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ABSTRACT

Multivariate time series data available for real-world applications typically contain
a significant amount of missing values. A dominant approach for the classification
with such missing values is to heuristically impute the missing values with specific
values (zero, mean, values of adjacent time-steps) or learnable parameters. How-
ever, these simple strategies do not take the data generative process into account,
and more importantly, do not effectively capture the uncertainty in prediction due
to the multiple possibilities for the missing values. In this paper, we propose a
novel probabilistic framework for classification with multivariate time series data
with missing values. Our model consists of two parts; a deep generative model for
missing value imputation and a classifier. Extending the existing deep generative
models to better capture structures of time-series data, our deep generative model
part is trained to impute the missing values in multiple plausible ways, effectively
modeling the uncertainty of the imputation. The classifier part takes the time series
data along with the imputed missing values and classifies signals, and is trained to
capture the predictive uncertainty due to the multiple possibilities of imputations.
Importantly, we show that naı̈vely combining the generative model and the classi-
fier could result in trivial solutions where the generative model does not produce
meaningful imputations. To resolve this, we present a novel regularization tech-
nique that can promote the model to produce useful imputation values that actually
help classification. Through extensive experiments on real-world time series data
with missing values, we demonstrate the effectiveness of our method.

1 INTRODUCTION

Multivariate time-series data are universal; many real-world applications ranging from healthcare,
stock markets, and weather forecasting take multivariate time-series data as inputs. Arguably the
biggest challenge in dealing with such data is the presence of missing values, due to the fundamental
difficulty of faithfully measuring data for all time steps. The degree of missing is often severe, so in
some applications, more than 90% of data are missing for some features. Therefore, developing an
algorithm that can accurately and robustly perform predictions with missing data is considered an
important problem to be tackled.

In this paper, we focus on the task of classification, where the primary goal is to classify given mul-
tivariate time-series data with missing values, simply imputing the missing values with heuristically
chosen values considered to be strong baselines that are often competitive or even better than more
sophisticated methods. For instance, one can fill all the missing values with zero, the mean of the
data, or values from the previous time steps. GRU-D (Che et al., 2018) proposes a more elaborated
imputation algorithm where the missing values are filled with a mixture between the data means and
values from the previous time steps with the mixing coefficients learned from the data. While these
simple imputation-based methods work surprisingly well (Che et al., 2018; Du et al., 2022), they
lack a fundamental mechanism to recover the missing values, especially the underlying generative
process of the given time series data.

Dealing with missing data is deeply connected to handling uncertainties originating from the fact
that there may be multiple plausible options for filling in the missing values, so it is natural to
analyze them with the probabilistic framework. There have been rich literature on statistical analysis
for missing data, where the primary goal is to understand how the observed and missing data are
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generated. In the seminal work of Little and Rubin (2002), three assumptions for the missing data
generative process were introduced, including Missing Completely At Random (MCAR), Missing
At Random (MAR), and Missing Not At Random (MNAR). While MCAR or MAR simplifies the
modeling and thus makes the inference easier, they may be unrealistic for real-world applications,
because they assume that the missing mechanism is independent of the missing values (MAR) or
both missing and observed values (MCAR). MNAR, the most generic assumption, assumes that the
missing mechanism depends on both missing and observed values, so the generative model based
on the MNAR assumption should explicitly take the missing mechanism into account. Based on this
framework, Mattei and Frellsen (2019) presented deep generative models for missing data under
MAR assumption, and this was later extended to MNAR in Ipsen et al. (2021). Combining the deep
generative model and classifier, Ipsen et al. (2022) proposed a hybrid model that can classify missing
data with problematically imputed values generated under MAR assumption.

Still, in our opinion, there is no satisfactory work combining probabilistic generative models for
multivariate time-series data with missing values and classification models, so that the classifier
could consider the uncertainty in filling in the missing values when making predictions. The afore-
mentioned probabilistic frameworks are not designed for classification (Mattei and Frellsen, 2019;
Ipsen et al., 2021), and more importantly, not tailored for time series data (Ipsen et al., 2022). A
naı̈ve extension of Ipsen et al. (2022) for time series is likely to fail; putting the obvious difference
between the static and time series data aside, the fundamental difficulty of learning the generative
models for missing is that there are no explicit learning signals that could promote the model to
generate “meaningful” missing values. Since we don’t have ground truth for the missing values, in
principle, the generative model can generate arbitrary values (e.g., zeros), and the combined classi-
fier can still successfully classify time series data, which is a critical problem that is overlooked in
the existing works.

To this end, we propose a hybrid model combining the deep generative models for multivariate
time series data and the classification models for them. The generative model part is built under
the MNAR assumption, and borrowing the structure of GRU-D (Che et al., 2018), the generative
model is designed to naturally encode the continuity of the multivariate time series data in the gen-
erative process. The classifier then takes the missing values generated from the generative model
and executes classification, and unlike the algorithms based on heuristic imputations, it takes multi-
ple feasible options for the missing values and computes predictions based on them. To tackle the
difficulty in guiding the generative model to generate “meaningful” missing values, we introduce a
novel regularization technique that deliberately erases observed values during training. As a conse-
quence, the classifier is forced to do classification based more on the generated missing values, so
the generative model is encouraged to produce missing values that are more advantageous for the
classification. Using the various real-world multivariate time series benchmarks with missing val-
ues, we demonstrate that our approach outperforms baselines both in terms of classification accuracy
and uncertainty estimates.

2 BACKGROUND

2.1 SETTINGS AND NOTATIONS

Let x = [x1, . . . , xd]
⊤ ∈ Rd be a d-dimensional vector, along with the mask vector s =

[s1, . . . , sd]
⊤ ∈ {0, 1}d, where sj = 1 if xj is observed and sj = 0 otherwise. Given a mask s, we

can split x into the observed part xobs := {xj | sj = 1} and the missing part xmis := {xj | sj = 0}.
For a collection of data, the ith instance is denoted as xi = [xi,1, . . . , xi,d], and si, xobs

i , and xmis
i

are defined similarly. For a multivariate time-series data, we denote the vector of tth time step as
xt = [xt,1, . . . , xt,d] ∈ Rd, and the corresponding mask as st = [st,1, . . . , st,d]. The tth time step
of ith instance of a collection is denoted as xt,i, which is split into xobs

t,i and xmis
t,i according to st,i.

Following Mattei and Frellsen (2019); Ipsen et al. (2021), we assume that the joint distribution of
an input x and a mask s is factorized as pθ,ψ(x, s) = pθ(x)pψ(s|x). The conditional distribu-
tion pψ(s|x) plays an important role for describing missing mechanism. Under MCAR assump-
tion, we have p(s|x) = p(s), under MAR we have pψ(s|x) = pψ(s|xobs), and under MNAR we
have pψ(s|x) = pψ(s|xobs,xmis). The likelihood for the observed data xobs is thus computed as
pθ,ψ(x

obs, s) =
∫
pθ,ψ(x, s)dx

mis.
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2.2 MISSING DATA IMPORTANCE-WEIGHTED AUTOENCODER AND ITS EXTENSIONS

In this section, we briefly review the Missing data Importance-Weighted AutoEncoder (MI-
WAE) (Mattei and Frellsen, 2019), a deep generative model for missing data, and its extensions
to MNAR and supervised settings. Similar to variational autoencoder (VAE) (Kingma and Welling,
2014), MIWAE assumes that a data x is genearted from a latent representation z, but we only ob-
serve xobs with s generated from the missing data model pψ(s|x). MIWAE assumes MAR, so we
have pψ(s|x) = pψ(s|xobs). The log-likelihood for (xobs, s) is then computed as

log pθ,ψ(x
obs, s) = log

∫
pψ(s|xobs)pθ(x

obs,xmis|z)pθ(z)dzdxmis

= log pψ(s|xobs) + log

∫
pθ(x

obs|z)pθ(z)dz︸ ︷︷ ︸
=log pθ(xobs)

. (1)

For the missing data imputation, pψ(s|xobs) is not necessary, so we choose to maximize only the
log pθ(x

obs). The integral is intractable, so we consider the Importance Weighted AutoEncoder
(IWAE) lower bound (Burda et al., 2015),

log pθ(x
obs) ≥ Ez1:K

[
log

1

K

K∑
k=1

pθ(x
obs|zk)pθ(zk)

qϕ(zk|xobs)

]
:= LMIWAE(θ,ϕ). (2)

Here, qϕ(zk|xobs) for k = 1, . . . ,K are i.i.d. copies of the variational distribution (encoder)
qϕ(z|xobs) approximating the true posterior pϕ(z|xobs). Ez1:K

denotes the expectation w.r.t.∏K
k=1 qϕ(zk|xobs). K is the number of particles, and the lower bound gets tighter as K increases

and converges to the upper-bound as K → ∞.

Ipsen et al. (2021) presented not-MIWAE, an extension of MIWAE with MNAR assumption. The
log-likelihood for (xobs, s) under the MNAR assumption is,

log pθ,ψ(x
obs, s) = log

∫
pψ(s|xobs,xmis)pθ(x

obs|z)pθ(xmis|z)pθ(z)dzdxmis, (3)

where we are assuming that (xobs,xmis) are independent given z. The corresponding IWAE lower-
bound with the variational distribution qϕ(x

mis, z|xobs) = pθ(x
mis|z)qϕ(z|xobs) is,

LnotMIWAE(θ,ψ,ϕ) := Ez1:K ,xmis
1:K

[
log

1

K

K∑
k=1

pθ(s|xobs,xmis
k )pθ(x

obs|zk)pθ(zk)
qϕ(zk|xobs)

.

]
, (4)

where Ez1:K ,xmis
1:K

denotes the expectation w.r.t.
∏K

k=1 pθ(x
mis
k |zk)qϕ(zk|xobs).

On the other hand, Ipsen et al. (2022) extended MIWAE to a supervised learning setting, where the
goal is to learn the joint distribution of an observed input xobs, a mask s, and corresponding label y,

log pθ,ψ,λ(y,x
obs, s)

= log

∫
pλ(y|xobs,xmis)pψ(s|xobs,xmis)pθ(x

obs,xmis|z)pθ(z)dzdxmis

= log pψ(s|xobs) + log

∫
pλ(y|xobs,xmis)pθ(x

obs|z)pθ(xmis|z)pθ(z)dz︸ ︷︷ ︸
=log pθ,λ(y,xobs)

, (5)

The term pψ(s|xobs) is irrelevant to the prediction for y, so we choose to maximize
log pθ,λ(y,x

obs), which again can be lower-bounded by IWAE bound with the variational distri-
bution qϕ(z,x

mis|xobs) = pθ(x
mis|z)qϕ(z|xobs):

LsupMIWAE(θ,λ,ϕ) := Ez1:K ,xmis
1:K

[
log

1

K

K∑
k=1

pλ(y|xobs,xmis
k )pθ(x

obs|zk)p(zk)
qϕ(zk|xobs)

]
, (6)

where Ez1:K ,xmis
1:K

denotes the expectation w.r.t.
∏K

k=1 pθ(x
mis
k |zk)qϕ(zk|xobs).
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2.3 GRU FOR MULTIVARIATE TIME SERIES DATA AND IMPUTATION METHODS

We briefly review GRU (Cho et al., 2014) as it is being used as a building block for our method.
Given a multivariate time series (xt)

T
t=1, GRU takes a vector of one time step at a time and accu-

mulates the information into a hidden state ht. Specifically, the forward pass at tth time step takes
xt and updates the hidden state ht as follows:

at = σ(W axt +Uaht−1 + ba), rt = σ(W rxt +Urht−1 + br)

h̃t = tanh(Wxt +U(rt ⊙ ht−1) + b), ht = (1− at)⊙ ht−1 + at ⊙ h̃t,

where ⊙ denotes the element-wise multiplication. We also review the heuristical imputation meth-
ods described in Che et al. (2018), which are for GRU-based multivariate time-series classifiers and
commonly used as baselines.

• GRU-zero: simply put zero for all missing values. That is, x̂t,j = st,jxt,j .

• GRU-mean: imputes the missing values as x̂t,j = st,jxt,j + (1 − st,j)x̄j , where x̄j =∑n
i=1

∑T
t=1 st,i,jxt,i,j/

∑n
i=1

∑T
t=1 st,i,j is the empirical mean of observed values for jth fea-

ture of a given collection of time series data ((xt,i)
T
t=1)

n
i=1.

• GRU-forward: imputes the missing values as x̂t,j = st,jxt,j + (1− st,j)xt′,j , where t′ is the
last time when jth feature was observed before t.

• GRU-simple: along with the imputed vector x̂t (either by GRU-mean or GRU-forward), con-
catenate additional information. Che et al. (2018) proposed to concatenate 1) the mask st, and
the time-interval δt saving the length of the intervals between observed values (see Che et al.
(2018) for precise definition). The concatenated vector [x̂t, st, δt] is then fed into GRU.

• GRU-D: introduces learnable decay values for the input xt and hidden state ht as follows:

γx = exp(−max(W γx
δt + bγx

,0)), γh = exp(−max(W γh
δt + bγh

,0)). (7)

Given a vector xt with mask st, GRU-D imputes the missing values as

x̂t,j = st,jxt,j + (1− st,j)(γx,txt′,j + (1− γx,t)x̄j). (8)

That is, the missing is imputed as a mixture of the last observed xt′,j and the empirical mean
x̄j with the mixing coefficient set as the learned decay. The hidden state from the previous time
step ht−1 is decayed as γh ⊙ ht−1 and passed through GRU with the imputed x̂t.

3 METHODS

In this section, we describe our method, a probabilistic framework for multivariate time series data
with missing values. Our method is an extension of supMIWAE to time series data under MNAR
assumption, but the actual implementation is not merely a naı̈ve composition of the existing models.
In Section 3.1, we first present supnotMIWAE, an MNAR version of supMIWAE, with the encoder
and decoder architectures designed for time series data with missing values. In Section 3.2, we
show why the sup(not)MIWAE for data with missings may fail, and propose a novel regularization
technique to prevent that.

3.1 SUPNOTMIWAE FOR MULTIVARIATE TIME SERIES DATA

Given a multivariate time series data x1:T := (xt)
T
t=1 with observed xobs

1:T and missing xmis
1:T , a

missing mask s1:T := (st)
T
t=1 and a label y, we assume the following state-space model with latent

vectors z1:T := (zt)
T
t=1.

pθ,ψ,λ(y,x
obs
1:T , s1:T )

=

∫
pλ(y|xobs

1:T ,x
mis
1:T )pθ(x

obs
1:T |z1:T )pθ(xmis

1:T |z1:T )pθ(z1:T )pψ(s1:T |x1:T )dx
mis
1:Tdz1:T . (9)

Below we describe each component more in detail.
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Prior pθ(z1:T ) we assume an autoregressive prior for z1:T ,

pθ(z1:T ) = N (z1|0, I)
T∏

t=2

N (zt|µpr(z1:t−1),diag(σ
2
pr(z1:t−1)), (10)

where (µpr(z1:t), σpr(z1:t))
T−1
t=1 are computed as

ht = GRUpr(zt,ht−1), µpr(z1:t),σpr(z1:t) = MLPpr(ht−1). (11)
Here, GRUpr(zt,ht−1) is a GRU cell that takes zt and the hidden state ht−1 and update it to ht.

Decoders pθ(x
obs
1:T |z1:T ) and pθ(x

mis
1:T |z1:T ) The decoder for the observed pθ(x

obs
1:T |z1:T ) is de-

fined in autoregressive fashion,

pθ(x
obs
1:T |z1:T ) =

T∏
t=1

N (xobs
t |µdec(z1:t),diag(σ

2
dec(z1:t))), (12)

where (µdec(z1:t),σdec(z1:t))
T
t=1 are defined as in (11) using GRU. The decoder for the missing

pθ(x
mis
1:T |z1:T ) shares the same model; that is, both observed value decoder pθ(xobs

1:T |z1:T ) and the
missing decoder pθ(xmis

1:T |z1:T ) share the same model.

Missing model pψ(s1:T |x1:T ) The missing model is simply assumed to be independent Bernoulli
distributions over the time steps and features.

pψ(s1:T |x1:T ) =

T∏
t=1

d∏
j=1

Bern(st,j |σmis,t,j(x1:T )), (13)

where σmis(x1:T ) is computed as
σmis(x1:T ) = MLPmis(x1:T ). (14)

Classifier pλ(y|xobs
1:T ,x

mis
1:T ) We simply use a common GRU-based time series classifier for this.

Let hT be the hidden state from a GRU after consuming (xobs
1:T ,x

mis
1:T ). Then the conditional distri-

bution is defined as
pλ(y|xobs

1:T ,x
mis
1:T ) = Categorical(y |Softmax(Linearcls(hT )). (15)

During the forward pass, the classifier takes the observed input xobs
1:T and the missing values gen-

erated from the decoder pθ(xmis
1:T |z1:T ). We find it beneficial to adopt the idea of GRU-D, where

instead of directly putting the generated missing values xmis
1:T , putting the decayed missing values as

follows:
x̃t := (xobs

t ,xmis
t ) where xmis

t ∼ pθ(x
mis
t |z1:T ), (16)

x̂t,j = st,jxt,j + (1− st,j)(γcls,txt′,j + (1− γcls,t)x̃t,j), (17)
where γcls = exp(−max(0,W clsδt+bcls)) is a learnable decay. We find this stabilizes the learning
when the generated missing values xmis

1:T are inaccurate, for instance, in the early stage of learning.
Note also the difference between (16) and the original GRU-D imputation (8). In GRU-D, the last
observed values are mixed with the mean feature, while ours mix them with the generated values.

Encoder qϕ(z1:T |xobs
1:T ) Given the generative model defined as above, we introduce the variational

distribution for (xmis
1:T , z1:T ) for lower-bounding the log-likelihood.

qθ,ϕ(x
mis
1:T , z1:T |xobs

1:T ) = pθ(x
mis
1:T |z1:T )qϕ(z1:T |xobs

1:T ). (18)

Here, the encoder qϕ(z1:T |xobs
1:T ) is defined as an autoregressive model as before,

qϕ(z1:T |xobs
1:T ) =

T∏
t=1

N (zt|µenc(x
obs
1:t),diag(σ

2
enc(x

obs
1:t))). (19)

Similar to the decoder, we use GRU to compute (µenc(x
obs
1:t),σenc(x

obs
1:t)) for t = 1, . . . , T . However,

since xt includes many missing values, rather than putting only the observed values, we find it
beneficial to put the imputed value x̂t as an input to the encoder. For the imputation, we adopt
GRU-D. To summarize, the encoder parameters are constructed from GRU-D outputs, with the
inputs imputed with learnable decay values.
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Objective Having all the ingredients defined, the IWAE bound for supnotMIWAE is computed as
follows:

log pλ,θ,ψ(y,x
obs
1:T , s1:T ) ≥ LsupnotMIWAE(λ,θ,ψ,ϕ) := Ez1:K,1:T ,xmis

1:K,1:T

[
log

1

K

K∑
k=1

ωk

]
, (20)

where

ωk :=
pθ(y|xobs

1:T ,x
mis
k,1:T )pψ(s1:T |xobs

1:T ,x
mis
k,1:T )pθ(x

obs
1:T |zk,1:T )pθ(zk,1:T )

qϕ(zk,1:T |xobs
1:T )

. (21)

Here, (qϕ(zk,1:T |xobs
1:T )pθ(x

mis
k,1:T |zk,1:T ))Kk=1 are i.i.d. copies of the variational distribution, and

Ez1:K,1:T ,xmis
1:K,1:T

denotes the expectation w.r.t. those i.i.d. copies.

3.2 OBSDROPOUT: REGULARIZING SUPNOTMIWAE FOR BETTER IMPUTATION

The problem with (20) is that there is no clear supervison for the missing values xmis
1:T . Obviously,

if we had an access to the missing values, the conditional probability pθ(x
mis
1:T |z1:T ) would guide

the model to learn to correctly impute those missing values. Without such true values, we can only
encourage the model to impute the missing values with some indirect criteria. In the objective (20),
there are two terms that the model hinges on for this matter.

• The missing model pψ(s1:T |xobs
1:T ,x

mis
1:T ): this term encourages the model to reconstruct the

missing mask st from the imputed value xmis
t , so in principle, the model should impute the

missing values in a way that they are distinguishable from the observed values. However, in
general, the distributions of the observed and the missings are not necessarily different, and
more importantly, the model can easily cheat the objective. For instance, consider a trivial
case where the model imputes all the missing values with zero. The conditional probability
pψ(s1:T |xobs

1:T ,x
mis
1:T ) can still be maximized by setting σmis(xt,j) = 0 if xt,j = 0 (unless there

are not many observed with xobs
t,j = 0).

• The classifier pθ(y|xobs
1:T ,x

mis
1:T ): this term expects the model to generate meaningful imputa-

tions so that they are helpful for the classification. However, as shown in prior works (Che
et al., 2018), the classifier can achieve decent classification accuracy without meaningful impu-
tations, for instance, it will still be able to classify the signals while all the missing values are
imputed with zeros. Hence, in the current form, there is no strong incentive for the model to
learn non-trivial imputations that will bring significant accuracy gain over the zero imputations.

To summarize, in the current form, the objective (20) is not likely to generate realistic missing values.
To resolve this, we may introduce a missing model pθ(s1:T |xobs

1:T ,x
mis
1:T ) much more elaborated than

the simple i.i.d. model that we are using right now, but that may require some dataset-specific design.
Instead, we present a simple regularization technique that can effectively enhance the quality of the
imputed values.

Our idea is simple; when passing the observed inputs xobs
1:T and the imputed missing values x̂mis

1:T (i.e.,
imputed by (16)) to the classifier, deliberately drop some portion of the observed inputs. Without
dropping the observed inputs, the classifier may heavily rely on the observed inputs to do the classi-
fication, but if some of the observed inputs are dropped out during training, the classifier can focus
more on the imputed missing values x̂mis

1:T . As a result, the model is encouraged to generate more
“useful” missing values that are beneficial for classification. More specifically, let β be a predefined
dropout probability. Then we construct the imputed input x̂t to the classifier as follows:

mt,j ∼ Bern(1− β), s̃t,j := st,jmt,j

≈
xt := (xobs

1:T ,x
mis
1:T ) where (xobs

1:T ,x
mis
1:T ) ∼ pθ(x

obs
1:T ,x

mis
1:T |z1:T ),

x̂t,j := s̃t,jxt,j + (1− s̃t,j)(γcls,txt′,j + (1− γcls,t)
≈
xt,j). (22)

That is, when an observed xt,j is dropped out, we put a generated value with the decay applied as in
(16), so that the classifier could focus more on the values generated by the decoder as we intended.
We call this idea ObsDropout, since we are dropping out the observed values during the training.
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Figure 1: An overview of our model with obsdropout.

With the mask variables m1:T , the likelihood is obtained by marginalizing m1:T from the joint
distribution withm1:T .

pθ,ψ,λ(y,x
obs
1:T , s1:T ) =

∫
pθ,ψ,λ(y,x

obs
1:T , s1:T ,m1:T )dm1:T , (23)

where the joint distribution is decomposed as

pθ,ψ,λ(y,x
obs
1:T , s1:T ,m1:T )

= pλ(y|xobs
1:T ,x

mis
1:T ,m1:T )pβ(m1:T )pψ(s1:T |x1:T )pθ(x

obs
1:T |z1:T )pθ(xmis

1:T |z1:T )pθ(z1:T ). (24)

Consequently, the IWAE objective is slightly modified as follows:

L′
supnotMIWAE(λ,θ,ψ,ϕ) := Ez1:K,1:T ,xmis

1:K,1:T ,m1:K

[
log

1

K

K∑
k=1

ωk

]
, (25)

where

ωk :=
pλ(y|xobs

1:T ,x
mis
k,1:T ,mk,1:T )pψ(s1:T |xobs

1:T ,x
mis
k,1:T )pθ(x

obs
1:T |zk,1:T )pθ(zk,1:T )

qϕ(zk,1:T |xobs
1:T )

, (26)

where the expectation is over K i.i.d. copies of the variational distribution,

q(z1:T ,x
mis
1:T ,m1:T |xobs

1:T ) = qϕ(z1:T |xobs
1:T )pθ(x

mis
1:T |z1:T )pβ(m1:T ), (27)

with pβ(m1:T ) :=
∏T

t=1

∏d
j=1 Bern(mt,j |β).

3.3 PREDICTION

Similar to SupMIWAE, we exploit Self-Normalized Importance Sampling (SNIS) to approximate
the predictive distribution for a new input xobs

1:T . With the model trained with obsdropout, we have

p(y|xobs
1:T ) ≈

1

S

S∑
s=1

K∑
k=1

ω̄
(s)
k pλ(y|xobs

1:T , (x
mis)

(s)
k,1:T ,m

(s)
k,1:T ), (28)

where

(z
(s)
k,1:T , (x

mis)
(s)
k,1:T ,m

(s)
k,1:T )

i.i.d.∼ qϕ(z1:T |xobs
1:T )pθ(x

mis
1:T |z1:T )pβ(m1:T ),

ωk :=
pθ(x

obs
1:T |zk,1:T )pθ(zk,1:T )
qϕ(zk,1:T |xobs

1:T )
, ω̄k :=

ωk∑K
ℓ=1 ωℓ

. (29)

4 RELATED WORKS

There are two lines of literature closely related to our method. First line consists of work dealing with
the problem of missing data imputation based on Importance Weighted AutoEncoder (IWAE) and
another one consists of work designing tailored neural network architecture for supervised learning
on multivariate time series data with missing values.

Mattei and Frellsen (2019) proposed MIWAE bound for training DLVMs in the presence of missing
data under MAR assumption. Ipsen et al. (2021) modified MIWAE bound suitable to MNAR sce-
nario. Ipsen et al. (2022) extended MIWAE bound to supervised learning task. This line of work

7



Under review as a conference paper at ICLR 2023

Table 1: Classification performances of baseline methods and ours on PhysioNet 2012 dataset.

Method AUPRC (↑) AUROC (↑) bCE (↓) bECE (↓) bBS (↓) CE (↓) ECE (↓) BS (↓)

GRU-Mean 0.524 ±0.006 0.843 ±0.005 0.498 ±0.009 0.475 ±0.016 0.164 ±0.002 0.459 ±0.020 0.200 ±0.014 0.152 ±0.008

GRU-Simple 0.426 ±0.012 0.810 ±0.008 0.621 ±0.062 0.400 ±0.042 0.201 ±0.017 0.450 ±0.027 0.138 ±0.033 0.147 ±0.011

GRU-Forward 0.526 ±0.007 0.853 ±0.004 0.482 ±0.005 0.476 ±0.015 0.157 ±0.002 0.450 ±0.025 0.200 ±0.025 0.147 ±0.007

GRU-D 0.553 ±0.004 0.863 ±0.001 0.474 ±0.010 0.473 ±0.034 0.152 ±0.004 0.434 ±0.040 0.184 ±0.033 0.140 ±0.015

PhasedLSTM 0.412 ±0.010 0.801 ±0.022 0.933 ±0.628 0.332 ±0.091 0.234 ±0.059 0.477 ±0.142 0.121 ±0.036 0.132 ±0.014

IP-Nets 0.527 ±0.006 0.859 ±0.002 0.485 ±0.014 0.453 ±0.023 0.156 ±0.003 0.416 ±0.028 0.165 ±0.028 0.136 ±0.010

Ours 0.557 ±0.007 0.870 ±0.006 0.466 ±0.011 0.442 ±0.011 0.152 ±0.004 0.388 ±0.033 0.153 ±0.027 0.127 ±0.012

w/o obsdropout 0.538 ±0.011 0.859 ±0.006 0.488 ±0.032 0.472 ±0.050 0.157 ±0.007 0.445 ±0.057 0.184 ±0.057 0.149 ±0.021

w/ MLP enc/dec 0.537 ±0.006 0.859 ±0.002 0.495 ±0.037 0.445 ±0.047 0.160 ±0.011 0.410 ±0.044 0.157 ±0.048 0.135 ±0.016

Table 2: Classification performances of baseline methods and ours on MIMIC-III dataset.

Method AUPRC (↑) AUROC (↑) bCE (↓) bECE (↓) bBS (↓) CE (↓) ECE (↓) BS (↓)

GRU-Mean 0.469 ±0.006 0.841 ±0.002 0.503 ±0.004 0.490 ±0.008 0.163 ±0.001 0.481 ±0.010 0.226 ±0.007 0.161 ±0.004

GRU-Simple 0.392 ±0.006 0.815 ±0.002 0.552 ±0.007 0.471 ±0.020 0.181 ±0.002 0.499 ±0.030 0.219 ±0.020 0.168 ±0.012

GRU-Forward 0.519 ±0.005 0.857 ±0.002 0.471 ±0.003 0.497 ±0.011 0.155 ±0.001 0.468 ±0.018 0.230 ±0.016 0.154 ±0.006

GRU-D 0.498 ±0.005 0.851 ±0.003 0.511 ±0.011 0.465 ±0.019 0.161 ±0.002 0.438 ±0.028 0.186 ±0.019 0.145 ±0.010

PhasedLSTM 0.330 ±0.005 0.780 ±0.001 0.592 ±0.021 0.445 ±0.028 0.199 ±0.007 0.501 ±0.030 0.222 ±0.030 0.166 ±0.011

IP-Nets 0.486 ±0.002 0.847 ±0.002 0.494 ±0.010 0.478 ±0.025 0.162 ±0.003 0.458 ±0.035 0.208 ±0.024 0.153 ±0.013

Ours 0.519 ±0.007 0.858 ±0.003 0.470 ±0.005 0.490 ±0.007 0.155 ±0.002 0.457 ±0.013 0.217 ±0.010 0.152 ±0.005

w/o obsdropout 0.515 ±0.008 0.857 ±0.003 0.472 ±0.007 0.492 ±0.016 0.156 ±0.002 0.462 ±0.023 0.221 ±0.018 0.154 ±0.009

w/ MLP enc/dec 0.509 ±0.007 0.857 ±0.003 0.471 ±0.005 0.485 ±0.008 0.155 ±0.002 0.450 ±0.011 0.217 ±0.008 0.149 ±0.004

provides useful framework to train DLVMs under missingness. However, it is not directly appli-
cable for time series data because it cannot model the temporal dependency within a series. There
exists previous work to make Deep latent variable models suitable for multivariate time series. For
example, Fortuin et al. (2020) proposed VAE architecture which aims to impute multivariate time
series data, using Gaussian process prior to encode the temporal correlation in the latent space.

Researchers have developed deep neural network architectures customized to multivariate time se-
ries classification task. There have been several architectures showing competitive empirical per-
formance in multivariate time series classification task. Che et al. (2018) modified the architecture
of GRU intending to perform supervised learning with sparse covariates by introducing learnable
temporal decay mechanism for input and hidden state of GRU. This mechanism has been applied
to further research. For example, Cao et al. (2018) employed temporal decay in hidden states of
their bidirectional-RNN-based model to capture the missing pattern of irregularly sampled times se-
ries. Shukla and Marlin (2019) presented hybrid architecture of interpolation network and classifier.
Interpolation network returns fully observed and regularly sampled representation of original time
series data. Taking this representation as an input, even common deep neural network model makes
good predictive performance.

5 EXPERIMENTS

In this section, we demonstarte our method on real-world multivariate time series data with missing
values. We compare ours to the baselines on three datasets: PhysioNet 2012 (Silva et al., 2012),
MIMIC-III (Johnson et al., 2016) and Human Activity Recognition (Anguita et al., 2013). PhysioNet
2012 and MIMIC-III datasets contain Electronic Health Records of patients from Intensive Care
Units (ICU). Human Activity Recognition dataset consists of the 3D coordinate of sensors mounted
on the people doing some daily activities such as walking, sitting. See Appendix A for the details of
datasets. For all three datasets, we compare classification accuracy and the uncertainty quantification
performances. For PhysioNet 2012, we also compare the missing value imputation performance of
our methods to the baselines.

For the baselines, we considered GRU classifiers with various imputation methods, and few other
deep neural network based methods that are considered to be competitive in the literature. See
Appendix A for detailed description of the baselines. For the uncertainty quantification metrics, we
compared cross-entropy (CE, equals negative log-likelihood), expected calibration error (ECE), brier
score (BS). Especially, for PhysioNet 2012 and MIMIC-III, we also considered balanced versions
of them (with “b” in front of the metric names), since those datasets are largely imbalanced so the
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Table 3: Classification performance of baseline methods
and ours on Human Activity Recognition dataset.

Method ACC (↑) CE (↓) ECE (↓) BS (↓)

GRU-Mean 0.780 ±0.005 0.163 ±0.0121 0.019 ±0.006 0.046 ±0.002

GRU-Simple 0.767 ±0.008 0.161 ±0.0029 0.015 ±0.003 0.047 ±0.001

GRU-Forward 0.798 ±0.007 0.152 ±0.0038 0.020 ±0.003 0.043 ±0.001

GRU-D 0.789 ±0.004 0.150 ±0.0046 0.018 ±0.004 0.044 ±0.001

Ours 0.798 ±0.004 0.141 ±0.0028 0.005 ±0.001 0.042 ±0.001

Table 4: Imputation performance on
PhysioNet 2012 dataset.

Method MAE (↓) MRE (↓)

Mean 0.696 ±0.001 0.994 ±0.000

Forward 0.399 ±0.001 0.574 ±0.003

GRU-D 0.406 ±0.002 0.586 ±0.001

GP-VAE 0.492 ±0.022 0.691 ±0.007

SAITS 0.694 ±0.001 0.995 ±0.000

Ours 0.391 ±0.002 0.564 ±0.002

w/o supervision 0.400 ±0.002 0.573 ±0.009

w/o obsdropout 0.397 ±0.006 0.573 ±0.009

Figure 2: Plots of µdec(z1:t),σ
2
dec(z1:t). (left) Our model which architecture of encoder and de-

coder is MLP. (right) Our model trained with obsdropout with rate 0.5.

usual uncertainty quantification metrics may be biased. Please refer to Appendix A for the detailed
description of the metrics.

5.1 CLASSIFICATION RESULTS

We summarize the classification results in Table 1, Table 2, and Table 3. In general, ours acheive
the best performance among the competing methods both in terms of prediction accuracy and uncer-
tainty quantification. We also provide an ablation study for our model to see the effect of 1) using
time-aware architecture (GRU) for the encoder and decoder of supnotMIWAE, and 2) obsdropout.
The results clearly show that both components play important roles for our model. In Appendix B,
we provide further results showing the effect of dropout rate β for the performance.

5.2 IMPUTATION RESULTS

We quantitatively check the imputation performance of our model on PhysioNet 2012 dataset in Ta-
ble 4, and visually check the imputation quality by changing our model settings in Fig. 2. Although
our model is designed for the classification, ours achieved the lowest MAE and MRE, outperforming
the baseline (SAITS) specifically designed for the imputation. Especially, the ablation study on the
class supervision part pλ(y|x1:T ) and the obsdropout implies that the imputation values generated
by our model which was trained to better classify the signals are more “realistic”. Fig. 2 highlight the
effect of using GRU based encoders and decoders and obsdropout. The values imputed with those
techniques form smoother trajectories and better capture the uncertainties in the intervals without
observed values.

6 CONCLUSION

In this paper, we presented a novel probabilistic framework for multivariate time series classifica-
tion with missing data. Under the MNAR assumption, we first developed a deep generative model
suitable for generating missing values in multivariate time series data. Then we identified an im-
portant drawback of the naı̈ve combination of the deep generative models with the classifiers and
proposed a novel regularization technique called obsdropout to circumvent that. We demonstrated
that ours could classify real-world multivariate time series data more accurately and robustly than
existing methods. In this paper, we focused on GRU-based architectures for both generative model
and classifier. An interesting future work would be extending our methods with other architectures
such as transformers (Vaswani et al., 2017).
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Reproducibility statement Please refer to Appendix A for full experimental detail including
datasets, models, and evaluation metrics.
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Table 5: Statistics of each dataset.

PhysioNet2012 MIMIC-III Human Activity

Number of samples 11,971 21,107 6554
Number of variables 37 16 12
Maximum number of time steps 215 292 221
Mean of number of time steps 74 78 162.4
Total missing rate 0.843 0.655 0.923

A EXPERIMENTAL DETAILS

A.1 DATASETS

A.1.1 DATASET DESCRIPTION

PhysioNet Challenge 2012 (PhysioNet 2012) This dataset contains approximately 12,000 Elec-
tronic Health Records of adult patients who were admitted to intensive care unit (ICU). Each record
contains up to 37 time series variables including vital signs such as heart rate, temperature. All of the
variables are measured during the first 48 hours of each patient’s admission to ICU and the sampling
rate of times series varies among variables. After preprocessing, we have 37 features and 11,971
data point. On this dataset, we conduct missing data imputation task and mortality prediction task,
which aims to predict in-hospital mortality of ICU patients using information collected during first
48 hours in ICU.

MIMIC-III MIMIC-III dataset is freely accessible and widely used database which includes de-
identified Electronical Health Record of patients who stayed in ICU of Beth Israel Deaconess Med-
ical Center from 2001 to 2012. It originally consists of approximately 57,000 records of patients
stayed in ICU. Records including various variables such as medications, in-hospital mortality and vi-
tal signs. Harutyunyan et al. (2019) set variety of benchmark tasks based on subset of this database.
Among them, we conduct binary in-hospital mortality prediction task. After preprocessing, our
dataset contains 16 features and 21,107 data points. For this dataset, we conduct mortality predic-
tion task which is identical to PhysioNet2012 classification task.

UCI Localization Data for Person Activity (UCI Human Activity) This dataset includes records
of five people doing some usual activities such as walking or sitting. All people wear sensors on their
right ankle,left,belt and chest. During activities, and the sensors record their position in the form of
three-dimensional coordinates at very short intervals. Activities of each people at certain time point
classified into one of 11 classes and recorded with the position of sensors. After preprocessing, we
have total 6554 time series with 12 features(3-dimensional coordinates of 4 devices). Using this
preprocessed data, we conduct online-prediction task. The objective of this task is to classify each
individual’s activity per time point based on the position of sensors.

A.1.2 DATA PREPROCESSING

For all dataset, we basically standardize the numerical covariates so that all features have zero mean
and unit variance, respectively.

PhysioNet2012 and MIMIC-III Since there is no fixed rule for preprocessing Physionet2012
and MIMIC-III database, researchers usually preprocess the raw data on their own so that there are
countless possibilities for the form of preprocessed dataset. Therefore, it is difficult for practitioners
to compare experimental results with other works. For the comparability, we employ python package
medical-ts-datasets (Horn et al., 2020) which provides the unified data preprocessing pipeline for
Physionet2012 and MIMIC-III datasets. For both dataset, patients who have more than 1000 time
steps or have no observed time series data were excluded from the dataset. Also, discretizing the time
step of data by hour and aggregate the measurement is frequently used to preprocess Physionet2012
in previous work (Rubanova et al., 2019), but this package preserves much more original time series
variables while preprocessing than hourly based aggregation preprocessing for both dataset. We
follow the preprocessing of the medical ts datasets1 library.

1https://github.com/ExpectationMax/medical ts datasets
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Table 6: The number of parameters of baseline models and our model on each dataset.

Method PhysioNet 2012 MIMIC-III Human Activity

GRU-Mean 226,817 210,689 84,647
GRU-Simple 351,745 301,569 85,117
GRU-Forward 294,145 276,225 85,687
GRU-D 332,363 292,897 86,566
PhasedLSTM 511,745 445,441 -
IP-Nets 353,151 301,841 -
Ours 262,980 224,305 84,251

UCI Human Activity For comparability, we decide to preprocess this dataset based on (Rubanova
et al., 2019). However, we modify some part of dataset to apply to our code implementation. We
standardize the dataset while (Rubanova et al., 2019) did not standardize the dataset. Also, we make
new variable that records the time index of lastly observed value of each data point to distinguish
between missingness and meaningless padding.

A.2 DETAILS FOR CLASSIFICATION EXPERIMENTS

For all experiments, we use five different seeds to conduct experiments.

A.2.1 BASELINE METHODS

• GRU-mean: Missing value is simply replaced with the empirical mean of each variable.

• GRU-forward: Missing entries are filled with previously observed value.

• GRU-simple: concatenate the mask st, and the time-interval δt along with the imputed
vector x̂t. The concatenated vector [x̂t, st, δt] is then fed into GRU.

• GRU-D: Missing values are imputed as a weighted mean of the last observed xt′,j and the
mean x̄j with the learnable weight.

• Phased-LSTM: This model is LSTM variants designed to deal with long sequence input
by introducing time gate in their cell to prevent memory decay when useful information is
absence for a long time.

• Interpolation-Prediction Network(IP-Nets): Instead of directly imputing missing values,
this model employed semi-parametric interpolation network that makes regularly spaced
representation of irregularly sampled time series data. Then, this representation is fed into
prediction network such as GRU.

Since we conduct online-prediction task on Human Activity dataset, we do not consider IP-Nets as
baseline models because this model use future information when conducting interpolation.

A.2.2 TRAINING DETAILS

In order to conduct experiments fairly, we fix the parameters of every model similar, or at least
set our model to have relatively small number of parameters compared to other baseline. Also, we
use Adam optimizer with learning rate 0.0001 and batch size 128 for all models for MIMIC-III
in-hospital mortality prediction task. In Physionet2012 experiment, we use Adam optimizer with
learning rate 0.001 and batch size 128 for all models. For online-prediction task, we also employ
Adam optimizer with learning rate 0.001 and batch size 128.

We employ early stopping for all classification experiments. For the mortality prediction tasks, we
set early stopping patience to 10 epochs and set the area under the precision-recall curve (AUPRC)
of the validation data as the early stopping criterion. For Human activity prediction task, we used
validation accuracy as stopping criterion and set early stopping patience to 20 epochs. Since the
label imbalance of Physionet2012 and MIMIC-III is extreme, we oversample the mortality class to
train models on the balanced batches.
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Table 7: Hyperparameter settings for classification experiments

Dataset Method Hyperparameters

PhysioNet2012

GRU-Mean n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-Simple n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-Forward n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-D n units: 256, dropout: 0.0, recurrent dropout: 0.0

PhasedLSTM n units: 256, use peepholes: False, leak: 0.01,period init max: 1000.0
IP-Nets n units: 256, imputation stepsize: 1 , reconst fraction: 0.5

Ours n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.5

MIMIC-III

GRU-Mean n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-Simple n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-Forward n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-D n units: 256, dropout: 0.0, recurrent dropout: 0.0

PhasedLSTM n units: 256, use peepholes: False, leak: 0.01, period init max: 1000.0
IP-Nets n units: 256, imputation stepsize: 1, reconst fraction: 0.5

Ours n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.1

Human Activity

GRU-Mean n units: 160, dropout: 0.0, recurrent dropout: 0.0
GRU-Simple n units: 132 , dropout: 0.0, recurrent dropout: 0.0
GRU-Forward n units: 140 , dropout: 0.0, recurrent dropout: 0.0
GRU-D n units: 135 , dropout: 0.0, recurrent dropout: 0.0

Ours n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 10,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.2

A.2.3 HYPERPARAMETERS

See Table 6 and Table 7 for hyperparameter settings of our model and baseline methods for all
classification experiments.

A.2.4 EVALUATION METRICS

For the classification task, we evaluate all models in terms of both predictive accuracy and predictive
uncertainty. We use the area under precision recall curve (AUPRC), the area under receiver oper-
ating characteristic (AUROC), and the accuracy (ACC) to evaluate the predictive performance. To
measure the uncertainty calibration of the model, we use cross entrophy (CE), expected calibration
error (ECE) and brier score (BS) for comparing calibration. In addition, we also check the balanced
versions of uncertainty metrics due to severe class imbalance of datasets.

Balanced metric In supervised dataset D, which contains input data x and a corresponding label
y, we simply re-weight each uncertainty metric by class ratio.

Mbal(D) =
1

C

∑
c

M(Dc) (30)

Here, Dc is a subset of the dataset D which only contains the label y = c.

Accuracy Metrics Accuracy metrics are defined using the following terms, where tp, tn, fn, and
fp denote true positive, true negative, false negative, and false positive respectively.

accuracy =
tp+ tn

tp+ fp+ fn+ tn
(31)

precision =
tp

tp+ fp
(32)

recall =
tp

tp+ fn
(33)

sensitivity =
tp

tp+ fn
(34)
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Table 8: Hyperparameter settings for imputation experiments
Dataset Method Hyperparameters

PhysioNet2012

Mean -
Forward -
GRU-D n units: 256, dropout: 0.0, recurrent dropout: 0.0

Ours w/ obsdropout n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.5

Ours w/o supervision n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128,

Ours w/o obsdropout n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.0

GP-VAE n hidden: 128, z dim: 35, length scale: 7, kernel scale: 1, n latents: 1,beta: 0.2

SAITS n groups:5 , n head:1 , n group inner layers:1 , d model:258,d inner:128,d k:64,d v:64,MIT:True,
input with mask: True, MIT missing rate:0.2 , n units:128, n hidden:128

• AUPRC (Schütze et al., 2008): area under precision recall curve.

• AUROC: area under receiver operating characteristic, area under sensitivity curve.

A.3 DETAILS FOR IMPUTATION EXPERIMENTS

Basically, we perform imputation experiments on the testdataset of Physionet2012. We randomly
delete 10% of observed data for testing imputation performance of models. We measure the perfor-
mance for five different seeds.

A.3.1 BASELINE METHODS

• Mean: Replace missing values with global mean.

• Forward: Impute missing value with previously observed value

• GRU-D: Missing values are imputed as a weighted mean of the last observed xt′,j and the
mean x̄j with the learnable weight.

• GP-VAE: This model is VAE-based probabilistic imputation method proposed by Fortuin
et al. (2020). This method employ GP-prior to encode the temporal correlation in the latent
space.

• SAITS: This model is self-attention based imputation model which Du et al. (2022) pro-
posed.

• Ours w/o supervision: To analyze the effect of supervised signal to the imputation perfor-
mance, we just remove supervised term from our training objective and train only genera-
tive part of our architecture.

• Ours w/o dropout: Our model without obsdropout.

A.3.2 EVALUATION METRICS

For the imputation task, we evaluate all methods in terms of MRE(Mean Relative Error) and
MAE(Mean Absolute Error).

A.3.3 TRAINING DETAILS

For GRU-D and Our model, we apply early stopping rule identical to mortality prediction task since
imputation performance of our model is deeply related to classification error. For GP-VAE,SAITS
and Our model w/o supervised signals, we do not use early stopping and train for 50 epochs for each
model.

A.3.4 HYPERPARAMETERS
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Table 9: Effect of obsdropout rate for ours on PhysioNet 2012 dataset.

Dropout AUPRC (↑) AUROC (↑) bCE (↓) bECE (↓) bBS (↓) CE (↓) ECE (↓) BS (↓)

0.0 0.538 ±0.011 0.859 ±0.006 0.488 ±0.032 0.472 ±0.050 0.157 ±0.007 0.445 ±0.057 0.184 ±0.057 0.149 ±0.021
0.1 0.545 ±0.014 0.862 ±0.007 0.473 ±0.023 0.474 ±0.023 0.153 ±0.006 0.437 ±0.023 0.184 ±0.029 0.146 ±0.008
0.2 0.546 ±0.005 0.865 ±0.004 0.480 ±0.025 0.457 ±0.033 0.154 ±0.006 0.416 ±0.037 0.161 ±0.034 0.138 ±0.014
0.3 0.554 ±0.008 0.868 ±0.001 0.464 ±0.006 0.477 ±0.039 0.149 ±0.002 0.434 ±0.056 0.181 ±0.040 0.145 ±0.021
0.4 0.558 ±0.005 0.868 ±0.006 0.470 ±0.014 0.452 ±0.026 0.152 ±0.004 0.401 ±0.035 0.155 ±0.027 0.132 ±0.013
0.5 0.561 ±0.003 0.871 ±0.004 0.462 ±0.016 0.456 ±0.021 0.149 ±0.005 0.400 ±0.025 0.158 ±0.020 0.132 ±0.009
0.6 0.556 ±0.005 0.869 ±0.002 0.458 ±0.008 0.474 ±0.021 0.149 ±0.002 0.425 ±0.027 0.179 ±0.018 0.141 ±0.011
0.7 0.554 ±0.014 0.867 ±0.003 0.462 ±0.013 0.471 ±0.026 0.151 ±0.004 0.425 ±0.029 0.179 ±0.025 0.140 ±0.011
0.8 0.558 ±0.010 0.864 ±0.009 0.472 ±0.031 0.489 ±0.033 0.153 ±0.008 0.455 ±0.032 0.194 ±0.033 0.152 ±0.012
0.9 0.546 ±0.010 0.859 ±0.006 0.469 ±0.015 0.486 ±0.016 0.154 ±0.003 0.453 ±0.023 0.198 ±0.020 0.152 ±0.009

Table 10: Effect of obsdropout rate for ours on MIMIC-III dataset.

Dropout AUPRC (↑) AUROC (↑) bCE (↓) bECE (↓) bBS (↓) CE (↓) ECE (↓) BS (↓)

0.0 0.515 ±0.008 0.857 ±0.003 0.472 ±0.007 0.492 ±0.016 0.156 ±0.002 0.462 ±0.023 0.221 ±0.018 0.154 ±0.009
0.1 0.519 ±0.007 0.858 ±0.003 0.470 ±0.005 0.490 ±0.007 0.155 ±0.002 0.457 ±0.013 0.217 ±0.010 0.152 ±0.005
0.2 0.519 ±0.006 0.859 ±0.003 0.468 ±0.004 0.501 ±0.009 0.155 ±0.001 0.472 ±0.014 0.228 ±0.009 0.158 ±0.005
0.3 0.518 ±0.004 0.859 ±0.002 0.469 ±0.002 0.494 ±0.008 0.155 ±0.001 0.462 ±0.013 0.220 ±0.009 0.154 ±0.005
0.4 0.518 ±0.004 0.858 ±0.003 0.470 ±0.003 0.493 ±0.015 0.155 ±0.001 0.461 ±0.025 0.220 ±0.017 0.153 ±0.009
0.5 0.511 ±0.010 0.855 ±0.003 0.475 ±0.006 0.488 ±0.010 0.157 ±0.002 0.457 ±0.013 0.217 ±0.013 0.152 ±0.005
0.6 0.504 ±0.010 0.851 ±0.003 0.483 ±0.005 0.501 ±0.011 0.160 ±0.002 0.488 ±0.015 0.229 ±0.010 0.163 ±0.006
0.7 0.480 ±0.036 0.840 ±0.017 0.499 ±0.020 0.497 ±0.010 0.166 ±0.007 0.495 ±0.020 0.236 ±0.024 0.163 ±0.006
0.8 0.461 ±0.032 0.831 ±0.015 0.515 ±0.018 0.490 ±0.006 0.171 ±0.006 0.498 ±0.020 0.235 ±0.029 0.163 ±0.006
0.9 0.419 ±0.024 0.810 ±0.010 0.543 ±0.011 0.496 ±0.029 0.181 ±0.004 0.534 ±0.050 0.268 ±0.030 0.174 ±0.019

See Table 8 for detailed hyperparameter settings for imputation experiment.

B ADDITIONAL EXPERIMENTS

We conduct numerous ablation experiments to analyze the effect of obsdropout method. In Phys-
ioNet2012 dataset, our models with obsdropout method outperforms at all rates. Also, in MIMIC-III
datset, our technique works well on reasonable rates. Although there is much room for further anal-
ysis of effect of obsdropout on the predictive performance, these results are sufficient to show that
our technique is generally effective.
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