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Abstract

Sparse dictionary learning (DL) has emerged as a
powerful approach to extract semantically mean-
ingful concepts from the internals of large lan-
guage models (LLMs) trained mainly in the text
domain. In this work, we explore whether DL
can extract meaningful concepts from less human-
interpretable scientific data, such as vision foun-
dation models trained on cell microscopy images,
where limited prior knowledge exists about which
high-level concepts should arise. We propose a
novel combination of a sparse DL algorithm, Iter-
ative Codebook Feature Learning (ICFL), with
a PCA whitening pre-processing step derived
from control data. Using this combined approach,
we successfully retrieve biologically meaning-
ful concepts, such as cell types and genetic per-
turbations. Moreover, we demonstrate how our
method reveals subtle morphological changes aris-
ing from human-interpretable interventions, offer-
ing a promising new direction for scientific discov-
ery via mechanistic interpretability in bioimaging.

1. Introduction

Large scale machine learning systems are extremely effec-
tive at generating realistic text and images. However, these
models remain black boxes: it is difficult to understand how
they produce such detailed reconstructions, and to what
extent they encode semantic information about the target
domain in their internal representations. Investigation of
how models encode and use high-level, human-interpretable
concepts is challenging due to the “superposition hypothe-
sis” (Bricken et al., [2023)), which states that neural networks
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encode many more concepts than they have neurons, and
as a result, one cannot understand the model by inspecting
individual neurons. One hypothesis for how neurons encode
multiple concepts at once is that they are low-dimensional
projections of some high-dimensional, sparse feature space.
Quite surprisingly, there is now a large body of empirical
evidence that supports this hypothesis in language models
(Mikolov et al., 2013} |[Elhage et al., 2022} [Park et al., [2023),
games (Nanda et al.| 2023) and multimodal vision models
(Rao et al., [2024), by showing that high-level features are
typically predictable via linear probing. Further, recent
work has shown that model representations can be decom-
posed into human-interpretable concepts using dictionary
learning models, estimated via sparse autoencoders (SAEs,
Templeton, 2024; Rajamanoharan et al., 2024bza; |Gao et al.,
2024).

However, these successes rely on some form of text su-
pervision, either directly through next-token prediction or
indirectly via contrastive objectives like CLIP (Radford
et al., [2021), which align text and image representations.
Further, these successes appear in domains which are natu-
rally human-interpretable (i.e. text, games, natural images).
As aresult, one may worry that high-level features can be
extracted only in settings that we already understand. This
raises a natural question: can we extract similarly mean-
ingful high-level features from completely unsupervised
models in domains where we lack strong prior knowledge?

For example, in computational biology, masked autoen-
coders (MAE) trained on cellular microscopy images have
been shown to be very effective at learning representations
that recover known biological relationships (Kraus et al.,
2024). However, it is not known whether analogous high-
level features can be extracted from large MAE-based foun-
dation models of cell microscopy data. These settings are
precisely where extracting high-level features could be most
valuable: given that models can detect subtle differences
in images (even those that are very challenging for human
experts to interpret), we might hope that the mechanistic in-
terpretability techniques would enable better understanding
of the ways in which these subtle differences arise.

In this work, we study the extraction of high-level features
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Figure 1. Graphical abstract illustrating our algorithmic approach to biological concept interpretability from cell image data,
consisting of (A) token-wise embeddings of cell images learned by a masked autoencoder (MAE), (B) reconstruction of the averaged token
x; through a large codebook Wy.. and sparse feature vector z; of sparsity K, which both get updated through (C) iterative codebook
feature learning (ICFL) adapted from the matching pursuit algorithm for J iterations. The learned codebook columns represent feature
directions (orange) which correlate with (D) biological concepts visualized as cell images ranked according to the correlation strength with
three selected features. Each feature captures distinct cellular morphologies: Feature #1 activates for cells with an elongated, spindle-like
shape (left) and anti-correlates for sparser and clumped cells (right); Feature #2 activates for cells that are densely packed with closely
arranged nuclei (left) and deactivates when cell density drops (right); and Feature #3 activates for compact, round, bright cells without
cell-cell contacts almost entirely made up from just nuclei (left), in contrast to multi-nucleated cells which occupy larger areas (right).

from large-scale MAEs trained on microscopy images from
a cell screening campaign containing cells that have been
modulated with genetic and/or small molecule perturbations
(Fay et al.1|2023)). Understanding the morphological changes
induced by such perturbations is an inherently difficult and
fundamental problem that plays a crucial role in drug dis-
covery (Celik et al., [2024)). Recent progress in this field
has been made by using machine learning to learn represen-
tations of perturbations based on their corresponding cell
images (Figure[T]A). One direction to analyze their meaning-
fulness is to build relationship maps, such as by computing
cosine similarities of post-processed MAE representations
of cell images (Kraus et al.;,2024; |Celik et al., 2024; Lazar
et al., [2024; Kenyon-Dean et al.l 2025). However, these
deep learning-based methods provide limited insights about
the morphological changes arising from the perturbations:
we can tell whether two perturbations are similar (or dis-
similar) via cosine similarity, but we cannot tell why (or
the ways in which) they are different. That is, we collapse
the relationships between multidimensional representations
down to a single score.

If we are to use dictionary learning in this context, we need
to address three questions. First, how do we extract sparse
features from MAEs? While it is possible to learn some fea-
tures using TopK SAEs (Makhzani & Frey} 2013;|Gao et al.
2024)), we find that we achieve both better reconstruction
and more selective features using an efficient variant of the
matching pursuit algorithm (Mallat & Zhang| [1993). Our
new proposed algorithm, Iterative Codebook Feature Learn-
ing (ICFL, Figure[TB-C), naturally avoids “dead” features

(§ , and is combined with PCA whitening on a control
dataset which acts as a form of weak supervision (§ E]), to
further improve selectivity of the extracted features (§[6).

Second, given that MAEs are not supervised with text or any
other labels or annotations, do we learn interesting concepts
at all? We find that the DL approaches extract a wide variety
of semantically meaningful features. Some are relatively
simple, like light leaks or dead cells, while others capture
biologically-meaningful concepts (Figures[ID &[6).

Finally, we ask how do we evaluate the biological content
of the sparse features? We achieve such interpretations by
directly involving domain experts to assess feature quality
and biological relevance (Figures [I[D & [6)), and we intro-
duce a carefully curated linear probing benchmark (§ 5] &
§[6.2) to show that ICFL extracts features of a compara-
ble interpretability level to biology-informed hand-crafted
features.

In summary, we show how dictionary learning can be used
to extract features from a large scale masked autoencoder
trained on microscopy images (Kraus et al., 2024). We
find features correlated with meaningful concepts, such as
individual cell types or genetic perturbations. Moreover, via
linear probing, we show that the learned features preserve
significant amounts of biologically meaningful information.

2. Related work

Dictionary Learning The dictionary learning (DL) prob-
lem became popular in the 1990’s (Mallat & Zhang| {1993}
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w/o PCA whitening w/ PCA whitening

ICFL 55 341
TopK 7640 8026

Table 1. The number of “dead features” (out of 8192) activated
less than a fraction of 107 x during the last 1000 training steps,
for both TopK and ICFL with and without PCA whitening (§[3).

Olshausen & Field, |1996) and has since been extensively
studied in the literature (e.g., (Aharon et al., [2006}; |Donoho
et al, 2001; Spielman et al., [2012))). Recently, (Bricken
et al.l |2023)) proposed to use DL to extract features from
internal representations of LL.Ms, with several follow-up
works (e.g., (Rajamanoharan et al. 2024bza; |Gao et al.,
2024)), including different modalities such as vision (e.g.,
(Gortonl 2024; Rao et al., 2024))). These works build upon
the assumption that large-scale transformer models encode
“concepts” as linear directions (as reviewed in (Jiang et al.}
2024)), commonly referred to as the “linear representation
hypothesis”. Rajendran et al.| (2024) provides the theoret-
ical conditions under which “concepts” can be provably
recovered from data. Finally, similar approaches have been
previously employed directly on raw data, such as for cor-
recting unwanted variation in gene expression data (Jacob
et al.,[2016) or for detecting and counting objects by learn-
ing templates in holographic images (Yellin et al., 2017).

Causal representation learning and explainability The
disentanglement and causal representation literature (CRL)
share the goal of learning high-level, interpretable concepts
from data (Bengio et al., 2013} |[Kulkarni et al., 2015; |Hig-
gins et al., 2017} |Chen et al., |2016; |[Eastwood & Williams),
2018}, |Scholkopf et al., 2021). Two key differences with the
dictionary learning approach are: (i) disentanglement/CRL
methods consider low-dimensional representations to cap-
ture the factors of variation in data, whereas overcomplete
dictionary learning seeks a higher-dimensional representa-
tion to capture a large set of sparsely-firing concepts; and (ii)
disentanglement/CRL methods aim to be inherently inter-
pretable, whereas this paper considers a post-hoc approach
to interpret pre-trained models. Related work on post-hoc
explainability also learns “concept vectors” in neural net-
work internal states (Kim et al., 2018;|Ghorbani et al.,[2019);
a key difference is that these methods use class-labeled
data, whereas this paper uses an unsupervised approach to
discover concepts. Another line of feature-visualization
works aim to interpret internal states/neurons by finding
the data points (or gradient-optimized inputs) that lead to
maximal activation (Mordvintsev et al., 2015 |Olah et al.,
2017; Borowski et al., 2021)). In contrast to these local data
point centric approaches, dictionary learning methods seek
global parameters (dictionaries) to explain models.

3. Background

The superposition hypothesis Let 2z € R? denote a repre-
sentation obtained from a transformer model; as an example,
x may be the (aggregated) embedding of a token (resp. to-
kens) after the first half of the transformer layers. Bricken
et al.| (2023) hypothesize that (i) such token representations
x € R? are linear combinations of concepts; (ii) the number
of available concepts M significantly exceed the dimension
of the representation d; and (iii) each token representation
is the sum of a sparse set of concepts. These desiderata are
satisfied by the following model that is widely studied in
compressed sensing and dictionary learning:

M
Wz = Z 2 Wm where ||zllo < d (1)
m=1

where W € R?*M is a latent dictionary matrix and z € R
is a sparse latent vector. In this paper, we will refer to the
columns W, as “feature directions” and z as “features”.

Feature learning using TopK SAEs. Given a set of rep-
resentations {x} Y ;, learning both W and {z}¥ , is a dic-
tionary learning or sparse coding problem (Olshausen &
Field, |1997), with a long history of works proposing effi-
cient algorithms with provable guarantees (Aharon et al.|
2006; |Arora et al., 2014} 2015)). In the context of mechanis-
tic interpretability, the dominant choice for learning these
parameters are two-layer sparse autoencoders (SAEs). In
this paper, we compare to the state-of-the-art method called
TopK SAE, originally proposed by (Makhzani & Freyl,2013)
and recently studied by (Gao et al.||2024)). Following their
notation, the model for tokens ¢ € [N] is:

i = Waeczi + bpr67 with z; = TOPK(Wenc-ri - bpre)7
where TopK(-) is an operator that sets all but the K largest

elements to zero. The parameters {Waec, Wenc, bpre } are

Algorithm 1 Batched-OMP

1: Input: Parameters Wecc, bpre; model representation x;
# sparse features L per iteration and # iterations J
2: Initialize (V) := & — by
3: fort =1TO J do
4:  Select top L columns of Wy, which maximize
<Wdec,m7 x(t)>
5. Solve z(®) = argmin, ||z(") — Wyec2||3 with z non-
zero only for L selected columns
6:  Update z(tT1) ;= 2() — Wye 2®
end for
: Output: Sparse features 2z := Zgzl 2®

[c BN




Towards scientific discovery with dictionary learning

learned by minimizing the reconstruction loss:

N
L(Waec, bpre) := Z i — sz%a where (2)
i=1

/x\i = WdeCTopK(Wencxi - bpre) + bpre~ 3)
A problem with the above optimization is that some feature
directions Wec,m are barely used; that is, we have inactive
features z;,, = 0 for almost all ¢ € [N]. This is called the
“dead feature” phenomenon. To reduce the amount of dead
features, (Gao et al.| [2024) introduce an additional recon-
struction error term containing only these feature directions
to encourage their usage in the reconstruction (see Table|T).

Orthogonal Matching Pursuit The OMP algorithm (Mal{
lat & Zhang},|1993) is widely used in signal processing appli-
cations. It assumes that the dictionary, W, is given, and after
initializing #(°) = x it iteratively finds a k-sparse vector 2
by repeating the following steps:

1. Find the column in W that solves w; =
arg max; |[W," (| and append it to the matrix W,
of selected columns.

2. Solve z() = argmin,, [|z(") — W,z||?

3. Update z(*+1) = () — W, 2(®)

and terminate when either 2(**1) is sufficiently small (i.e.,
the algorithm has converged) or z(*) is k-sparse for some
pre-specified k.

4. Iterative codebook feature learning (ICFL)

We can interpret the OMP algorithm as playing the same
role as the encoder in TopK SAEs in that the algorithm
provides a mapping from a representation, z, to z such that
z is (at most) k—sparse. But standard OMP is not useful
for dictionary learning because (i) the dictionary is pre-
specified and fixed for the duration of the algorithm and (ii)
its sequential operation is slow for large k. With two simple
modifications we address these issues in an algorithm we
call Iterative Codebook Feature Learning (ICFL), which
computes the features z using a batched variant of MP.
During training, we then update the feature directions, Wec,
using gradient descent.

Computing the features 2> using batched-OMP Given
the current matrix of feature directions Wy, we first select
a batch of the top-L columns most aligned with z(*) = z.
Then, we proceed as before, learning the features z(!) that
best reconstruct x ~~ Wdccz(l), using only these columns
(i.e. 201 is L-sparse). Next, to obtain z(?), we repeat this
step, but replace = with the residual 2(?) =  — Wyecz(™M.

Repeating this process, the final output z is taken to be
z= 221:1 2(), Consequently, z is at most k = .J L-sparse.
The key advantage over SAEs is that early iterations subtract
dominant feature directions from z, allowing the algorithm
in later iterations to select a broader set of feature directions
that are not as correlated with the main features in x.

Learning the feature directions using gradient descent
Given the features z, we then update the decoder parame-
ters { Waec, bpre }. We do so via batched gradient descent
minimizing the reconstruction loss:

LICFL(Wdem b) = Z ||xz - Wdeczi - bpre”%- (4)
%

As z; is fixed in this gradient step, the algorithm does not
need to propagate gradients through z in order to learn
an encoder; instead the “encoder” is simply batched-OMP
which will use any feature direction Wye ,, that aligns with
some x;, and hence as long as some x; aligns with Wacc m,
that Wec,m Will receive gradient updates. We find that this
procedure is much more robust against the emergence of
“dead” features during training, as shown in Table[T]

In practice, we initialize Wy, using the standard pytorch
initialization for a linear transform and leverage random
resets to ensure that the columns of Wy, are not too corre-
lated (high correlation is sometimes referred to as feature
collapse). Specifically, after every 100 stochastic gradient
descent steps, we take every pair of columns of Wy, that
have cosine-similarity above 0.9 and randomly initialize
one of the pairs with a vector selected uniformly at random
from the hypersphere. One could think of the random resets
as playing a role analogous to the projection step in pro-
jected gradient descent, in order to enforce the constraint
that cosim(W;, W;) < 1 — 4. However, unlike projected
gradient, we are not deterministically projecting onto the
boundary of the constraint set; instead, the random reset
ensures that we are at some (random) point in the interior
of the constraint set (with high probability). This trades
off the compute costs and algorithmic complexity of a true
projection step for a cheap alternative that works well in
practice. Before running Algorithm [I] we always center
the representations x by subtracting the average representa-
tion of unperturbed samples from the control distribution,
such that the origin represents the unperturbed state. Before
ICFL, we normalize the representations to have unit norm.

4.1. PCA whitening using a control dataset

As dictionary learners seek to minimize the Euclidean dis-
tance between the model representations x and their recon-
structions & = Wyec 2z, the learned features z are naturally
biased towards capturing the dominant directions in the data
(i.e., those that explain the most variance). In biological
applications, these directions will typically correspond bio-
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logical variation that is present in all experiments (e.g. mor-
phological changes induced by the cell cycle), and hence are
not the most useful concepts to learn. To avoid this variation
dominating the reconstruction loss, we use a dataset of con-
trol samples as a form of weak supervision, downweighting
dominant directions in this control dataset as we know they
do not correspond to the biological perturbations of interest.
In particular, let X matrix of representations of n samples
from the distribution of images of unperturbed / control cells,
P(X|0). Let T : X — W(X — p) denote the linear map
the maps the control cells to a distribution with zero mean
and unit covariance, where W is a PCA matrix. By applying
the linear tranformation, 7', to the peturbed cells sampled
from, P(X|4;) (for all perturbations ¢;) before normaliza-
tion, we effectively scale up the differences between pertur-
bation representations. For our multi-cell data, unperturbed
HUVEC-cell images act as our control dataset. Note that
similar PCA whitening on a control dataset has been used
to improve the quality of the learned multi-cell image rep-
resentations (Kraus et al.,2024; Kenyon-Dean et al.| 2025)).

S. Experimental setup

Data source and foundation model We evaluated our DL
approach on two large-scale masked autoencoders trained
on cellular microscopy Cell Painting image data using
256 x 256 x 6 pixel crops as input and a patch size of
8 x 8, following the same procedures as described in Kraus
et al.| (2024)); Kenyon-Dean et al.[(2025). These models were
trained on data from multiple cell types that were perturbed
with CRISPR gene knockout perturbations. Both models
used the architecture hyperparameters from Kraus et al.
(2024); [Kenyon-Dean et al.| (2025), with the smaller of the
two using the ViT-L/8 configuration, while the larger model
used the ViT-G/8 configuration. We refer to these models as
MAE-L and MAE-G, respectively. We obtain a single token
per input crop by aggregating all patch tokens (excluding
the class token). For both the residual stream and the at-
tention output (after the out-projection), the dimension d of

Threshold
Task Classes Samples BTA 0.5 0.2
Cell 23 110,971  97.2% 73 455
type
Batch 272 80,000 87.8% 11 77
siRNA 1,138 81,224 51.6% 0 141
CRISPR 5 79,555 94.6% 0 2
Group 39 57,863 32.1% 0 37

Table 2. Five tasks (§ E]) classified by linear probes trained on well-
level aggregated representations from the residual stream from an
intermediate layer from MAE-G (left) and counted for features with
average selectivity above threshold for at least one label (right).

the tokens (representations) are 1024 and 1664 for MAE-L
and MAE-G, respectively. All the visualizations used Cell
Painting microscopy images from the RxRx1 (Sypetkowski
et al.,[2023) and RxRx3 (Fay et al., 2023) datasets.

We extract the tokens from layers 16 (MAE-L) and 33 (MAE-
G), respectively. The motivation for using intermediate
instead of final layers is that these tokens are more likely
to capture abstract high level concepts that are used by the
model internally to solve the self-supervised learning task
(Alkin et al., [2024). We selected this layer by finding the
maximized linear probing performance on the functional
group task from the original embeddings (§ [5).

Preserving linear probing signals To investigate whether
the features found by sparse DL retain important informa-
tion from the original representation, we define five different
classification tasks (Table @) For each classification task,
we use a separate (potentially overlapping) dataset and split
it into train and test data to distinguish the labels across:

(1) 23 different cell types which are almost perfectly dis-
tinguishable via linear classification.

(2) 272 different experiment batches. Even in controlled
conditions, subtle changes in experimental conditions
can induce strong batch effects, i.e. changes in experi-
mental outcomes due to experiment-specific variations
unrelated to the perturbation that is being tested.

(3) 1138 siRNA perturbations from the RxRx1 dataset
(Sypetkowski et al.| 2023)), where the single-gene ex-
pression is partially (or completely) silenced using
short interfering (si-)RNA, which targets the gene
mRNA for destruction via the RNA interference path-
way (Fire et al.||{1998). As the extent of siRNA knock-
downs is hard to quantify and prone to significant but
consistent off-target effects, we also evaluated:

(4) 5 single-gene CRISPR perturbation knockouts which
induce strong and consistent morphological profiles
across cell types, known as "perturbation signal bench-
marks" (Celik et al., [2024). Unlike the siRNA ap-
proach, CRISPR (Jinek et al.; 2012) cuts the gene DNA
directly, which induces a mutation and represses the
gene function. As perturbations to similar genes often
result in similar visual effect, we also established:

(5) 39 functional gene groups composed of CRISPR
single-gene knockouts categorized by phenotypic rela-
tionships between the genes, including major protein
complexes, as well as metabolic and signaling path-
ways. Each gene group targets similar or related cellu-
lar process, which results in inducing morphologically
similar changes in the cells (Celik et al.,2024).
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Figure 2. Comparison of feature average selectivity scores from CellProfiler (CP) and ICFL for a subset of Task (3). (A) Max avg
selectivity scores for each label in descending order, (B) averaged across labels at different thresholds for CP and sparsity levels for ICFL,
as a function of the average number of non-zero values. (C) Correlation of max avg selectivity scores for each label between CP and ICFL.

To remove the impact of spurious correlations between per-
turbations and batch effects on the test accuracy, we always
use mutually exclusive experiments for test and train data,
except for Task (2), where the goal is to predict the ex-
periment. Except for Task (1), all classification tasks use
HUVEC cells. The representations are always well-level ag-
gregated, i.e. we take the mean over the total of 1,024 (8 x 8
pixel regions) individual 1,024-dimensional tokens from all
36 256 x 256 non-edge crops from an 2, 048 x 2, 048 pixel
image of a given well (Celik et al., 2024). Due to heavy
class imbalance (particularly for Task (1)), we train our
linear probes using logistic regression on a class-balanced
cross-entropy loss and report balanced test accuracy (BTA).

Training the DL models By default, we always choose
a sparsity of K = 100 for TopK SAEs and J =20,L =5
(resulting in a max sparsity of 100) for ICFL as described in
§$[M] and use a total of M = 8192 features. Unless otherwise
specified, we always apply the PCA whitening described in
§ .T]and use representations from the residual stream. We
train the models using 40M tokens (one token per image
crop) with a batch size of 8192 for 300k iterations. Our
learning rate is 5 x 10~° for all experiments. Similar to|Gao
et al.| (2024), we observed that changing the learning rate
has a limited impact on the outcome. We present an ablation
for the learning rate in Appendix

6. Experimental results

In this section, we present our results using features ex-
tracted from ICFL combined with PCA whitening (if not
further specified), and comparing with Top-K SAEs (§[6.3).

6.1. Features are correlated with biological concepts
Initially, we investigate how strongly correlated the features

are with labels from the classification tasks (Table[2).

Selectivity of features for biological concepts For each
dataset associated with a classification task, we extract from
every image a feature vector using the center crop as input to

the MAE. For each feature, we then compute two selectivity
scores: the average, or avg selectivity score, which is the %
of times that the feature is active given that label ¢ occurs
minus the % of times the feature is active given any other
label. As a stronger notion of correlation, we also use
the maximum, or max selectivity score, that subtracts the
maximum % for any other label. The selectivity score has
been originally proposed in the context of neuroscience
(Hubel & Wiesell |1968) and has also been used by (Madan
et al.| 2022) to measure the “monosemanticity” of neurons.

In Table[2] we present the number of features exhibiting an
average selectivity greater than a given threshold for at least
one label, across all five classification tasks. We observe
that dominant concepts, such as cell types, batch effects,
and siRNA perturbations that induce strong morphological
changes, comprise a substantial portion of features display-
ing high selectivity. Moreover, for labels from the functional
gene groups in Task (5), we identify more than 100 features
with selectivity scores of at least 0.1.

Separation along feature directions The selectivity
score analysis showed that activation patterns of the sparse
features can be strongly correlated with genetic perturba-
tions. We now consider the feature directions, and show that
certain feature directions can distinguish specific genetic
perturbations. Specifically, in Figure [3] in each histogram
we plot the cosine similarity of a feature direction with both
(i) representations from a specific siRNA perturbation (blue)
and (ii) representations from all other perturbations (orange).
The plot shows that certain feature directions effectively sep-

DERL2
(F8144)

SPATA2
(F3827)

TMED2
(F7188)

ALG3
(F7647)

same label
other label

-002 001 000 001 -001 000 0.01 0.02 -001 000 001

Figure 3. Cosine similarity histograms for selected pairs of rep-
resentations from Task (3) and features directions, if its associated
perturbation is applied (blue) vs. any other perturbation (orange).
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Figure 4. Comparison of ICFL with TopK SAEs. (A) Balanced test accuracy (BTA) of linear probes trained on the original representation
(solid line) and reconstructions from ICFL and TopK SAEs with and without PCA whitening for five tasks from § (B) Balanced test
accuracy (BTA) as a function of the sparsity (dashed line is the original representation x) for classification Task (5). (C) Cosine similarity
of reconstruction and original representations as a function of sparsity for tokens from a hold-out validation dataset.

arate the two groups, and as such these feature directions
capture important biological information.

Linear probing for biological signals Finally, as a mea-
sure for how much “biologically-relevant” information is
lost when extracting sparse features, we compare the accu-
racy of linear probes on the representations, z, with linear
probes on the reconstructions from ICFL, T = Wdecg. Al-
most the entire signal is preserved for simple concepts such
as cell types, batch effects and perturbations with strong
morphological changes (1,2,4) (Figure EI]A). For the difficult
tasks of distinguishing between many genetic perturbations
(3,5), a substantial amount of the linear signal is preserved.

6.2. Comparison with features from CellProfiler

We compared the average selectivity scores of features from
ICFL with those from a set of 964 handcrafted features gen-
erated by CellProfiler (CP) (Carpenter et al., 2006). These
features were designed by domain experts and are widely
used for microscopy image analysis. In this experiment we
consider a subset of images from the public RxRx1-dataset
(Sypetkowski et al., 2023). CP extracts features for each
cell; for a multi-cell image, we calculate an image-level
CP feature by averaging the CP features from each cell in
the image. The CP features are not sparse; to make them
comparable with the sparse ICFL features, we thresholded
the CP features at o and 1 — « quantiles, with « chosen
such that the average number of non-zeros was ~ 100. A
CP feature was considered to be “activated" when its value,
under perturbation conditions, exceeded these quantiles.

In Figure 2JA, we plotted the highest average selectivity
score for each genetic perturbation, a subset of Task (3). We
found that the features extracted by ICFL almost matched
the selectivity scores of the handcrafted, human-designed
features. Additionally, in Figure 2B, shows the average
score across all labels as a function of various thresholding
levels for the CP features. We again observed that our fea-
tures performed comparably to CP features. Interestingly,
CP features peaked at high levels of non-zeros (=~ 300),
leaving future work to assess whether this peak selectivity
could be matched using deep learning-based approaches
which used significantly fewer non-zero elements. In Fig-

ure 2IC we illustrate the correlation between the best average
selectivity scores from the CP and ICFL features for each
label. We found a strong correlation between the two sets of
features (Pearson coefficient of 0.71), suggesting that ICFL
was capable of identifying features that captured patterns
similar to those detected by CP.

6.3. Comparison of ICFL with TopK SAE

Finally, we found that ICFL, when combined with PCA
whitening, retained more biological signal than TopK SAEs.
We first evaluated the reconstruction of the respective unsu-
pervised DL algorithms by comparing the cosine similarity
between the original and reconstructed representations. Fig-
ure [4[C shows that the reconstruction quality of ICFL was
much higher than TopK SAE for the same sparsity con-
straints when using PCA whitening. We provide further
ablations in Appendix [C]

To evaluate biologically meaningful information retention,
Figure ]A compares the linear probing accuracies for the
two algorithms. Both TopK SAE and ICFL features yielded
a similar linear probing accuracy, while we could see a clear
drop if no PCA whitening was used during pre-processing.
Figure B shows that while we found that increasing the
number of non-zeros improved the average balanced test
accuracy, the effect was not as strong as PCA whitening.

Finally, in Figure 8] we show the selectivity scores for both
ICFL features and TopK SAEs. We saw that ICFL features
consistently achieved higher selectivity scores than TopK
SAE features. Moreover, especially for cell types, we ob-
served a high max selectivity across almost all cell types,
while for more complex features we observed a more modest
selectivity score of more than ~ 0.1 across all labels.

7. Interpretability analysis of cell imaging data

In this section, we illustrate non-trivial patterns captured
by selected features, exemplifying how domain experts can
interpret and validate biological concepts learned by DL. To
understand what parts of each image are most “aligned” with
a particular feature, we generate heatmaps for each image
by calculating the cosine similarity of the feature direction
with each of the 8 x 8 image patch token representations.
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Figure 5. Channel-specific features visualization from selected
single-gene perturbations. Token heatmaps (top) are plotted above
the composite 6-channel images (middle) and channel-specific
staining images (bottom) of selected subcellular compartments,
along with the channel-heatmap Pearson correlation coefficients.

7.1. Channel-specific perturbation signal

We begin by examining the extent to which we can recover
channel-specific signal associated with single-gene pertur-
bations. For this exercise, we queried 3 specific single gene
perturbations: (i) OPA-1, which contributes to the mainte-
nance of correct shape of mitochondria, (ii) ALG-3, which
aids in the modification of proteins and lipids in the en-
doplasmic reticulum (ER) after synthesis, and (iii) TSC-2,
which contributes to the control of the cell size (Figure[5).

OPA-1 The mitochondrial channel shows that most corre-
lated tokens are overlaid with distant regions where enlarged
mitochondria are present (Figure EIA; white arrows). Qual-
itative channel examination highlights this delicate detail
which is not obvious from the composite images, confirming
that our approach identifies channel-specific level of detail.

ALG-3 The most aligned tokens appear specific to regions
of endoplasmic reticulum (ER) and RNA with which ALG-
3 co-localizes. This dense image suggests that our token
heatmap is prevalently focused on ER-specific information
(Figure [5B), which is consistent with ALG-3 function in
aiding the attachment of sugar-like groups to proteins.

TSC-2 We examine the plasma membrane- and Golgi
apparatus-specific channel to relate perturbed cell size con-
trol to the token alignment. We confirm that this channel
correlates most strongly with the queried concept direc-
tion, but this time in a negative direction. As the plasma
membrane — and, hence, cytoplasmic area — are the most
extensive from the cell center, the mostly aligned tokens ap-
pear to focus specifically on regions which are not covered
by the cell membrane Figure[5C). Although this behavior is
harder to interpret, it is suggestive of that the salient feature
for these perturbations is the lack of cell density in a well.

Inverse focus Monitoring of the lack of channel-specific
signal is a plausible explanation in other images where
the tokens are not always co-localized with regions occu-
pied by cells. Several genes appear to follow an “inverse”
trend, including PLK-1, which enables cell cycle progres-
sion through mitosis, and TMED-2, which helps to regulate
intracellular protein transport. While both of these gene per-
turbations render the cells in a characteristic affected state
(small, clumped cells struggling to divide vs. large, spread
out, actively dividing cells), their most aligned tokens cor-
respond to areas not covered by cells, confirmed by highly
negative correlations across all channels (Figure 5D-E).

7.2. Interpretability analysis on single-cell level

‘We continue by focusing on a single feature which demon-
strated a clear biological relationship. This feature is
strongly correlated with gene knockouts from the adherens
Jjunctions pathway, a label from the functional gene pertur-
bation group from Task (5) (§ B). The adherens junctions
are simple to visually interpret as their function is to connect
cell membranes to cytoskeletal elements and form cell-cell
adhesions; they can be thought of as “glue proteins” that
stick cells together to maintain tissue integrity.

The images most correlated with this feature direction re-
flect this disrupted cellular morphology; the images mostly
comprise of small, bright and isolated cells (Figure [6JA-B).
Note that CRISPR genetic perturbation are not perfect and
affect most but not all cells, leaving some cells in an unper-
turbed, control-like state. In the case of adherens junctions,
the perturbation-affected cells would appear round, bright
and isolated, while the cells which seem to have escaped
the perturbation would appear flat, large and wide-spread,
attempting to establish connections with their neighbors,
which we successfully confirm (Figure[GA-B, white arrows).

Strikingly, our token-level heatmaps appear to have recog-
nized the difference between these two cell populations, as
the tokens corresponding to control-like cells are not aligned
with the feature direction of the image (Figure[6C-D, dark
regions). These “dark™ areas consistently belong to cells
whose actin meshwork extensively protrudes away from the
cell center, representative of control-like cells. It appears
that these dark regions are misaligned with the concept di-
rection because these cells do not actively contribute to the
representation of the perturbation; instead, they represent
noisy signal which is present across almost every image. On
the other hand, the regions most correlated with the feature
direction belong to areas surrounding the perturbed, com-
pact cells and appear to form a ring-like pattern around them.
As the perturbation results in smaller and rounder cells, this
suggests that the concept corresponds to the expected but
missing actin (Figure [(B-D, white circles).

Next, we aimed to quantitatively confirm whether the token-
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level heatmaps enable a consistent separation between the
control-like cells and correctly perturbated cells. To do
so, we selected 5 cell images from the adherens junctions
pathway (further shown in Figure[T0)), in which a domain
expert first manually counted the cells, classified each cell
instance as (un-)perturbed, and manually segmented them.
The corresponding token-level heatmaps were then exam-
ined to annotate cell instances by whether they align with
the overall feature direction (‘bright’) or not (‘dark’).

Out of 31 cells which were scored as control-like by the hu-
man annotator, the token level heatmap areas corresponding
to these single cells were “dark” in 27 instances (Table [3).
The darker cell areas correspond to tokens with lower align-
ment to the general concept direction of the image, and
hence are indicative of lower importance of these areas in
the overall image for the functional group classification task.
Overall, we report that the token heatmaps are capable of
recalling 87% of the manually labelled cells by an expert
annotator (Table[3), hinting at the potential of our approach
to separate cell subpopulations in a supervision-free manner.

To remove the human subjectiveness of what constitutes a
‘dark’ vs. ‘bright’ cell in the token heatmap, we continued
to evaluate this cell identity scoring approach in an unbiased
yet quantitative way. To this end, we generated pixel-level
segmentation masks of 3 categories: background, perturbed
cells and unaffected cells (Figure [6[C). The histograms of
the relative token alignment per cell identity confirm a sta-
tistically significant difference between the control-like and
perturbed single-cell instances, which are equally informa-
tive of the perturbation as the background (Figure [6E). As
typical control images are more dense (as in Figure [ID,
feature #2 left), the exposure of image background is an im-
portant characteristic of the adherens junctions phenotype.

In biological systems, complex mixtures of cell morpholo-
gies are frequently observed; however, identifying which ex-
act cell instance belongs to which population would require
deep expertise and time-consuming manual labeling at scale.

Image Manual Labeling ICFL Recall

Cells:  Total Perturbed Control  ‘Control’ [%]
A 28 22 6 6 100.0
B 34 26 8 6 75.0
C 20 17 3 3 100.0
D 23 16 7 6 85.7
E 19 12 7 6 85.7

Total: 124 93 31 27 87.1

Table 3. Tokens align based on single-cell identities in multi-cell
images. ‘Control’ recall is calculated as percentage of control-like
(‘dark’) cells in heatmaps over all human-labeled cells. Note that
‘perturbation’ recall is 100% in all images from Figure[I0}

(B) actin-specific  (C) manual cell (E) token alignment with

channel

(A) composite
image

(D) token

image #1

e 00 02 04 06 08 10
Relative token alignment

Figure 6. Interpretation of single-cell identities from cell images
through (A) composite images and (B) their actin-specific chan-
nel, which strongly correlates with a feature from the adherens
Jjunctions gene group. (C) Segmented single cells classified based
on morphology and interactions with neighbors (white arrows).
Token-level alignment as (D) heatmaps highlighting cells with
ring-like boundaries (white circles) and (E) category histograms
with compared distributions (means as solid lines, one-sided Mann
Whitney U test; ns, no significant difference; **** p < 0.0001).

Tools capable of accurately and effectively disentangling
these mixtures with single-cell precision in an unsupervised
manner therefore remain scarce. Our token-level analysis
presents a potential avenue for enabling modern approaches
to scientific discovery, leveraging methods from mechanistic
interpretability to uncover previously unknown biological
concepts at the resolution of individual cells.

8. Conclusion

In this paper, we have explored the extent to which dic-
tionary learning (DL) can be used to extract biologically
meaningful concepts from microscopy foundation models.
The results are encouraging: with the right approach, we
were able to extract sparse features associated with distinct
and biologically-interpretable morphological traits. That
said, these sparse features are clearly incomplete: their lin-
ear probing performance significantly drops on tasks that
involve more subtle changes in cell morphology. It is not
clear to what extent this limitation stems from our current
DL techniques, the scale of our models, or whether these
more subtle changes are simply not represented linearly in
embedding space. Nonetheless, it is evident that the choice
of the DL algorithm matters to extract meaningful features.

We also proposed a new DL algorithm, Iterative Codebook
Feature Learning (ICFL), and the use of PCA whitening
on a control dataset as a form of weak supervision for the
feature extraction. In our experiments, we found that both
ICFL and PCA significantly improve the selectivity of ex-
tracted features, compared to TopK sparse autoencoders.
We hope that future work further explores the use of DL and
other mechanistic interpretability techniques for scientific
discovery, and the use of ICFL for other modalities like text.
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Impact Statement

This is an exploratory paper in the field of Al-driven sci-
entific discovery. This paper primarily motivates research
on the use of mechanistic interpretability for scientific dis-
covery. The findings support the observation that deep net-
works are able to learn interesting semantically meaningful
features. If future iterations of this work could reliably eluci-
date the mode of action of perturbations on cell, that would
enable a dramatic improvement of our understanding of cell
biology; but to get there, we need more reliable mechanis-
tic interpretability methods of disentangling representations
into biologically meaningful features.
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Figure 7. Decoding of tokens from intermediate transformer layers. (A) Sample reconstructed images when decoding from 3 different
intermediate layers. (B) The relative linear probing accuracy when using the component from the null space, row space and a random
512-dimensional subspace as component compared to the full component. Both Figures use the MAE-G model.

A. Discussion: Linear concept directions in ViT MAEs

We have shown that DL is a powerful approach for finding linear concept directions (features) that are strongly correlated
with biological concepts such as cell-types and genetic perturbations. From an interpretability perspective, a question that
remains, however, is whether these correlations solely appear due to first order effects of complex non-linear structures used
by the model to store abstract information, or whether linear directions are actually inherently meaningful to the model?
While linear causal interventions offer strong evidence that the latter may indeed at least be partially true for large language
models (see e.g.., (Ferrando et al.| 2024) for an overview), there exists relatively little evidence for ViT MAEs besides the
high linear probing accuracies on e.g., natural and microscopy image classification tasks (Huang et al.| 2022} |Alkin et al.|
2024).

In this section, we provide an argument further supporting the hypothesis that MAEs may rely on linear concept directions
when processing data by analyzing at which point in the model are the concepts are the most linearly separable.

Separation into row- and nullspace. We note that standard MAE architectures (Huang et al., [2022) use two different
embedding dimensions for the encoder block and the decoder block. Both blocks are connected via an encoder-decoder
projection matrix W : R *da with, in our case, d. = 1664 (ViT-G model from (Zhai et al., 2022)) and dy = 512. This
projection matrix gives raise to a separation of the the tokens into the row-space and null space of W, © = z;oy + Znun
where only the information stored in x;y is passed to the decoder. ViTs and more generally transformer models have shown
to align the basis across layers, allowing for decoding of tokens from intermediate layers (Alkin et al., 2024)). We visualize
this behavior in Figure[7a] where we show the reconstructions when using the tokens from intermediate layers. Thus, we
observe that the row-space component ', of tokens from early and intermediate layers z® already store a reconstruction

of the masked image that is refined over the layers. Thus the question appears what is the role of the null space component
T, Which won’t be passed to the decoder and thus serves as a “register” (in analogy to (Darcet et al.,[2023))?

Component-wise linear probing We analyze in Figure[7b|the different components, showing the relative linear probing
accuracy of the probing accuracies using the null and row space components, compared to the entire token (dashed line
at 1) across different layers. As observed, the null space component consistently yields the same probing accuracy as the
entire token, while the row space component yields significantly lower accuracy. For comparison, we also show the relative
probing accuracy when using a random d4-dimensional subspace (the same dimension as the row space), which consistently
yields higher accuracy than that obtained from the row space. These findings suggest that biological concepts (i.e., genetic
perturbations) are most linearly separable in the component used only for internal processing during the forward pass and
not passed to the decoder, and therefore aligns with the hypothesis that the model represents abstract concepts as linear
directions accessed by the layers while processing the data (Bricken et al.|[2023).
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Figure 9. The cosine similarity between the original tokens and the reconstructed tokens for ICFL and TopK-SAE, (A) with PCA whitening
and (B) without, as a function of the sparsity (first and third), i.e. # of non-zeros, and log , learning rate (second and fourth).

B. Interpretable features

In this section, we present additional visualizations of crops strongly correlated with selected feature directions. In the spirit
of recent works for LLMs (Bricken et al.| [2023)), we only present a qualitative analysis that aims to highlight non-trivial,
complex, and interpretable patterns captured by these features.

For completeness, Figure [[T|shows the same crops as Figure[I|but this time all 6 most correlated and anti-correlated crops.
We further present in Figures[T2]to[T6|additional examples similar to Figure[T0]for images strongly correlated with different
features. In addition to the heat-map and the entire crop, we also plot the patches that are most strongly correlated with the
feature. We make two important observations: a) we can see clear interpretable patterns for which patches are most strongly
correlated with the cells, posing a promising area for future research on interpreting and validating concept directions found
in large foundation models for microscopy image data; b) we see that the most correlated patches are robust to light artifacts,
which can be seen best in the last column in Figure[12]

C. Ablations

In this section we present ablations on type of token, model size, sparsity and learning rate. If not further specified, we
always use features extracted from ICFL using PCA whitening.

Attention block It is common in the literature to use representations from the MLP output or the attention output (Bricken
et al., [2023; Tamkin et al.,|2023; Rajamanoharan et al.,[2024a). We compare in Table E| the test balanced accuracy when
taking representations from the residual stream and attention output. We observe that both result in similaraccuracies. We
make the same observation in Figure[I7aand [T7b|showing an ablation for the linear probes trained on the reconstruction
using the same setting as described in Section[6] Moreover, we compare in Figure [I8]the selectivity scores as in Figure|[]
confirming further that the residual stream and the attention output show a similar behavior. The only exception is TopK for
cell types, where the attention outputs result in significantly better selectivity scores, however, still substantially below the
ones obtained by ICFL.

Residual stream | 97.2% 87.8% 51.6% 94.6% 32.1%
Attention output | 96.8% 85.8% 52.5% 94.6% 32.1%

Table 4. The balanced test accuracy (BTA) for representations taken from the residual stream (BTA row from Table@) and the attention
output.
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Model size We further investigate the model size, as shown in Figures and where we compare the linear probes
for the MAE-G (referred to as Ph2 with 1.9B parameters) with the much smaller model MAE-L (referred to as Phl with
330M parameters). We observe that for simple tasks like classifying cell types, both models yield similar performances.
However, we observe consistent improvements on complex classification tasks (3,5), both for the probes trained on the
original representations, as well as the reconstructions from ICFL and TopK. This demonstrates that dictionary learning
benefits from scaling the model size.

We further plot in Figure [I9] the selectivity scores. For ICFL, we consistently observe improvements when increasing
the model size, while for TopK SAE, we see a significant drop. Interestingly, this drop does not occur for the probing
accuracy on the reconstructions in Figures [I7aland [I7b] This suggests that, although capturing meaningful signals in the
reconstructions, TopK SAE faces more difficulties in finding “interpretable” features with high selectivity scores from richer
representations post-processed using PCA whitening.

Sparsity As a third ablation, we plot in Figure [9 the cosine similarity of the original tokens and the reconstructed
token from the DL for both TopK-SAE and ICFL. We observe that the reconstruction quality of ICFL is much higher
than TopK SAE for the same sparsity constraints. This trend persists across all levels of sparsity. The unsupervised
reconstruction quality measured by the cosine similarity (or the related /5-error) has been often used as a benchmark for
SAESs (Rajamanoharan et al., 2024a; Gao et al., 2024)).

Learning rate As a last ablation, we also plot in Figure [9]the cosine-similarity for different learning rates. Since PCA
whitening leads to more dense tokens, we expect that a decrease in the cosine-similarities, which is also the case when
comparing the solid lines (w/o PCA whitening) with the dashed lines (w PCA whitening). Except for TopK-SAE with PCA
whitening the reconstruction quality slightly increases with the learning rate (likely due to too few training for small learning
rates) and flattens after a learning rate of 5 x 10~°, which we choose for all experiments in this paper. Moreover, we observe
that TopK-SAE experiences high instabilities when combined with PCA whitening, which is not the case for ICFL.
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(A) Composite Image (B) Actin-Specific Channel  (C) Nucleus-Specific Channel (D) Cell Segmentation Mask (E) Token Alignment Heatmap

&
i

Figure 10. Sample visualizations of (A) composite images and their (B) nuclei- and (C) actin-staining channels which strongly correlate
with a selected feature from a single functional gene group — adherens junctions. Plotted by side are the (D) cell category-specific
single-cell segmentation masks and (E) token-level heatmaps of the inner products of the individual tokens with the selected feature
direction for 5 out of 8 strongest correlated images per feature direction. Highlighted are correctly perturbed cells (yellow masks) and the

cells which most likely remain unperturbed (magenta masks), which are the only instances attempting to establish cell-cell connections
(cyan arrows) as they produce the gene to form functional adherens junctions.
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pos cor.
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pos cor.
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(b) Feature 2 from F1gurel

pos cor.

neg cor.

(c) Feature 3 from Figure

Figure 11. Additional visualization of images most and least correlated with selected concept directions. For each row in Figure[T]
we also include the crops that are the most correlated with the feature direction in the opposite direction. More precisely, for each feature
we show the 6 most positively (first row) and negatively (second row) correlated crops. For each of the three features we observe a clear
concept shift along the feature direction (going from negatively correlated to positively correlated).
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Figure 12. Visualization of sample images aligned with a feature direction with plausible biological interpretation. This feature
appears to be focusing on the endoplasmic reticuli and nucleoli channel (cyan area) surrounding the nucleus. These are expanded relative
to the usual morphology of HUVEC cells.

pi

Figure 13. Visualization of sample images aligned with a feature direction with plausible biological interpretation. This feature
appears to be firing for cells that are unusually large with spread out actin. Note that the feature focuses on the actin channel (red)
surrounding the cell.
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Figure 14. Visualization of sample images aligned with a feature direction with plausible biological interpretation. This feature
appears to be active for long spindly cells, with the features are most aligned for the long “stretched out” section of the cells.

Figure 15. Visualization of sample images aligned with a feature direction with plausible biological interpretation. This feature is
active for tightly clumped cells. The heatmaps are less clearly interpretable for these images, but appear to be active when neighboring
nuclei are touching.
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s T

Figure 16. Visualization of sample images aligned with a feature direction with plausible biological interpretation. This feature
shows a similar behavior to the feature in Figure[T3]
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Figure 17. Comparison of ICFL with TopK SAEs performance. (A) The BTA of linear probes trained on the original representation

(solid lines) and reconstructions from ICFL features and TopK SAEs for representations taken from the residual stream and attention

output of MAE-G (larger model) and MAE-L (smaller model), as well as with PCA whitening and without. (B) Same as (A) but depicting

the relative difference in linear probing accuracy compared to MAE-G residual stream using PCA.
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Figure 18. The selectivity scores as in Figure[§] for ICFL (top row) and TopK (bottom row) when using representations from the residual

stream (green) and the attention block (yellow).
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Figure 19. The selectivity scores as in Figure[§|for ICFL (top row) and TopK (bottom row) when using representations from the residual
stream from MAE-G (green) and MAE-L (yellow) using PCA whitening.
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