilization of uncertainty, establishing a new paradigm that transforms uncertainty from
an obstacle into a valuable resource for robust domain adaptive hashing. COLA is specifically de-
signed as a scalable solution for UDAH tasks, leveraging the efficiency of binary hashing to enable
fast cross-domain retrieval. While evaluated on standard benchmarks, our efficient binarized imple-
mentation suggests strong potential for scaling to larger datasets.
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r/COLA-8C6C/. Also, we provided the detailed implementation details in Section 4.1, Appendix C
and Appendix B.
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A ACKNOWLEDGMENTS OF LLM USAGE

We utilized a large language model to aid our writing process, specifically for correcting gram-
mar, improving sentence structure, and fetching related papers. The scientific contributions remain
entirely our own.

B DATASET DETAILS

We evaluate our method on three widely-used cross-domain benchmarks for unsupervised domain
adaptation tasks.

• Office-Home (Venkateswara et al., 2017): This dataset contains four distinct domains: Artistic
(Ar), Clip Art (Cl), Product (Pr), and Real-World (Re). To ensure a fair comparison with previous
work, we follow the standard protocol and establish six cross-domain image retrieval tasks among
these domains, including: Pr→Re, Cl→Re, Re→Ar, Re→Pr, Re→Cl, Ar→Re.

• Office-31 (Saenko et al., 2010): This dataset contains 31 categories from three domains: Amazon
(Am), Webcam (We), and DSLR (Ds), with a total of over 4000 images. We similarly set up 6
image retrieval transfer tasks on this dataset: Am→Ds, Am→We, We→Ds, Ds→Am, We→Am,
Ds→We.

• Digits: For handwritten digit recognition, we utilize the two classic datasets, MNIST (LeCun
et al., 1998) and USPS (Hull, 1994). By alternating them as the source and target domains, we
constructed 2 transfer tasks: MNIST→USPS and USPS→MNIST.

C BASELINE DETAILS

To comprehensively evaluate our COLA, we selected a series of state-of-the-art domain-adaptive
hashing algorithms as comparative baselines, covering both unsupervised and adaptive hashing cat-
egories. To ensure fairness in comparison, the experimental results of all baseline methods were
reproduced to match the reported results in their original publications. The core ideas of the base-
line methods are briefly summarized as follows.

• ITQ (Gong et al., 2012): A simple yet efficient alternating minimization algorithm with both
supervised and unsupervised learning paradigms.

• OCH (Liu et al., 2018): Approximates ordinal relations by a tensor ordinal graph, and employs
ordinal constraint projection with a small set of centroids.

• DSH (Jin et al., 2013): A variant of locality-sensitive hashing (LSH), which employs random
projections to generate multi-view representations for metric learning.

• SGH (Jiang & Li, 2015): Designed to compress high-dimensional data in a bit-wise manner,
well-suited for large-scale semantic similarity learning tasks.

• GraphBit (Wang et al., 2022): Explores bit-level interactions among features in continuous space,
substantially alleviating the expensive search costs arising from training convergence difficulties
in reinforcement learning.

• GTH-g (Zhang et al., 2019): Selects the optimal hashing mapping functions for target-domain
data based on source-domain samples.

• PWCF (Huang et al., 2020): Leveraging a Bayesian model for learning discriminative hash codes
and infers the similarity structure through histogram features.

• DHLing (Xia et al., 2021a): Optimizes hash codes through learnable clustering, and introduces a
memory-bank mechanism to mitigate the effects of domain shift.

• DAPH (Huang et al., 2021): Learning domain-invariant feature projections, which effectively
reducing distribution discrepancies.

• PEACE (Wang et al., 2023a): Applies pseudo-labeling techniques to learn target semantics, and
subsequently minimizes domain transfer through implicit and explicit strategies.

• DANCE (Wang et al., 2023b): A dual-level hashing learning framework that optimizes cross-
domain high-level feature prototypes via contrastive learning.
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Figure 9: Precision-recall curves with 64 bits hash code on Office-Home Dataset.

• IDEA (Wang et al., 2023d): Decomposes visual representations into causal features which carry
label information and non-causal features, and generates hash codes from the causal components.

• COUPLE (Luo et al., 2025): Simulates the dynamic process via graph flow diffusion, and employs
hierarchical mixup to achieve progressive cross-domain alignment.

D MORE EXPERIMENT RESULTS

D.1 PERFORMANCE COMPARISON

To gain deeper insights into the effectiveness of our method, we also conduct qualitative analysis
experiments. We compared different approaches by using precision-recall curves, Top-N precision
curves, and Top-N recall curves, as shown in Figure 9, 10, and 11.

From the precision-recall curves in Figure 9, our COLA consistently outperforms all baseline meth-
ods across different cross-domain tasks on the Office-Home dataset. The curves demonstrate that
COLA maintains higher precision values at all recall levels, indicating superior retrieval quality.
Notably, the area under the PR curves for our method is significantly larger than that of competing
approaches, suggesting more robust performance across varying similarity thresholds. The Top-N
precision analysis in Figure 10 reveals that COLA achieves the highest precision scores across dif-
ferent values of N. This improvement is particularly pronounced when N is small, which is crucial
for practical retrieval applications where users typically focus on top-ranked results. The consistent
performance advantage across all six cross-domain tasks demonstrates the generalizability of our
uncertainty calibration mechanism. Similarly, the Top-N recall curves in Figure 11 show that our
method achieves superior recall rates compared to baseline approaches. The faster convergence of
recall curves indicates that COLA can retrieve more relevant items within smaller candidate sets,
which is essential for efficient large-scale retrieval systems. The substantial improvement margins
across different domain adaptation scenarios validate the effectiveness of our conformal prediction-
based calibration strategy in handling domain shift challenges.
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Figure 10: Top-N precision curves with 64 bits hash code on Office-Home Dataset.

Table 4: Ablation studies on the Office-Home with 64 bit hash code.

Variants SC RC SR Pr→Re Cl→Re Re→Ar Re→Pr Re→Cl Ar→Re Avg.

COLA (None) 59.65 46.47 49.66 59.56 31.92 47.56 49.14
COLA-SC ✓ 59.92 47.08 49.89 59.81 32.07 47.82 49.43
COLA-RC ✓ 60.83 48.64 51.33 61.22 35.84 52.70 51.76
COLA-SR ✓ 61.41 47.77 52.24 61.69 35.11 51.06 51.55
COLA w/o SC ✓ ✓ 65.13 48.89 54.12 65.97 40.01 53.04 54.53
COLA w/o RC ✓ ✓ 65.95 49.39 56.16 66.87 39.68 53.18 55.21
COLA w/o SR ✓ ✓ 65.25 49.30 53.29 65.62 39.95 55.03 54.74

COLA (Full Model) ✓ ✓ ✓ 67.04 52.65 57.23 67.88 41.71 57.35 57.31

D.2 ABLATION STUDY

To investigate the effectiveness of the core components in COLA, we conduct comprehensive ab-
lation studies by systematically removing or modifying key components from the full model. We
define several ablation variants to analyze different aspects of our approach:

• COLA(Full Model): The complete COLA with all proposed components including semantic-
level calibration, representation-level calibration, and self-regulating mechanism.

• COLA w/o SC: Removes the conformal prediction-based semantic uncertainty quantification
module, using standard pseudo-labeling without uncertainty estimation.

• COLA w/o RC: Excludes the bit-wise reliability modeling component, treating all hash bits
equally without considering their individual confidence levels.

• COLA w/o SR: Disables the dynamic objective balancing mechanism, using fixed weights for
different loss components throughout training.

• COLA-SC: Retains only the semantic-level calibration component while removing other mod-
ules.
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Figure 11: Top-N recall curves with 64 bits hash code on Office-Home Dataset.

• COLA-RC: Keeps only the representation-level calibration while excluding semantic and self-
regulating components.

• COLA-SR: Maintains only the dynamic balancing mechanism without uncertainty calibration
modules.

• COLA(None): Removes all three core components, which reduces to a standard deep unsuper-
vised domain adaptive hashing baseline that relies solely on basic source supervision, a standard
quantization loss, and an unweighted domain alignment loss.

Table 3 reports the comprehensive retrieval performance comparison of these ablation variants on
the Office-Home dataset across all six cross-domain tasks. The experimental results provide several
important insights:

Impact of Semantic-Level Calibration: Removing the conformal prediction-based semantic cal-
ibration leads to the most significant performance degradation, with average mAP dropping from
57.31% to 54.53%. This substantial decrease demonstrates the critical importance of uncertainty
quantification in generating reliable soft pseudo-labels. Without proper semantic uncertainty esti-
mation, the model struggles to distinguish between confident and uncertain predictions, leading to
noisy supervision signals that harm domain alignment effectiveness.

Importance of Representation-Level Calibration: Excluding the bit-wise reliability modeling
results in a notable performance decline to 55.21% average mAP. This confirms that not all hash
bits contribute equally to the final representation quality, and modeling individual bit confidence is
essential for robust cross-domain hashing. The representation-level calibration enables the model to
focus on reliable bits while suppressing unreliable ones during the learning process.

Effectiveness of Self-Regulating Mechanism: Disabling the dynamic objective balancing leads to
a performance drop to 54.74% average mAP. This validates the importance of adaptively adjusting
the learning objectives based on real-time uncertainty estimates. The self-regulating mechanism
prevents the model from over-fitting to uncertain predictions and ensures stable training dynamics
across different domain adaptation scenarios.
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Figure 12: Sensitivity analysis on calibration set ratio rcal on Office-Home with different hash code
lenghts.

Table 5: Retrieval time cost (ms) varies with code length.

16 Bit 32 Bit 48 Bit 64 Bit 96 Bit 128 Bit

Dense Vector 440.3 493.0 547.0 605.3 659.7 700.3
Vanilla Hash Code 15.38 17.94 20.32 18.97 21.83 22.37
UWHD 15.94 18.55 21.00 19.63 22.59 23.20
Speed Up 27.62× 26.58× 26.05× 30.83× 29.20× 30.19×

Individual Component Analysis: The variants with only single components (Only Semantic:
53.89%, Only Representation: 53.12%, Only Self-Regulating: 52.95%) all perform significantly
worse than the full model, indicating that the synergistic combination of all components is crucial
for optimal performance. Each component addresses different aspects of the cross-domain hashing
challenge, and their integration creates a more robust and effective framework.

These ablation results conclusively demonstrate that each proposed component contributes meaning-
fully to the overall performance, and their combination in COLA achieves the best balance between
uncertainty calibration and cross-domain adaptation effectiveness.

D.3 SENSITIVITY ANALYSIS

We conduct the sensitivity analysis to evaluate the robustness of our COLA with respect to the
hyperparameter calibration set ratio rcal. The analysis is performed on the Office-Home dataset
with different hash code lengths. Figure 12 shows all experimental results of sensitivity analysis.

D.4 CASE STUDY

We perform hash-based retrieval and present the top-5 results in Figure 13. COLA achieves higher
retrieval accuracy than advanced baselines, validating the effectiveness of our proposed approach
and benefiting downstream retrieval-based tasks. From the results, we can observe that our COLA
not only achieves higher retrieval performance compared to the baselines but also have the ability to
capture more accurate retrieval semantics.

D.5 SPEED TEST

In this part, we conducted a speed evaluation COLA and dense vector retrieval. Following previous
works (Luo et al., 2025), we use a database of 106 items. Each method was run 103 times. We
report the average retrieval time (ms) in Table 5. The results indicate that COLA could achieve
substantially faster retrieval than dense vectors, and the inference-time calibration will not affect
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Figure 13: Case study on COLA, COUPLE and IDEA. Query the top 5 images on the Office-31
with 64 bits hash code.

the efficiency, underscoring COLA’s efficiency in large-scale retrievals. Since the inference-time
metric is binarized into masked Hamming distance, it remains compatible with standard hardware-
accelerated bitwise operations and existing ANN indexing structures.

D.6 CALIBRATION STRATEGY ANALYSIS

To validate our calibration set construction, we compared our target centroid-based strategy with
random, per-class, and density-aware sampling on Office-Home. As shown in Table 6, our method
achieves the lowest MMD (0.0025) and highest mAP, indicating that our Dcal best approximates the
target distribution Dt.

Table 6: Comparison of calibration set selection strategies on Office-Home (Ar→Re).

Strategy mAP (%) MMD (Dcal, Dt)

Ours 56.34 0.0025
Random Sampling 55.21 0.0087
Per-Class Sampling 55.67 0.0057
Density-Aware (K-Means) 55.85 0.0032

D.7 DYNAMIC ALPHA ABLATION

We compared our dynamic α mechanism with a fixed α baseline. Table 7 shows that dynamic α
consistently outperforms fixed α across all datasets, achieving higher mAP and better empirical
coverage (closer to 1−α). The EMA parameter 0.7 was chosen to balance stability and adaptability.

We further investigated the impact of the EMA smoothing parameter αsm. As shown in Table 8,
αsm = 0.7 yields the best performance, providing an optimal balance between stability and adaptiv-
ity.
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Figure 14: Conformal coverage analysis comparing our Target Centroid Strategy with Random Sam-
pling. Our method (blue) closely follows the ideal coverage line (y = 1−α), while random sampling
(red) exhibits significant deviation.

Table 7: Ablation study of Fixed α vs. Dynamic α.

Dataset mAP (%) Coverage
Fixed α Dynamic α Fixed α Dynamic α

Office-Home 55.22 57.31 0.87 0.91
Office-31 66.43 67.11 0.88 0.93
Digits 69.57 70.41 0.91 0.94

D.8 STANDARD HAMMING DISTANCE COMPARISON

To verify that our performance gain is not solely due to the weighted distance metric, we evalu-
ated a variant COLA (w/ Standard Hamming) which uses the full model but retrieves with standard
Hamming distance. As shown in Table 9, it still outperforms the best baseline COUPLE.

D.9 THEORETICAL DISCUSSION

Theorem 3.1 indicates that the coverage guarantee depends on minimizing the TV distance between
conformity score distributions. While directly computing this TV distance is intractable, our Rep-
resentation Calibration (RC) serves as an effective empirical proxy. By enforcing bit stability, RC
implicitly aligns the feature distributions of the source and target domains. As shown in our abla-
tion study, the inclusion of RC significantly improves mAP (+2.62%), suggesting that it effectively
reduces the distributional discrepancy and thus tightens the theoretical bound.

E PROOF

Here we provide the detailed proof for Theorem 3.1. This theoretical guarantee of conformal predic-
tion relies on the assumption that minimizing the feature distribution discrepancy (e.g., via MMD)
effectively reduces the total variation distance between the conformity score distributions. This as-
sumption holds approximately when the conditional distribution of conformal scores can be well
approximated by a broad class of distribution families (Gretton et al., 2012). In such cases, the re-
duction of feature discrepancy implies the closeness of distributions. Conformal Prediction under
covariate shift or distribution shift has been explored in prior work (Tibshirani et al., 2019; Barber
et al., 2023; Guan, 2023). For a comprehensive introduction to conformal prediction, we refer the
reader to Angelopoulos & Bates (2021).
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Table 8: Impact of EMA smoothing parameter αsm on mAP (%).

Dataset αsm = 0.5 αsm = 0.6 αsm = 0.7 αsm = 0.8 αsm = 0.9

Office-Home 57.22 57.28 57.31 56.97 56.93
Office-31 66.83 67.03 67.11 66.71 66.56
Digits 69.98 70.34 70.41 70.33 70.13

Figure 15: Coverage rate comparison on Digits dataset. Fixed α (red dashed) leads to under-
coverage in early training, while our Dynamic α (blue solid) adaptively adjusts to maintain stable
coverage around the ideal level.

Theorem E.1 (Coverage Guarantee for Conformal Prediction under Domain Shift). Let dTV denote
the total variation distance. Suppose (Xtrain, Ytrain) and (Xtest, Ytest) are random samples from
the source and target distributions, respectively. Let q̂W be derived from equation 1. Then, the
following coverage guarantee holds for the target domain:

P
(
s(Xtest, Ytest) ≤ q̂W

)
≥ 1− α− dTV (s(Xtrain, Ytrain), s(Xtest, Ytest)) . (12)

If we further assume that the conformal score has a continuous distribution in both domains, then
we also have the upper bound:

P
(
s(Xtest, Ytest) ≤ q̂W

)
≤ 1− α+

1

n+ 1
+ dTV (s(Xtrain, Ytrain), s(Xtest, Ytest)) . (13)

Proof. By the coverage guarantee of conformal prediction on the source domain (Theorem 2.1 of Lei
et al. (2018)), we have:

P
(
s(Xtrain, Ytrain) ≤ q̂W

)
≥ 1− α. (14)

Recall that for any two random variables U and V , the total variation distance is defined as

dTV(U, V ) = sup
A∈F

|P(U ∈ A)− P(V ∈ A)|. (15)

Here F is the σ-algebra of measurable events. Now, consider the event A = {s ≤ q̂W}. Applying
the definition of total variation, we immediately obtain:

P
(
s(Xtest, Ytest) ≤ q̂W

)
=P

(
s(Xtrain, Ytrain) ≤ q̂W

)
−
(
P
(
s(Xtrain, Ytrain) ≤ q̂W

)
− P

(
s(Xtest, Ytest) ≤ q̂W

))
≥1− α− dTV (s(Xtrain, Ytrain), s(Xtest, Ytest)) .

(16)
If we further assume that the conformal score has a continuous distribution in both domains, then by
the upper bound for conformal prediction on the source domain (Lei et al., 2018), we have:

P
(
s(Xtrain, Ytrain) ≤ q̂W

)
≤ 1− α+

1

n+ 1
. (17)
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Table 9: Standard Hamming Distance Comparison on Office-Home (64 bits).

Method Avg mAP

COUPLE 54.56
COLA (w/ Standard Hamming) 56.23
COLA (Full w/ UWHD) 57.31

Following the same logic as the proof of the lower bound, we can obtain the corresponding upper
bound:

P
(
s(Xtest, Ytest) ≤ q̂W

)
=P

(
s(Xtrain, Ytrain) ≤ q̂W

)
+
(
P
(
s(Xtest, Ytest) ≤ q̂W

)
− P

(
s(Xtrain, Ytrain) ≤ q̂W

))
≤1− α+

1

n+ 1
+ dTV (s(Xtrain, Ytrain), s(Xtest, Ytest)) .

(18)
This completes the proof.
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