IRIS: An Iterative and Integrated Framework for Verifiable Causal
Discovery in the Absence of Tabular Data

Anonymous ACL submission

Abstract

Causal discovery is fundamental to scientific re-
search, yet traditional statistical algorithms face
significant challenges, including expensive data
collection, redundant computation for known
relations, and unrealistic assumptions. While
recent LLM-based methods excel at identify-
ing commonly known causal relations, they fall
to uncover novel relations. We introduce IRIS
(Iterative Retrieval and Integrated System for
Real-Time Causal Discovery), a novel frame-
work that addresses these limitations. Start-
ing with a set of initial variables, IRIS auto-
matically collects relevant documents, extracts
variables, and uncovers causal relations. Our
hybrid causal discovery method combines sta-
tistical algorithms and LLM-based methods to
discover known and novel causal relations. In
addition to causal discovery on initial variables,
the missing variable proposal component of
IRIS identifies and incorporates missing vari-
ables to expand the causal graphs. Our ap-
proach enables real-time causal discovery from
only a set of initial variables without requiring
pre-existing datasets.’

1 Introduction

A fundamental task in various disciplines of sci-
ence, including biology, economics and healthcare,
is to identify and utilize underlying causal rela-
tions (Kuhn, 1962). Although interventional exper-
iments are ideal for discovering causal relations,
they are often impractical due to ethical, financial,
or logistical constraints. Therefore, researchers de-
velop statistical methods to infer causal relations
from purely observational tabular data (Pearl, 2009;
Spirtes et al., 2000), though such data is often not
available for a wide range of NLP applications.
Statistical and large language model (LLM)-
based causal discovery algorithms face distinct

'Our code and data are available at https: //anonymous.
4open.science/r/iris-7378

challenges that limit their applicability in real-
world scenarios. First, traditional statistical algo-
rithms predominantly require high-quality struc-
tured tabular data, which is notoriously difficult to
obtain. In contrast, LLM-based methods can con-
sistently estimate causal relations explicitly present
in their training data without relying on tabular data.
However, these models encounter significant limi-
tations when attempting to uncover causal relation-
ships that were not previously documented (Feng
et al., 2024; ZeCeviC et al., 2023). Second, statisti-
cal causal discovery algorithms require predefined
sets of random variables as input, a constraint that
significantly limits their flexibility. LLMs, how-
ever, demonstrate the capability to reliably extract
and identify concepts and entities as variables di-
rectly from texts (Zhang et al., 2011; Glymour et al.,
2019). Third, most statistical algorithms are theo-
retically grounded and mathematically verifiable,
but operate under assumptions that rarely hold in
real-world scenarios, such as the causal sufficiency
assumption (i.e., the absence of unobservable vari-
ables in the causal graph) and acyclicity assump-
tion (i.e., the absence of cycles in the causal graph)
(Pearl, 2009; Neal, 2020). In contrast, the verifi-
cation of LLMs’ predictions in causal discovery
remains an open challenge.

To address these limitations, we propose IRIS,
Iterative Retrieval and Integrated System for verifi-
able causal discovery, in the absence of tabular data
for statistical methods. To leverage the strengths of
both statistical methods and LLMs, our framework
takes a hybrid causal discovery approach, combin-
ing statistical methods with LLM-based causal rela-
tion extraction and verification techniques. This hy-
brid strategy allows us to leverage known causal re-
lations and uncovering novel causal relations. IRIS
begins with a set of initial random variables, which
are sent as queries to retrieve a collection of rele-
vant documents. Consequently, LL.Ms are applied
to map the unstructured texts into structured tabular
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Figure 1: Illustration of our framework. The input is a set of initial variables. Using the Google Search API
with carefully crafted queries and LLMs, we collect relevant documents and extract variable values from these
documents to construct structured data. For hybrid causal discovery, the statistical branch uses the structured data,
while the causal relation extraction branch utilizes the retrieved documents. The results from both branches are
merged into the final causal graph. The missing variable proposal component identifies new variables with causal
relations to the initial variables. We then iteratively use the expanded variables as input to our framework to further

expand the causal graphs.

data, which is utilized by an appropriate statistical
method to perform causal discovery. Its results
are further merged with the causal relations pre-
dicted and verified by LLMs. This hybrid approach
allows cycles in causal graphs, thereby relaxing
the acyclicity assumption. Additionally, we intro-
duce a variable proposal component to identify new
variables that have causal relations with the initial
variables. This component allows us to relax the
causal sufficiency assumption. We then iteratively
use the expanded variables as input to our frame-
work, further expanding the causal graphs.

Our experimental results demonstrate that IRIS
significantly surpasses strong baselines across all
datasets, achieving an average F1 score improve-
ment of 0.14 and a reduction of 0.14 in the average
NHD ratio, as detailed in Section 4.1. Evaluations
of individual components reveal that each com-
ponent outperforms its corresponding baselines.
Specifically, the evaluation of value extraction com-
ponent shows that IRIS with GPT-40 exceeds the
strong baselines, which also utilizes GPT-40 (Sec-
tion 4.2). Our hybrid causal discovery method con-
sistently outperforms both statistical algorithms
and LLM-based approaches (Section 4.2.3). Lastly,
our variable proposal component is more effective
compared to prompt-based baselines ( Section 4.3).

Primary contributions of IRIS are as follows: 1)
We introduce an automatic sample collection and
value extraction component that significantly re-
duces the manual labor for data collection in causal
discovery tasks. 2) We propose a hybrid causal
discovery method that leverages existing causal re-
lations and uncovers novel causal relations. Our
method permits cycles in causal graphs, thus re-
laxing the acyclicity assumption. 3) We develop a
missing variable proposal component that identifies
new variables that may have causal relations with
the initial variables, relaxing the causal sufficiency
assumption. 4) Experimental results demonstrate
that IRIS consistently outperforms its baselines,
with each component of IRIS also surpassing cor-
responding baseline methods.

2 Background

Causal discovery focuses on uncovering causal rela-
tions within a set of variables. Given a pair of vari-
ables (X, Y), the objective is to determine whether
X +Y,Y <« X, or no causal influence between
them, where <— denotes causal direction. A key
distinction between causal discovery and relation
extraction in NLP is that causal discovery can re-
veal unknown causal relations, whereas relation
extraction focuses on transforming relations in free



text into structured relational tuples.

Although randomized controlled trials and A/B
testing are the gold standard for causal discovery
(Fisher, 1935), these experimental approaches are
often impractical due to ethical or financial limita-
tions. Thus, researchers turn to rely on statistical
analysis of observational data to infer causal rela-
tions.

Statistical approaches to causal discovery can be
broadly classified into: constraint-based methods,
such as Peter and Clark (PC) (Spirtes et al., 2000)
and inductive causation (IC) (Pearl, 2009); score-
based methods (Heckerman et al., 1995; Chicker-
ing, 2002; Koivisto and Sood, 2004; Mooij et al.,
2016); and functional methods (Shimizu et al.,
2006; Hyvérinen et al., 2010). These methods em-
ploy statistical measures from observational data
to construct causal graphs but have notable limi-
tations. First, they require resource-intensive and
extensive data collection. Second, theoretically,
they cannot precisely identify ground-truth causal
graphs but instead yield an equivalence class of true
causal graphs (Spirtes et al., 2000; Pearl, 2009).

Furthermore, many statistical approaches, such
as PC and Greedy Equivalence Search (GES), op-
erate under assumptions. Causal sufficiency as-
sumption posits that all variables are observed and
included, neglecting the potential unobserved vari-
ables (Neal, 2020). Some algorithms, such as
Tetrad condition-based (Silva et al., 2006; Kummer-
feld and Ramsey, 2016) and high-order moments-
based approaches (Adams et al., 2021; Chen et al.,
2022) focus on only uncover specific types of un-
observed variables, such as latent confounders (i.e.,
common causes). However, our work aims to iden-
tify more general unobserved variables, includ-
ing confounders, mediators, causes, or effects of
observed variables. Acyclicity assumption states
that causal graphs contain no cycles, which allows
causal discovery to align with Bayesian network
and simplifies mathematical challenges. However,
this assumption often contradicts real-world phe-
nomena. Many causal graphs are known to con-
tain feedback loops, such as the poverty cycle:
poverty — limited access to education — low-
paying jobs — poverty, (Banerjee and Duflo, 2012;
De Weiss and Sirkin, 2010) and the predator-prey
cycle: increase in predator population — decrease
in prey population — decrease in predator popula-
tion (Schmitz, 2017; Abrams, 2001). In contrast
to prior work, our causal discovery framework al-
lows for the inclusion of unobserved variables and

permits cycles within causal graphs to align with
real-world scenarios.

The advent of LLMs provides new opportunities
to address causal discovery (Kiciman et al., 2023;
ZeceviC et al., 2023; Long et al., 2022). These
approaches require LLMs to determine the causal
relation between a given pair of variable names.
However, the reliability of such methods is under
scrutiny. Zecevié et al. (2023) argue that LLMs
may function as "causal parrots", which depend on
memorization to recall the causal relations present
in their training data rather than infer causal rela-
tions. This raises concerns about LLMs’ gener-
alization to identify causal relations that are rare
or absent in pre-training data. Feng et al. (2024)
presents empirical evidence that suggests while
LLMs excel at reproducing frequent causal rela-
tions in pre-training data, they struggle to uncover
novel causal relations.

In contrast to approaches that directly employ
LLMs for causal discovery, Liu et al. (2024) utilize
LLMs to extract variables and their values from
collected documents, then apply statistical meth-
ods to uncover causal relations among these vari-
ables. Our work diverges from this approach by
only taking a set of initial variables as input and
employing an automated process to collect relevant
documents. After variable value extraction, we im-
plement a hybrid causal discovery approach, which
integrate both statistical and LLM-based methods.
Furthermore, our framework is capable of identi-
fying new variables that exhibit causal relations
with the initial set, thereby enabling an iterative
process of data collection and causal discovery on
an expanded variables set. This iterative method al-
lows for a comprehensive exploration of the causal
relations surrounding the initial variables.

3 Methodology

We introduce a real-time causal discovery frame-
work, IRIS. Our method differs from prior causal
discovery algorithms in three key aspects. First,
IRIS does not rely on pre-existing observational
data; instead, it automatically collects and extracts
observational data related to the initial variables.
Second, our hybrid causal discovery component
can utilize known causal relations and uncover
novel causal relations. Third, our approach relaxes
the acyclicity and causal sufficiency assumptions.



3.1 Problem Definition

Given a set of initial variables, Z = (z1,za, ..., ZN ),
where each z; represents one variable, the goal
of real-time causal discovery is to automatically
collect relevant unstructured data DD and extract
variable values to form structured data X, which
enables the discovery of causal relations through
unstructured and structured data. After identifying
causal relations among initial variables, the process
involves identifying new variables causally related
to the initial variables, resulting in an expanded set
of variables Z,,. The final output is an expanded
causal graph G = (Z,,,, R), where R = (ry, ..., 1)
represents the set of causal relations.

3.2 Data Collection and Value Extraction

The first step of IRIS comprises two main steps:
collection of relevant documents and extraction of
variable values. The detailed procedure is outlined
in Algorithm 1 in Appendix A.3.

Retrieval of Relevant Documents We retrieve rel-
evant documents using the Google API 2. To max-
imize the relevance to initial variables, we create
search queries using a stepwise removal approach:
1) Begin with queries containing all variable names
(e.g., "smoking" AND "cancer" AND "pollution").
2) Progressively remove one variable (e.g., "smok-
ing" AND "cancer"). 3) Stop with single-variable
queries (e.g., "smoking"). We also use synonyms
of variables to enhance coverage. We select the top-
k retrieved documents for each query. To ensure
relevance to most variables, k is higher for queries
containing more variables. The retrieval process
continues until the total number of collected docu-
ments reaches a predefined threshold. The resulting
document set is denoted as D = (dy, .., dr), where
d; represents one document.

Extraction of Variable Values We use LLMs to
extract variable values from collected documents .
Given an LLM M, we design a prompt [ including
a document d; and a description of one variable z;.
The variable description includes its name and the
meaning of its values. We guide the LLM to gen-
erate responses following multiple thinking steps,
simulating human expert reasoning, and provide
the final answer in a specific format (Lin et al.,
2024). This generation process can be denoted as
0ij = M (l(d;,z;)), where o0;; is LLM’s response
regarding the value of variable z; in document d;.

2h'ctps ://developers.google.com/custom-search/
docs/overview

We then extract the value v;; from response 0;;. By
iterating through all variables and documents, we
construct a structured data X where each column
represents a variable and each row represents a doc-
ument. The prompt template for value extraction is
presented in Table 4 in Appendix A.4.

3.3 Hybrid Causal Discovery

We employ a hybrid causal discovery approach,
leveraging both statistical methods and LLM-based
relation extraction techniques. The detailed process
of our hybrid causal discovery method is outlined
in Algorithm 2 in Appendix A.3.

Statistical Causal Discovery For structured data
X, we employ statistical causal discovery algo-
rithms including PC (Spirtes et al., 2000), GES
(Chickering, 2003), and NOTEARS (Zheng et al.,
2018). For instance, the PC algorithm performs
conditional independence tests between variable
pairs, progressively expanding the conditioning
sets to determine the presence of causal relations.
These algorithms process structured data X to pro-
duce a causal graph G, as the output.

LLM-based Causal Relation Extraction We in-
troduce a novel causal relation extraction method
inspired by causal relation verification (Si et al.,
2024; Wadden et al., 2022). We treat each potential
causal relation as a claim (e.g., "smoking causes
lung cancer") and find documents containing both
the cause and effect terms (e.g., "smoking" AND
"lung cancer"). To ensure the trustworthiness of re-
trieved documents, we restrict the search domain to
reputable academic repositories 3. We then employ
LLMs to assess whether each document supports
or refutes or not relates with the causal relation
using a carefully designed prompt (see Table 5 in
Appendix A.4). If a majority of documents support
the causal relation, we incorporate it into a causal
graph G,. Otherwise, it is excluded.

Graph Merging The two branches of our hybrid
method produce two causal graphs: G, from statisti-
cal methods and G, from the LLM-based approach.
To merge them into the final causal graph G, we
post-process the causal graph Gs by adding high-
confidence causal relations from G, and removing
those strongly refuted by the verification process.
This merging strategy is employed for two reasons:
(1) the structured data X from the value extraction
phase might contain noise; (2) causal relations that

3Our search is limited to the following academic website
domains: jstor.org, springer.com, ieee.org, ncbi.nlm.nih.gov,
sciencedirect.com, scholar.google.com, arxiv.org.
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are widely supported or refuted by trustworthy doc-
uments can be treated as known knowledge.

3.4 Missing Variable Proposal

This step aims to identify missing variables not
included in the initial set but potentially causally
related to them, and append these to Z,,, as out-
lined in Algorithm 3 in Appendix A.3.

Variable Abstraction We first use LLMs to ab-
stract missing variables from the retrieved docu-
ments . For each document, LLMs are instructed
to analyze the content of each document, identify
variables that could influence or be influenced by
the initial variables, and then provide the most pos-
sible variable in a specified format. The prompt is
provided in Table 6 in Appendix A.4.

Variable Selection To select the most promising
variables from all abstracted variables, we employ
a dual approach combining causal relation verifi-
cation and statistical measures. Causal Relation
Verification: Using the method described in Sec-
tion 3.3, we verify whether each new variable has a
confirmed causal relation with any initial variable.
Variables supported by the majority of documents
are added to Z,,. Statistical Measure: We compute
the Pointwise Mutual Information (PMI) between
each new variable and the initial variables to quan-
tify their dependence, with higher PMI scores in-
dicating stronger potential causal association. The
PMI between two variables (z;, z;) is defined as:

p(Zi,Zj) ]
PMI(z;,z;) =lo lo
(=2) Sppzy) ¢ o) o)
o(zi,z5)
= + log €
o(z;)o(z;)

ey

where 0(z;,z;) is the count of documents where
(zi,z;) co-occur, o(z;) is the count where z; ap-
pears, and C'is the total number of retrievable docu-
ments. Since C'is constant, log C is ignored. These
counts are obtained by the Google Search API. We
compute the PMI score of each abstracted variable
with the initial variables and append the top k vari-
ables with the highest aggregate PMI scores to Z,,.

With the expanded variables Z,,,, we can iterate
the data collection, value extraction, and causal
discovery processes to generate an expanded causal
graph G = (Z,, R) that incorporates these missing
variables and new causal relations.

4 Experiments

4.1 Evaluation of the IRIS Framework

4.1.1 Experimental Setup

We evaluate the quality of the resulting expanded
causal graphs from the complete pipeline of IRIS.
Datasets. The initial variables are from five
datasets: Cancer (Korb and Nicholson, 2010), Res-
piratory Disease, Diabetes, Obesity (Long et al.,
2022), and Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (Shen et al., 2020).

Our Method and Baselines. We employ GPT-
40 as the LLM component, a choice supported by
its superior performance across value extraction,
causal discovery, and missing variable proposal
tasks (see Sections 4.2, 4.2.3, and 4.3). For the sta-
tistical causal discovery algorithms in our method,
we utilize the Greedy Equivalence Search (GES) al-
gorithm. This selection is based on GES achieving
the highest average F1 score and Normalized Ham-
ming Distance (NHD) ratio across all five datasets,
as demonstrated in Section 4.2.3. We introduce
a baseline method, coined "Prompt", which relies
solely on carefully crafted prompts (see Table 7
in Appendix A.4) with LLM to determine causal
relations among expanded variables proposed by
our missing variable proposal component.

Method P R  F11 Prededge NHD Ratio]|
Cancer
Prompt 0.64 0.32 043 14 0.57
IRIS 0.89 057 0.7 18 0.3
Respiratory
Prompt 0.67 0.36 047 12 0.53
IRIS 0.67 055 0.6 18 04
Diabetes
Prompt 0.70 046 0.56 17 0.45
IRIS 076 05 0.6 17 0.39
Obesity
Prompt 0.57 0.33 042 14 0.58
IRIS 0.67 0.58 0.62 21 0.38
ADNI
Prompt 047 0.29 0.36 17 0.64
IRIS 0.5 036 042 20 0.58

Table 1: Evaluation results of the complete framework.
Pred edge indicates the number of predicted edges.

Evaluation. To create ground-truth expanded
causal graphs, we hire three domain experts to in-
dependently annotate each expanded causal graph.
Edges are included if at least two annotators agree.
With a Krippendorff’s alpha of 0.88, inter-annotator
agreement is high (Krippendorff, 2011). The de-
tailed annotation instruction is in Table 8 in Ap-
pendix A.6. Following Kiciman et al. (2023);



Feng et al. (2024), we evaluate the results of
causal discovery using precision, recall, F1 score,
and the Ratio of Normalized Hamming Distance
(NHD) to baseline NHD. The ratio is defined as
ratio = %, where the baseline NHD is
derived from the worst-performing causal graph
that has the same number of edges as the predicted
graph. A lower ratio signifies a more accurate pre-

dicted causal graph.

4.1.2 Experimental Results and Analysis

As presented in Table 1, IRIS consistently out-
performs the Prompt baseline across all datasets,
achieving higher F1 scores and lower NHD ratios.
The average F1 score improvement is 0.14. The
average NHD ratio decreased by 0.14. ADNI ex-
hibits the lowest overall performance for both meth-
ods. This may reflect the inherent complexity of
Alzheimer’s disease causal relations. IRIS predicts
more edges than the baseline (averaging 18.8 vs.
14.8 edges), which ensures a higher recall than
the baseline (averaging 0.51 vs. 0.35). This in-
dicates that our method’s hybrid causal discovery
can capture more causal relations effectively. The
expanded causal graphs for each dataset are illus-
trated in Figures 4, 5, 6, 7, 8 in Appendix A.7.

4.2 Evaluation of Value Extraction

4.2.1 Experimental Setup

Datasets. We evaluate the value extraction compo-
nent of our method using two table-to-text datasets:
AppleGastronome and Neuropathic (Liu et al.,
2024). These datasets are particularly suitable
for our task as they provide tabular data where
columns represent variables and rows represent
samples. Each row is associated with a correspond-
ing textual description. The datasets are structured
as follows: AppleGastronome contains 7 variables
and 100 samples. Variable values are -1, 0, or 1.
Neuropathic contains 7 variables and 100 samples.
Variable values are 0 or 1.

LLMs and Baselines. We utilize state-of-the-
art LLMs for our method: Llama-3.1-8b-Instruct
(Meta, 2024), GPT-3.5-turbo (OpenAl, 2022), GPT-
4o (OpenAl, 2024). Additionally, we compare our
method with COAT, which also utilizes an LLM
to extract values of variables from documents (Liu
et al., 2024). To ensure a fair comparison, we use
GPT-40 in both our method and the COAT imple-
mentation.

Metrics. Given that variable values are categorical,
we frame the value extraction task as a classifica-

AppleGastronome

P R Fl
COAT - GPT-40 0.74 0.76 0.75
IRIS- Llama 0.71 0.72 0.71
IRIS- GPT-3.5  0.75 0.77 0.76
IRIS- GPT-40 0.79 0.82 0.79
Neuropathic
COAT - GPT-40 0.72 0.80 0.79
IRIS- Llama 0.76 0.82 0.79
IRIS- GPT-3.5 0.71 0.89 0.79
IRIS- GPT-40 0.73 1.0 0.84

Table 2: Result of evaluation of value extraction. Llama
represents Llama-3.1-8b-instruct

tion problem, predicting the value of a variable in
a given document. Therefore, we employ standard
classification metrics: precision, recall, and F1.

4.2.2 Experimental Results and Analysis

Table 2 presents the evaluation results of our value
extraction method across different LLMs on the
AppleGastronome and Neuropathic datasets. Our
method’s superior performance with GPT-40, com-
pared to COAT using the same LLM, indicates that
our approach is more effective than COAT under
identical LLM. In both datasets, we observe a con-
sistent trend of improvement from Llama-3.1-8b-
Instruct to GPT-3.5, and further to GPT-40 when
using our method. This progression aligns with the
general understanding that more advanced LLMs
tend to perform better on complex tasks. Over-
all, the models perform better on the Neuropathic
dataset compared to AppleGastronome. This could
be attributed to the simpler binary values of the
Neuropathic dataset (values 0 or 1) compared to
the ternary values in AppleGastronome (-1, 0, 1).
The additional complexity in AppleGastronome
might introduce more opportunities for misclassifi-
cation. The high performance of GPT-40 suggests
that it could be highly effective for value extraction
in our framework.

4.2.3 Evaluation of Causal Discovery
4.2.4 Experimental Setup

Datasets. We evaluate our hybrid causal discov-
ery component to five datasets: Cancer (Korb and
Nicholson, 2010), Respiratory Disease, Diabetes,
Obesity (Long et al., 2022), and Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (Shen et al.,
2020). These causal graphs are annotated by do-
main experts. The ground-truth causal graphs are
presented in Figure 3 in Appendix A.S5.
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Figure 2: Evaluation results of causal discovery component on five datasets. A higher F1 score indicates better
performance, while a lower NHD ratio reflects better performance. VCR refers to verified causal relations that are
extracted from relevant academic documents and validated by LLMs. "Llama" refers to the use of the Llama-3.1-8b-
instruct model as a substitute for GPT-40 in our method.

Baselines. We compare our method against several We observe that the performance of individual
baselines: 1) Pairwise-LLM constructs queries for  statistical algorithms (GES, NOTEARS, PC) var-
each pair of variables, using LLMs to determine  ied across datasets. PC excels in Respiratory Dis-
causal relations. The computational complexity of  ease and Obesity. GES demonstrates optimal per-
this method is O(n2) (Feng et al., 2024). 2) BFS-  formance on Diabetes and Obesity. NOTEARS
LLM employs a breadth-first search approach with ~ performs best on Cancer and ADNI but struggles
LLMs, achieving linear computational complexity  significantly with Diabetes and Obesity, achieving
(Jiralerspong et al., 2024). 3) COAT utilizes LLM  a 0 F1 score and a 1 NHD ratio. This variation
to extract values from documents, then applies the  highlights the importance of selecting statistical
PC algorithm for causal discovery (Liu et al., 2024).  algorithms based on the characteristics of the ob-
In our hybrid causal discovery approach, for statis-  servational data, which presents a compelling area
tical algorithms, we utilize PC (Spirtes et al., 2000),  for further research. From our experiments, both
GES (Chickering, 2003), and NOTEARS (Zheng  GES and PC exhibit strong performances; however,
etal., 2018). Among the three statistical methods, = GES outperforms PC, with an average F1 score that
we select the one that demonstrates the best per-  is 0.09 points higher and an average NHD ratio that
formance for hybrid causal discovery. Based on  is 0.09 points lower. Given these results, GES is
our value extraction results (see Table 2), we use =~ recommended as the primary choice when the suit-
GPT-40, which demonstrated the best performance,  ability of the algorithm is uncertain. When compar-
as the LLLM for both our method and the baseline  ing the performance of Llama-3.1-8b-instruct and
approaches. To illustrate how different LLMs af-  GPT-40 in our method, GPT-40 consistently out-
fect the performance of our method, we employ the  performs Llama-3.1-8b-instruct across all datasets,
Llama-3.1-8b-instruct model as a counterpart. with a particularly significant gap observed in the
Metrics.We evaluate the quality of causal graphs ~ ADNI dataset. We believe this discrepancy arises
using precision, recall, F1, and NHD ratio as de-  because ADNI involves specialized knowledge that
tailed in Section 4.1. is less commonly represented in the pre-training
data of Llama-3.1-8b-instruct.

4.2.5 Experimental Results and Analysis

The evaluation results of the causal discovery com- LLM-based methods (Pairwise-LLM and BFS-
ponent across five datasets are presented in Figure 2.  LLM) show competitive performance on simpler
More detailed results are presented in Table 9, 10,  datasets. They perform well on the Cancer and
11, 12, 13 in Appendix A.8. In these results, our ~ Respiratory Disease datasets. However, their per-
hybrid method consistently outperforms baseline ~ formance degrades on more complex datasets like
methods across all datasets. This highlights the =~ ADNI. This suggests that while LLMs have po-
effectiveness of combining statistical algorithms  tential in causal discovery, they may struggle with
with LLM-based methods. more complex causal relations, possibly due to the



lower occurrence of such domain-specific causal
relations in their training data (Feng et al., 2024).
The COAT method yields results similar to IRIS-
PC because both approaches extract values from
documents and then perform causal discovery us-
ing the PC algorithm.

In conclusion, our experimental results consis-
tently demonstrate that integrating the Verified
Causal Relations (VCR) component with statistical
algorithms significantly enhances causal discovery
performance across datasets, thereby validating the
effectiveness of our hybrid approach.

4.3 Evaluation of Missing Variable Proposal

Cancer Respiratory Diabetes Obesity ADNI

Method .

Disease
Prompt 0.4 0.25 0.5 0.25 0.25
MVP - NoVCR 0.6 0.75 0.5 0.75 0.25
MVP - NoStats 0.6 0.75 0.75 1.0 0.375
MVP (Llama) 0.4 0.5 0.25 0.5 0.125
MVP 0.8 0.75 1.0 1.0 0.5

Table 3: Evaluation results (success rate) of the missing
variable proposal (MVP) component. MVP-NoVCR ex-
cludes verified causal relation extraction; MVP-NoStats
omits statistical approaches; Llama is the Llama-3.1-
8b-instruct. Except MVP (Llama), other methods use
GPT-40 as the LLM.

4.3.1 Experimental Setup

Datasets. Evaluating the missing variable pro-
posal component presents a unique challenge: the
ground-truth missing variables are inherently un-
known in real-world scenarios. To address this, we
simulate missing variables and assess our method’s
ability to identify them. We start with complete,
ground-truth causal graphs and systematically re-
move variables to create incomplete graphs. We
employ five causal graphs: Cancer, Respiratory
Disease, Diabetes, Obesity, and ADNI. For each
causal graph, we iteratively remove one variable at
a time, creating multiple test cases per graph. We
then apply our missing variable proposal compo-
nent to these incomplete graphs, aiming to identify
the removed variables.

Our Method and Baselines. To ensure a com-
prehensive evaluation, we introduced a baseline
method that uses LLMs to directly suggest new
variables via a prompt-based approach. For both
our missing variable proposal component and the
baseline, we use GPT-40 as the primary LLM. To
compare the performance of different LLMs, we
also replace GPT-40 with Llama-3.1-8b-instruct in
our component.

Metrics. We evaluate the performance using a suc-
cess rate metric, calculated as follows: 1) For each
incomplete causal graph, we check if our method
successfully proposes the removed variable in its
final set of proposed variables Z,,. 2) We count
a "success" for each correctly proposed variable.
3) The success rate is computed as: Success Rate
= Number of Successes / Total Number of Incom-
plete Graphs. For instance, in a causal graph with
five variables, we create five different incomplete
graphs by removing each variable. If our method
correctly proposes the removed variable in three
of these five graphs, the success rate would be 0.6.
For the statistical approach, we select the top-5
variables based on their PMI scores.

4.3.2 Experimental Results and Analysis

The evaluation results of our Missing Variable Pro-
posal (MVP) component are presented in Table 3.
The MVP method consistently outperforms other
variants across all datasets. This demonstrates the
effectiveness of combining VCR with statistical
approach in identifying missing variables. Abla-
tion studies indicate that both VCR and statistical
approaches play a crucial role in enhancing the
success rate of the MVP. The performance gap
between MVP and MVP-Llama indicates the supe-
rior capability of GPT-40 in understanding and rea-
soning about causal relations. The prompt-based
baseline consistently underperforms compared to
our framework, indicating that relying solely on
the internal knowledge of LLMs is not reliable for
proposing missing variables.

5 Conclusion

In this paper, we introduce IRIS, a novel framework
that addresses several longstanding challenges in
causal discovery. By integrating automated data
collection, hybrid causal discovery methods, and a
variable proposal components, IRIS significantly
advances our ability to uncover causal relations
in real-world scenarios. Our approach not only
reduces the reliance on extensive manual data col-
lection but also leverages existing knowledge in
order to facilitate the discovery of novel causal
relations with novel variables. Our experimental
results show that IRIS consistently outperforms
competitive baselines. Future work could aim to
enhancing the scalability of IRIS for larger and
more complex causal graphs by integrating causal
relations extracted from texts with the ones identi-
fied through statistical algorithms.



Limitations

Our approach to uncovering causal relations using
retrieved documents and LLMs has certain limi-
tations. A primary challenge is the potential bias
inherent in both the data and the LLMs. Retrieved
documents may contain sampling biases, inaccu-
racies, or incomplete coverage of causal relations.
Likewise, LLMs may inherit biases from their pre-
training data or face limitations in generalization,
potentially affecting their interpretation of causal
relationships. To mitigate these issues, we retrieve
documents from reliable sources, such as academic
websites, and leverage state-of-the-art LLMs like
GPT-4.

Ethics Statement

We acknowledge the importance of ACL Code of
Ethics and agree with it. We ensure that our study
is compatible with the provided code.

Our work involves uncovering causal relations
using retrieved documents and LLMs, and we ac-
knowledge the ethical considerations associated
with this approach. The potential biases inherent
in both the retrieved data and the LLMs pose a sig-
nificant challenge. To mitigate these risks, we pri-
oritize retrieving data from credible sources, such
as academic publications and verified websites, to
ensure the reliability of the input data. Addition-
ally, we employ state-of-the-art LLMs, like GPT-4,
which are designed to provide high-quality and
robust outputs. However, we recognize that no
system is entirely free from bias, and users of this
framework should exercise caution in interpreting
its results.

The evaluation of our method involves hiring hu-
man experts to annotate causal graphs. We have en-
sured that the annotation process adheres to ethical
guidelines, including providing fair compensation
for their contributions. Rigorous measures have
been taken to thoroughly anonymize the causal
graphs, which do not contain any personally iden-
tifiable information or sensitive data related to the
contributors. The causal graphs were compiled
with contributions from PhD students, which may
inherently introduce biases influenced by their de-
mographic backgrounds. We advise researchers
utilizing this dataset to carefully account for these
potential biases, particularly in studies related to
Al fairness, bias, and safety.
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A Appendix
A.1 Related Work

Causal Discovery Causal discovery aims to un-
cover causal structures among variables, distin-
guishing itself from relation extraction in NLP by
revealing novel causal relations rather than merely
extracting known relations. While experimental
approaches such as randomized controlled trials
are gold standard methods(Fisher, 1935), practi-
cal limitations often necessitate statistical methods
using observational data. These include constraint-
based and score-based approaches (Spirtes et al.,
2000; Pearl, 2009; Heckerman et al., 1995). How-
ever, statistical methods face challenges in data
collection and theoretical limitations. Recent ad-
vancements in LLMs have introduced new pos-
sibilities for causal discovery without direct data
access (Kiciman et al., 2023; Zecevic et al., 2023;
Long et al., 2022). However, concerns about LLMs
functioning as "causal parrots" and their ability
to generalize to novel relations have been raised
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(Zecevié et al., 2023; Feng et al., 2024). Alterna-
tive approaches, such as using LLMs for variable
proposer and combining them with statistical meth-
ods (Liu et al., 2024), have emerged. Our work
builds upon these ideas, introducing an automated
document collection process, a hybrid causal dis-
covery method integrating statistical and relation
extraction techniques, and a hybrid approach for
new variable proposal.

Relation Extraction Relation extraction aims to
transform unstructured textual relations into struc-
tured relation tuples of the form < e, r,es >,
where e; and es represent entities and r denotes the
relation between them (Yang et al., 2022; Dasgupta
et al., 2018). While relation extraction can identify
cause-effect relationships from documents, it fun-
damentally differs from causal discovery in that it
relies on explicitly stated relations in texts, whereas
causal discovery can uncover novel causal relation-
ships from observational data even in the absence
of explicit textual mentions. Nevertheless, relation
extraction can serve as a complementary method
for identifying commonly known causal relations
in textual data. Several studies have focused on ex-
tracting causal relations from natural language texts
(Balashankar et al., 2019; Bui et al., 2010; Chang
and Choi, 2006). The methods for causality ex-
traction can be divided into pattern-based and deep
learning-based approaches. Pattern-based methods
utilize predefined linguistic patterns to extract rele-
vant text segments, which are then converted into
tuples using hand-crafted algorithms (Garcia, 1997,
Khoo et al., 2000). However, these methods often
suffer from limited coverage of causal relations and
require significant effort in pattern design. Deep
learning-based methods employ neural networks
to learn high-level abstract features and represen-
tations from sentences, framing relation extraction
as a sequence-to-sequence task (Zhao et al., 2023,
2024). While these approaches offer improved per-
formance, they typically require large fine-tuning
datasets and may not consistently produce struc-
turally correct output tuples.

A notable limitation of many relation extraction
systems is the lack of verification for extracted
relations, potentially leading to the extraction of
false or unreliable relations from untrustworthy
sources (Si et al., 2024; Wadhwa et al., 2023). Our
work addresses this issue by adopting a novel ap-
proach: instead of directly extracting causal rela-
tions from documents, we pre-create textual men-
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tions of causal relations (e.g., "smoking causes lung
cancer") and employ LLMs to verify the veracity
of these relations based on relevant documents. We
consider a causal relation to hold if the majority of
documents support its veracity, thereby enhancing
the reliability of our extracted causal relations.

Claim Verification Claim verification aims to
assess the veracity of claims based on relevant doc-
uments (Bekoulis et al., 2021). This process typi-
cally encompasses several key components: claim
detection, document retrieval, veracity prediction,
and explanation generation. Research in this field
often focuses on specific aspects of the verifica-
tion pipeline. For instance, Panchendrarajan and
Zubiaga (2024) and Li et al. (2024) concentrate
on identifying check-worthy statements from large
text corpora. Others, such as Wadden et al. (2022)
and Mohr et al. (2022), prioritize veracity predic-
tion, while Wang and Shu (2023) emphasize the
importance of generating explanations for verifica-
tion outcomes. The emergence of LLMs has sig-
nificantly influenced the field, with numerous stud-
ies leveraging LLMs for claim verification through
carefully crafted prompts (Kim et al., 2024; Bazaga
et al., 2024; Asai et al., 2024). Building on these
advancements, one branch of our hybrid causal dis-
covery approach reframes causal discovery as a
causal relation verification task. We employ LLMs
to assess the veracity of causal relations based on
retrieved documents, subsequently incorporating
verified relations into a causal graph. This method-
ology bridges the gap between traditional claim
verification techniques and causal discovery, offer-
ing a novel approach to uncovering and validating
causal relations.

A.2 Reproducibility Statement

We release our code and scripts at https://
anonymous.4open.science/r/iris-7378. De-
tailed descriptions of the algorithms used in each
component of our framework can be found in
Appendix A.3. We provide all prompts utilized
throughout our framework in Appendix A.4. The
ground-truth causal graphs employed in our eval-
uation experiments are outlined in Appendix A.5.
Additionally, Appendix A.6 presents human anno-
tation instruction and interface for the human anno-
tation tasks involved in evaluating the expanded
causal graphs. The annotated expanded causal
graphs, alongside the predicted causal graphs, are
documented in Appendix A.7.


https://anonymous.4open.science/r/iris-7378
https://anonymous.4open.science/r/iris-7378
https://anonymous.4open.science/r/iris-7378

A.3 Algorithms

In this section, we provide detailed descriptions of
the algorithms for each component of our method.
The data collection and value extraction process is
outlined in Algorithm 1. The hybrid causal discov-
ery algorithm can be found in Algorithm 2. Finally,
the algorithm for proposing missing variables is
detailed in Algorithm 3.

Algorithm 1 Document Collection and Value Ex-
traction
Require: Initial Variables Z, LLM M, threshold
T, prompt [
Document Collection
D <+ () v Initialize an empty set for collected
documents
while D| < T do
queries —
(21,22, -,2Zn), (21,22, - -, Z—1)5 - - -, (Z;)]
> queries considering all variables and their
synonyms
for each q in queries do
n < 20 x len(q) > Determine the
number of URLSs to collect
urls < google_search(q,n) > Search
with query ¢ and retrieve top-n URLs
for each url in urls do
D < extract text from wurl
D« DU{D} > Add extracted text
to the document set
end for
end for
end while

Value Extraction
V < Matrix of dimensions 7" x N b Initialize
a matrix with 7" rows and NV columns
for each d; in D do
for each z; in Z do
0ij < M(l(d;,z;)) > Determine value
of z; in d; by LLM
v;; < extract(o;;) > Extract value from
LLM output
V[i][j] <~ vi; > Store the value v;; in
matrix V at position (7, j)
end for
end for
Output: D,V
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A4 Prompts

In this section, we show prompts we used in IRIS
in Table 4, 5, 6. The prompt used in the "Prompt"
baseline in evaluation of expanded causal graphs is
shown in Table 7.

A.5 Ground-Truth Causal Graphs

The ground-truth causal graphs for causal discovery
can be found in Figure 3.

Lack m

Diabetes
exercise weight
Diet
(a) Diabetes
Obesity failure Mortality
Heart
defects
(b) Obesity

Smokin Respiratory Lung
g disease cancer

Asbest{v/v

exposure

(c) Respiratory Disease

(d) Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)

\

(e) Cancer

Figure 3: The ground-truth causal graphs from original
sources (Hernén et al., 2004; Long et al., 2022; Shen
et al., 2020; Korb and Nicholson, 2010).



Given a document: {doc}

Please complete the below task.

We have a variable named ’{var}’. The value of variable *{var}” is True or False.

True indicates that the existence of ’{var}’ can be inferred from the document, whereas False suggests that the existence of *{var}’ cannot be inferred from this document.
Based on the document provided, what is the most appropriate value for *{var}’ that can be inferred?

Please form the answer using the following format.

First, provide an introductory sentence that explains what information will be discussed.

Next, list generated answer in detail, ensuring clarity and precision.

Finally, conclude the final answer of the inferred value for *{var}” using the following template:

The value of *{var}’is ____

Table 4: The prompt for value extraction, where doc indicates the content of a document, var refers to a variable
name.

Given a document: {doc}

Please complete the below task.

We have a claim: ’{claim}’. We need to check the veracity of this claim. The value of veracity is True or False or Unknown.
True indicates that the given document supports this claim,

False indicates that the given document refutes the claim.

Unknown indicates that the given document has no relation to the claim.

Please form the answer with a logical reasoning chain according to the following format.

First, provide an introductory sentence that explains what information will be discussed.

Next, list the logical reasoning chain in detail, ensuring clarity and precision.

Finally, conclude the veracity of claim ’{claim}’ using the following template:

The veracity of claim ’{claim} is ___.

Table 5: The prompt for causal relation verification, where doc indicates the content of a document, claim refers to a
causal relation (e.g., smoking causes lung cancer).

A.6 Causal Relation Annotation Task

The detailed instructions for the causal relation
annotation task are presented in Table 8. This ta-
ble provides comprehensive guidance to annotators
on how to identify and annotate causal relations
among the given variables.

A.7 human-annotated Causal Graphs

The human-annotated causal graphs are demon-
strated in Figure 4, 5, 6, 7, 8.

(a) IRIS
A.8 Evaluation of Causal Discovery —
Component
. . . immunity carly detection pollution smoker
The detailed evaluation results of the causal discov-
ery component are presented in Table 9, 10, 11,
inflammation air quality covid-19 cancer
12, 13.
chronic illness respiratory issues toxicity x-ray
health issues dyspnoea carcinogens
(b) Human

Figure 4: Illustration of expanded causal graphs for
Cancer. Squared nodes represent initial variables, while
round nodes denote new proposed variables.

14



Given a document: {doc}

Please complete the below task.

‘We have some given variables: ’{observed_variables}’.

What are the high-level variables in the provided document that have causal relations to variables in the given variable set?

Please form the answer using the following format.

First, propose as many variables as possible that have causal relationships with the given variables, based on your understanding of the document.
Please ensure these proposed variables are different from the ones already provided.

Next, refine your list of candidate variables by reducing semantic overlap among them and shortening their names for clarity.

Finally, determine the most reliable variable candidate as the final answer using the template provided below:

The new abstracted variable is <var>____ </var>.

Table 6: The prompt for missing variable abstraction.

The task is to determine the cause-effect relation between two variables.

The variables are: {variablel} and {variable2}.

The answer should be {variablel} ->{variable2} or {variablel} <- {variable2} or no causal relation.
Let’s provide a step-by-step process to analysis the relation between them,

then provide your final answer using the following format:

The final answer is ___.

Table 7: The prompt used in the baseline for evaluation of expanded causal graphs.

lack of exercise

lack of exercise

body weight

A |

| 4

(b) Human

diabetes

Figure 5: Illustration of expanded causal graphs for
Respiratory Disease. Squared nodes represent initial
variables, while round nodes denote new proposed vari- (b) Human
ables.
Figure 6: Illustration of expanded causal graphs for Di-
abetes. Squared nodes represent initial variables, while
round nodes denote new proposed variables.
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Causal Relation Annotation Task

Task overview:
Your task is to identify and annotate causal relations among a set of variables. A causal relation exists when one variable directly influences another.

Instructions:

. Consider each pair of variables and determine if there is a direct causal relationship between them.

. If you believe variable A causes variable B, indicate this as: A — B

. Be cautious of confusing correlation with causation. Only mark a relationship if you believe there is a direct causal link.

. Consider the direction of causality carefully. For example, "Obesity — Heart Failure" suggests obesity causes heart failure, not the other way around.
. It’s okay to have multiple causes for a single effect, or multiple effects from a single cause.

. Not all variables will necessarily have causal relationships with others.

. Use your best judgment based on available knowledge and logical reasoning.

~N N R W =

Examples:

lifestyle -> obesity

heart defect -> cardiac output
genetic disorder -> heart defect

Submission:
Please submit your annotations as a list of causal relations in the format: Variable A -> Variable B
Thank you for your careful consideration of this task!

Task 1: Cancer

Variables:
pollution
smoker

cancer

X-ray
dyspnoea

air quality
education
health issues
toxicity
chronic illness
covid-19
inflammation
respiratory issues
immunity
carcinogens
early detection

Causal Relations:

Table 8: Instructions and interface of causal relation annotation task.

Cancer (4 edges, 5 nodes)

Method Precision Recall F17 # of predicted edges NHD Ratiol|
Pairwise-LLM 0.75 0.75 0.75 4 0.25
BFS-LLM 0.6 0.75  0.67 5 0.33
COAT 0.13 025 0.17 8 0.83
IRIS- GES 0.25 05 0.33 8 0.67
IRIS- NOTEARS 1.0 025 04 1 0.6
IRIS- PC 0.14 0.25 0.18 7 0.82
IRIS- VCR 1.0 0.75 0.86 3 0.14
IRIS (Llama) - NOTEARS+VCR  0.375 0.75 05 8 0.5
IRIS- NOTEARS+VCR 1.0 0.75 0.86 3 0.14

Table 9: Evaluation results of causal discovery on cancer graph. VCR refers to verified causal relations that are
extracted from and validated by relevant academic documents. "Llama" refers to the use of the Llama-3.1-8b-instruct
model as a substitute for GPT-40 in our method.
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Respiratory Disease (5 edges, 4 nodes)

Method Precision Recall F11 # of predicted edges NHD Ratio]
Pairwise-LLM 1.0 0.6 0.75 3 0.25
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 1.0 0.8 0.89 4 0.11
IRIS- GES 1.0 0.8 0.89 4 0.11
IRIS- NOTEARS 1.0 0.2 0.33 1 0.67
IRIS- PC 0.83 1.0 0.91 6 0.09
IRIS- VCR 1.0 0.8 0.89 4 0.11
IRIS (Llama) - PC+VCR 1.0 0.8 0.89 4 0.11
IRIS- PC+VCR 0.83 1.0 0.91 6 0.09
Table 10: Evaluation results of causal discovery on respiratory disease graph.
Diabetes (5 edges, 4 nodes)
Method Precision Recall F11 # of predicted edges NHD Ratio|
Pairwise-LLM 0.67 04 0.5 3 0.5
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 0.25 0.2 0.22 4 0.78
IRIS- GES 0.5 0.6 0.55 6 0.45
IRIS- NOTEARS 0 0 0 0 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 0.2 0.33 1 0.67
IRIS (Llama) - GES+VCR 0.67 0.4 0.5 3 0.5
IRIS- GES+VCR 1.0 0.6 0.75 3 0.25
Table 11: Evaluation results of causal discovery on diabetes graph.
Obesity (5 edges, 4 nodes)

Precision Recall F11 # of predicted edges NHD Ratio]
Pairwise-LLM 0.83 1.0 0.91 6 0.09
BFS-LLM 0.6 0.6 0.6 5 0.4
COAT 0.25 0.2 0.22 4 0.78
IRIS-GES 0.25 0.2 0.22 4 0.78
IRIS- NOTEARS 0 0 0 2 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 1.0 1.0 5 0
IRIS (Llama) - PC+VCR 0.83 1.0 0.91 6 0.09
IRIS- PC+VCR 1.0 1.0 1.0 5 0

Table 12: Evaluation results of causal discovery on obesity graph.
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ADNI (7 edges, 8 nodes)

Method Precision Recall F17T # of predicted edges NHD Ratiol
Pairwise-LLM 0.5 0.14 022 2 0.78
BFS-LLM 0.33 0.14 02 3 0.8
COAT 0.11 0.14  0.13 9 0.87
IRIS- GES 0.08 0.14  0.11 12 0.89
IRIS- NOTEARS 0.33 0.14 0.2 3 0.8
IRIS- PC 0.11 0.14  0.13 9 0.87
IRIS- VCR 0.4 0.29 0.33 5 0.67
IRIS (Llama) - NOTEARS+VCR 0.08 0.14  0.11 12 0.89
IRIS- NOTEARS+VCR 0.38 043 04 8 0.6

Table 13: Evaluation results of causal discovery on ADNI graph.
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Algorithm 3 Missing Variable Proposal

Require: Initial variables Z, LLM M, collected
documents D, prompt [/, hyperparameter o
Step 1: Abstraction of Missing Variable Can-

Algorithm 2 Hybrid Causal Discovery
Require: Initial variables Z, LLM M, structured

data X, prompt [/, hyperparameters «, 3
Statistical Causal Discovery

G, + causal_discovery_alg(X) © Apply causal
discovery algorithms (e.g., PC algorithm)

Causal Relation Verification
G, < causal graph with no edges
remove_edges « ()
for each z; in Z do
for each z; in Z do
if Z; 7& Zj then
r < "z; causes z;"
veracity, < ()
veracity list for relation r
for each d in D, ,; do > Dy, 2,
denotes documents containing both z; and z;
verg <— M (l(r,d)) >
Determine the veracity of r based on document
d

> Initialize the

veracity, < wveracity, U

{very}
end for
if veracity,.count(True) > « X
len(veracity,) then
Gy < G, U {r} > Add relation r
to the causal graph Go
else if veracity,.count(False) >
B x len(veracity, ) then
remove_edges
remove_edges U {r}

<

didates
Ze <+ 0 > Initialize the set of candidates
for each document d in D do

z<+ M(l(Z,d)) > Abstract a candidate
variable from document d

Le < Lo U {z}
end for

Step 2: Missing Variable Proposal Based on
Verified Causal Relations
Zy, < () > Initialize the set of missing variables
for each variable z; in Z. do
for each given variable z; in Z do
r1 < "z; causes z;"
veracity,, < () > Initialize the veracity
list for relation 71
for each document d in Dzi,zj do >
Dzi,Z]' denotes documents containing both z; and
zj
verg <— M (l(r1,d)) > Determine
the veracity of r1 based on document d
veracityy, < veracity,, U {verq}
end for
if veracity, .count(True) > « x
veracity,. .count(False) then
Loy, — Loy, U {Zz}
set of proposed variables
end if
r9 < "z;j causes z;" > Repeat the
process for the reverse causal relation

> Add z; to the

end if ..
end if end for
end for end for

end for

Merge ,C’;S and QU

Step 3: Missing Variable Proposal Based on
Statistical Methods

for each edge r in G, do S« 0 > Initialize a set for PMI scores
Gs + Gs U {r} > Add relation 7 to G for each variable z; in Z. do
end for s; 0

for each edge r in remove_edges do

for each given variable z; in Z do

Gs < Gs \ {r} > Remove relation r from G, sij <= PMI(z;,z;) > Compute PMI of
if it exists (zi,z;) by Equation 1
end for s ;U {si;}
G« G, > The final merged causal graph end for
Output: G S« SU{d> (si)} > Aggregate the PMI
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scores for z;

end for

Loy, < Loy, U top-k(S,7Z.) > Select the top-k
variables based on their PMI scores

Output: Z,, > Return the final set of proposed
missing variables
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Figure 7: Illustration of expanded causal graphs for
Obesity. Squared nodes represent initial variables, while
round nodes denote new proposed variables.

(b) Human

Figure 8: Illustration of expanded causal graphs for
ADNI. Squared nodes represent initial variables, while
round nodes denote new proposed variables.
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