

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFORMALIZED HIERARCHICAL CALIBRATION FOR UNCERTAINTY-AWARE ADAPTIVE HASHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Unsupervised domain adaptive hashing transfers knowledge from labeled source domains to unlabeled target domains, addressing domain shift challenges in real-world retrieval tasks. Existing methods face two critical limitations: target domain noise severely misleads model training, and indiscriminate domain alignment strategies treat all target samples equally, potentially distorting essential feature structures. We propose an uncertainty-aware adaptive hashing approach that addresses these challenges through a hierarchical conformal calibration framework. At the semantic level, we employ conformal inference to generate confidence prediction sets, replacing single pseudo-labels with set-based predictions whose sizes directly quantify sample reliability for weighted pseudo-label learning and domain alignment. This enables the model to focus on reliable samples while suppressing noise. At the representation level, we predict the stability of individual hash bits, where bit-level confidence guides a robust weighted quantization loss and enables dynamic weighted Hamming distance during retrieval, fundamentally enhancing hash code quality and retrieval robustness. Through this hierarchical calibration mechanism, our method achieves more adaptive and robust cross-domain knowledge transfer. Extensive experiments on multiple benchmark datasets demonstrate significant improvements over existing approaches, validating the effectiveness and superiority of our method. The code is anonymously available at [this link](#).

1 INTRODUCTION

Efficient approximate nearest neighbor (ANN) similarity retrieval plays a critical role in recommender systems (Tan et al., 2020), visual search (Pu et al., 2025), and retrieval-augmented generation (RAG) (Zhao et al., 2024). Deep hashing, which replaces floating-point distance computations with bitwise operations, offers significant advantages in both retrieval latency and storage costs, making it a key technology for large-scale retrieval systems (Wang et al., 2017; Luo et al., 2023b; Cui et al., 2024). The capability of deep learning models to generate semantically discriminative hash codes has substantially advanced applications.

However, real-world deployment inevitably encounters domain shift: variations in imaging devices, capture styles, and background distributions cause trained hashing models to exhibit semantic confusion and overconfidence in target domains. To bridge this gap, unsupervised domain adaptive hashing (UDAH) has attracted considerable attention (Wang et al., 2023c; Venkateswara et al., 2017; Wang et al., 2023a; Long et al., 2018a; Huang et al., 2021; Wang et al., 2023b; Huang et al., 2020; He et al., 2019). The objective is to transfer labeled source domain knowledge to unlabeled target domains. Existing domain adaptive hashing methods typically advance along two pathways: ① pseudo-labeling, where models generate supervisory signals for target data based on their own predictions (Lee et al., 2013; Xia et al., 2021b), and ② domain alignment, which aims to minimize distributional discrepancies between source and target features or adversarial training (Lee et al., 2019b; Ganin et al., 2016; Zhang et al., 2019; Lu et al., 2023a).

While these methods have achieved commendable progress, their performance is often constrained by a fundamental limitation: **unreliable and heuristic handling of model uncertainty**. Existing approaches suffer from three key issues. ① They rely on simple heuristics, such as softmax-based confidence thresholding, to filter high-quality pseudo-labels and guide alignment (Sohn et al., 2020). This approach is inherently risky, as softmax scores are not reliable indicators of correctness, as neu-

ral networks are prone to overconfident yet erroneous predictions, especially for out-of-distribution samples (Saito & Saenko, 2021; Li et al., 2021), as shown in Figure 1. ② They lack verifiable characterization of model uncertainty, with heuristic methods providing no theoretical guarantees and exhibiting extreme sensitivity to manually-tuned thresholds (Chen et al., 2022). ③ They treat different aspects of uncertainty as a monolithic concept, conflating semantic-level judgment uncertainty with bit-level representation stability uncertainty without employing targeted strategies.

In this work, we argue that unlocking the next generation of powerful UDAH requires moving beyond fragile heuristics toward a principled, multi-level uncertainty quantification framework. We introduce **Conformal Hierarchical Calibration Adaptive Hashing** (COLA), a novel paradigm that quantifies and leverages uncertainty from semantic to bit levels. **The core innovation of COLA lies in its hierarchical conformal calibration framework that provides rigorous statistical guarantees for uncertainty quantification at both semantic and representation levels.**

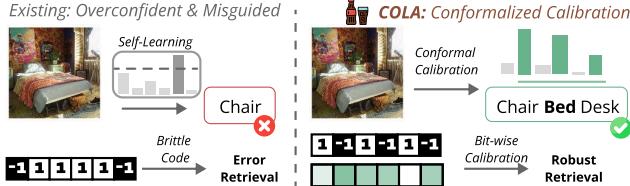


Figure 1: COLA (right) employs hierarchical calibration to replace the single pseudo-labels of existing methods (left) with conformal prediction sets, and weights hash codes with bit-wise confidence to achieve robust retrieval.

COLA operates through a synergistic two-tier calibration process, as shown in Figure 1. **At the semantic level**, we replace risky point predictions with coverage-controlled prediction sets, whose sizes serve as natural and rigorous measures of semantic uncertainty, enabling more robust pseudo-label learning and domain alignment. **At the representation level**, we introduce a novel **bit-level calibration mechanism specifically designed for hashing**. We model the reliability of each individual bit in generated hash codes through bit stability prediction, yielding fine-grained hash confidence scores. The score could guide weighted quantization losses during training and, crucially, enable a novel uncertainty-aware weighted Hamming distance during retrieval. Finally, we design a **self-regulating mechanism** that aggregates semantic and bit confidences into endogenous control signals, dynamically balancing pseudo-supervision, domain alignment, and quantization intensity while significantly reducing hyperparameter sensitivity.

Our main contributions can be summarized as follows: ① We design a shift from heuristic confidence-based methods to uncertainty quantification frameworks with rigorous statistical guarantees. ② We propose COLA that dissects and addresses uncertainty at both semantic and representation levels, yielding more reliable pseudo-supervision and more robust hash codes. ③ We introduce an elegant self-regulating mechanism that uses quantified uncertainty to dynamically balance multi-objective optimization, achieving truly adaptive learning and enhanced training stability. ④ Extensive experiments on challenging benchmark datasets demonstrate that COLA significantly outperforms existing state-of-the-art methods.

2 RELATED WORK

Deep Hashing generating compact binary hash codes to preserve the semantic relationships of data in the Hamming space (Doan et al., 2022; Chen et al., 2024; Tu et al., 2021). This approach significantly reduces storage and computational requirements, making it critical for large-scale retrieval systems (Luo et al., 2023a). Current methods can be fall into two types: supervised (Zhan et al., 2020; Xu et al., 2023; Lu et al., 2023b) and unsupervised (Jin et al., 2020; Wang et al., 2022; Song et al., 2023; Li et al., 2022; Zhao et al., 2022; Xiao et al., 2023). Unsupervised methods, circumvent the reliance on labels by exploiting the intrinsic structure of the data. However, exitsing methods' retrieval accuracy in practical applications is often affected by potential domain shifts.

Unsupervised Domain Adaptive Hashing (UDAH) has emerged as an important research area (Ju et al., 2024; Tang et al., 2024) to address the challenge of domain shift. UDAH aims to transfer knowledge from a labeled source domain to an unlabeled target domain (Long et al., 2018b; He et al., 2022; Lee et al., 2019a). Existing methods typically follow two main strategies: self-learning and domain alignment. Self-learning methods generate supervision for target data based on the model's own prediction (Lee et al., 2013). Domain alignment methods reduce the discrepancy between domains through adversarial training or distribution matching (Huang et al., 2021; Xia et al.,

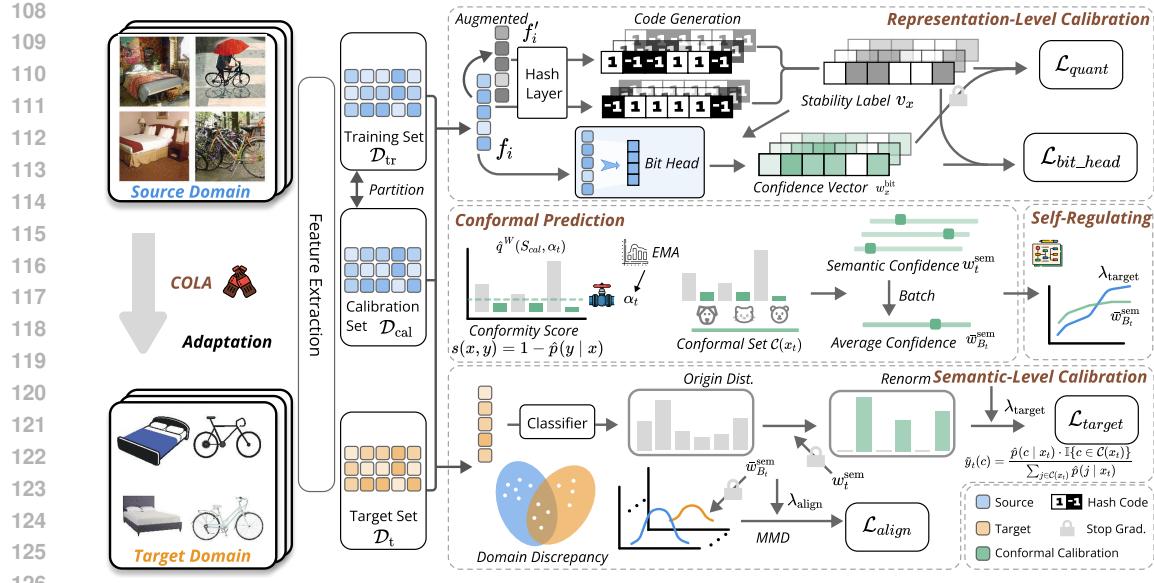


Figure 2: Overview of COLA, a hierarchical conformal calibration framework that addresses uncertainty in domain adaptive hashing through: (1) Semantic-Level Calibration for handling pseudo-label noise (3.2), (2) Representation-Level Calibration for enhancing hash code robustness (3.3), and (3) a Self-Regulating module for dynamically balancing learning objectives (3.4).

2021a). Despite these advances, existing methods exhibit fundamental limitations in handling model uncertainty, as their strategies are heuristic-driven and inherently unreliable.

Uncertainty in Retrieval. Recent works have explored uncertainty modeling in retrieval. (Warburg et al., 2021; 2023) proposed Bayesian metric learning to model aleatoric and epistemic uncertainty via stochastic embeddings. (Tang et al., 2025) utilized probabilistic embeddings for composed image retrieval. In hashing, (Wang & Zhou, 2023; Wang et al., 2025) introduced generative approaches to estimate hash code uncertainty. Unlike these model-based methods, our COLA employs a distribution-free conformal prediction framework. It provides rigorous coverage guarantees under domain shift and hierarchically calibrates uncertainty at both semantic and representation levels without expensive sampling.

3 METHODOLOGY

3.1 PRELIMINARIES AND OVERVIEW

Problem Definition. This work addresses unsupervised domain adaptive hashing (UDAH). Given a labeled source domain $\mathcal{D}_s = \{(x_i^s, y_i^s)\}_{i=1}^{n_s}$ and an unlabeled target domain $\mathcal{D}_t = \{x_j^t\}_{j=1}^{n_t}$ that share the same label space but differ in data distribution, we aim to learn a hash function that maps any input image x to an L -bit binary hash code $b \in \{-1, +1\}^L$. The learned function should ensure that semantically similar images have closer distances in Hamming space and enable efficient retrieval.

Conformal Prediction Basics. Conformal prediction is a distribution-free framework that constructs prediction sets with rigorous statistical guarantees. Given a calibration set and a user-defined error rate α , it produces a set $\mathcal{C}(x)$ for a new input x such that the true label y is contained in $\mathcal{C}(x)$ with probability at least $1 - \alpha$. This coverage guarantee relies on the exchangeability of data, which we address in the domain adaptation setting via weighted conformal prediction.

Method Overview. The core framework of COLA is a hierarchical conformal calibration mechanism that constitutes our primary contribution. COLA consists of two progressive calibration levels:

❶ **Semantic-level calibration** addresses noisy pseudo-labels in the target domain by replacing risky point predictions with theoretically-grounded conformal prediction sets. The size of these sets rigorously quantifies model uncertainty and is directly converted to weights that adaptively suppress

162 the harmful effects of high-uncertainty samples in pseudo-label learning and domain alignment.
 163 **② Representation-level calibration** deepens uncertainty analysis to bit-level. We predict the sta-
 164 bility of each bit in its generated hash codes. This bit-level confidence guides weighted quantization
 165 loss during training and also during retrieval, fundamentally enhancing hash code robustness.

166 **Beyond these core calibration components**, we establish a **self-regulating mechanism** as an auxil-
 167 iary component. This mechanism uses the real-time uncertainty quantified by both calibration levels
 168 as intrinsic control signals to adjust the learning focus.

170 3.2 SEMANTIC-LEVEL CONFORMAL CALIBRATION: FROM POINT TO SET

172 In UDAH, pseudo-label quality fundamentally determines model success. Traditional approaches
 173 typically rely on heuristic strategies, such as confidence thresholding (Lee et al., 2013; Sohn et al.,
 174 2020; Hu et al., 2025), to select high-confidence samples. However, these methods exhibit extreme
 175 sensitivity to threshold settings and often fail to ensure pseudo-label reliability under complex do-
 176 main shifts. To address this fundamental limitation, we introduce conformal prediction theory to
 177 establish a semantically uncertain quantification and utilization mechanism with rigorous statistical
 178 guarantees. Our core insight abandons high-risk point predictions in favor of constructing predic-
 179 tion sets that theoretically cover the true label with probability $1 - \alpha$. The size of this prediction
 180 set naturally and rigorously quantifies the **predictive uncertainty** (encompassing both aleatoric and
 181 **epistemic uncertainty**) for each sample.

182 3.2.1 CONFORMALIZATION VIA CALIBRATION SET

185 To ensure the calibration set is effective for the target domain, especially under significant domain
 186 shifts, we construct it using a targeted selection strategy. First, we extract features for all samples
 187 in both the source domain \mathcal{D}_s , and the target domain \mathcal{D}_t . We then compute the feature centroid
 188 of the target domain by averaging all of its feature vectors. Subsequently, for each source sample,
 189 we calculate the Euclidean distance between its feature vector and this target centroid. The $r_{\text{cal}}\%$
 190 source samples exhibiting the smallest distances are selected to form the calibration set \mathcal{D}_{cal} . r_{cal}
 191 is set to 20% according to Section 4.2. The remaining source samples constitute the training set
 192 \mathcal{D}_{tr} . The targeted selection strategy ensures that our calibration is performed on source data that
 193 closely mirrors the characteristics of the target domain, thereby producing more reliable uncertainty
 194 estimates for the adaptation task.

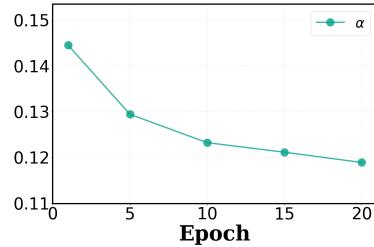
195 We define a conformity score $s(x, y) = 1 - \hat{p}(y | x)$ to measure the compatibility between sample
 196 x and its true label y , where $\hat{p}(y | x)$ represents the model’s predicted softmax probability. Lower
 197 scores indicate stronger model confidence in the prediction.

198 Subsequently, we compute conformity scores for all samples
 199 in \mathcal{D}_{cal} , yielding score collection \mathcal{S}_{cal} . Traditional conformal
 200 prediction methods (Vovk et al., 2005; Papadopoulos et al.,
 201 2002; Lei et al., 2018) employ a fixed, user-predefined error
 202 rate α to calculate quantile threshold \hat{q} . However, fixed α fails
 203 to adapt to model capability changes throughout the lengthy
 204 training process. During early training, overly strict α may re-
 205 sult in empty prediction sets, while during later stages, overly
 206 lenient α cannot effectively identify uncertainty.

207 To overcome this limitation, we design a dynamic α adjust-
 208 ment mechanism based on validation accuracy on the source
 209 domain, linearly transforming α from a static hyperparameter into a dynamic variable α_t that evolves
 210 with the model’s performance. To prevent α_t from fluctuating dramatically due to single evaluation
 211 variations, we introduce exponential moving average (EMA) for smooth updates, ensuring adjust-
 212 ment process stability. The dynamic α schedule on Office-Home is illustrated in Figure 3.

213 According to conformal prediction theory, for a new sample x_t drawn from the same distribution as
 214 the calibration set, the probability that its true label y_t falls within the following prediction set $\mathcal{C}(x_t)$
 215 is at least $1 - \alpha_t$:

$$\mathcal{C}(x_t) = \{y \in \mathcal{Y} \mid s(x_t, y) \leq \hat{q}^W\}, \quad (1)$$



216 Figure 3: Dynamic α during training
 217 on Office-Home Ar \rightarrow Re task.

216 where $\hat{q}^W = \hat{q}^W(\mathcal{S}_{\text{cal}}, \alpha_t)$ denotes the weighted quantile threshold. We sort all conformity scores
 217 $\{s(x_i, y_i)\}_{i=1}^{n_{\text{cal}}}$ in ascending order and select the $\lceil (n_{\text{cal}} + 1)(1 - \alpha_t) \rceil$ -th value as \hat{q}^W .
 218

219 **3.2.2 THEORETICAL ANALYSIS**
 220

221 A critical theoretical question arises when applying conformal prediction in UDAH: standard con-
 222 formal prediction theory requires the calibration data and new test data to be exchangeable, an
 223 assumption that breaks down when distribution shifts exist between source and target domains.
 224 Therefore, we must address the fundamental question: *do the theoretical coverage guarantees of*
 225 *our constructed prediction sets $\mathcal{C}(x_t)$ remain valid on the target domain?*

226 To answer this question, we provide a theoretical analysis demonstrating that our framework remains
 227 robust under this limitation. As stated in Theorem 3.1, the coverage guarantee does not completely
 228 fail but degrades in a *quantifiable and graceful* manner.

229 **Theorem 3.1** (Coverage Guarantee under Domain Shift). *Let d_{TV} denote the total variation dis-
 230 tance. Suppose $(X_{\text{train}}, Y_{\text{train}})$ and $(X_{\text{test}}, Y_{\text{test}})$ are random samples from the source and target
 231 distributions, respectively. Let \hat{q}^W be derived from equation 1. Then, the following coverage guar-
 232 antee holds for the target domain:*

$$\mathbb{P}(s(X_{\text{test}}, Y_{\text{test}}) \leq \hat{q}^W) \geq 1 - \alpha_t - d_{\text{TV}}(s(X_{\text{train}}, Y_{\text{train}}), s(X_{\text{test}}, Y_{\text{test}})). \quad (2)$$

233 *If we further assume that the conformal score has a continuous distribution in both domains, then
 234 we also have the upper bound:*

$$\mathbb{P}(s(X_{\text{test}}, Y_{\text{test}}) \leq \hat{q}^W) \leq 1 - \alpha_t + \frac{1}{n+1} + d_{\text{TV}}(s(X_{\text{train}}, Y_{\text{train}}), s(X_{\text{test}}, Y_{\text{test}})). \quad (3)$$

235 The proof and related discussion are provided in Appendix E. This theorem serves as the theoretical
 236 foundation of our methodology, revealing the intrinsic logic of synergistic cooperation among vari-
 237 ous modules in our framework. It implies that our subsequent domain alignment work (detailed in
 238 Section 3.2) serves not merely as a heuristic feature distance reduction. By minimizing the feature
 239 distribution differences between source and target domains, we are implicitly minimizing the total
 240 variation distance between their conformity score distributions.

241 **Take Away:** Our theoretical analysis demonstrates that conformal prediction coverage guar-
 242 antees remain bounded under domain shift. The essential role of domain alignment is to actively
 243 reduce the error term in this theoretical bound, making our uncertainty quantification for target
 244 domain samples more precise and reliable.

251 **3.2.3 UNCERTAINTY-DRIVEN ADAPTIVE LEARNING**
 252

253 With this theoretically-grounded and dynamically-adjustable prediction set $\mathcal{C}(x_t)$, we transform it
 254 into effective signals that guide model adaptive learning.

255 The semantic confidence weight is theoretically grounded in conformal prediction. By Theorem 3.1,
 256 smaller prediction sets indicate higher model certainty with statistical coverage guarantees. $|\mathcal{C}(x_t)|$
 257 serves as a natural and rigorous uncertainty measure. We define its reciprocal as the **semantic**
 258 **confidence weight**, which modulates each target sample’s contribution:

$$w_t^{\text{sem}} = \frac{1}{|\mathcal{C}(x_t)|}, \quad \tilde{y}_t(c) = \frac{\hat{p}(c \mid x_t) \cdot \mathbb{I}\{c \in \mathcal{C}(x_t)\}}{\sum_{j \in \mathcal{C}(x_t)} \hat{p}(j \mid x_t)}. \quad (4)$$

259 This soft label \tilde{y}_t more faithfully reflects the model’s judgment within its confidence range compared
 260 to hard labels, avoiding overly absolute supervision on uncertain samples.

261 Combining these two mechanisms, we construct the **semantically-weighted target domain**
 262 **pseudo-supervision loss**. This loss function achieves dual protection: *inter-sample*, through w_t^{sem}
 263 to suppress the overall influence of high-uncertainty samples; *intra-sample*, through \tilde{y}_t to provide
 264 smoother and more reliable supervision distribution:

$$\mathcal{L}_{\text{target}} = \frac{1}{|B_t|} \sum_{x_t \in B_t} w_t^{\text{sem}} \cdot \text{CE}(\tilde{y}_t, \hat{p}(\cdot \mid x_t)). \quad (5)$$

270 3.2.4 CONFIDENCE-GUIDED DOMAIN ALIGNMENT
271272 Beyond constructing more robust single-sample supervision for the target domain, we further apply
273 semantic confidence to guide the macroscopic domain alignment process, correcting the blindness
274 of traditional alignment methods.275 Traditional domain alignment approaches uniformly minimize distributional differences between
276 source and target domains. However, when the target domain contains numerous semantically am-
277 biguous *boundary* samples, forced alignment of these samples may actually distort the semantic
278 structure of the shared feature space. To address this issue, we first compute the *average semantic*
279 *confidence* within a target batch and use it as a weight for the alignment loss:

280
$$\bar{w}_{B_t}^{\text{sem}} = \frac{1}{|B_t|} \sum_{x_t \in B_t} w_t^{\text{sem}}, \quad \mathcal{L}_{\text{align}} = \bar{w}_{B_t}^{\text{sem}} \cdot \left\| \frac{1}{|B_s|} \sum_{x \in B_s} \phi(G(x)) - \frac{1}{|B_t|} \sum_{x \in B_t} \phi(G(x)) \right\|_2^2. \quad (6)$$

281
282

283 where $G(\cdot)$ denotes the feature extractor and $\phi(\cdot)$ represents the MMD kernel mapping. This batch-
284 level macroscopic weighting mechanism operates under the following logic: when a target batch
285 exhibits low overall confidence, we correspondingly reduce domain alignment intensity to prevent
286 the model from being misled by these *problematic* samples. Conversely, we strengthen alignment
287 when confidence is high. This enables the model to preferentially align core data manifolds with
288 clear semantics in both domains, achieving more stable and meaningful feature distribution align-
289 ment that establishes a solid semantic foundation for subsequent high-quality hash code learning.290 3.3 REPRESENTATION-LEVEL CALIBRATION: BIT-WISE RELIABILITY MODELING
291292 While semantic-level calibration addresses the reliability of *what to learn*, representation-level cali-
293 bration focuses on the intrinsic stability of *how to learn hash codes effectively*. A high-quality hash
294 code must not only maintain semantic discriminability but also ensure that each individual bit is ro-
295 bust and exhibits low redundancy. The flipping of a single unreliable bit can cause dramatic changes
296 in Hamming distance, severely affecting retrieval precision. Therefore, we extend uncertainty anal-
297 ysis from the macroscopic semantic level to the microscopic bit level.298 **Proxy Task for Bit Stability.** To quantify the reliability of each bit, we design a self-supervised
299 proxy task. **This design is theoretically motivated: a reliable bit must exhibit sign consistency under**
300 **minor perturbations, which naturally aligns with the quantization objective of pushing continuous**
301 **values toward ± 1 .** The core assumption is that a robust bit should maintain sign stability when
302 facing minor perturbations in input data.303 Specifically, for each sample x_i in the source domain, we obtain its feature vector f_i . An augmented
304 version f'_i is created by applying Gaussian noise to f_i . After passing f_i and f'_i through the hash
305 layer, they yield continuous pre-hash vectors h_i and h'_i . Based on these, we generate a stability label
306 $v_{i,k}$ for each bit k of h_i :

307
$$v_{i,k} = \mathbb{I}\{\text{sign}(h_{i,k}) = \text{sign}(h'_{i,k})\}, \quad (7)$$

308

309 where $\mathbb{I}(\cdot)$ denotes the indicator function. Then, we introduce a lightweight bit confidence prediction
310 head $G_{\text{bit}}(\cdot)$ that operates in parallel with the backbone network. It receives image features and
311 predicts an L -dimensional confidence vector $w_{x,k}^{\text{bit}} \in [0, 1]^L$. This head is trained through binary
312 cross-entropy loss to predict $v_{x,k}$, **which naturally drives the predicted confidence to polarize toward**
313 **binary values $\{0, 1\}$ without requiring explicit thresholds.** We employ a separate prediction head
314 rather than on-the-fly perturbation during inference to ensure retrieval efficiency. Direct perturbation
315 would require multiple forward passes per query, significantly increasing latency. Our lightweight
316 head predicts stability in a single pass ($O(1)$), maintaining the speed advantage of hashing.317 3.3.1 CONFIDENCE-GUIDED HASH LEARNING AND RETRIEVAL
318319 The learned bit confidence w^{bit} plays a crucial role in both training and testing phases, enabling
320 end-to-end uncertainty awareness.321 **Weighted Quantization Loss.** Traditional quantization loss $\|h - \text{sign}(h)\|$ uniformly penalizes
322 all bits that deviate from ± 1 . We leverage bit confidence to weight this loss, making the model
323 focus more on bits predicted to be stable and reliable during training, while providing greater
tolerance for unstable bits and allowing them more thorough exploration in continuous space.

324 We reweight the quantization term using bit confidence, applying
 325 stronger constraints only on *trustworthy bits* while reducing
 326 backward noise from unstable bits:
 327

$$328 \quad \mathcal{L}_{\text{quant}} = \frac{1}{|B|L} \sum_{x \in B} \sum_{k=1}^L \text{stop_grad}(w_{x,k}^{\text{bit}}) \cdot \max(0, 1 - |h_{x,k}|), \quad (8)$$

331 where `stop_grad` prevents the model from circumventing
 332 quantization by manipulating w^{bit} . The dynamics of w^{bit} are
 333 illustrated in Figure 4, where \bar{w}^{bit} is the average of w^{bit} in a
 334 mini-batch.

335 Uncertainty-aware Weighted Hamming Distance.

336 During retrieval, we leverage the learned bit confidence
 337 to dynamically weight Hamming distance, suppressing
 338 contributions from unreliable bits. We use the bit con-
 339 fidence w_q^{bit} of query sample x_q as dynamic weights
 340 to construct a novel distance metric. This ensures that
 341 when computing distances between query and database
 342 samples, bit positions where the query sample itself ex-
 343 hibits uncertainty receive lower weights, naturally re-
 344 ducing the noise impact from unreliable bit flips and
 345 significantly enhancing retrieval robustness:

$$346 \quad d_{\text{UWHD}}(x_q, x_d) = \sum_{k=1}^L w_{q,k} \cdot \frac{1}{2} (1 - b_{q,k} b_{d,k}), \quad (9)$$

347 where $w_{q,k} \in [0, 1]$ represents the bit-level weight derived from query confidence w_q^{bit} . Note that
 348 Eq. 9 utilizes continuous weights primarily for differentiable optimization during training. For effi-
 349 cient large-scale retrieval, we binarize the query weights $w_{q,k} \in \{0, 1\}$ via rounding. This reduces
 350 the metric to a masked Hamming distance, enabling UWHD to be computed via efficient bitwise
 351 operations. As shown in Appendix 5, our method achieves comparable speed to vanilla hashing.
 352 This series of designs enables our model to not only learn hash code generation but also develop
 353 quality assessment capabilities for its own generated hash codes, integrating this assessment ability
 354 throughout the entire lifecycle from learning to application.

356 3.4 SELF-REGULATING CALIBRATED ADAPTATION: A CLOSED-LOOP LEARNING SYSTEM

357 We further construct a self-regulating mechanism that transforms these tools from passive to active
 358 components. This mechanism addresses the classic challenge of manually balancing loss weights in
 359 multi-objective optimization by using the model’s real-time uncertainty as intrinsic control signals
 360 to dynamically adjust learning focus, forming an intelligent closed-loop system.

362 Specifically, we compute the average semantic confidence $\bar{w}_{B_t}^{\text{sem}}$ and average bit confidence $\bar{w}_{B_t}^{\text{bit}}$ for
 363 each batch B_t . These aggregated indicators reflect the model’s overall grasp of the current batch
 364 data at the present stage. We use them as inputs to adaptive weights $\lambda(\cdot)$ to dynamically modulate
 365 the intensity of various loss terms:

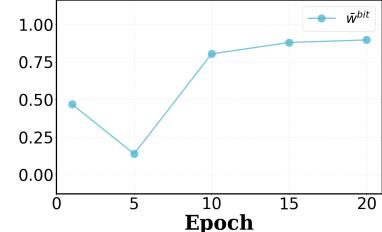
$$366 \quad \lambda_{\text{target}}(B_t) = f_{\text{sem}}(\text{stop_grad}(\bar{w}_{B_t}^{\text{sem}})), \quad \lambda_{\text{quant}}(B_t) = f_{\text{quant}}(\text{stop_grad}(\bar{w}_{B_t}^{\text{bit}})), \quad (10)$$

367 where $f(\cdot)$ represents linear scaling functions, and the `stop_grad` operation ensures these weights
 368 do not directly participate in gradient computation, guaranteeing training stability.

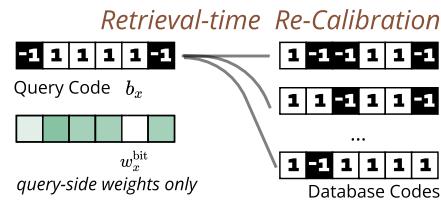
370 The intuitive logic follows a natural learning progression. During early training, with low \bar{w}^{sem} , re-
 371 sulting in small λ_{target} and λ_{align} , the model treats pseudo-labels and domain alignment cautiously,
 372 avoiding aggressive adaptation before sufficiently understanding the target domain. **This mecha-
 373 nism naturally acts as a warm-up strategy: early in training, high uncertainty leads to low λ_{target} ,**
 374 preventing the model from overfitting to noisy pseudo-labels. As the model learns from the source
 375 domain, uncertainty decreases, and the target adaptation gradually engages.

376 Finally, our total training objective integrates all modules through dynamic balancing via the self-
 377 regulating mechanism:

$$378 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{source}} + \mathcal{L}_{\text{bit_head}} + \lambda_{\text{target}} \mathcal{L}_{\text{target}} + \lambda_{\text{align}} \mathcal{L}_{\text{align}} + \lambda_{\text{quant}} \mathcal{L}_{\text{quant}} \quad (11)$$



331 Figure 4: Bit-level calibration \bar{w}^{bit}
 332 on Office-Home Ar→Re task.



331 Figure 5: Illustration of bit-level uncer-
 332 tainty calibration mechanism.

378 Table 1: Cross-domain retrieval performance (mAP%) comparison on Office-Home and Office-31.
379

Methods	OFFICE-HOME						OFFICE-31						Avg.
	Pr→Re	Cl→Re	Re→Ar	Re→Pr	Re→Cl	Ar→Re	Am→Ds	Am→We	We→Ds	Ds→Am	We→Am	Ds→We	
ITQ	26.81	14.83	25.37	28.19	14.92	25.88	29.55	28.53	58.00	26.83	25.09	58.89	30.24
OCH	18.65	10.27	17.54	20.15	10.05	18.09	24.86	22.49	51.03	22.45	20.79	53.64	24.17
DSH	8.49	5.47	9.67	8.26	5.28	9.69	16.66	15.09	39.24	16.33	13.58	41.07	15.74
SGH	24.51	13.62	22.53	25.73	13.51	22.93	24.98	22.47	53.94	22.17	20.52	56.36	26.94
GraphBit	18.18	16.87	11.51	10.81	18.91	21.32	24.48	23.12	22.09	53.82	21.34	51.43	24.49
GTH-g	20.00	10.99	18.28	21.95	11.68	19.05	23.08	21.20	49.38	19.52	17.41	50.14	23.56
PWCF	34.03	24.22	28.95	34.44	18.42	34.57	39.78	34.86	67.94	35.12	35.01	72.91	38.35
DHLing	48.47	30.81	38.68	45.24	25.15	43.30	41.96	45.10	75.23	42.89	41.74	79.91	46.54
DAPH	27.20	15.29	27.35	28.19	15.29	26.37	32.80	28.66	60.71	28.66	27.59	64.11	31.85
PEACE	53.04	38.72	42.68	54.39	28.36	45.97	46.69	48.89	78.82	46.91	46.95	83.18	51.22
DANCE	53.73	39.03	43.54	55.14	28.87	44.53	44.78	47.66	78.39	46.68	48.61	84.75	51.31
IDEA	59.18	45.71	49.64	61.84	32.77	51.19	48.70	54.43	84.97	53.53	53.71	88.69	57.03
COUPLE	63.94	49.24	54.35	64.29	41.39	54.14	50.27	59.32	85.26	56.04	56.35	88.90	60.29
COLA	67.04	52.65	57.23	67.88	41.71	57.35	52.51	62.08	87.28	58.09	57.60	89.65	62.59

390 Table 2: Cross-domain retrieval performance (mAP%) comparison on MNIST and USPS.
391

Methods	MNIST → USPS						USPS → MNIST						Avg.
	16	32	48	64	96	128	16	32	48	64	96	128	
ITQ	13.05	15.57	18.54	20.12	23.12	23.89	13.69	17.51	20.40	20.30	22.79	24.59	19.46
OCH	13.73	17.22	19.59	20.18	20.66	23.34	15.51	17.75	18.97	21.50	21.27	23.68	19.45
DSH	20.60	22.21	23.68	24.28	25.73	26.50	19.54	21.22	22.89	23.79	25.91	26.46	23.57
SGH	14.24	16.69	18.72	19.70	21.00	21.95	13.26	17.71	18.22	19.01	21.69	22.09	18.69
GraphBit	13.92	17.86	20.17	20.82	21.32	23.19	15.16	16.82	17.87	19.85	20.10	22.54	19.13
GTH-g	20.45	17.64	16.60	17.25	17.26	17.06	15.17	14.07	15.02	15.01	14.80	17.34	16.47
PWCF	47.47	51.99	51.44	51.75	50.89	59.35	47.14	50.86	52.06	52.18	57.14	58.96	52.60
DHLing	49.24	54.90	56.30	58.28	58.80	59.14	50.14	51.35	53.67	58.65	58.42	59.17	55.67
DAPH	25.13	27.10	26.10	28.51	30.53	30.70	26.60	26.43	27.27	27.99	30.19	31.40	28.16
PEACE	52.87	59.72	60.69	62.84	65.13	68.16	53.97	54.82	58.69	60.91	62.65	65.70	60.51
DANCE	53.18	57.98	61.23	63.15	65.92	68.87	54.31	55.64	57.26	61.49	63.43	66.23	60.72
IDEA	58.89	64.48	65.72	67.48	70.24	74.34	60.99	61.47	65.45	67.97	69.72	72.31	66.59
COUPLE	60.56	66.05	66.23	67.98	73.02	75.12	63.28	64.94	67.44	70.19	72.87	74.62	68.53
COLA	62.21	67.72	67.35	68.91	75.09	77.67	65.11	67.27	69.83	72.94	74.33	76.33	70.40

405 This design paradigm enables the entire adaptation process to be governed by the model’s own
406 cognitive state, achieving truly adaptive, robust, and efficient end-to-end learning.
407408 **Computational Complexity.** The calibration phase requires only one-time sorting and weighted
409 quantile estimation with complexity $O(n_{\text{cal}} \log n_{\text{cal}})$, where n_{cal} is the size of the calibration set.
410 This can be approximately reduced to linear time using quantile sketching algorithms.412

4 EXPERIMENT

414

4.1 EXPERIMENTAL SETTINGS

416 **Datasets.** We evaluate our method on three widely-used cross-domain benchmarks: Office-
417 Home (Venkateswara et al., 2017), Office-31 (Saenko et al., 2010), and Digits(MNIST (LeCun et al.,
418 1998) and USPS (Hull, 1994)). We follow the transfer tasks as in previous research (Wang et al.,
419 2023b; Luo et al., 2025) for fair comparison. More details are provided in Appendix B.420 **Baselines.** We compare our method with state-of-the-art hashing methods, including five unsupervised
421 methods (ITQ (Gong et al., 2012), OCH (Liu et al., 2018), DSH (Jin et al., 2013), SGH (Jiang
422 & Li, 2015), GraphBit (Wang et al., 2022)) and eight domain-adaptive methods (GTH-g (Zhang
423 et al., 2019), PWCF (Huang et al., 2020), DHLing (Xia et al., 2021a), DAPH (Huang et al., 2021),
424 PEACE (Wang et al., 2023a), DANCE (Wang et al., 2023b), IDEA (Wang et al., 2023d), COU-
425 PLE (Luo et al., 2025)) as baselines. More details can be found in Appendix C.426 **Implementation Details.** To ensure a fair comparison, the model config is set following previous
427 methods (Wang et al., 2023d; Luo et al., 2025). All experiments are implemented in PyTorch and
428 conducted on a single NVIDIA Hopper GPU. The hash layer consists of a two-layer MLP, and the
429 same structure is used for bit head prediction. We use the Adam optimizer, with an initial learning
430 rate set to 0.001 and a batch size of 32. The training epoch is set to 35. And we set the proportion
431 of the calibration set to 0.2, the mapping range for α to [0.05, 0.2], and EMA smoothing coefficient
432 to 0.7 as common practice.

Table 3: Ablation studies on the Office-Home with 64 bit hash code.

Variants	SC	RC	SR	Pr→Re	Cl→Re	Re→Ar	Re→Pr	Re→Cl	Ar→Re	Avg.
COLA (None)				59.65	46.47	49.66	59.56	31.92	47.56	49.14
COLA-SC	✓			59.92	47.08	49.89	59.81	32.07	47.82	49.43
COLA-RC		✓		60.83	48.64	51.33	61.22	35.84	52.70	51.76
COLA-SR			✓	61.41	47.77	52.24	61.69	35.11	51.06	51.55
COLA w/o SC		✓	✓	65.13	48.89	54.12	65.97	40.01	53.04	54.53
COLA w/o RC	✓		✓	65.95	49.39	56.16	66.87	39.68	53.18	55.21
COLA w/o SR	✓	✓		65.25	49.30	53.29	65.62	39.95	55.03	54.74
COLA (Full Model)	✓	✓	✓	67.04	52.65	57.23	67.88	41.71	57.35	57.31

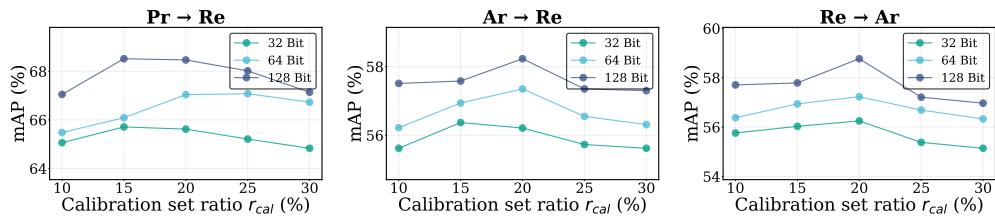
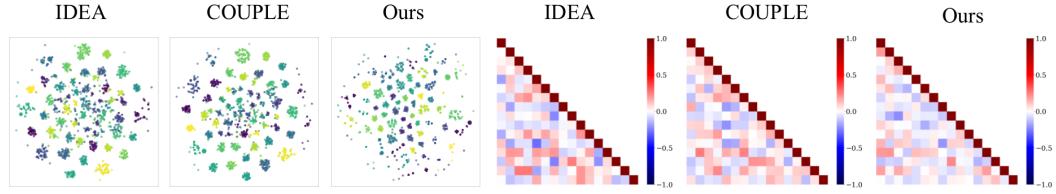
Figure 6: Sensitivity analysis on calibration set ratio r_{cal} .

Figure 7: The t-SNE visualization of 64-bit hash codes on Office-Home dataset; The correlation heatmap of 16 bit hash codes on Office-Home dataset (Ar → Re).

Evaluation Metrics. We use three standard metrics to assess our COLA: mean Average Precision (mAP), precision-recall curve, Top-N accuracy curve and Top-N recall curve. The mAPs are used to represent the overall retrieval performance. The precision-recall curves assess the comprehensive performance of the method, the TopN accuracy curves, and the Top-N recall curves illustrate the performance under different retrieval quantities.

4.2 EMPIRICAL RESULTS

Performance Comparison. To comprehensively validate the effectiveness of COLA, we compared the retrieval performance of all approaches on three benchmark datasets, as shown in Tables 1 and 2. Table 1 reports the cross-domain retrieval results on Office-Home and Office-31 with a fixed 64-bit hash code length. Furthermore, we investigated the cross-domain performance of each method under varying hash code lengths on the USPS and MNIST datasets, and the results are presented in Table 2. From the results reported in Tables 1 and 2, we observe that COLA consistently and significantly outperforms existing state-of-the-art approaches, achieving an average improvement of around 3.3% in retrieval performance. Earlier methods, such as DAPH (Huang et al., 2021), PEACE (Wang et al., 2023a) generally suffer from inferior performance due to relatively simplistic domain adaptation strategies. The performance gain of our COLA over advanced baselines can be largely attributed to its unique hierarchical uncertainty calibration framework. To gain deeper insights into the effectiveness of our method, we also conduct qualitative analysis experiments. We compared different approaches using precision-recall curves, Top-N precision curves, and Top-N recall curves. The more detailed qualitative analysis of these results is provided in the Appendix D.1.

Ablation Study. Table 3 reports the retrieval performance of ablation variants on the Office-Home dataset. We can conclude that the COLA is of best performance, demonstrating the importance of

each component. The variant *COLA (None)* in Table 3 represents the baseline with all three components (SC, RC, SR) removed, which serves as a standard UDAH baseline. Disabling semantic-level calibration leads to a significant performance drop from 57.31% to 54.53% in average mAP. This underscores the critical role of conformal prediction in quantifying semantic uncertainty to generate reliable soft pseudo-labels and guide domain alignment. Excluding representation-level calibration degrades the mAP to 55.21%, which demonstrates the importance of modeling bit-wise reliability. These substantial performance degradations empirically validate the necessity of our weighting mechanisms, with each component contributing meaningfully to the final performance. Also, removing the self-regulating results in a notable performance decrease to 54.74%. This confirms the benefit of dynamically balancing the learning objectives based on the model’s real-time uncertainty. We also compared with other variants that contain a single component. Note that the centroid-based calibration set is essential for the SC module to compute semantic distances, and dynamic α is inherent to the SR mechanism. Thus, our ablation design properly isolates the contribution of each component within the coherent framework. More details of the ablation study are in the Appendix D.2.

Uncertainty Analysis. We analysed the bit-level confidence of target domain across different hash lengths (32, 64, and 128 bits) on Office-Home dataset. From the results shown in figure 8, we can draw the following conclusions. Firstly, the bit-level confidence starts near 0.5, reflecting the model’s random initial state, then sharply drops to near-zero as the model begins learning and calibrating its uncertainty. Finally, as the model converges and learns a stable feature representation, the confidence rises to a high and stable value. Secondly, shorter codes (32-bit) achieve a higher final confidence, as each bit must be more informative. Conversely, longer codes (128-bit) require more time to stabilize, resulting in a slower confidence recovery during training. These experimental results further validate the efficacy and validity of our proposed uncertainty calibration method.

Sensitivity Analysis. We conduct the sensitivity analysis to evaluate the robustness of our COLA with respect to the hyperparameter calibration set ratio r_{cal} . The analysis is performed on the Office-Home dataset with different hash code lengths. As Figure 6 shows, the retrieval performance of COLA remains stable across a wide range of calibration set ratios. We observe a better performance when r_{cal} is set to 20%. More details are in Appendix D.3.

Visualization To further understand the semantic structure of the learned representations, we utilize t-SNE visualization to demonstrate the discriminative hash codes on Office-Home. As shown in Figure 7, COLA can effectively exploit the information capacity of hash codes to learn more discriminative hash codes, thereby achieving more effective image retrieval.

5 CONCLUSION

To address the unreliable uncertainty handling in existing unsupervised domain adaptive hashing methods, this paper introduces COLA based on hierarchical conformal calibration. Our approach abandons traditional heuristic strategies in favor of a principled mechanism with rigorous statistical guarantees that quantifies uncertainty at both semantic and representation levels, thereby generating more reliable supervision signals for the target domain and modeling the stability of each hash bit. Extensive experiments on multiple benchmark datasets validate the superiority of our method, demonstrating consistent and significant improvements over state-of-the-art approaches. In summary, COLA provides a more reliable and adaptive solution for cross-domain retrieval tasks through systematic utilization of uncertainty, establishing a new paradigm that transforms uncertainty from an obstacle into a valuable resource for robust domain adaptive hashing. COLA is specifically designed as a scalable solution for UDAH tasks, leveraging the efficiency of binary hashing to enable fast cross-domain retrieval. While evaluated on standard benchmarks, our efficient binarized implementation suggests strong potential for scaling to larger datasets.

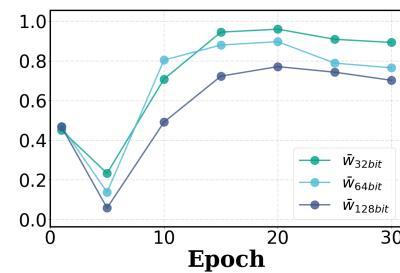


Figure 8: Bit-level confidence evolution during training across different hash code lengths (32, 64, and 128 bits) on Office-Home dataset. (Art → Real World task.)

540 REPRODUCIBILITY STATEMENT
541542 For reproducibility purposes, we have made our code available at <https://anonymous.4open.science/r/COLA-8C6C/>. Also, we provided the detailed implementation details in Section 4.1, Appendix C
543 and Appendix B.
544545 ETHICS STATEMENT
546547 Our research adheres to the ICLR Code of Ethics. The code and related materials will be appropriately
548 released to ensure transparency and reproducibility of our work. All datasets used in this study
549 are publicly available.
550551 REFERENCES
552553 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
554 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.
555556 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
557 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.
558559 Liang Chen, Yihang Lou, Jianzhong He, Tao Bai, and Minghua Deng. Geometric anchor correspon-
560 dence mining with uncertainty modeling for universal domain adaptation. In *Proceedings of the*
561 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16134–16143, 2022.
562563 Zhen-Duo Chen, Li-Jun Zhao, Zi-Chao Zhang, Xin Luo, and Xin-Shun Xu. Characteristics matching
564 based hash codes generation for efficient fine-grained image retrieval. pp. 17273–17281, 2024.
565566 Hui Cui, Lihai Zhao, Fengling Li, Lei Zhu, Xiaohui Han, and Jingjing Li. Effective comparative
567 prototype hashing for unsupervised domain adaptation. In *Proceedings of the AAAI Conference*
568 *on Artificial Intelligence*, volume 38, pp. 8329–8337, 2024.569 Khoa D. Doan, Peng Yang, and Ping Li. One loss for quantization: Deep hashing with discrete
570 wasserstein distributional matching. pp. 9447–9457, 2022.
571572 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
573 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
574 *Journal of machine learning research*, 17(59):1–35, 2016.
575576 Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantization: A
577 procrustean approach to learning binary codes for large-scale image retrieval. *IEEE transactions*
578 *on pattern analysis and machine intelligence*, 35(12):2916–2929, 2012.
579580 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
581 A kernel two-sample test. *Journal of Machine Learning Research*, 13(25):723–773, 2012. URL
582 <http://jmlr.org/papers/v13/gretton12a.html>.
583584 Leying Guan. Localized conformal prediction: A generalized inference framework for conformal
585 prediction. *Biometrika*, 110(1):33–50, 2023.
586587 Tao He, Yuan-Fang Li, Lianli Gao, Dongxiang Zhang, and Jingkuan Song. One network for
588 multi-domains: domain adaptive hashing with intersectant generative adversarial network. *arXiv*
589 *preprint arXiv:1907.00612*, 2019.
590591 Tao He, Leqi Shen, Yuchen Guo, Guiguang Ding, and Zhenhua Guo. Secret: Self-consistent pseudo
592 label refinement for unsupervised domain adaptive person re-identification. In *Proceedings of the*
593 *AAAI Conference on Artificial Intelligence*, 2022.
594595 Yihao Hu, Congyu Qiao, Xin Geng, and Ning Xu. Selective label enhancement learning for test-time
596 adaptation. In *International Conference on Learning Representations*, 2025.
597

594 Fuxiang Huang, Lei Zhang, Yang Yang, and Xichuan Zhou. Probability weighted compact feature
 595 for domain adaptive retrieval. In *Proceedings of the IEEE/CVF conference on computer vision*
 596 and pattern recognition, pp. 9582–9591, 2020.

597

598 Fuxiang Huang, Lei Zhang, and Xinbo Gao. Domain adaptation preconceived hashing for uncon-
 599 strained visual retrieval. *IEEE Transactions on Neural Networks and Learning Systems*, 2021.

600 Jonathan J. Hull. A database for handwritten text recognition. 1994.

601

602 Qing-Yuan Jiang and Wu-Jun Li. Scalable graph hashing with feature transformation. 2015.

603

604 Lu Jin, Zechao Li, Yonghua Pan, and Jinhui Tang. Weakly-supervised image hashing through
 605 masked visual-semantic graph-based reasoning. In *Proceedings of the ACM International Con-
 606 ference on Multimedia*, 2020.

607

608 Zhongming Jin, Cheng Li, Yue Lin, and Deng Cai. Density sensitive hashing. *IEEE transactions on
 609 cybernetics*, 2013.

610 Wei Ju, Siyu Yi, Yifan Wang, Qingqing Long, Junyu Luo, Zhiping Xiao, and Ming Zhang. A survey
 611 of data-efficient graph learning, 2024.

612 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 613 document recognition. *Proceedings of the IEEE*, 1998.

614

615 Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein
 616 discrepancy for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF Conference
 617 on Computer Vision and Pattern Recognition*, 2019a.

618

619 Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein
 620 discrepancy for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF conference on
 621 computer vision and pattern recognition*, pp. 10285–10295, 2019b.

622

623 Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
 624 deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3,
 625 pp. 896. Atlanta, 2013.

626

627 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 628 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 (523):1094–1111, 2018.

629

630 Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi Yang. Domain consensus clustering
 631 for universal domain adaptation. In *Proceedings of the IEEE/CVF conference on computer vision
 632 and pattern recognition*, pp. 9757–9766, 2021.

633

634 Liang Li, Baihua Zheng, and Weiwei Sun. Adaptive structural similarity preserving for unsupervised
 635 cross modal hashing. In *Proceedings of the ACM International Conference on Multimedia*, 2022.

636

637 Hong Liu, Rongrong Ji, Jingdong Wang, and Chunhua Shen. Ordinal constraint binary coding
 638 for approximate nearest neighbor search. *IEEE transactions on pattern analysis and machine
 639 intelligence*, 41(4):941–955, 2018.

640

641 Fuchen Long, Ting Yao, Qi Dai, Xinmei Tian, Jiebo Luo, and Tao Mei. Deep domain adaptation
 642 hashing with adversarial learning. In *ACM SIGIR Conference on Research & Development in
 643 Information Retrieval*, 2018a.

644

645 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
 646 domain adaptation. In *Proceedings of the Conference on Neural Information Processing Systems*,
 647 2018b.

648

649 Jianglin Lu, Jie Zhou, Yudong Chen, Witold Pedrycz, and Kwok-Wai Hung. Asymmetric transfer
 650 hashing with adaptive bipartite graph learning. *IEEE Transactions on Cybernetics*, 54(1):533–
 651 545, 2023a.

648 Xin Lu, Shikun Chen, Yichao Cao, Xin Zhou, and Xiaobo Lu. Attributes grouping and mining
 649 hashing for fine-grained image retrieval. In *Proceedings of the ACM International Conference on*
 650 *Multimedia*, 2023b.

651 Junyu Luo, Yusheng Zhao, Xiao Luo, Zhiping Xiao, Wei Ju, Li Shen, Dacheng Tao, and Ming
 652 Zhang. Cross-domain diffusion with progressive alignment for efficient adaptive retrieval. *IEEE*
 653 *Transactions on Image Processing*, 2025.

654 Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-
 655 Sheng Hua. A survey on deep hashing methods. 17(1), 2023a. ISSN 1556-4681.

656 Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-
 657 Sheng Hua. A survey on deep hashing methods. *ACM Transactions on Knowledge Discovery*
 658 *from Data*, 17(1):1–50, 2023b.

659 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 660 machines for regression. In *European conference on machine learning*, pp. 345–356. Springer,
 661 2002.

662 Ruitao Pu, Yang Qin, Xiaomin Song, Dezhong Peng, Zhenwen Ren, and Yuan Sun. She: Streaming-
 663 media hashing retrieval. In *International Conference on Machine Learning*, 2025.

664 Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
 665 domains. In *European conference on computer vision*, pp. 213–226. Springer, 2010.

666 Kuniaki Saito and Kate Saenko. Ovanet: One-vs-all network for universal domain adaptation. In
 667 *Proceedings of the ieee/cvf international conference on computer vision*, pp. 9000–9009, 2021.

668 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
 669 Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
 670 learning with consistency and confidence. *Advances in neural information processing systems*,
 671 33:596–608, 2020.

672 Zhenpeng Song, Qinliang Su, and Jiayang Chen. Unsupervised hashing with contrastive learning
 673 by exploiting similarity knowledge and hidden structure of data. In *Proceedings of the ACM*
 674 *International Conference on Multimedia*, 2023.

675 Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu. Learning to hash
 676 with graph neural networks for recommender systems. In *Proceedings of the Web Conference*,
 677 2020.

678 Haomiao Tang, Jinpeng Wang, Yuan Peng, GuangHao Meng, Ruisheng Luo, Bin Chen, Long
 679 Chen, Yaowei Wang, and Shu-Tao Xia. Modeling uncertainty in composed image retrieval via
 680 probabilistic embeddings. In *Proceedings of the 63rd Annual Meeting of the Association for*
 681 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1210–1222, 2025.

682 Yuhao Tang, Junyu Luo, Ling Yang, Xiao Luo, Wentao Zhang, and Bin Cui. Multi-view teacher
 683 with curriculum data fusion for robust unsupervised domain adaptation. In *IEEE International*
 684 *Conference on Data Engineering*, pp. 2598–2611, 2024.

685 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
 686 diction under covariate shift. *Advances in neural information processing systems*, 32, 2019.

687 Rong-Cheng Tu, Xian-Ling Mao, Cihang Kong, Zihang Shao, Ze-Lin Li, Wei Wei, and Heyan
 688 Huang. Weighted gaussian loss based hamming hashing. In *Proceedings of the 29th ACM Inter-
 689 national Conference on Multimedia*, pp. 3409–3417, 2021.

690 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 691 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on*
 692 *computer vision and pattern recognition*, pp. 5018–5027, 2017.

693 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
 694 Springer, 2005.

702 Haixin Wang, Jinan Sun, Xiao Luo, Wei Xiang, Shikun Zhang, Chong Chen, and Xian-Sheng Hua.
 703 Toward effective domain adaptive retrieval. *IEEE Transactions on Image Processing*, 2023a.

704 Haixin Wang, Jinan Sun, Xiang Wei, Shikun Zhang, Chong Chen, Xian-Sheng Hua, and Xiao Luo.
 705 Dance: Learning a domain adaptive framework for deep hashing. In *Proceedings of the ACM Web*
 706 *Conference 2023*, pp. 3319–3330, 2023b.

707 Haixin Wang, Hao Wu, Jinan Sun, Shikun Zhang, Chong Chen, Xian-Sheng Hua, and Xiao Luo.
 708 Idea: An invariant perspective for efficient domain adaptive image retrieval. *Advances in Neural*
 709 *Information Processing Systems*, 36:57256–57275, 2023c.

710 Haixin Wang, Hao Wu, Jinan Sun, Shikun Zhang, Chong Chen, Xian-Sheng Hua, and Xiao Luo.
 711 Idea: An invariant perspective for efficient domain adaptive image retrieval. 2023d.

712 Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning to hash. *IEEE*
 713 *transactions on pattern analysis and machine intelligence*, 40(4):769–790, 2017.

714 Yucheng Wang and Mingyuan Zhou. Uncertainty-aware unsupervised video hashing. In *The 26th*
 715 *International Conference on Artificial Intelligence and Statistics*. PMLR, 2023.

716 Yucheng Wang, Mingyuan Zhou, and Xiaoning Qian. Hashing with uncertainty quantification via
 717 sampling-based hypothesis testing. *Transactions on Machine Learning Research*, 2025.

718 Ziwei Wang, Han Xiao, Yueqi Duan, Jie Zhou, and Jiwen Lu. Learning deep binary descriptors
 719 via bitwise interaction mining. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 720 2022.

721 Frederik Warburg, Martin Jørgensen, Javier Civera, and Søren Hauberg. Bayesian triplet loss: Un-
 722 certainty quantification in image retrieval. In *Proceedings of the IEEE/CVF International confer-*
 723 *ence on Computer Vision*, pp. 12158–12168, 2021.

724 Frederik Warburg, Marco Miani, Silas Brack, and Søren Hauberg. Bayesian metric learning for
 725 uncertainty quantification in image retrieval. *Advances in Neural Information Processing Systems*,
 726 36:69178–69190, 2023.

727 Haifeng Xia, Taotao Jing, Chen Chen, and Zhengming Ding. Semi-supervised domain adaptive
 728 retrieval via discriminative hashing learning. 2021a.

729 Haifeng Xia, Taotao Jing, Chen Chen, and Zhengming Ding. Semi-supervised domain adaptive
 730 retrieval via discriminative hashing learning. In *Proceedings of the 29th ACM international con-*
 731 *ference on multimedia*, pp. 3853–3861, 2021b.

732 Bin Xiao, Yang Hu, Bo Liu, Xiuli Bi, Weisheng Li, and Xinbo Gao. Dlbd: A self-supervised direct-
 733 learned binary descriptor. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 734 *Pattern Recognition*, 2023.

735 Chengyin Xu, Zenghao Chai, Zhengzhuo Xu, Hongjia Li, Qiruyi Zuo, Lingyu Yang, and Chun
 736 Yuan. Hhf: Hashing-guided hinge function for deep hashing retrieval. *IEEE Transactions on*
 737 *Multimedia*, 25:7428–7440, 2023.

738 Yu-Wei Zhan, Xin Luo, Yongxin Wang, and Xin-Shun Xu. Supervised hierarchical deep hashing
 739 for cross-modal retrieval. In *Proceedings of the ACM International Conference on Multimedia*,
 740 2020.

741 Lei Zhang, Ji Liu, Yang Yang, Fuxiang Huang, Feiping Nie, and David Zhang. Optimal projection
 742 guided transfer hashing for image retrieval. *IEEE Transactions on Circuits and Systems for Video*
 743 *Technology*, 30(10):3788–3802, 2019.

744 Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
 745 Yang, Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for ai-generated
 746 content: A survey. *arXiv preprint arXiv:2402.19473*, 2024.

747 Wei Zhao, Cai Xu, Ziyu Guan, Xunlian Wu, Wanqing Zhao, Qiguang Miao, Xiaofei He, and Quan
 748 Wang. Telecomnet: Tag-based weakly-supervised modally cooperative hashing network for im-
 749 age retrieval. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7940–
 750 7954, 2022.

756 **A ACKNOWLEDGMENTS OF LLM USAGE**
757758 We utilized a large language model to aid our writing process, specifically for correcting
759 grammar, improving sentence structure, and fetching related papers. The scientific contributions remain
760 entirely our own.
761762 **B DATASET DETAILS**
763764 We evaluate our method on three widely-used cross-domain benchmarks for unsupervised domain
765 adaptation tasks.
766767 • **Office-Home** (Venkateswara et al., 2017): This dataset contains four distinct domains: Artistic
768 (Ar), Clip Art (Cl), Product (Pr), and Real-World (Re). To ensure a fair comparison with previous
769 work, we follow the standard protocol and establish six cross-domain image retrieval tasks among
770 these domains, including: Pr→Re, Cl→Re, Re→Ar, Re→Pr, Re→Cl, Ar→Re.
771 • **Office-31** (Saenko et al., 2010): This dataset contains 31 categories from three domains: Amazon
772 (Am), Webcam (We), and DSLR (Ds), with a total of over 4000 images. We similarly set up 6
773 image retrieval transfer tasks on this dataset: Am→Ds, Am→We, We→Ds, Ds→Am, We→Am,
774 Ds→We.
775 • **Digits**: For handwritten digit recognition, we utilize the two classic datasets, MNIST (LeCun
776 et al., 1998) and USPS (Hull, 1994). By alternating them as the source and target domains, we
777 constructed 2 transfer tasks: MNIST→USPS and USPS→MNIST.
778779 **C BASELINE DETAILS**
780781 To comprehensively evaluate our COLA, we selected a series of state-of-the-art domain-adaptive
782 hashing algorithms as comparative baselines, covering both unsupervised and adaptive hashing cat-
783 egories. To ensure fairness in comparison, the experimental results of all baseline methods were
784 reproduced to match the reported results in their original publications. The core ideas of the base-
785 line methods are briefly summarized as follows.
786787 • **ITQ** (Gong et al., 2012): A simple yet efficient alternating minimization algorithm with both
788 supervised and unsupervised learning paradigms.
789 • **OCH** (Liu et al., 2018): Approximates ordinal relations by a tensor ordinal graph, and employs
790 ordinal constraint projection with a small set of centroids.
791 • **DSH** (Jin et al., 2013): A variant of locality-sensitive hashing (LSH), which employs random
792 projections to generate multi-view representations for metric learning.
793 • **SGH** (Jiang & Li, 2015): Designed to compress high-dimensional data in a bit-wise manner,
794 well-suited for large-scale semantic similarity learning tasks.
795 • **GraphBit** (Wang et al., 2022): Explores bit-level interactions among features in continuous space,
796 substantially alleviating the expensive search costs arising from training convergence difficulties
797 in reinforcement learning.
798 • **GTH-g** (Zhang et al., 2019): Selects the optimal hashing mapping functions for target-domain
799 data based on source-domain samples.
800 • **PWCF** (Huang et al., 2020): Leveraging a Bayesian model for learning discriminative hash codes
801 and infers the similarity structure through histogram features.
802 • **DHLing** (Xia et al., 2021a): Optimizes hash codes through learnable clustering, and introduces a
803 memory-bank mechanism to mitigate the effects of domain shift.
804 • **DAPH** (Huang et al., 2021): Learning domain-invariant feature projections, which effectively
805 reducing distribution discrepancies.
806 • **PEACE** (Wang et al., 2023a): Applies pseudo-labeling techniques to learn target semantics, and
807 subsequently minimizes domain transfer through implicit and explicit strategies.
808 • **DANCE** (Wang et al., 2023b): A dual-level hashing learning framework that optimizes cross-
809 domain high-level feature prototypes via contrastive learning.

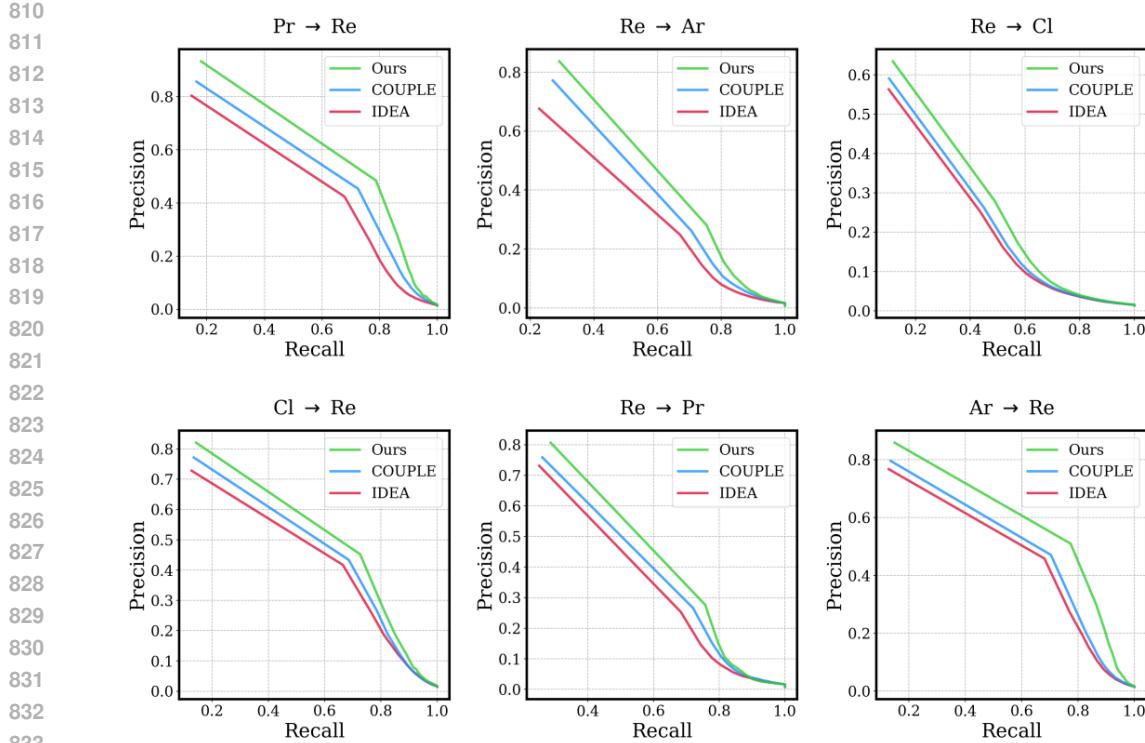


Figure 9: Precision-recall curves with 64 bits hash code on Office-Home Dataset.

- **IDEA** ([Wang et al., 2023d](#)): Decomposes visual representations into causal features which carry label information and non-causal features, and generates hash codes from the causal components.
- **COUPLE** ([Luo et al., 2025](#)): Simulates the dynamic process via graph flow diffusion, and employs hierarchical mixup to achieve progressive cross-domain alignment.

D MORE EXPERIMENT RESULTS

D.1 PERFORMANCE COMPARISON

To gain deeper insights into the effectiveness of our method, we also conduct qualitative analysis experiments. We compared different approaches by using precision-recall curves, Top-N precision curves, and Top-N recall curves, as shown in Figure 9, 10, and 11.

From the precision-recall curves in Figure 9, our COLA consistently outperforms all baseline methods across different cross-domain tasks on the Office-Home dataset. The curves demonstrate that COLA maintains higher precision values at all recall levels, indicating superior retrieval quality. Notably, the area under the PR curves for our method is significantly larger than that of competing approaches, suggesting more robust performance across varying similarity thresholds. The Top-N precision analysis in Figure 10 reveals that COLA achieves the highest precision scores across different values of N. This improvement is particularly pronounced when N is small, which is crucial for practical retrieval applications where users typically focus on top-ranked results. The consistent performance advantage across all six cross-domain tasks demonstrates the generalizability of our uncertainty calibration mechanism. Similarly, the Top-N recall curves in Figure 11 show that our method achieves superior recall rates compared to baseline approaches. The faster convergence of recall curves indicates that COLA can retrieve more relevant items within smaller candidate sets, which is essential for efficient large-scale retrieval systems. The substantial improvement margins across different domain adaptation scenarios validate the effectiveness of our conformal prediction-based calibration strategy in handling domain shift challenges.

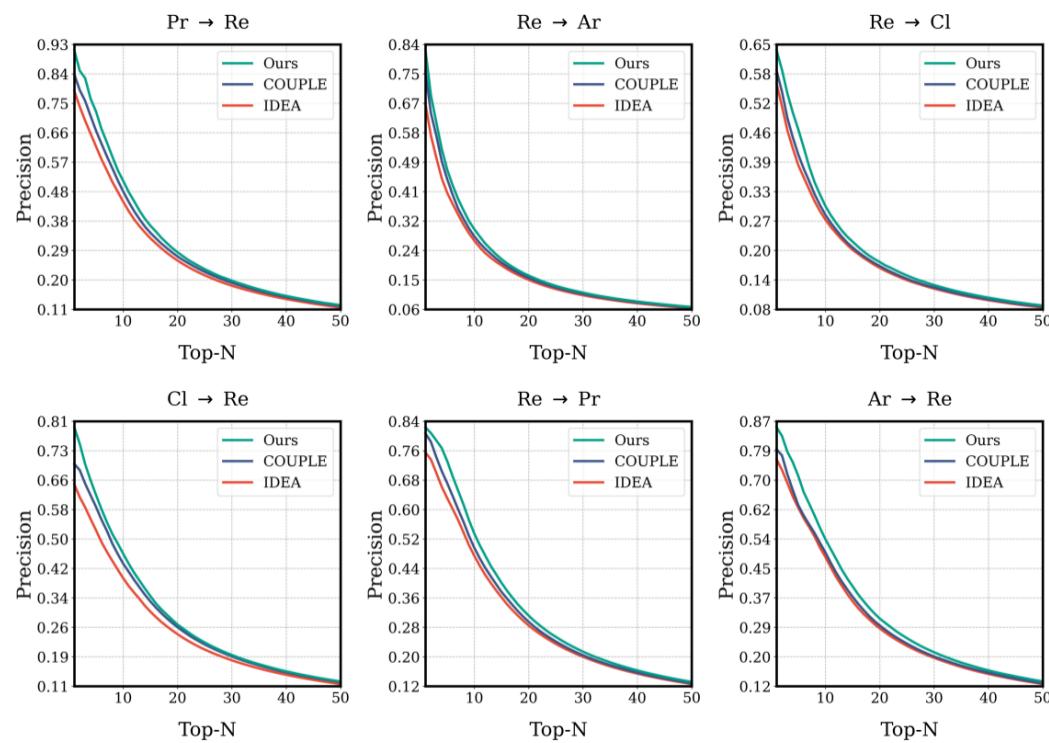


Figure 10: Top-N precision curves with 64 bits hash code on Office-Home Dataset.

Table 4: Ablation studies on the Office-Home with 64 bit hash code.

Variants	SC	RC	SR	Pr→Re	Cl→Re	Re→Ar	Re→Pr	Re→Cl	Ar→Re	Avg.
COLA (None)				59.65	46.47	49.66	59.56	31.92	47.56	49.14
COLA-SC	✓			59.92	47.08	49.89	59.81	32.07	47.82	49.43
COLA-RC		✓		60.83	48.64	51.33	61.22	35.84	52.70	51.76
COLA-SR			✓	61.41	47.77	52.24	61.69	35.11	51.06	51.55
COLA w/o SC	✓	✓		65.13	48.89	54.12	65.97	40.01	53.04	54.53
COLA w/o RC	✓		✓	65.95	49.39	56.16	66.87	39.68	53.18	55.21
COLA w/o SR	✓	✓		65.25	49.30	53.29	65.62	39.95	55.03	54.74
COLA (Full Model)	✓	✓	✓	67.04	52.65	57.23	67.88	41.71	57.35	57.31

D.2 ABLATION STUDY

To investigate the effectiveness of the core components in COLA, we conduct comprehensive ablation studies by systematically removing or modifying key components from the full model. We define several ablation variants to analyze different aspects of our approach:

- **COLA(Full Model):** The complete COLA with all proposed components including semantic-level calibration, representation-level calibration, and self-regulating mechanism.
- **COLA w/o SC:** Removes the conformal prediction-based semantic uncertainty quantification module, using standard pseudo-labeling without uncertainty estimation.
- **COLA w/o RC:** Excludes the bit-wise reliability modeling component, treating all hash bits equally without considering their individual confidence levels.
- **COLA w/o SR:** Disables the dynamic objective balancing mechanism, using fixed weights for different loss components throughout training.
- **COLA-SC:** Retains only the semantic-level calibration component while removing other modules.

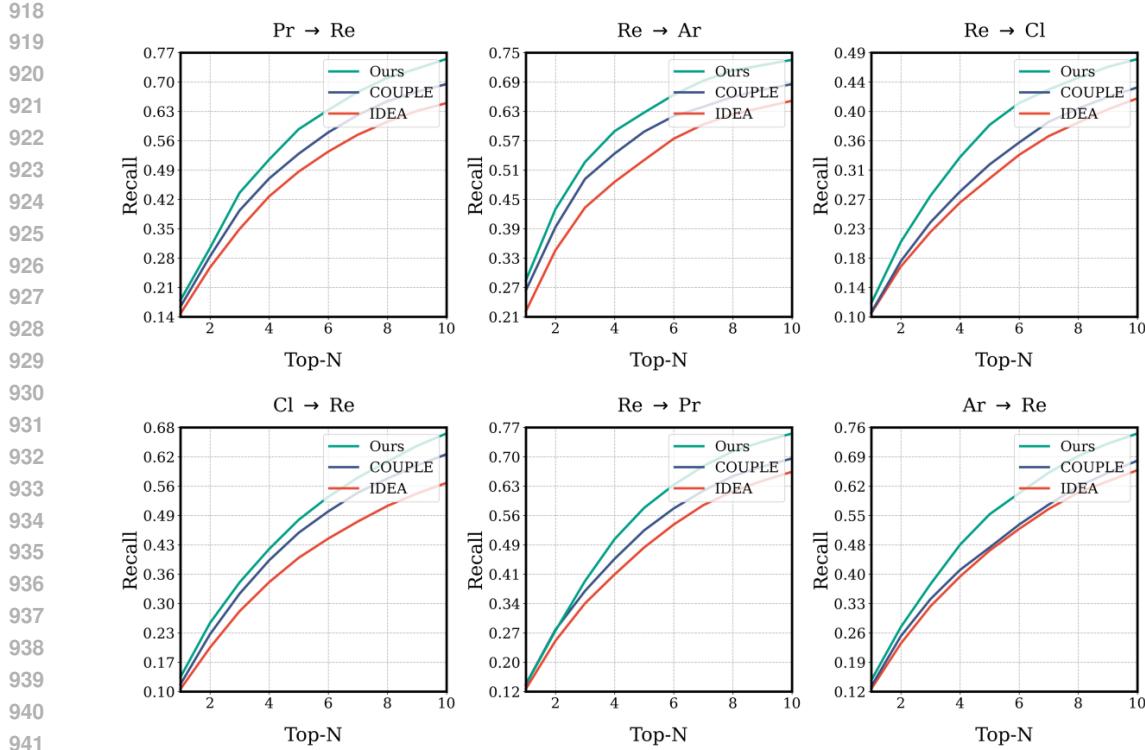


Figure 11: Top-N recall curves with 64 bits hash code on Office-Home Dataset.

- **COLA-RC**: Keeps only the representation-level calibration while excluding semantic and self-regulating components.
- **COLA-SR**: Maintains only the dynamic balancing mechanism without uncertainty calibration modules.
- **COLA(None)**: Removes all three core components, which reduces to a standard deep unsupervised domain adaptive hashing baseline that relies solely on basic source supervision, a standard quantization loss, and an unweighted domain alignment loss.

Table 3 reports the comprehensive retrieval performance comparison of these ablation variants on the Office-Home dataset across all six cross-domain tasks. The experimental results provide several important insights:

Impact of Semantic-Level Calibration: Removing the conformal prediction-based semantic calibration leads to the most significant performance degradation, with average mAP dropping from 57.31% to 54.53%. This substantial decrease demonstrates the critical importance of uncertainty quantification in generating reliable soft pseudo-labels. Without proper semantic uncertainty estimation, the model struggles to distinguish between confident and uncertain predictions, leading to noisy supervision signals that harm domain alignment effectiveness.

Importance of Representation-Level Calibration: Excluding the bit-wise reliability modeling results in a notable performance decline to 55.21% average mAP. This confirms that not all hash bits contribute equally to the final representation quality, and modeling individual bit confidence is essential for robust cross-domain hashing. The representation-level calibration enables the model to focus on reliable bits while suppressing unreliable ones during the learning process.

Effectiveness of Self-Regulating Mechanism: Disabling the dynamic objective balancing leads to a performance drop to 54.74% average mAP. This validates the importance of adaptively adjusting the learning objectives based on real-time uncertainty estimates. The self-regulating mechanism prevents the model from over-fitting to uncertain predictions and ensures stable training dynamics across different domain adaptation scenarios.

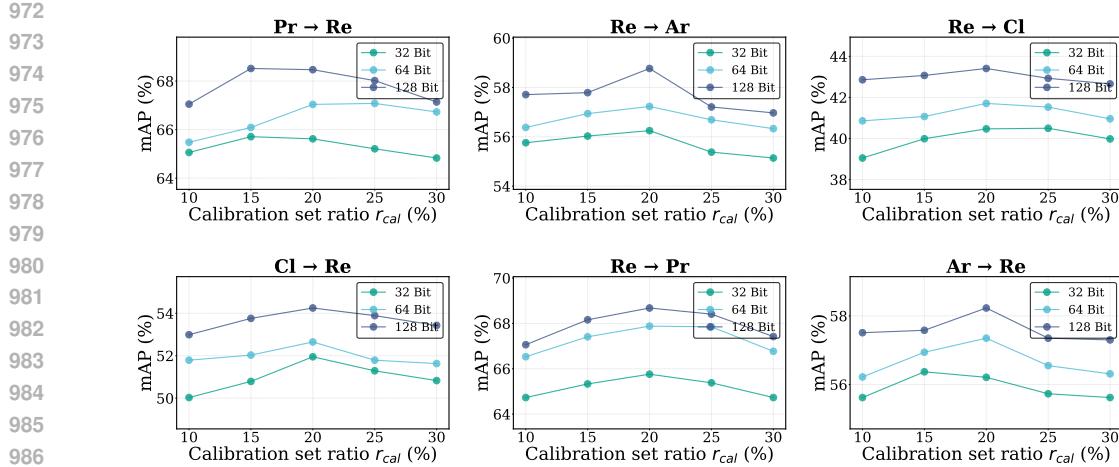


Figure 12: Sensitivity analysis on calibration set ratio r_{cal} on Office-Home with different hash code lengths.

Table 5: Retrieval time cost (ms) varies with code length.

	16 Bit	32 Bit	48 Bit	64 Bit	96 Bit	128 Bit
<i>Dense Vector</i>	440.3	493.0	547.0	605.3	659.7	700.3
<i>Vanilla Hash Code</i>	15.38	17.94	20.32	18.97	21.83	22.37
<i>UWHD</i>	15.94	18.55	21.00	19.63	22.59	23.20
<i>Speed Up</i>	27.62 \times	26.58 \times	26.05 \times	30.83 \times	29.20 \times	30.19 \times

Individual Component Analysis: The variants with only single components (Only Semantic: 53.89%, Only Representation: 53.12%, Only Self-Regulating: 52.95%) all perform significantly worse than the full model, indicating that the synergistic combination of all components is crucial for optimal performance. Each component addresses different aspects of the cross-domain hashing challenge, and their integration creates a more robust and effective framework.

These ablation results conclusively demonstrate that each proposed component contributes meaningfully to the overall performance, and their combination in COLA achieves the best balance between uncertainty calibration and cross-domain adaptation effectiveness.

D.3 SENSITIVITY ANALYSIS

We conduct the sensitivity analysis to evaluate the robustness of our COLA with respect to the hyperparameter calibration set ratio r_{cal} . The analysis is performed on the Office-Home dataset with different hash code lengths. Figure 12 shows all experimental results of sensitivity analysis.

D.4 CASE STUDY

We perform hash-based retrieval and present the top-5 results in Figure 13. COLA achieves higher retrieval accuracy than advanced baselines, validating the effectiveness of our proposed approach and benefiting downstream retrieval-based tasks. From the results, we can observe that our COLA not only achieves higher retrieval performance compared to the baselines but also have the ability to capture more accurate retrieval semantics.

D.5 SPEED TEST

In this part, we conducted a speed evaluation COLA and dense vector retrieval. Following previous works (Luo et al., 2025), we use a database of 10^6 items. Each method was run 10^3 times. We report the average retrieval time (ms) in Table 5. The results indicate that COLA could achieve substantially faster retrieval than dense vectors, and the inference-time calibration will not affect

Figure 13: Case study on COLA, COUPLE and IDEA. Query the top 5 images on the Office-31 with 64 bits hash code.

the efficiency, underscoring COLA’s efficiency in large-scale retrievals. Since the inference-time metric is binarized into masked Hamming distance, it remains compatible with standard hardware-accelerated bitwise operations and existing ANN indexing structures.

D.6 CALIBRATION STRATEGY ANALYSIS

To validate our calibration set construction, we compared our target centroid-based strategy with random, per-class, and density-aware sampling on Office-Home. As shown in Table 6, our method achieves the lowest MMD (0.0025) and highest mAP, indicating that our D_{cal} best approximates the target distribution D_t .

Table 6: Comparison of calibration set selection strategies on Office-Home (Ar→Re).

Strategy	mAP (%)	MMD (D_{cal}, D_t)
Ours	56.34	0.0025
Random Sampling	55.21	0.0087
Per-Class Sampling	55.67	0.0057
Density-Aware (K-Means)	55.85	0.0032

D.7 DYNAMIC ALPHA ABLATION

We compared our dynamic α mechanism with a fixed α baseline. Table 7 shows that dynamic α consistently outperforms fixed α across all datasets, achieving higher mAP and better empirical coverage (closer to $1 - \alpha$). The EMA parameter 0.7 was chosen to balance stability and adaptability.

We further investigated the impact of the EMA smoothing parameter α_{sm} . As shown in Table 8, $\alpha_{sm} = 0.7$ yields the best performance, providing an optimal balance between stability and adaptivity.

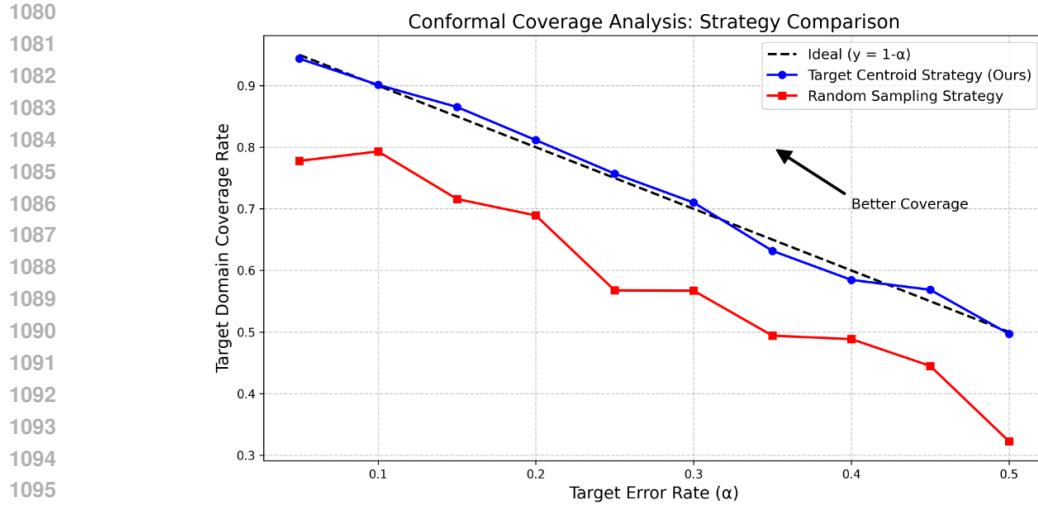


Figure 14: Conformal coverage analysis comparing our Target Centroid Strategy with Random Sampling. Our method (blue) closely follows the ideal coverage line ($y = 1 - \alpha$), while random sampling (red) exhibits significant deviation.

Table 7: Ablation study of Fixed α vs. Dynamic α .

Dataset	mAP (%)		Coverage	
	Fixed α	Dynamic α	Fixed α	Dynamic α
Office-Home	55.22	57.31	0.87	0.91
Office-31	66.43	67.11	0.88	0.93
Digits	69.57	70.41	0.91	0.94

D.8 STANDARD HAMMING DISTANCE COMPARISON

To verify that our performance gain is not solely due to the weighted distance metric, we evaluated a variant *COLA (w/ Standard Hamming)* which uses the full model but retrieves with standard Hamming distance. As shown in Table 9, it still outperforms the best baseline **COUPLE**.

D.9 THEORETICAL DISCUSSION

Theorem 3.1 indicates that the coverage guarantee depends on minimizing the TV distance between conformity score distributions. While directly computing this TV distance is intractable, our Representation Calibration (RC) serves as an effective empirical proxy. By enforcing bit stability, RC implicitly aligns the feature distributions of the source and target domains. As shown in our ablation study, the inclusion of RC significantly improves mAP (+2.62%), suggesting that it effectively reduces the distributional discrepancy and thus tightens the theoretical bound.

E PROOF

Here we provide the detailed proof for Theorem 3.1. This theoretical guarantee of conformal prediction relies on the assumption that minimizing the feature distribution discrepancy (e.g., via MMD) effectively reduces the total variation distance between the conformity score distributions. This assumption holds approximately when the conditional distribution of conformal scores can be well approximated by a broad class of distribution families (Gretton et al., 2012). In such cases, the reduction of feature discrepancy implies the closeness of distributions. Conformal Prediction under covariate shift or distribution shift has been explored in prior work (Tibshirani et al., 2019; Barber et al., 2023; Guan, 2023). For a comprehensive introduction to conformal prediction, we refer the reader to Angelopoulos & Bates (2021).

Table 8: Impact of EMA smoothing parameter α_{sm} on mAP (%).

Dataset	$\alpha_{sm} = 0.5$	$\alpha_{sm} = 0.6$	$\alpha_{sm} = 0.7$	$\alpha_{sm} = 0.8$	$\alpha_{sm} = 0.9$
Office-Home	57.22	57.28	57.31	56.97	56.93
Office-31	66.83	67.03	67.11	66.71	66.56
Digits	69.98	70.34	70.41	70.33	70.13

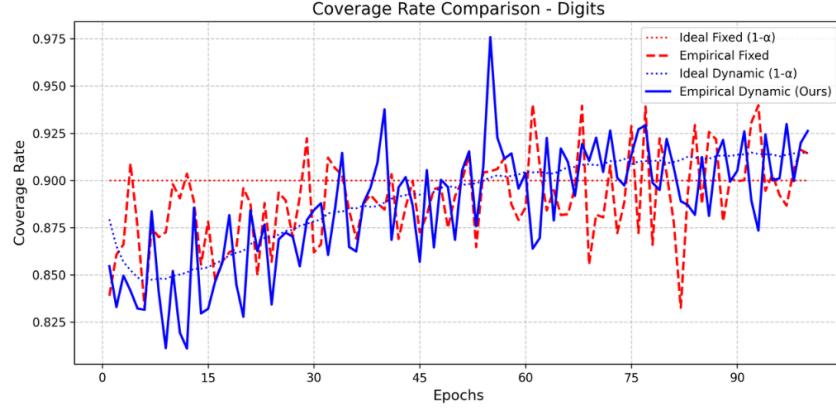


Figure 15: Coverage rate comparison on Digits dataset. Fixed α (red dashed) leads to under-coverage in early training, while our Dynamic α (blue solid) adaptively adjusts to maintain stable coverage around the ideal level.

Theorem E.1 (Coverage Guarantee for Conformal Prediction under Domain Shift). *Let d_{TV} denote the total variation distance. Suppose (X_{train}, Y_{train}) and (X_{test}, Y_{test}) are random samples from the source and target distributions, respectively. Let \hat{q}^W be derived from equation 1. Then, the following coverage guarantee holds for the target domain:*

$$\mathbb{P}(s(X_{test}, Y_{test}) \leq \hat{q}^W) \geq 1 - \alpha - d_{TV}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \quad (12)$$

If we further assume that the conformal score has a continuous distribution in both domains, then we also have the upper bound:

$$\mathbb{P}(s(X_{test}, Y_{test}) \leq \hat{q}^W) \leq 1 - \alpha + \frac{1}{n+1} + d_{TV}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \quad (13)$$

Proof. By the coverage guarantee of conformal prediction on the source domain (Theorem 2.1 of Lei et al. (2018)), we have:

$$\mathbb{P}(s(X_{train}, Y_{train}) \leq \hat{q}^W) \geq 1 - \alpha. \quad (14)$$

Recall that for any two random variables U and V , the total variation distance is defined as

$$d_{TV}(U, V) = \sup_{A \in \mathcal{F}} |\mathbb{P}(U \in A) - \mathbb{P}(V \in A)|. \quad (15)$$

Here \mathcal{F} is the σ -algebra of measurable events. Now, consider the event $A = \{s \leq \hat{q}^W\}$. Applying the definition of total variation, we immediately obtain:

$$\begin{aligned} & \mathbb{P}(s(X_{test}, Y_{test}) \leq \hat{q}^W) \\ &= \mathbb{P}(s(X_{train}, Y_{train}) \leq \hat{q}^W) - (\mathbb{P}(s(X_{train}, Y_{train}) \leq \hat{q}^W) - \mathbb{P}(s(X_{test}, Y_{test}) \leq \hat{q}^W)) \\ &\geq 1 - \alpha - d_{TV}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \end{aligned} \quad (16)$$

If we further assume that the conformal score has a continuous distribution in both domains, then by the upper bound for conformal prediction on the source domain (Lei et al., 2018), we have:

$$\mathbb{P}(s(X_{train}, Y_{train}) \leq \hat{q}^W) \leq 1 - \alpha + \frac{1}{n+1}. \quad (17)$$

1188 Table 9: Standard Hamming Distance Comparison on Office-Home (64 bits).
1189

Method	Avg mAP
COUPLE	54.56
COLA (w/ Standard Hamming)	56.23
COLA (Full w/ UWHD)	57.31

1196 Following the same logic as the proof of the lower bound, we can obtain the corresponding upper
1197 bound:

$$\begin{aligned}
 1198 \quad & \mathbb{P}(s(X_{test}, Y_{test}) \leq \hat{q}^W) \\
 1199 \quad & = \mathbb{P}(s(X_{train}, Y_{train}) \leq \hat{q}^W) + (\mathbb{P}(s(X_{test}, Y_{test}) \leq \hat{q}^W) - \mathbb{P}(s(X_{train}, Y_{train}) \leq \hat{q}^W)) \\
 1200 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1201 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1202 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1203 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1204 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1205 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1206 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1207 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1208 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1209 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1210 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1211 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1212 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1213 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1214 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1215 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1216 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1217 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1218 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1219 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1220 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1221 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1222 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1223 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1224 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1225 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1226 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1227 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1228 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1229 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1230 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1231 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1232 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1233 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1234 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1235 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1236 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1237 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1238 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1239 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1240 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 1241 \quad & \leq 1 - \alpha + \frac{1}{n+1} + d_{\text{TV}}(s(X_{train}, Y_{train}), s(X_{test}, Y_{test})). \\
 \end{aligned} \tag{18}$$

1204 This completes the proof. \square