An Empirical Study of Activating Slow-thinking Capability of
Large Language Models

Anonymous ACL submission

Abstract

Recently, slow-thinking reasoning systems,
such as o1, have demonstrated remarkable ca-
pabilities in solving complex reasoning tasks.
These systems typically engage in an extended
thinking process before responding to a query,
allowing them to generate more thorough, ac-
curate, and well-reasoned solutions. These sys-
tems are primarily developed and maintained
by industry, with their core techniques not pub-
licly disclosed. In response, an increasing num-
ber of studies from the research community
aim to explore the technical foundations un-
derlying these powerful reasoning systems. To
reveal the LLM reasoning mechanisms, this pa-
per presents an empirical study on implement-
ing ol-like reasoning systems, focusing on two
key questions: (1) How can LLM learn this rea-
soning approach and (2) How can LLM further
improve its reasoning ability without additional
demonstration data. Concretely, we first design
an “imitate, explore, and self-improve” frame-
work as our primary technical approach to train-
ing the reasoning model. Then, we conduct the
experiment to analyze the influence of differ-
ent selection strategies of training instance and
backbone model, and explore the effect of the
self-improving process. Following the findings
in our experiments, we finally train a powerful
LLM, which can perform complex reasoning
processes, demonstrating superiority in solving
challenging reasoning problems. Our models
and data will be publicly released.

1 Introduction

Recently, slow-thinking reasoning systems, exem-
plified by OpenAI’s o1 model !, have significantly
enhanced the capabilities of large language models
(LLMs) (Zhao et al., 2023) in tackling challenging
tasks (Daniel, 2017; OpenAl, 2024b). Unlike previ-
ous reasoning approaches (Wei et al., 2022a; Shao
et al., 2024), these systems employ test-time scal-
ing, allowing more time for contemplation before

"https://openai.com/o1/

responding to a query. This thinking process is also
reflected as a text generation process that produces
long internal chains of reasoning steps, referred to
as thoughts, to discover suitable solutions. By ex-
amining the generated thought data, we can observe
various complex reasoning behaviors exhibited by
LLMs, such as planning, divide-and-conquer, self-
refinement, and backtracking. Initially, it may seem
surprising that LLMs can manage such complex
reasoning processes, even though we know that spe-
cific training or inference strategies are employed
to support this capability.

To uncover the underlying mechanisms, the re-
search community has been actively exploring
slow-thinking reasoning systems via leveraging
external signals to guide the reasoning process
and further improve the LLM (Jiang et al., 2024b;
Zhang et al., 2024b; Zhao et al., 2024; Wang et al.,
2024a). However, these implemented systems
might not be the correct path toward developing
ol-like systems, because of the following three
major challenges. First, the domain-specific re-
ward model we trained does not generalize well
across different domains. Second, performing tree
search during the inference stage was very time-
consuming, making it impractical for real-world ap-
plications. Third, although test-time scaling works,
we still cannot achieve train-time scaling to im-
prove model performance. These considerations
have led us to reconsider our technical approach to
creating ol-like reasoning systems.

Given the released API or checkpoints for ol-
like systems from DeepSeek and Qwen (Team,
2024a,c), we closely examine the actual thought
processes rather than the summarized versions
in ol. LLMs can perform complex thought pro-
cesses without guidance from external signals (Qin
et al., 2024; Huang et al., 2024). Given this phe-
nomenon, we consider whether leveraging only a
small amount of annotated long chain-of-thought
data can significantly enhance the performance



of LLMs on complex reasoning tasks. Based on
these considerations, in this work, we proposed
a comprehensive empirical study about the train-
ing paradigm of slow-thinking systems, exploring
two key questions: (1) How can LLM learn this
reasoning approach and (2) How can LLM further
improve its reasoning ability without additional
demonstration data.

Specifically, we first propose a conceptual frame-
work comprising an “imitate, explore, and self-
improve" process for conducting our empirical
study. In this framework, LLMs imitate the rea-
soning approach (i.e., long chain-of-thought rea-
soning) from a small number of labeled instances,
and then explore the possible solution to the given
problems without the demonstration and learning
from the successful trajectories. Next, based on
this framework, we assess the influence of differ-
ent selection strategies on the demonstration data
and the backbone model, and analyze the effect
of different self-improving methods. According
to the empirical experiments, we observe that the
reasoning ability of LLM can generalize from the
source domain (i.e., mathematics) to other domains
(i.e., physical, chemistry, and biology), and we also
find that data selection strategy is really important
in the training process, which greatly influences
the final performance of LLM. Moreover, through
training on these demonstration instances, LLM
possesses the ability to enhance itself, even in dif-
ferent domains. Finally, following the findings in
our empirical study, we successfully train an LLM
that shows remarkable performance on complex
reasoning tasks. In summary, our contributions are
as follows:

(1)We conduct the empirical study about the
slow-thinking LLLM training process, and we ob-
serve that only with a small amount of carefully
selected demonstration instances, LLM can possess
the amazing ability to solve challenging reasoning
problems and domain generalization.

(2)We investigate the effectiveness of LLM self-
improving, and find that once the LLM controls
the reasoning approach, it can try to generate the
responses for the unlabeled instances and further
improve itself via these exploration trajectories.

(3)Based on the findings in our empirical study,
we successfully train a slow-thinking LLM, achiev-
ing very promising results on college-level and
competition-level problems, including MATH-

OAI (Lightman et al., 2024), AIME 2, and
GPQA (Rein et al., 2023)

2 Related Work

System 1 and System 2. Previous study (Kahne-
man, 2011) has pointed out the different reasoning
methods, i.e., system 1 and system 2. In the context
of LLMs, the former refers to the model directly
generating the final answer (Yu et al., 2023; Rad-
ford et al., 2019), while the latter requires the model
first to generate the thinking process and then gener-
ate the final answer (Weston and Sukhbaatar, 2023;
Deng et al., 2023). According to the generated
intermedia reasoning steps, system 2 outperforms
system 1 in various tasks (Wei et al., 2022b; Kojima
et al., 2022). However, it requires more resources
than system 1 during the reasoning process, and
how to reduce the inference time is also a critical
research problem (Yu et al., 2024; Zhang et al.,
2024c). In this work, we focus on building a slow-
thinking LLM, i.e., a system 2 model, which can
better solve complex reasoning problems.

Chain-of-Thought Reasoning. Chain-of-Thought
(CoT) prompting strategy utilizes exemplars or in-
structions to guide LL.Ms to generate the reasoning
steps in natural language format before obtaining
the final answer (Wei et al., 2022b; Kojima et al.,
2022). Inspired by CoT, a surge of work induces
LLMs to generate the intermedia reasoning steps in
the different formats, e.g., code (Gao et al., 2022),
tree (Yao et al., 2023), or graph (Besta et al., 2024).
Moreover, external tools or guidance can also be
leveraged to further enhance the reasoning ability
of LLMs (Gou et al., 2023; Schick et al., 2023;
Chen et al., 2023; Jiang et al., 2024a). In this work,
we train LLM to perform long-form thought and
then generate the solution based on the thought
without integrating external guidance, which is a
special form of CoT.

Self-evolution on LLMs. Given the limitation of
supervised data, the existing study has leveraged
the LLM self-generated data to train the model it-
self (Wang et al., 2023; Huang et al., 2023; Tao
et al., 2024). To enhance the effectiveness of self-
evolution, previous work adopts external signals to
improve the quality of training data (Zhang et al.,
2024a; Lu et al., 2024), or design fine-grained su-

*https://huggingface.co/datasets/AI-MO/aimo-validation-
amc



Imitation Learning fo

Long-form Thought Dataset

r Slow-Thinking Reasoning

{Mathematic! &' : | |
Data | i : Prompt & Question .
. ! : i| Thought: : :
+- : i| Wait a minute, let me think for a while ... : :
X+ i : i ’ : i
e : ; | Solution : o0 :
S ’ i{ Step 1: Calculate the length of AC ... g
o e e e Y L [
Ve ' - ™
B i Exploration and Self-Improvement ‘
I ata , .
| Mixture | [ % Gold Bo SFT |
Wis P HOON - Label [&EMTIADD L e——— T e
1 ! ! ( i ) 1
i Math Code ! : ~ RS T Thought||f s— T
® 4 | sampling; 20 —
PSS! ndateA  lterative Refinement {q;t},s) oo )

Figure 1: An illustrative overview of our training pipeline.

pervision to make LLMs better learn the corre-
sponding knowledge (Wang et al., 2024b; Chen
et al., 2024). In this work, our major concern is
how to utilize the existing supervised instances to
construct the training dataset, which effectively
and efficiently makes LLM possess the ability to
perform long-form reasoning. This ability can be
utilized in the solve-evolution process.

3 Method

In this section, we provide a detailed description of
how to implement o1-like reasoning systems?

3.1 Overview

In this work, we propose a two-phase training ap-
proach—imitate, explore, and self-improve—to de-
velop reasoning systems similar to ol. After train-
ing, the inference phase is also completed by a
single-pass text generation process, akin to prior
prompt-based methods, with the key distinction
that the generated response includes both the rea-
soning process and the solution. We show the
overview of our method in Figure 1. Next, we
detail each phase below.

o Imitate: The core idea is that both the internal
thought process and the final solution should be
generated in a single response. We argue that a
well-established model, even with a small amount
of long-form thought data, can easily adhere to ol-
like output formats, which is fundamentally about
following a prescribed format. The key rationale
is that, although the entire thought process may be

Because the exact development of OpenAlI’s ol systems
is not publicly known, in this paper, “ol-like” refers to the rea-
soning systems that first conduct extensive reasoning process
before producing the final solution.

complex, LLMs can effectively handle individual
steps (e.g., planning, verification, and refinement).
By using format-following, we can guide LLMs to
seamlessly manage and connect these steps. If this
hypothesis proves true, two major benefits can be
realized: (1) large amounts of data are unnecessary
for format-following, and (2) the approach can be
easily generalized to various domains.

e Explore and Self-Improve: While imitation en-
ables LLMs to generate ol-like outputs, it may not
fully encourage the model to master or improve its
ability to use long-form thought to tackle complex
tasks. To address this, we further incorporate explo-
ration to allow the model to find the correct trajec-
tory (i.e., the entire response consisting of thought
and solution) by sampling multiple candidate so-
lutions to refine the training data. And we evalu-
ate the correctness of these attempted solutions by
comparing them with the golden labels. Then, we
can further enhance the model’s reasoning capabil-
ities by utilizing progressively improved trajectory
data to perform supervised fine-tuning or direct
preference optimization. We hypothesize that pro-
viding high-quality demonstrations—particularly
those the model cannot easily generate—will effec-
tively strengthen its reasoning abilities.

3.2 Slow-Thinking Reasoning Imitation

As discussed in Section 1, we propose using imita-
tion learning to enable the LLM to engage in slow-
thinking reasoning—producing an extended pro-
cess of thought (referred to as long-form thought*)
before responding to a query.

*We prefer not to use “chain-of-thought” since thoughts
can be presented flexibly, embodying different reasoning struc-
tures.



3.2.1 Long-form Thought Data Construction

To guide the LLM in a slow-thinking mode, we
first need to construct a collection of high-quality
demonstration data that exhibits this behavior.
Given the simplicity and budget constraints, we
collect long-form thought data from existing ol-
like reasoning systems, such as DeepSeek-R1-Lite-
Preview (Team, 2024a) (abbreviated as R/) and
OwQ-32B-preview (Team, 2024c) (abbreviated as
OwQ), which provide the detailed long-thought
process. Our goal is to develop more generalized
LLMs capable of reasoning across different do-
mains. To achieve this, we begin by collecting
demonstration instances from the mathematic do-
main, as we hypothesize that the ability to per-
form long-form reasoning can transfer easily across
them. After collecting the labeled data, we per-
form further pre-processing to ensure data quality,
including deduplication and filtering. We show
the details of the long-form thought dataset con-
struction process, including data collection, format
unification, and data pose-process in Appendix A.

3.2.2 Long-form Thought Instruction Tuning

After collecting instruction data for long-form rea-
soning, we fine-tune the model to replicate the be-
havior of the slow-thinking mode. Specifically,
we first determine the data ratio for each domain
through empirical experiments, and then optimize
the model using supervised fine-tuning (SFT). For
the base model, we select Qwen2.5-32B-Instruct,
as it has been shown to perform effectively in ex-
tensive evaluations.

Although we can distill a large amount of instruc-
tion data, we retain only several thousand demon-
stration instances during SFT. Our ultimate goal
is to assess the effectiveness of self-improvement
learning within this approach.

3.3 Exploration and Self-Improvement

In this section, we propose enabling LLMs to ex-
plore on their own, gradually generating more data
for self-improvement.

3.3.1 Iteratively Refined Training Data

We propose an iterative training approach to en-
hance the slow-thinking capabilities of a model
by progressively refining training datasets. The
refinement process involves three main strategies:
incorporating more accurate trajectories from com-
plex problems, selecting trajectories based on the
response length distribution of the same problem

type during the imitation phase, and adding high-
quality trajectories generated by an improved rea-
soning model.

Initially, an original dataset, denoted as Dy, con-
taining distilled trajectories from external reason-
ing systems, is used to train the initial reasoning
model. For each problem type 7; in Dy, we calcu-
late the probability distribution of response lengths
p(T;) and assume that the model’s self-exploratory
answers would also follow this distribution. Once
the model is trained, we use it to generate addi-
tional trajectories through exploration. Next, we
select true trajectories following the correspond-
ing length distribution and add them to Dy to
form a new dataset, D;. This iterative process
of training stronger models and refining training
data continues to improve the dataset as the reason-
ing model evolves. Each refinement step involves
strict pre-processing to filter out low-quality trajec-
tories, such as those that are short or noisy. Further-
more, perplexity is identified as a valuable metric
for data selection (Ankner et al., 2024), allowing us
to identify and retain more challenging trajectories
as recognized by the current reasoning model.

3.3.2 Optimization for Self-improvement

After discussing how to iteratively refine training
data, we now introduce the optimization methods
for self-improvement. We apply two straightfor-
ward optimization strategies, integrating the refined
training datasets: supervised fine-tuning (SFT) and
direct preference optimization (DPO).

When obtaining the refined dataset D; in ¢-th
turn, one approach is to iteratively train the base
model My, (i.e., Qwen2.5-32B-Instruct) on the
refined datasets with SFT to obtain the stronger
model M, which can be viewed as rejection sam-
pling fine-tuning (Yuan et al., 2023; Zelikman et al.,
2022). Another approach to improving the reason-
ing model is through DPO (Rafailov et al., 2023).
This method enhances the model’s discrimination
capability. During DPO, the model M, which
is trained on the distilled trajectories (i.e., Dy), is
used as the initial model checkpoint. Besides, an
SFT loss is incorporated into the objective func-
tion to stabilize the training process. This process
can be repeated until the dataset is exhausted or a
maximum number of iterations is reached.

4 Experimental Analysis and Findings

In this section, we conduct experiments to examine
the two key questions: (1) How can LLM learn the



slow-thinking mode and (2) How can LLM further
improve its reasoning ability without additional
demonstration data? In each question, we conduct
detailed experiments on two key aspects. For the
first question, we want to figure out: (1) What size
of backbone model is appropriate during the imita-
tion phase and (2) What is the minimal amount of
demonstration data required? For the second ques-
tion, we want to figure out: (1) How should we
iteratively update and refine the exploratory data
and (2) How can we balance the final ratios of dif-
ferent data resources effectively? After exploring
these questions, we present a final methodology
and demonstrate its effectiveness. Our investiga-
tion shows that leveraging a small amount of dis-
tilled demonstration data can activate the model’s
long-form thinking capabilities. We also confirm
that, even with limited demonstration data, we can
achieve comparable results with exploration and
self-improvement.

4.1 Experimental Setup

To demonstrate the effectiveness of our framework,
we mainly conduct experiments on three challeng-
ing benchmarks: MATH-OAI (Lightman et al.,
2024), AIME2024 °, and GPQA (Rein et al., 2023).
MATH-OALI contains 500 competition mathematics
problems from the MATH (Hendrycks et al., 2021)
test set. AIME2024 features 30 problems specif-
ically designed to challenge top high school stu-
dents with complex problem solving tasks. GPQA
consists of 198 multiple-choice problems in biol-
ogy, physics, and chemistry. In our experiments,
we focus on mathematics as the primary domain,
with biology, physics, and chemistry serving as
auxiliary domains. Among the math benchmarks,
MATH-OALI is considered relatively easier, while
AIME2024 is regarded as very challenging. Addi-
tionally, due to the small number of test samples in
AIME2024, its performance tends to fluctuate in
our experiments.

We select Qwen?2.5-32B-Instruct (Team,
2024b) as the backbone model because it demon-
strates sufficient foundational capabilities to effec-
tively engage in extended reasoning process. As for
baselines, we select several leading o1-like models
for comparison (i.e., ol-preview (OpenAl, 2024b),
DeepSeek-R1-Lite-Preview (Team, 2024a), and
QwQ-32B (Team, 2024c¢)). In addition, we in-

Shttps://huggingface.co/datasets/ AI-MO/aimo-validation-
amc

clude GPT-40 (OpenAl, 2024a) and Claude 3.5
Sonnet (Anthropic, 2024), which are advanced
general-purpose models. We use greedy search to
evaluate the performance of our model with maxi-
mum tokens set to 32k.

4.2 How to Learn Slow-thinking Mode?

We argue that a well-established model, even with
a small amount of long-form thought data, can
easily adhere to ol-like output formats. This pro-
cess is fundamentally about following a prescribed
format. The key rationale is that, although the en-
tire thought process may be complex, LLMs can
effectively handle individual steps (e.g., planning,
verification, and refinement). Therefore, we primar-
ily consider two aspects in activating the model’s
slow-thinking mode: the scale of model parameters
and the volume of long-form complex reasoning
thought data.

4.2.1 Sufficient Parameter Size of the
Backbone Model is Necessary

Long-thought reasoning is a relatively complex
ability, as it often involves a greater number of
challenging operations. Therefore, we hypothesize
that it imposes certain requirements on the capa-
bilities of the backbone model, which are typically
correlated with the model’s parameter scale. To
identify a suitable model to serve as the backbone,
we utilize backbone models of varying sizes (i.e.,
ranging from 7B to 70B parameters) for compar-
ative analysis. For each model, we train it on the
same long-form thought data of 3.9K samples. We
show the results in Table 1.

We can find that: firstly, for models with rela-
tively smaller parameters (e.g., 7B), using a lim-
ited (e.g., 1.1K) amount of long-thought data can
not achieve satisfied performance in the difficult
math problems (i.e., Llama-3.1-Instruct-8B only
obtain 6.7% performance on AIME, and Qwen2.5-
Instruct-7B even can not obtain gains on each task),
which is difficult for the later exploration by them-
selves. Secondly, when the parameter size is in-
creased to 14B, although there is a performance
improvement in the field of mathematics (i.e., from
13.3% to 23.3% in AIME)), it is still difficult to gen-
eralize to other fields (i.e., from 45.5% to 40.9%
in GPQA). Thirdly, for models with sufficiently
large parameter sizes (e.g., 32B and 70B), a small
amount of long-form thought data can trigger the
slow-thinking mode, enabling the models to engage
in deeper and more meticulous problem-solving



Model Size \ Model MATH-OAI AIME GPQA
| Type Param. | Acc (%) Gain (%) Acc (%) Gain (%) Acc(%) Gain (%)

Qwen?2.5-Instruct 7B 77.2 - 13.3 - 349 -
w/SFT 7B 71.4 -71.5 13.3 0 28.3 -18.9

<10B Llama-3.1-Instruct 8B 49.2 - 3.3 - 21.7 -
w/SFT 8B 56.2 +14.2 6.7 +100 26.7 +23.0

10B-30B | Qwen2.5-Instruct 14B 79.0 - 13.3 - 45.5 -
w/SFT 14B 80.6 +2.0 23.3 +75.2 40.9 -10.1

30B-70B | Qwen2.5-Instruct 32B 80.0 - 20.0 43.4 -
w/SFT 32B 90.2 +12.8 46.7 +251.1 55.1 +22.1

>70B Qwen2.5-Instruct 72B 83.1 - 30.0 - 49.0 -
w/SFT 72B 91.2 +9.7 50.0 +66.7 59.0 +19.2

Llama-3.1-Instruct  70B 65.7 - 6.7 - 44 .4 -
w/SFT 70B 81.2 +23.6 33.3 +397.0 37.9 -14.6

Table 1: Performance comparison of different methods on three representative benchmarks. The bold fonts denote
the best performance among our training variants, and we report the gain over the backbone model (in percentage).

and achieving performance improvement on both
math and other domains (e.g., from 20.0% to 46.7%
in AIME and from 43.4% to 55.1% in GPQA).

4.2.2 Limited Amount of Long-form Thought
Data is Enough

To explore the amount of long-form thought data re-
quired to activate the slow thinking mode in LLMs,
we experiment with different data sizes for SFT. We
train Qwen-2.5-32B-Instruct using 0.5K, 1K, 2K,
4K, and 6K samples of long-form thought data. We
show the results in Table 2. We can see that, even a
small amount of data can lead to a significant per-
formance increase (e.g., the average performance
has improved from 45.6% to 50.2% with only 0.5K
demonstration data). Furthermore, as the volume
of demonstration data increases, the model’s per-
formance further improves on both math domain
and other domains (e.g., from 13.3% to 46.7% in
AIME and from 43.4% to 55.0% in GPQA when
increasing the number of data from OK to 4K).
However, we find that beyond a certain point,
increasing the data size does not seem to provide
additional benefits to the model on the math domain
while even hurt the the model in other domains (e.g.,
same AIME performance and from 55.0% to 53.5%
in GPQA when further increasing the number of
data from 4K to 6K). Therefore, considering the
cost of acquiring long-range reasoning chains, we
conclude that 4K data samples are sufficient.

4.3 How to Perform Self-improvement?

In this section, we explore how to leverage the
model’s self-exploration to achieve results compa-
rable to full imitation learning in scenarios where

Num. MATH AIME GPQA Avg.
0K 80.0 13.3 43.4 45.6
0.5K 82.8 233 44.4 50.2
1K 86.0 333 48.0 55.8
2K 88.2 46.7 52.5 62.5
4K 90.2 46.7 55.0 64.0
6K 89.0 46.7 53.5 63.1

Table 2: Performance comparison with different Long-
form Thought data size.

demonstration data is scarce. Two key aspects are
particularly important here: (1) iterative refinement
in data selection, and (2) balancing the final model
performance by controlling the data miture ratio.

4.3.1 Exploratory Data Should Align with
Demonstration Data

During the model’s exploration and self-
improvement, we iteratively select samples
generated by the model itself based on the
alignment of response length with the imitation
demonstration data. These samples are added
to the pool to iteratively expand the volume of
exploratory data. To thoroughly demonstrate
the importance of length alignment, we conduct
experiments using different data length selection
strategies.  Concretely, we experiment with
three selection methods: align to imitation
data (selecting the trajectories with the same
distribution with imitation data that is mentioned
in Section 3.3.1, longest response (choosing the
longest trajectory in the correct trajectories), and
random response (randomly selecting a correct
trajectory).

We present the results of three different selec-



Num. MATH AIME GPQA Avg.
Align (Ours) 87.4 46.7 53.0 62.4
Longest 86.2 36.7 439 55.6
Random 87.2 333 48.5 56.3

Table 3: Performance comparison with different selec-
tion methods of self-improvement data.

tion methods in the table 3. As the results indicate,
aligning the length of exploratory data with the
demonstration data is crucial. In this way, we aim
to help the model maintain an appropriate level
of cognitive effort during exploration. In contrast,
random selection and choosing the longest samples
lead to significant deviations in the length distri-
bution of the exploratory data, making iterative
improvement challenging to achieve.

4.3.2 Challenging Problem is the Key Factor

During SFT training, we prepare a mixture of train-
ing data from different domains and varying diffi-
culty levels. In this section, we examine the impact
of this data mixture on the model’s performance.
Specifically, our training dataset consists of three
main sources: hard mathematical problems (cor-
responding to difficulty levels such as AIME or
the Mathematical Olympiad), normal mathemat-
ical problems (corresponding to the MATH-OAI
difficulty level), and data from other domains (cor-
responding to other disciplines in GPQA). Since
the math domain typically contains many challeng-
ing reasoning problems, we prioritize it as the main
domain.

For the three sources, we experiment with dif-
ferent proportions for data mixture: w/o hard prob-
lems (removing the hard mathematical problems),
w/o other domains (removing all non-math data),
and mixed domain data (including all three parts
with a carefully tuned distribution).

We present the performance comparison in Ta-
ble 5 and derive three major findings. First, ex-
cluding the hard problem data leads to a significant
drop in performance. This highlights the impor-
tance of hard problems in enhancing the reason-
ing model’s capabilities, particularly on the most
challenging benchmark, AIME, in our experiments.
We observe that hard problems typically require a
longer thought process to reach the correct solution
(as indicated by the average thought length statis-
tics), which helps better guide and teach LLMs
to generate long-form thoughts. Second, using
mathematical data alone results in a strong per-

formance across all three benchmarks, not limited
to the math domain. This suggests that reasoning
with long-form thought is an inherent capability of
LLMs, which can be generalized across domains
once properly elicited or taught. This finding is
particularly significant for the design of general-
ized reasoning algorithms. Third, introducing a
small amount of general data can significantly en-
hance the model’s capabilities in other domains,
but it may affect its ability to solve more challeng-
ing mathematical tasks. Therefore, how to control
the use of general domain data without effecting
capabilities in other areas is a promising future
direction.

4.4 Final Achieved Results

Here, we show the final performance comparison of
various methods on the selected evaluation bench-
marks in Table 4. The results include performance
metrics for ol-like models, general-purpose mod-
els, and several approaches based on the backbone
model with additional training methods. We re-
port both the accuracy and the gain relative to the
backbone’s performance.

From the table (the first part of Table 4), we can
observe that industry-level slow-thinking reasoning
systems achieve excellent performance across the
three benchmarks, showing significant improve-
ment on the most challenging benchmark, i.e.,
AIME. Secondly, distillation-based variants of our
approach (the first group in the second part of
Table 4) can yield very competitive results, as
shown in the second group of rows, approaching
those of industry counterparts (i.e., using 3.9k dis-
tilled instances achieves 46.7% and 90.2% accu-
racy on AIME and MATH-OALI, respectively). Fur-
thermore, increasing the amount of high-quality
demonstration data can effectively improve model
performance, as evidenced by the comparison be-
tween models trained with 1.1k and 3.9k instances.
Thirdly, the iteratively trained variants of our ap-
proach (the second and third groups in the second
part of Table 4) can also achieve promising results
across the three benchmarks. Using the variant w/
SFT 1.1k as a reference, we observe that incorpo-
rating exploration and self-improvement leads to
performance improvements for both SFT or DPO,
e.g., the performance on AIME goes from 33.3%
to 40.0%, 46.7%, and 40.0%, respectively. Addi-
tionally, we find that increasing explored instances
can also improve the performance to some extent.



Method | Num. Data

MATH-OAI

AIME GPQA

| Distill Explore | Acc (%) Gain (%) Acc (%) Gain (%) Acc(%) Gain (%)

GPT-40 - - 76.6 - 9.3 - 53.6 -
Claude 3.5 Sonnet - - 78.3 - 16.0 - 65.0 -
ol-preview - - 85.5 - 44.6 - 72.3 -
DeepSeek-R1-Lite-P - - 91.6 - 525 - 58.5 -
QwQ-32B-preview - - 90.6 - 50.0 - 65.2 -
Backbone - - 80.0 - 13.3 - 434 -
w/ SFT 3.9k - 90.2 +12.8 46.7 +251.1 55.1 +27.0
w/ SFT 1.1k - 86.0 +7.5 33.3 +153.8 48.0 +10.6
w/ SFT 1.1k 0.7k 87.1 +8.9 40.0 +200.8 49.0 +12.9
w/ SFT 1.1k 1.6k 87.4 +9.2 46.7 +251.1 53.0 +22.1
w/ SFT 1.1k 1.8k 89.8 +12.3 40.0 +200.8 56.1 +29.3
w/ SFT & DPO 1.1k 0.3k 87.2 +9.0 30.0 +125.6 49.5 +14.1
w/ SFT & DPO 1.1k 1.0k 85.4 +6.8 46.7 +251.1 51.0 +17.5

Table 4: Performance comparison of different methods on three representative benchmarks. “Backbone” refers to
CoT reasoning method based on the Qwen2 .5-32B-Instruct model, while “w/ SFT” and “w/ SFT & DPO”
denote training with our proposed method. The columns of “Distill” and “Explore” indicate that the source of
training instances, either distillation from R1 and QwQ or exploration by the model itself. The bold fonts denote
the best performance among our training variants, and we report the gain over the backbone model (in percentage).

Settings Avg. L MATH AIME GPQA Avg.
w/oHP 2866  86.0 333 510 568
w/oOD 3389 874 467 530 624

mixed 3162  89.8 400 561  62.0

Table 5: Performance comparison with different mix-
tures for multi-domain data. We also report the average
length for each data mixture.

Empirically, we find that the improvement of
iterative training is often limited to the initial iter-
ations and might lead to performance fluctuations
on some benchmarks. We speculate that, due to the
constrained number of rollouts (at most 20 in our
experiments), a portion of challenging problems
cannot be correctly solved by our reasoning model,
which can be solved by increasing the rollout num-
ber.

Overall, our distillation-based variant (with 3.9k
instances) achieves the best performance among
all our attempts, approaching the performance
of industry-level reasoning systems. Meanwhile,
the variants incorporating exploration and self-
improvement also show substantial improvements
over the backbone model.

5 Conclusion

In this paper, we present a detailed introduction to
a reproduced ol-like reasoning system. We outline
a two-phase development approach for implement-
ing such a capable system, where the model is ini-

tially trained using distilled long-form thought data
and then undergoes self-improvement by exploring
difficult problems. Our system has demonstrated
strong performance on three challenging evalua-
tion benchmarks. We find that the slow-thinking
mode can be easily transferred across domains and
is particularly effective at solving hard, complex
problems. Our main findings can be summarized
as follows:

(1) The ability to perform long-form thinking
can be effectively elicited by training with a small
amount of high-quality demonstration data. Once
established, this ability appears to naturally gener-
alize across domains.

(2) Demonstration data from the math domain
is particularly well-suited for developing the long-
form thinking ability of LLMs, and data with longer
thought processes appears especially effective in
enhancing the model’s capacity to tackle challeng-
ing problems.

(3) Unlike the formal responses generated by
LLMs in a fast-thinking mode, the thought process
is typically expressed in a flexible, informal man-
ner, serving to guide LLMs toward the correct path
to the solution.

(4) The slow-thinking capability can be ef-
fectively enhanced through exploration and self-
improvement, whereas the improvements from of-
fline learning methods seem to occur primarily in
the initial stage, especially for challenging tasks.



Limitations

Despite the promising results, our exploration re-
mains preliminary, and there is still a substantial
capacity gap compared to industry-level systems.
In addition to the two methods described above,
another promising training approach is reinforce-
ment learning (Schulman et al., 2017; Ye et al.,
2024), where the policy model is directly trained
during the exploration process. However, due to
computational resource constraints, we leave this
approach for future work. As future work, we plan
to investigate how to scale our training approach
and extend its capacity to more complex tasks.

References

Zachary Ankner, Cody Blakeney, Kartik Sreenivasan,
Max Marion, Matthew L. Leavitt, and Mansheej Paul.
2024. Perplexed by perplexity: Perplexity-based
data pruning with small reference models. CoRR,
abs/2405.20541.

Anthropic. 2024. Claude 3.5 sonnet.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. In Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada,
pages 17682-17690. AAAI Press.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng
Gong, Xin Zhao, and Ji-Rong Wen. 2023. Chat-
cot: Tool-augmented chain-of-thought reasoning on
chat-based large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 14777—
14790. Association for Computational Linguistics.

Zhipeng Chen, Kun Zhou, Xin Zhao, Junchen Wan,
Fuzheng Zhang, Di Zhang, and Ji-Rong Wen. 2024.
Improving large language models via fine-grained
reinforcement learning with minimum editing con-
straint. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 5694—
5711. Association for Computational Linguistics.

Kahneman Daniel. 2017. Thinking, fast and slow.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023. Rephrase and respond: Let large
language models ask better questions for themselves.
CoRR, abs/2311.04205.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. PAL: program-aided language
models. CoRR, abs/2211.10435.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2023.
CRITIC: large language models can self-correct with
tool-interactive critiquing. CoRR, abs/2305.11738.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurlPS Datasets
and Benchmarks 2021, December 2021, virtual.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 1051-1068. Association
for Computational Linguistics.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu,
Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin,
Weizhe Yuan, and Pengfei Liu. 2024. O1 replication
journey—part 2: Surpassing ol-preview through sim-
ple distillation, big progress or bitter lesson? arXiv
preprint arXiv:2411.16489.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, Zheng Liu, Dong
Yan, Jian Xie, Zhongyuan Wang, and Ji-Rong Wen.
2024a. Technical report: Enhancing 1lm reasoning
with reward-guided tree search.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, et al. 2024b. Tech-
nical report: Enhancing 1lm reasoning with reward-
guided tree search. CoRR, abs/2411.11694.

D. Kahneman. 2011. Thinking, slow and fast.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In NeurIPS.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip-
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. 2024.
Numinamath: The largest public dataset in ai4maths
with 860k pairs of competition math problems and
solutions. Hugging Face repository.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In ICLR. Open-
Review.net.


https://www.anthropic.com/news/claude-3-5-sonnet
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2411.11694

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Qi Zhu, Fei Mi, Baojun Wang, Weichao Wang,
Xingshan Zeng, Lifeng Shang, Xin Jiang, and Qun
Liu. 2024. Self: Self-evolution with language feed-
back.

OpenAl. 2024a. Hello gpt-4o.
OpenAl. 2024b. Learning to reason with llms.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, and Pengfei Liu. 2024. O1 repli-
cation journey: A strategic progress report — part 1.
CoRR.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In NeurlPS.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
GPQA: A graduate-level google-proof q&a bench-
mark. CoRR, abs/2311.12022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
CoRR, abs/2302.04761.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. CoRR,
abs/2404.14387.

DeepSeek Team. 2024a. Deepseek-rl-lite-preview is
now live: unleashing supercharged reasoning power!

Qwen Team. 2024b. Qwen2.5: A party of foundation
models.

Qwen Team. 2024c. Qwq: Reflect deeply on the bound-
aries of the unknown.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen
Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei Chen,
Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan
Zhang. 2024a. Openr: An open source framework
for advanced reasoning with large language models.
CoRR, abs/2410.09671.

10

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 9426-9439. Association for Computa-
tional Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484—13508. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022a. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlPS.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlPS.

Jason Weston and Sainbayar Sukhbaatar. 2023. System
2 attention (is something you might need too). CoRR,
abs/2311.11829.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and
Tong Zhang. 2024. Online iterative reinforcement
learning from human feedback with general prefer-
ence model. CoRR, abs/2402.07314.

Dongran Yu, Bo Yang, Dayou Liu, Hui Wang, and
Shirui Pan. 2023. A survey on neural-symbolic learn-
ing systems. Neural Networks, 166:105-126.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov.
2024. Distilling system 2 into system 1. CoRR,
abs/2407.06023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuangi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In NeurlPS.


http://arxiv.org/abs/2310.00533
http://arxiv.org/abs/2310.00533
http://arxiv.org/abs/2310.00533
https://openai.com/index/hello-gpt-4o
https://openai.com/index/learning-to-reason-with-llms
http://arxiv.org/abs/2410.18982
http://arxiv.org/abs/2410.18982
http://arxiv.org/abs/2410.18982
https://api-docs.deepseek.com/news/news1120
https://api-docs.deepseek.com/news/news1120
https://api-docs.deepseek.com/news/news1120
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024a. Rest-mcts*: LLM self-
training via process reward guided tree search. CoRR,
abs/2406.03816.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yugiang Li, Wanli Ouyang, and Dongzhan
Zhou. 2024b. Llama-berry: Pairwise optimization
for ol-like olympiad-level mathematical reasoning.
CoRR, abs/2410.02884.

Kaiyan Zhang, Biging Qi, and Bowen Zhou. 2024c. To-
wards building specialized generalist Al with system
1 and system 2 fusion. CoRR, abs/2407.08642.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024. Marco-ol: Towards open
reasoning models for open-ended solutions. CoRR,
abs/2411.14405.

11

Appendix

A Long-form Thought Dataset
Construction

Data Collection. In practice, there are three
typical approaches to constructing long-form
thought data. First, human annotators can be
employed to generate this data. Second, LLMs
can be employed generate long-form thought
data with the assistance of auxiliary search
algorithms (e.g., Monte Carlo Tree Search).
Third, this data can be distilled from ol-like
reasoning systems. Given considerations of
simplicity and budget constraints, we adopt the
third approach for collecting long-form thought
data, recognizing that our approach can be
extended to include other data collection meth-

ods. We access two ol-like reasoning systems:
DeepSeek-Rl1-Lite-Preview (Team,
2024a) (abbreviated as RI) and

QwQ-32B-preview (Team, 2024c) (abbre-
viated as QwQ). R1 provides an open API with
limited access, while QwQ offers open model
checkpoints. We opt not to distill data from ol,
as it summarizes internal thought data before
presenting it to the user, rendering it not directly
suitable for imitation. Upon examining the thought
processes of R1 and QwQ, we find that the
thoughts can be presented in a relatively flexible
and even colloquial manner. To obtain the distilled
data, we input the specified problems into both
systems and perform multiple rollouts to generate
a diverse set of responses. We then automatically
label each solution based on whether it leads to the
correct answer.

Format Unification. After examining the
thought processes of R1 and QwQ, we observe that
R1 explicitly separates the thinking and solution
components, whereas QwQ directly outputs the
correct answer following the thinking process.
A comparative example of the two systems is
shown in Figure 2. Following R1’s structure, we
divide the response into two parts, separated by
the tokens “begin/end_of_thought” and
“begin/end_of_solution”.

Since QwQ does not explicitly contain a solu-
tion component, we consider performing a rollout
to complete this part. Specifically, we first fine-
tune a reasoning model (either QwQ or our model)
with the distilled, formatted data from R1 and then
prompt it to complete the solution section. We find



Problem: Given a triangle ABC with side lengths a, b, and c, an inradius of 3, and a circumradius of 7, find the value of % + bic + aic

QwQ

Deepseek

So I've got this problem about a triangle with sides a, b and c. It says the inradius is
3 and circumradius is 7, and I need to find the value of Z; + ;- + L. Hmm, I'm not
super familiar with inradius and circumradius, but I know that the inradius is the
radius of the inscribed circle, and the circumradius is the radius of the circumscribed
circle. Maybe I can find some formulas that relate these to the sides of the triangle.
First, I recall that the area of a triangle can be expressed in terms of its inradius and
its semiperimeter. The semiperimeter, usually denoted by s, is half the perimeter, s
= %’”‘ . The area, 4, is then 4 = r - s, where 7 is the inradius. So in this case, 4 = 3s.

1 also know that the area of a triangle can be expressed using its circumradius, R.
There's a formula that says A = %¢. Given that R is 7, that would make A = <.

So now I have two expressions for thearea: A=3sand 4 = “”‘ . Maybe I can set them
equal to each other: 3s = "—"” . That gives me abc = 84s. Hmm that might be useful
later.

I need to ﬁnd + =t L Let’s see, that’s equal to
a+b+c thena+ b + E - 25 So, u+b+£ zs

Let me double-check my steps Flrst, area A=3s and A=< so setting them equal:

3s =4¢, which gives abc = 84s. Then, 2 + & + 2 = &b*c —’ =2 Yeah, that seems

atbtc
abc

ctbta
abc

. But since s =

, which is

correct.
But just to be thorough, let's see if there's another way to approach this. maybe I can
use Heron's formula for the area in terms of the sides, but that seems more
complicated than what I've already done.

Alternatively, perhaps I can use the fact that in any triangle, r(R +r)
not sure about that.

Wait, perhaps I should consider the expression (&

= Yabc, but I'm

+E+L= —‘;‘,‘;” = &) I'm trying

to find. I already have a + b + ¢ = 2s and abc = 84s, so “Z’;:”f% =4 - It seems
consistent with what I got earlier.
« Alternatively, maybe I can consider the expression 5+ 2+ === (a+b+¢),

which is again 2= ﬂbc , and with aabc = 84s, it slmphﬁes to =

Bas E'

1 think I've confirmed it in multiple ways now. So, the answer should be 712 .
Final Answer

{l=

Thought:

So I've got this problem here. We have a triangle
ABC with sides a, b, c, an inradius of 3, and a
circumradius of 7. I need to find the value of & +

;_c + 2 Hmm, okay, let’s break this down step by
step.

First off, I know that in a triangle, the inradius (r)
and the circumradius (r) are related to other
elements of the triangle, like the area and the sides.
Irecall that the area of the triangle can be expressed
in terms of the inradius and the semiperimeter: area
=75, where s is the semiperimeter, s = &2+

Also, the area can be expressed in terms of the
circumradius: area = “”‘ . So, since both expressions
equal the area, I can set them equal to each other:
res= "—"‘ Plugging in the known values, r =3 and r =
7,s0: 3s =4t — 35 =9 = abc = 84s.

Okay, that s one equatlon involving a, b, ¢, and now,
Ineed to find ; + 3= + . Let me see if I can express
this in terms of s or other known quantities. First,

c+b+a

25 32 +3; can be written as .Sincea+b+c=
2s thlS becomes “'"*“ From earher I have abc = 84s,
so plugging that i m 875 =Z=1.

Alternatively, I could use the formula for the area in
terms of r and r and see if that leads me somewhere,
but I think the approach I took is valid. Let me see if
1 can confirm this with another method. Perhaps
using the formula for the area in terms of r and s. I
know that area =7 - s = 35, and area = 4¢ = 4,
Settmg them equal: 3s =% “"” = abc= 845 Now, back
tot+L+2l= ”m"% =z Substltutmg abc = 84s,

% _
wegeta——z—a.

Solution:

« First, we use the fact that the area
of the triangle can be expressed in
terms of the inradius and

semiperimeter:
§=r-s=3s
+ Where s = £2¢ js the
semiperimeter.

« Additionally, the area can be
expressed using the circumradius:
§ = abe = abe
. a2
Equating the two expressions for
the area:
3s= ""‘ = abc = 84s

+ Next, we need to find:
_cratb
=z

Since a + b + = 2s, we have
1,7 Y
a = ane

be
. Substltutmg abc = 84s:
25

3s=5%
+ Thus, the value is :

Figure 2: A case study comparing QwQ with DeepSeek in solving math problems.

that, given the preceding thought process, the rea-
soning model can readily generate the solution if
trained using imitation learning. The final format
of our demonstration data is shown below:

Long-form Thought Format for Our Rea-

soning Model

<|begin_of_thought |>
{different step of thought separated by \n\n}
<|end_of_thought | >

<|begin_of_solution|>
{formated step-by-step final solution}
<|end_of_solution]|>

Prompt Template for Our Reasoning

Model

cycle of analysis,
reassessment,

process.

main sections:

In the Thought section,

e

<|begin_of_thought|>

<|end_of_thought |>

295

Each step should include

new ideas, verifying the

current steps,

In the Solution section,
attempts, explorations,

correct.
logical, accurate,

conclusion, formatted as

e

<|begin_of_solution|>

solution}
<|end_of_solution|>

pn

Now,

refining any errors,
revisiting previous steps.

{final formatted, precise,

Your role as an assistant involves thoroughly
exploring questions through a systematic

long thinking process before providing

the final precise and accurate solutions.
This requires engaging in a comprehensive
summarizing,
reflection,
iteration to develop well-considered thinking

exploration,
backtracing, and

Please structure your response into two
Thought and Solution.

detail your reasoning
process using the specified format:

{thought with steps separated with "\n\n"}

detailed

considerations such as analisying questions,
summarizing relevant findings,

brainstorming
accuracy of the
and

based on various

and reflections
from the Thought section,
present the final solution that you deem

The solution should remain a
concise expression style
and detail necessary step needed to reach the

systematically

follows:

and clear

try to solve the following question
through the above guidelines:

Data Mixing. Our goal is to develop more gener-

12




alized LLMs capable of reasoning across differ-
ent domains. To achieve this, we begin by us-
ing demonstration instances (problems paired with
their distilled responses) from mathematic domain,
as we hypothesize that the ability to perform long-
form reasoning can transfer easily across them. The
second consideration is the difficulty of the demon-
stration instances. Intuitively, applying long-form
reasoning to solve relatively simple problems may
be less beneficial. Therefore, we focus on collect-
ing more challenging problems from the selected
domains. Specifically, we select problems from
the MATH and Olympiads subsets of the Numina-
MATH (Li et al., 2024) dataset, as well as AIME
problems collected from the AOPS website ¢ span-
ning 1983 to 2023.

Pre-processing Demonstration Data. After col-
lecting the labeled data, we perform further pre-
processing to ensure data quality, including dedupli-
cation and filtering. Specifically, when generating
long-form thought, existing models often produce
issues such as repetitions, gibberish, or mixtures of
English and Chinese. To address this, we use rule-
based methods (e.g., regex matching and n-gram
matching) to remove such instances. Another key
observation is that longer instances tend to lead to
better performance, so we also remove relatively
short examples. As a result, we obtain a cleaned
demonstration dataset suitable for fine-tuning our
reasoning model. Additionally, we employ the fol-
lowing prompt to guide the model in performing
slow thinking more effectively.

Shttps://artofproblemsolving.com

13



