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Abstract

Recently, slow-thinking reasoning systems,001
such as o1, have demonstrated remarkable ca-002
pabilities in solving complex reasoning tasks.003
These systems typically engage in an extended004
thinking process before responding to a query,005
allowing them to generate more thorough, ac-006
curate, and well-reasoned solutions. These sys-007
tems are primarily developed and maintained008
by industry, with their core techniques not pub-009
licly disclosed. In response, an increasing num-010
ber of studies from the research community011
aim to explore the technical foundations un-012
derlying these powerful reasoning systems. To013
reveal the LLM reasoning mechanisms, this pa-014
per presents an empirical study on implement-015
ing o1-like reasoning systems, focusing on two016
key questions: (1) How can LLM learn this rea-017
soning approach and (2) How can LLM further018
improve its reasoning ability without additional019
demonstration data. Concretely, we first design020
an “imitate, explore, and self-improve” frame-021
work as our primary technical approach to train-022
ing the reasoning model. Then, we conduct the023
experiment to analyze the influence of differ-024
ent selection strategies of training instance and025
backbone model, and explore the effect of the026
self-improving process. Following the findings027
in our experiments, we finally train a powerful028
LLM, which can perform complex reasoning029
processes, demonstrating superiority in solving030
challenging reasoning problems. Our models031
and data will be publicly released.032

1 Introduction033

Recently, slow-thinking reasoning systems, exem-034

plified by OpenAI’s o1 model 1, have significantly035

enhanced the capabilities of large language models036

(LLMs) (Zhao et al., 2023) in tackling challenging037

tasks (Daniel, 2017; OpenAI, 2024b). Unlike previ-038

ous reasoning approaches (Wei et al., 2022a; Shao039

et al., 2024), these systems employ test-time scal-040

ing, allowing more time for contemplation before041

1https://openai.com/o1/

responding to a query. This thinking process is also 042

reflected as a text generation process that produces 043

long internal chains of reasoning steps, referred to 044

as thoughts, to discover suitable solutions. By ex- 045

amining the generated thought data, we can observe 046

various complex reasoning behaviors exhibited by 047

LLMs, such as planning, divide-and-conquer, self- 048

refinement, and backtracking. Initially, it may seem 049

surprising that LLMs can manage such complex 050

reasoning processes, even though we know that spe- 051

cific training or inference strategies are employed 052

to support this capability. 053

To uncover the underlying mechanisms, the re- 054

search community has been actively exploring 055

slow-thinking reasoning systems via leveraging 056

external signals to guide the reasoning process 057

and further improve the LLM (Jiang et al., 2024b; 058

Zhang et al., 2024b; Zhao et al., 2024; Wang et al., 059

2024a). However, these implemented systems 060

might not be the correct path toward developing 061

o1-like systems, because of the following three 062

major challenges. First, the domain-specific re- 063

ward model we trained does not generalize well 064

across different domains. Second, performing tree 065

search during the inference stage was very time- 066

consuming, making it impractical for real-world ap- 067

plications. Third, although test-time scaling works, 068

we still cannot achieve train-time scaling to im- 069

prove model performance. These considerations 070

have led us to reconsider our technical approach to 071

creating o1-like reasoning systems. 072

Given the released API or checkpoints for o1- 073

like systems from DeepSeek and Qwen (Team, 074

2024a,c), we closely examine the actual thought 075

processes rather than the summarized versions 076

in o1. LLMs can perform complex thought pro- 077

cesses without guidance from external signals (Qin 078

et al., 2024; Huang et al., 2024). Given this phe- 079

nomenon, we consider whether leveraging only a 080

small amount of annotated long chain-of-thought 081

data can significantly enhance the performance 082
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of LLMs on complex reasoning tasks. Based on083

these considerations, in this work, we proposed084

a comprehensive empirical study about the train-085

ing paradigm of slow-thinking systems, exploring086

two key questions: (1) How can LLM learn this087

reasoning approach and (2) How can LLM further088

improve its reasoning ability without additional089

demonstration data.090

Specifically, we first propose a conceptual frame-091

work comprising an “imitate, explore, and self-092

improve" process for conducting our empirical093

study. In this framework, LLMs imitate the rea-094

soning approach (i.e., long chain-of-thought rea-095

soning) from a small number of labeled instances,096

and then explore the possible solution to the given097

problems without the demonstration and learning098

from the successful trajectories. Next, based on099

this framework, we assess the influence of differ-100

ent selection strategies on the demonstration data101

and the backbone model, and analyze the effect102

of different self-improving methods. According103

to the empirical experiments, we observe that the104

reasoning ability of LLM can generalize from the105

source domain (i.e., mathematics) to other domains106

(i.e., physical, chemistry, and biology), and we also107

find that data selection strategy is really important108

in the training process, which greatly influences109

the final performance of LLM. Moreover, through110

training on these demonstration instances, LLM111

possesses the ability to enhance itself, even in dif-112

ferent domains. Finally, following the findings in113

our empirical study, we successfully train an LLM114

that shows remarkable performance on complex115

reasoning tasks. In summary, our contributions are116

as follows:117

(1)We conduct the empirical study about the118

slow-thinking LLM training process, and we ob-119

serve that only with a small amount of carefully120

selected demonstration instances, LLM can possess121

the amazing ability to solve challenging reasoning122

problems and domain generalization.123

(2)We investigate the effectiveness of LLM self-124

improving, and find that once the LLM controls125

the reasoning approach, it can try to generate the126

responses for the unlabeled instances and further127

improve itself via these exploration trajectories.128

(3)Based on the findings in our empirical study,129

we successfully train a slow-thinking LLM, achiev-130

ing very promising results on college-level and131

competition-level problems, including MATH-132

OAI (Lightman et al., 2024), AIME 2, and 133

GPQA (Rein et al., 2023) 134

2 Related Work 135

System 1 and System 2. Previous study (Kahne- 136

man, 2011) has pointed out the different reasoning 137

methods, i.e., system 1 and system 2. In the context 138

of LLMs, the former refers to the model directly 139

generating the final answer (Yu et al., 2023; Rad- 140

ford et al., 2019), while the latter requires the model 141

first to generate the thinking process and then gener- 142

ate the final answer (Weston and Sukhbaatar, 2023; 143

Deng et al., 2023). According to the generated 144

intermedia reasoning steps, system 2 outperforms 145

system 1 in various tasks (Wei et al., 2022b; Kojima 146

et al., 2022). However, it requires more resources 147

than system 1 during the reasoning process, and 148

how to reduce the inference time is also a critical 149

research problem (Yu et al., 2024; Zhang et al., 150

2024c). In this work, we focus on building a slow- 151

thinking LLM, i.e., a system 2 model, which can 152

better solve complex reasoning problems. 153

Chain-of-Thought Reasoning. Chain-of-Thought 154

(CoT) prompting strategy utilizes exemplars or in- 155

structions to guide LLMs to generate the reasoning 156

steps in natural language format before obtaining 157

the final answer (Wei et al., 2022b; Kojima et al., 158

2022). Inspired by CoT, a surge of work induces 159

LLMs to generate the intermedia reasoning steps in 160

the different formats, e.g., code (Gao et al., 2022), 161

tree (Yao et al., 2023), or graph (Besta et al., 2024). 162

Moreover, external tools or guidance can also be 163

leveraged to further enhance the reasoning ability 164

of LLMs (Gou et al., 2023; Schick et al., 2023; 165

Chen et al., 2023; Jiang et al., 2024a). In this work, 166

we train LLM to perform long-form thought and 167

then generate the solution based on the thought 168

without integrating external guidance, which is a 169

special form of CoT. 170

Self-evolution on LLMs. Given the limitation of 171

supervised data, the existing study has leveraged 172

the LLM self-generated data to train the model it- 173

self (Wang et al., 2023; Huang et al., 2023; Tao 174

et al., 2024). To enhance the effectiveness of self- 175

evolution, previous work adopts external signals to 176

improve the quality of training data (Zhang et al., 177

2024a; Lu et al., 2024), or design fine-grained su- 178

2https://huggingface.co/datasets/AI-MO/aimo-validation-
amc
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Figure 1: An illustrative overview of our training pipeline.

pervision to make LLMs better learn the corre-179

sponding knowledge (Wang et al., 2024b; Chen180

et al., 2024). In this work, our major concern is181

how to utilize the existing supervised instances to182

construct the training dataset, which effectively183

and efficiently makes LLM possess the ability to184

perform long-form reasoning. This ability can be185

utilized in the solve-evolution process.186

3 Method187

In this section, we provide a detailed description of188

how to implement o1-like reasoning systems3.189

3.1 Overview190

In this work, we propose a two-phase training ap-191

proach—imitate, explore, and self-improve—to de-192

velop reasoning systems similar to o1. After train-193

ing, the inference phase is also completed by a194

single-pass text generation process, akin to prior195

prompt-based methods, with the key distinction196

that the generated response includes both the rea-197

soning process and the solution. We show the198

overview of our method in Figure 1. Next, we199

detail each phase below.200

• Imitate: The core idea is that both the internal201

thought process and the final solution should be202

generated in a single response. We argue that a203

well-established model, even with a small amount204

of long-form thought data, can easily adhere to o1-205

like output formats, which is fundamentally about206

following a prescribed format. The key rationale207

is that, although the entire thought process may be208

3Because the exact development of OpenAI’s o1 systems
is not publicly known, in this paper, “o1-like” refers to the rea-
soning systems that first conduct extensive reasoning process
before producing the final solution.

complex, LLMs can effectively handle individual 209

steps (e.g., planning, verification, and refinement). 210

By using format-following, we can guide LLMs to 211

seamlessly manage and connect these steps. If this 212

hypothesis proves true, two major benefits can be 213

realized: (1) large amounts of data are unnecessary 214

for format-following, and (2) the approach can be 215

easily generalized to various domains. 216

• Explore and Self-Improve: While imitation en- 217

ables LLMs to generate o1-like outputs, it may not 218

fully encourage the model to master or improve its 219

ability to use long-form thought to tackle complex 220

tasks. To address this, we further incorporate explo- 221

ration to allow the model to find the correct trajec- 222

tory (i.e., the entire response consisting of thought 223

and solution) by sampling multiple candidate so- 224

lutions to refine the training data. And we evalu- 225

ate the correctness of these attempted solutions by 226

comparing them with the golden labels. Then, we 227

can further enhance the model’s reasoning capabil- 228

ities by utilizing progressively improved trajectory 229

data to perform supervised fine-tuning or direct 230

preference optimization. We hypothesize that pro- 231

viding high-quality demonstrations—particularly 232

those the model cannot easily generate—will effec- 233

tively strengthen its reasoning abilities. 234

3.2 Slow-Thinking Reasoning Imitation 235

As discussed in Section 1, we propose using imita- 236

tion learning to enable the LLM to engage in slow- 237

thinking reasoning—producing an extended pro- 238

cess of thought (referred to as long-form thought4) 239

before responding to a query. 240

4We prefer not to use “chain-of-thought” since thoughts
can be presented flexibly, embodying different reasoning struc-
tures.
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3.2.1 Long-form Thought Data Construction241

To guide the LLM in a slow-thinking mode, we242

first need to construct a collection of high-quality243

demonstration data that exhibits this behavior.244

Given the simplicity and budget constraints, we245

collect long-form thought data from existing o1-246

like reasoning systems, such as DeepSeek-R1-Lite-247

Preview (Team, 2024a) (abbreviated as R1) and248

QwQ-32B-preview (Team, 2024c) (abbreviated as249

QwQ), which provide the detailed long-thought250

process. Our goal is to develop more generalized251

LLMs capable of reasoning across different do-252

mains. To achieve this, we begin by collecting253

demonstration instances from the mathematic do-254

main, as we hypothesize that the ability to per-255

form long-form reasoning can transfer easily across256

them. After collecting the labeled data, we per-257

form further pre-processing to ensure data quality,258

including deduplication and filtering. We show259

the details of the long-form thought dataset con-260

struction process, including data collection, format261

unification, and data pose-process in Appendix A.262

3.2.2 Long-form Thought Instruction Tuning263

After collecting instruction data for long-form rea-264

soning, we fine-tune the model to replicate the be-265

havior of the slow-thinking mode. Specifically,266

we first determine the data ratio for each domain267

through empirical experiments, and then optimize268

the model using supervised fine-tuning (SFT). For269

the base model, we select Qwen2.5-32B-Instruct,270

as it has been shown to perform effectively in ex-271

tensive evaluations.272

Although we can distill a large amount of instruc-273

tion data, we retain only several thousand demon-274

stration instances during SFT. Our ultimate goal275

is to assess the effectiveness of self-improvement276

learning within this approach.277

3.3 Exploration and Self-Improvement278

In this section, we propose enabling LLMs to ex-279

plore on their own, gradually generating more data280

for self-improvement.281

3.3.1 Iteratively Refined Training Data282

We propose an iterative training approach to en-283

hance the slow-thinking capabilities of a model284

by progressively refining training datasets. The285

refinement process involves three main strategies:286

incorporating more accurate trajectories from com-287

plex problems, selecting trajectories based on the288

response length distribution of the same problem289

type during the imitation phase, and adding high- 290

quality trajectories generated by an improved rea- 291

soning model. 292

Initially, an original dataset, denoted as D0, con- 293

taining distilled trajectories from external reason- 294

ing systems, is used to train the initial reasoning 295

model. For each problem type Ti in D0, we calcu- 296

late the probability distribution of response lengths 297

p(Ti) and assume that the model’s self-exploratory 298

answers would also follow this distribution. Once 299

the model is trained, we use it to generate addi- 300

tional trajectories through exploration. Next, we 301

select true trajectories following the correspond- 302

ing length distribution and add them to D0 to 303

form a new dataset, D1. This iterative process 304

of training stronger models and refining training 305

data continues to improve the dataset as the reason- 306

ing model evolves. Each refinement step involves 307

strict pre-processing to filter out low-quality trajec- 308

tories, such as those that are short or noisy. Further- 309

more, perplexity is identified as a valuable metric 310

for data selection (Ankner et al., 2024), allowing us 311

to identify and retain more challenging trajectories 312

as recognized by the current reasoning model. 313

3.3.2 Optimization for Self-improvement 314

After discussing how to iteratively refine training 315

data, we now introduce the optimization methods 316

for self-improvement. We apply two straightfor- 317

ward optimization strategies, integrating the refined 318

training datasets: supervised fine-tuning (SFT) and 319

direct preference optimization (DPO). 320

When obtaining the refined dataset Dt in t-th 321

turn, one approach is to iteratively train the base 322

model Mbase (i.e., Qwen2.5-32B-Instruct) on the 323

refined datasets with SFT to obtain the stronger 324

model Mt, which can be viewed as rejection sam- 325

pling fine-tuning (Yuan et al., 2023; Zelikman et al., 326

2022). Another approach to improving the reason- 327

ing model is through DPO (Rafailov et al., 2023). 328

This method enhances the model’s discrimination 329

capability. During DPO, the model M0, which 330

is trained on the distilled trajectories (i.e., D0), is 331

used as the initial model checkpoint. Besides, an 332

SFT loss is incorporated into the objective func- 333

tion to stabilize the training process. This process 334

can be repeated until the dataset is exhausted or a 335

maximum number of iterations is reached. 336

4 Experimental Analysis and Findings 337

In this section, we conduct experiments to examine 338

the two key questions: (1) How can LLM learn the 339
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slow-thinking mode and (2) How can LLM further340

improve its reasoning ability without additional341

demonstration data? In each question, we conduct342

detailed experiments on two key aspects. For the343

first question, we want to figure out: (1) What size344

of backbone model is appropriate during the imita-345

tion phase and (2) What is the minimal amount of346

demonstration data required? For the second ques-347

tion, we want to figure out: (1) How should we348

iteratively update and refine the exploratory data349

and (2) How can we balance the final ratios of dif-350

ferent data resources effectively? After exploring351

these questions, we present a final methodology352

and demonstrate its effectiveness. Our investiga-353

tion shows that leveraging a small amount of dis-354

tilled demonstration data can activate the model’s355

long-form thinking capabilities. We also confirm356

that, even with limited demonstration data, we can357

achieve comparable results with exploration and358

self-improvement.359

4.1 Experimental Setup360

To demonstrate the effectiveness of our framework,361

we mainly conduct experiments on three challeng-362

ing benchmarks: MATH-OAI (Lightman et al.,363

2024), AIME2024 5, and GPQA (Rein et al., 2023).364

MATH-OAI contains 500 competition mathematics365

problems from the MATH (Hendrycks et al., 2021)366

test set. AIME2024 features 30 problems specif-367

ically designed to challenge top high school stu-368

dents with complex problem solving tasks. GPQA369

consists of 198 multiple-choice problems in biol-370

ogy, physics, and chemistry. In our experiments,371

we focus on mathematics as the primary domain,372

with biology, physics, and chemistry serving as373

auxiliary domains. Among the math benchmarks,374

MATH-OAI is considered relatively easier, while375

AIME2024 is regarded as very challenging. Addi-376

tionally, due to the small number of test samples in377

AIME2024, its performance tends to fluctuate in378

our experiments.379

We select Qwen2.5-32B-Instruct (Team,380

2024b) as the backbone model because it demon-381

strates sufficient foundational capabilities to effec-382

tively engage in extended reasoning process. As for383

baselines, we select several leading o1-like models384

for comparison (i.e., o1-preview (OpenAI, 2024b),385

DeepSeek-R1-Lite-Preview (Team, 2024a), and386

QwQ-32B (Team, 2024c)). In addition, we in-387

5https://huggingface.co/datasets/AI-MO/aimo-validation-
amc

clude GPT-4o (OpenAI, 2024a) and Claude 3.5 388

Sonnet (Anthropic, 2024), which are advanced 389

general-purpose models. We use greedy search to 390

evaluate the performance of our model with maxi- 391

mum tokens set to 32k. 392

4.2 How to Learn Slow-thinking Mode? 393

We argue that a well-established model, even with 394

a small amount of long-form thought data, can 395

easily adhere to o1-like output formats. This pro- 396

cess is fundamentally about following a prescribed 397

format. The key rationale is that, although the en- 398

tire thought process may be complex, LLMs can 399

effectively handle individual steps (e.g., planning, 400

verification, and refinement). Therefore, we primar- 401

ily consider two aspects in activating the model’s 402

slow-thinking mode: the scale of model parameters 403

and the volume of long-form complex reasoning 404

thought data. 405

4.2.1 Sufficient Parameter Size of the 406

Backbone Model is Necessary 407

Long-thought reasoning is a relatively complex 408

ability, as it often involves a greater number of 409

challenging operations. Therefore, we hypothesize 410

that it imposes certain requirements on the capa- 411

bilities of the backbone model, which are typically 412

correlated with the model’s parameter scale. To 413

identify a suitable model to serve as the backbone, 414

we utilize backbone models of varying sizes (i.e., 415

ranging from 7B to 70B parameters) for compar- 416

ative analysis. For each model, we train it on the 417

same long-form thought data of 3.9K samples. We 418

show the results in Table 1. 419

We can find that: firstly, for models with rela- 420

tively smaller parameters (e.g., 7B), using a lim- 421

ited (e.g., 1.1K) amount of long-thought data can 422

not achieve satisfied performance in the difficult 423

math problems (i.e., Llama-3.1-Instruct-8B only 424

obtain 6.7% performance on AIME, and Qwen2.5- 425

Instruct-7B even can not obtain gains on each task), 426

which is difficult for the later exploration by them- 427

selves. Secondly, when the parameter size is in- 428

creased to 14B, although there is a performance 429

improvement in the field of mathematics (i.e., from 430

13.3% to 23.3% in AIME), it is still difficult to gen- 431

eralize to other fields (i.e., from 45.5% to 40.9% 432

in GPQA). Thirdly, for models with sufficiently 433

large parameter sizes (e.g., 32B and 70B), a small 434

amount of long-form thought data can trigger the 435

slow-thinking mode, enabling the models to engage 436

in deeper and more meticulous problem-solving 437
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Model Size Model MATH-OAI AIME GPQA

Type Param. Acc (%) Gain (%) Acc (%) Gain (%) Acc (%) Gain (%)

Qwen2.5-Instruct 7B 77.2 - 13.3 - 34.9 -
w/SFT 7B 71.4 -7.5 13.3 0 28.3 -18.9

< 10B Llama-3.1-Instruct 8B 49.2 - 3.3 - 21.7 -
w/SFT 8B 56.2 +14.2 6.7 +100 26.7 +23.0

10B-30B Qwen2.5-Instruct 14B 79.0 - 13.3 - 45.5 -
w/SFT 14B 80.6 +2.0 23.3 +75.2 40.9 -10.1

30B-70B Qwen2.5-Instruct 32B 80.0 - 20.0 43.4 -
w/SFT 32B 90.2 +12.8 46.7 +251.1 55.1 +22.1

> 70B Qwen2.5-Instruct 72B 83.1 - 30.0 - 49.0 -
w/SFT 72B 91.2 +9.7 50.0 +66.7 59.0 +19.2
Llama-3.1-Instruct 70B 65.7 - 6.7 - 44.4 -
w/SFT 70B 81.2 +23.6 33.3 +397.0 37.9 -14.6

Table 1: Performance comparison of different methods on three representative benchmarks. The bold fonts denote
the best performance among our training variants, and we report the gain over the backbone model (in percentage).

and achieving performance improvement on both438

math and other domains (e.g., from 20.0% to 46.7%439

in AIME and from 43.4% to 55.1% in GPQA).440

4.2.2 Limited Amount of Long-form Thought441

Data is Enough442

To explore the amount of long-form thought data re-443

quired to activate the slow thinking mode in LLMs,444

we experiment with different data sizes for SFT. We445

train Qwen-2.5-32B-Instruct using 0.5K, 1K, 2K,446

4K, and 6K samples of long-form thought data. We447

show the results in Table 2. We can see that, even a448

small amount of data can lead to a significant per-449

formance increase (e.g., the average performance450

has improved from 45.6% to 50.2% with only 0.5K451

demonstration data). Furthermore, as the volume452

of demonstration data increases, the model’s per-453

formance further improves on both math domain454

and other domains (e.g., from 13.3% to 46.7% in455

AIME and from 43.4% to 55.0% in GPQA when456

increasing the number of data from 0K to 4K).457

However, we find that beyond a certain point,458

increasing the data size does not seem to provide459

additional benefits to the model on the math domain460

while even hurt the the model in other domains (e.g.,461

same AIME performance and from 55.0% to 53.5%462

in GPQA when further increasing the number of463

data from 4K to 6K). Therefore, considering the464

cost of acquiring long-range reasoning chains, we465

conclude that 4K data samples are sufficient.466

4.3 How to Perform Self-improvement?467

In this section, we explore how to leverage the468

model’s self-exploration to achieve results compa-469

rable to full imitation learning in scenarios where470

Num. MATH AIME GPQA Avg.

0K 80.0 13.3 43.4 45.6
0.5K 82.8 23.3 44.4 50.2
1K 86.0 33.3 48.0 55.8
2K 88.2 46.7 52.5 62.5
4K 90.2 46.7 55.0 64.0
6K 89.0 46.7 53.5 63.1

Table 2: Performance comparison with different Long-
form Thought data size.

demonstration data is scarce. Two key aspects are 471

particularly important here: (1) iterative refinement 472

in data selection, and (2) balancing the final model 473

performance by controlling the data miture ratio. 474

4.3.1 Exploratory Data Should Align with 475

Demonstration Data 476

During the model’s exploration and self- 477

improvement, we iteratively select samples 478

generated by the model itself based on the 479

alignment of response length with the imitation 480

demonstration data. These samples are added 481

to the pool to iteratively expand the volume of 482

exploratory data. To thoroughly demonstrate 483

the importance of length alignment, we conduct 484

experiments using different data length selection 485

strategies. Concretely, we experiment with 486

three selection methods: align to imitation 487

data (selecting the trajectories with the same 488

distribution with imitation data that is mentioned 489

in Section 3.3.1, longest response (choosing the 490

longest trajectory in the correct trajectories), and 491

random response (randomly selecting a correct 492

trajectory). 493

We present the results of three different selec- 494
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Num. MATH AIME GPQA Avg.

Align (Ours) 87.4 46.7 53.0 62.4
Longest 86.2 36.7 43.9 55.6
Random 87.2 33.3 48.5 56.3

Table 3: Performance comparison with different selec-
tion methods of self-improvement data.

tion methods in the table 3. As the results indicate,495

aligning the length of exploratory data with the496

demonstration data is crucial. In this way, we aim497

to help the model maintain an appropriate level498

of cognitive effort during exploration. In contrast,499

random selection and choosing the longest samples500

lead to significant deviations in the length distri-501

bution of the exploratory data, making iterative502

improvement challenging to achieve.503

4.3.2 Challenging Problem is the Key Factor504

During SFT training, we prepare a mixture of train-505

ing data from different domains and varying diffi-506

culty levels. In this section, we examine the impact507

of this data mixture on the model’s performance.508

Specifically, our training dataset consists of three509

main sources: hard mathematical problems (cor-510

responding to difficulty levels such as AIME or511

the Mathematical Olympiad), normal mathemat-512

ical problems (corresponding to the MATH-OAI513

difficulty level), and data from other domains (cor-514

responding to other disciplines in GPQA). Since515

the math domain typically contains many challeng-516

ing reasoning problems, we prioritize it as the main517

domain.518

For the three sources, we experiment with dif-519

ferent proportions for data mixture: w/o hard prob-520

lems (removing the hard mathematical problems),521

w/o other domains (removing all non-math data),522

and mixed domain data (including all three parts523

with a carefully tuned distribution).524

We present the performance comparison in Ta-525

ble 5 and derive three major findings. First, ex-526

cluding the hard problem data leads to a significant527

drop in performance. This highlights the impor-528

tance of hard problems in enhancing the reason-529

ing model’s capabilities, particularly on the most530

challenging benchmark, AIME, in our experiments.531

We observe that hard problems typically require a532

longer thought process to reach the correct solution533

(as indicated by the average thought length statis-534

tics), which helps better guide and teach LLMs535

to generate long-form thoughts. Second, using536

mathematical data alone results in a strong per-537

formance across all three benchmarks, not limited 538

to the math domain. This suggests that reasoning 539

with long-form thought is an inherent capability of 540

LLMs, which can be generalized across domains 541

once properly elicited or taught. This finding is 542

particularly significant for the design of general- 543

ized reasoning algorithms. Third, introducing a 544

small amount of general data can significantly en- 545

hance the model’s capabilities in other domains, 546

but it may affect its ability to solve more challeng- 547

ing mathematical tasks. Therefore, how to control 548

the use of general domain data without effecting 549

capabilities in other areas is a promising future 550

direction. 551

4.4 Final Achieved Results 552

Here, we show the final performance comparison of 553

various methods on the selected evaluation bench- 554

marks in Table 4. The results include performance 555

metrics for o1-like models, general-purpose mod- 556

els, and several approaches based on the backbone 557

model with additional training methods. We re- 558

port both the accuracy and the gain relative to the 559

backbone’s performance. 560

From the table (the first part of Table 4), we can 561

observe that industry-level slow-thinking reasoning 562

systems achieve excellent performance across the 563

three benchmarks, showing significant improve- 564

ment on the most challenging benchmark, i.e., 565

AIME. Secondly, distillation-based variants of our 566

approach (the first group in the second part of 567

Table 4) can yield very competitive results, as 568

shown in the second group of rows, approaching 569

those of industry counterparts (i.e., using 3.9k dis- 570

tilled instances achieves 46.7% and 90.2% accu- 571

racy on AIME and MATH-OAI, respectively). Fur- 572

thermore, increasing the amount of high-quality 573

demonstration data can effectively improve model 574

performance, as evidenced by the comparison be- 575

tween models trained with 1.1k and 3.9k instances. 576

Thirdly, the iteratively trained variants of our ap- 577

proach (the second and third groups in the second 578

part of Table 4) can also achieve promising results 579

across the three benchmarks. Using the variant w/ 580

SFT 1.1k as a reference, we observe that incorpo- 581

rating exploration and self-improvement leads to 582

performance improvements for both SFT or DPO, 583

e.g., the performance on AIME goes from 33.3% 584

to 40.0%, 46.7%, and 40.0%, respectively. Addi- 585

tionally, we find that increasing explored instances 586

can also improve the performance to some extent. 587
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Method Num. Data MATH-OAI AIME GPQA

Distill Explore Acc (%) Gain (%) Acc (%) Gain (%) Acc (%) Gain (%)

GPT-4o - - 76.6 - 9.3 - 53.6 -
Claude 3.5 Sonnet - - 78.3 - 16.0 - 65.0 -
o1-preview - - 85.5 - 44.6 - 72.3 -
DeepSeek-R1-Lite-P - - 91.6 - 52.5 - 58.5 -
QwQ-32B-preview - - 90.6 - 50.0 - 65.2 -

Backbone - - 80.0 - 13.3 - 43.4 -
w/ SFT 3.9k - 90.2 +12.8 46.7 +251.1 55.1 +27.0
w/ SFT 1.1k - 86.0 +7.5 33.3 +153.8 48.0 +10.6

w/ SFT 1.1k 0.7k 87.1 +8.9 40.0 +200.8 49.0 +12.9
w/ SFT 1.1k 1.6k 87.4 +9.2 46.7 +251.1 53.0 +22.1
w/ SFT 1.1k 1.8k 89.8 +12.3 40.0 +200.8 56.1 +29.3

w/ SFT & DPO 1.1k 0.3k 87.2 +9.0 30.0 +125.6 49.5 +14.1
w/ SFT & DPO 1.1k 1.0k 85.4 +6.8 46.7 +251.1 51.0 +17.5

Table 4: Performance comparison of different methods on three representative benchmarks. “Backbone” refers to
CoT reasoning method based on the Qwen2.5-32B-Instruct model, while “w/ SFT” and “w/ SFT & DPO”
denote training with our proposed method. The columns of “Distill” and “Explore” indicate that the source of
training instances, either distillation from R1 and QwQ or exploration by the model itself. The bold fonts denote
the best performance among our training variants, and we report the gain over the backbone model (in percentage).

Settings Avg. L MATH AIME GPQA Avg.

w/o HP 2866 86.0 33.3 51.0 56.8
w/o OD 3389 87.4 46.7 53.0 62.4
mixed 3162 89.8 40.0 56.1 62.0

Table 5: Performance comparison with different mix-
tures for multi-domain data. We also report the average
length for each data mixture.

Empirically, we find that the improvement of588

iterative training is often limited to the initial iter-589

ations and might lead to performance fluctuations590

on some benchmarks. We speculate that, due to the591

constrained number of rollouts (at most 20 in our592

experiments), a portion of challenging problems593

cannot be correctly solved by our reasoning model,594

which can be solved by increasing the rollout num-595

ber.596

Overall, our distillation-based variant (with 3.9k597

instances) achieves the best performance among598

all our attempts, approaching the performance599

of industry-level reasoning systems. Meanwhile,600

the variants incorporating exploration and self-601

improvement also show substantial improvements602

over the backbone model.603

5 Conclusion604

In this paper, we present a detailed introduction to605

a reproduced o1-like reasoning system. We outline606

a two-phase development approach for implement-607

ing such a capable system, where the model is ini-608

tially trained using distilled long-form thought data 609

and then undergoes self-improvement by exploring 610

difficult problems. Our system has demonstrated 611

strong performance on three challenging evalua- 612

tion benchmarks. We find that the slow-thinking 613

mode can be easily transferred across domains and 614

is particularly effective at solving hard, complex 615

problems. Our main findings can be summarized 616

as follows: 617

(1) The ability to perform long-form thinking 618

can be effectively elicited by training with a small 619

amount of high-quality demonstration data. Once 620

established, this ability appears to naturally gener- 621

alize across domains. 622

(2) Demonstration data from the math domain 623

is particularly well-suited for developing the long- 624

form thinking ability of LLMs, and data with longer 625

thought processes appears especially effective in 626

enhancing the model’s capacity to tackle challeng- 627

ing problems. 628

(3) Unlike the formal responses generated by 629

LLMs in a fast-thinking mode, the thought process 630

is typically expressed in a flexible, informal man- 631

ner, serving to guide LLMs toward the correct path 632

to the solution. 633

(4) The slow-thinking capability can be ef- 634

fectively enhanced through exploration and self- 635

improvement, whereas the improvements from of- 636

fline learning methods seem to occur primarily in 637

the initial stage, especially for challenging tasks. 638
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Limitations639

Despite the promising results, our exploration re-640

mains preliminary, and there is still a substantial641

capacity gap compared to industry-level systems.642

In addition to the two methods described above,643

another promising training approach is reinforce-644

ment learning (Schulman et al., 2017; Ye et al.,645

2024), where the policy model is directly trained646

during the exploration process. However, due to647

computational resource constraints, we leave this648

approach for future work. As future work, we plan649

to investigate how to scale our training approach650

and extend its capacity to more complex tasks.651
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Appendix 881

A Long-form Thought Dataset 882

Construction 883

Data Collection. In practice, there are three 884

typical approaches to constructing long-form 885

thought data. First, human annotators can be 886

employed to generate this data. Second, LLMs 887

can be employed generate long-form thought 888

data with the assistance of auxiliary search 889

algorithms (e.g., Monte Carlo Tree Search). 890

Third, this data can be distilled from o1-like 891

reasoning systems. Given considerations of 892

simplicity and budget constraints, we adopt the 893

third approach for collecting long-form thought 894

data, recognizing that our approach can be 895

extended to include other data collection meth- 896

ods. We access two o1-like reasoning systems: 897

DeepSeek-R1-Lite-Preview (Team, 898

2024a) (abbreviated as R1) and 899

QwQ-32B-preview (Team, 2024c) (abbre- 900

viated as QwQ). R1 provides an open API with 901

limited access, while QwQ offers open model 902

checkpoints. We opt not to distill data from o1, 903

as it summarizes internal thought data before 904

presenting it to the user, rendering it not directly 905

suitable for imitation. Upon examining the thought 906

processes of R1 and QwQ, we find that the 907

thoughts can be presented in a relatively flexible 908

and even colloquial manner. To obtain the distilled 909

data, we input the specified problems into both 910

systems and perform multiple rollouts to generate 911

a diverse set of responses. We then automatically 912

label each solution based on whether it leads to the 913

correct answer. 914

Format Unification. After examining the 915

thought processes of R1 and QwQ, we observe that 916

R1 explicitly separates the thinking and solution 917

components, whereas QwQ directly outputs the 918

correct answer following the thinking process. 919

A comparative example of the two systems is 920

shown in Figure 2. Following R1’s structure, we 921

divide the response into two parts, separated by 922

the tokens “begin/end_of_thought” and 923

“begin/end_of_solution”. 924

Since QwQ does not explicitly contain a solu- 925

tion component, we consider performing a rollout 926

to complete this part. Specifically, we first fine- 927

tune a reasoning model (either QwQ or our model) 928

with the distilled, formatted data from R1 and then 929

prompt it to complete the solution section. We find 930
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Problem: Given a triangle ABC with side lengths a, b, and c, an inradius of 3, and a circumradius of 7, find the value of  !"#+ !
#$+ !

"$

��� ��������
��	���
�
• So I‘ve got this problem here. We have a triangle 

ABC with sides !, ", #, an inradius of 3, and a 
circumradius of 7. I need to find the value of )!#+
)
#$+ )

!$. Hmm, okay, let's break this down step by 
step.

• First off, I know that in a triangle, the inradius (r) 
and the circumradius (r) are related to other 
elements of the triangle, like the area and the sides. 
I recall that the area of the triangle can be expressed 
in terms of the inradius and the semiperimeter: area 
= % & ', where s is the semiperimeter, ' = !"#"$

% .
• Also, the area can be expressed in terms of the 

circumradius: area = !#$&' . So, since both expressions 
equal the area, I can set them equal to each other: 
% & ' = !#$&' . Plugging in the known values, r = 3 and % = 
7, so: 3' = !#$&×-⟹ 3' = !#$%( ⟹!"# = 84'.

• Okay, that‘s one equation involving a, b, c, and now, 
I need to find )!#+ )

#$+ )
!$. Let me see if I can express 

this in terms of s or other known quantities. First, 
)
!#+ )

#$+ )
!$ can be written as $"#"!

!#$ . Since ! + " + # = 
2', this becomes $"#"!

!#$ . From earlier, I have !"# = 84', 
so plugging that in: %+(&* = %

(& = )
&% .

• Alternatively, I could use the formula for the area in 
terms of % and % and see if that leads me somewhere, 
but I think the approach I took is valid. Let me see if 
I can confirm this with another method. Perhaps 
using the formula for the area in terms of r and s. I 
know that area = % & ' = 3', and area = !#$&' = !#$%( . 
Setting them equal: 3' = !#$%( ⟹!"# = 84'. Now, back 
to )!#+ )

#$+ )
!$ = $"#"!!#$ = %*!#$ . Substituting !"# = 84', 

we get %+(&* = %
(& = )

&% .

• So I've got this problem about a triangle with sides !, " and #. It says the  inradius is 
3 and circumradius is 7, and I need to find the value of )!#+ )

#$+ )
!$. Hmm, I'm not 

super familiar with inradius and circumradius, but I know that the inradius is the 
radius of the inscribed circle, and the circumradius is the radius of the circumscribed 
circle. Maybe I can find some formulas that relate these to the sides of the triangle.

• First, I recall that the area of a triangle can be expressed in terms of its inradius and 
its semiperimeter. The semiperimeter, usually denoted by s, is half the perimeter, '
= !"#"$

% . The area, ), is then ) = % & ', where % is the inradius. So in this case, ) = 3'.
• I also know that the area of a triangle can be expressed using its circumradius, *. 

There's a formula that says ) = !#$&. . Given that * is 7, that would make ) = !#$%( .
• So now I have two expressions for the area: ) = 3' and ) = !#$%( . Maybe I can set them 

equal to each other: 3' = !#$%( . That gives me !"# = 84'. Hmm, that might be useful 
later.

• I need to find )!#+ )
#$+ )

!$ . Let’s see, that’s equal to $"#"!!#$ , which is !"#"$
!#$ . But since ' = 

!"#"$
% , then ! + " + # = 2'. So, !"#"$!#$ = %*!#$ .

• Let me double-check my steps. First, area ) = 3s  and ) = !#$%( , so setting them equal: 
3' = !#$%( , which gives !"# = 84'. Then, )!#+ )

#$+ )
!$ = !"#"$

!#$ = %+(&* = )
&%. Yeah, that seems 

correct.
• But just to be thorough, let's see if there's another way to approach this. maybe I can 

use Heron's formula for the area in terms of the sides, but that seems more 
complicated than what I've already done.

• Alternatively, perhaps I can use the fact that in any triangle,  r(R + r) = / !"#, but I'm 
not sure about that.

• Wait, perhaps I should consider the expression ( )!#+ )
#$+ )

!$ = $"!"#
!#$ = !"#"$

!#$ ) I'm trying 
to find. I already have ! + " + # = 2' and !"# = 84', so !"#"$!#$ = %+(&* = )

&% . It seems 
consistent with what I got earlier.

• Alternatively, maybe I can consider the expression )!#+ )
#$+ )

!$ = )
!#$ & (! + " + #) , 

which is again %*!#$ , and with !!"# = 84', it simplifies to %+(&* = )
&% .

• I think I've confirmed it in multiple ways now. So, the answer should be ,-. .
• Final Answer

,
-.

�	��
�	��
• First, we use the fact that the area 

of the triangle can be expressed in 
terms of the inradius and 
semiperimeter: 

- = % & ' = 3'
• Where ' = !"#"$% is the 

semiperimeter.
• Additionally, the area can be 

expressed using the circumradius: 
- = !#$&' = !#$%(

• Equating the two expressions for 
the area: 

3' = !#$%( ⟹!"# = 84'
• Next, we need to find:

,
/0 + ,

01 + ,
/1 = 12/20

.
• Since ! + " + # = 2', we have:

)
!#+ )

#$+ )
!$ = %*!#$

• Substituting !"# = 84':
%+
(&* �

%
(& �

)
&%

3' = !#$%(
• Thus, the value is �

,
-.

Figure 2: A case study comparing QwQ with DeepSeek in solving math problems.

that, given the preceding thought process, the rea-931

soning model can readily generate the solution if932

trained using imitation learning. The final format933

of our demonstration data is shown below:934

Long-form Thought Format for Our Rea-
soning Model

<|begin_of_thought|>
{different step of thought separated by \n\n}
<|end_of_thought|>

<|begin_of_solution|>
{formated step-by-step final solution}
<|end_of_solution|>

935

Prompt Template for Our Reasoning
Model
Your role as an assistant involves thoroughly
exploring questions through a systematic
long thinking process before providing
the final precise and accurate solutions.
This requires engaging in a comprehensive
cycle of analysis, summarizing, exploration,
reassessment, reflection, backtracing, and
iteration to develop well-considered thinking
process.

Please structure your response into two
main sections: Thought and Solution.

In the Thought section, detail your reasoning
process using the specified format:
“‘
<|begin_of_thought|>
{thought with steps separated with "\n\n"}
<|end_of_thought|>
”’
Each step should include detailed
considerations such as analisying questions,
summarizing relevant findings, brainstorming
new ideas, verifying the accuracy of the
current steps, refining any errors, and
revisiting previous steps.

In the Solution section, based on various
attempts, explorations, and reflections
from the Thought section, systematically
present the final solution that you deem
correct. The solution should remain a
logical, accurate, concise expression style
and detail necessary step needed to reach the
conclusion, formatted as follows:
“‘
<|begin_of_solution|>
{final formatted, precise, and clear
solution}
<|end_of_solution|>
”’
Now, try to solve the following question
through the above guidelines:

936

Data Mixing. Our goal is to develop more gener- 937
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alized LLMs capable of reasoning across differ-938

ent domains. To achieve this, we begin by us-939

ing demonstration instances (problems paired with940

their distilled responses) from mathematic domain,941

as we hypothesize that the ability to perform long-942

form reasoning can transfer easily across them. The943

second consideration is the difficulty of the demon-944

stration instances. Intuitively, applying long-form945

reasoning to solve relatively simple problems may946

be less beneficial. Therefore, we focus on collect-947

ing more challenging problems from the selected948

domains. Specifically, we select problems from949

the MATH and Olympiads subsets of the Numina-950

MATH (Li et al., 2024) dataset, as well as AIME951

problems collected from the AOPS website 6 span-952

ning 1983 to 2023.953

Pre-processing Demonstration Data. After col-954

lecting the labeled data, we perform further pre-955

processing to ensure data quality, including dedupli-956

cation and filtering. Specifically, when generating957

long-form thought, existing models often produce958

issues such as repetitions, gibberish, or mixtures of959

English and Chinese. To address this, we use rule-960

based methods (e.g., regex matching and n-gram961

matching) to remove such instances. Another key962

observation is that longer instances tend to lead to963

better performance, so we also remove relatively964

short examples. As a result, we obtain a cleaned965

demonstration dataset suitable for fine-tuning our966

reasoning model. Additionally, we employ the fol-967

lowing prompt to guide the model in performing968

slow thinking more effectively.969

6https://artofproblemsolving.com
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