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Abstract

Causal discovery is fundamental to scientific re-001
search, yet traditional statistical algorithms face002
significant challenges, including expensive data003
collection, redundant computation for known004
relations, and unrealistic assumptions. While005
recent LLM-based methods excel at identify-006
ing commonly known causal relations, they fall007
to uncover novel relations. We introduce IRIS008
(Iterative Retrieval and Integrated System for009
Real-Time Causal Discovery), a novel frame-010
work that addresses these limitations. Start-011
ing with a set of initial variables, IRIS auto-012
matically collects relevant documents, extracts013
variables, and uncovers causal relations. Our014
hybrid causal discovery method combines sta-015
tistical algorithms and LLM-based methods to016
discover known and novel causal relations. In017
addition to causal discovery on initial variables,018
the missing variable proposal component of019
IRIS identifies and incorporates missing vari-020
ables to expand the causal graphs. Our ap-021
proach enables real-time causal discovery from022
only a set of initial variables without requiring023
pre-existing datasets.1024

1 Introduction025

A fundamental task in various disciplines of sci-026

ence, including biology, economics and healthcare,027

is to identify and utilize underlying causal rela-028

tions (Kuhn, 1962). Although interventional exper-029

iments are ideal for discovering causal relations,030

they are often impractical due to ethical, financial,031

or logistical constraints. Therefore, researchers de-032

velop statistical methods to infer causal relations033

from purely observational tabular data (Pearl, 2009;034

Spirtes et al., 2000), though such data is often not035

available for a wide range of NLP applications.036

Statistical and large language model (LLM)-037

based causal discovery algorithms face distinct038

1Our code and data are available at https://anonymous.
4open.science/r/iris-7378

challenges that limit their applicability in real- 039

world scenarios. First, traditional statistical algo- 040

rithms predominantly require high-quality struc- 041

tured tabular data, which is notoriously difficult to 042

obtain. In contrast, LLM-based methods can con- 043

sistently estimate causal relations explicitly present 044

in their training data without relying on tabular data. 045

However, these models encounter significant limi- 046

tations when attempting to uncover causal relation- 047

ships that were not previously documented (Feng 048

et al., 2024; Zečević et al., 2023). Second, statisti- 049

cal causal discovery algorithms require predefined 050

sets of random variables as input, a constraint that 051

significantly limits their flexibility. LLMs, how- 052

ever, demonstrate the capability to reliably extract 053

and identify concepts and entities as variables di- 054

rectly from texts (Zhang et al., 2011; Glymour et al., 055

2019). Third, most statistical algorithms are theo- 056

retically grounded and mathematically verifiable, 057

but operate under assumptions that rarely hold in 058

real-world scenarios, such as the causal sufficiency 059

assumption (i.e., the absence of unobservable vari- 060

ables in the causal graph) and acyclicity assump- 061

tion (i.e., the absence of cycles in the causal graph) 062

(Pearl, 2009; Neal, 2020). In contrast, the verifi- 063

cation of LLMs’ predictions in causal discovery 064

remains an open challenge. 065

To address these limitations, we propose IRIS, 066

Iterative Retrieval and Integrated System for verifi- 067

able causal discovery, in the absence of tabular data 068

for statistical methods. To leverage the strengths of 069

both statistical methods and LLMs, our framework 070

takes a hybrid causal discovery approach, combin- 071

ing statistical methods with LLM-based causal rela- 072

tion extraction and verification techniques. This hy- 073

brid strategy allows us to leverage known causal re- 074

lations and uncovering novel causal relations. IRIS 075

begins with a set of initial random variables, which 076

are sent as queries to retrieve a collection of rele- 077

vant documents. Consequently, LLMs are applied 078

to map the unstructured texts into structured tabular 079

1

https://anonymous.4open.science/r/iris-7378
https://anonymous.4open.science/r/iris-7378


Figure 1: Illustration of our framework. The input is a set of initial variables. Using the Google Search API
with carefully crafted queries and LLMs, we collect relevant documents and extract variable values from these
documents to construct structured data. For hybrid causal discovery, the statistical branch uses the structured data,
while the causal relation extraction branch utilizes the retrieved documents. The results from both branches are
merged into the final causal graph. The missing variable proposal component identifies new variables with causal
relations to the initial variables. We then iteratively use the expanded variables as input to our framework to further
expand the causal graphs.

data, which is utilized by an appropriate statistical080

method to perform causal discovery. Its results081

are further merged with the causal relations pre-082

dicted and verified by LLMs. This hybrid approach083

allows cycles in causal graphs, thereby relaxing084

the acyclicity assumption. Additionally, we intro-085

duce a variable proposal component to identify new086

variables that have causal relations with the initial087

variables. This component allows us to relax the088

causal sufficiency assumption. We then iteratively089

use the expanded variables as input to our frame-090

work, further expanding the causal graphs.091

Our experimental results demonstrate that IRIS092

significantly surpasses strong baselines across all093

datasets, achieving an average F1 score improve-094

ment of 0.14 and a reduction of 0.14 in the average095

NHD ratio, as detailed in Section 4.1. Evaluations096

of individual components reveal that each com-097

ponent outperforms its corresponding baselines.098

Specifically, the evaluation of value extraction com-099

ponent shows that IRIS with GPT-4o exceeds the100

strong baselines, which also utilizes GPT-4o (Sec-101

tion 4.2). Our hybrid causal discovery method con-102

sistently outperforms both statistical algorithms103

and LLM-based approaches (Section 4.2.3). Lastly,104

our variable proposal component is more effective105

compared to prompt-based baselines ( Section 4.3).106

Primary contributions of IRIS are as follows: 1) 107

We introduce an automatic sample collection and 108

value extraction component that significantly re- 109

duces the manual labor for data collection in causal 110

discovery tasks. 2) We propose a hybrid causal 111

discovery method that leverages existing causal re- 112

lations and uncovers novel causal relations. Our 113

method permits cycles in causal graphs, thus re- 114

laxing the acyclicity assumption. 3) We develop a 115

missing variable proposal component that identifies 116

new variables that may have causal relations with 117

the initial variables, relaxing the causal sufficiency 118

assumption. 4) Experimental results demonstrate 119

that IRIS consistently outperforms its baselines, 120

with each component of IRIS also surpassing cor- 121

responding baseline methods. 122

2 Background 123

Causal discovery focuses on uncovering causal rela- 124

tions within a set of variables. Given a pair of vari- 125

ables (X,Y ), the objective is to determine whether 126

X ← Y , Y ← X , or no causal influence between 127

them, where ← denotes causal direction. A key 128

distinction between causal discovery and relation 129

extraction in NLP is that causal discovery can re- 130

veal unknown causal relations, whereas relation 131

extraction focuses on transforming relations in free 132
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text into structured relational tuples.133

Although randomized controlled trials and A/B134

testing are the gold standard for causal discovery135

(Fisher, 1935), these experimental approaches are136

often impractical due to ethical or financial limita-137

tions. Thus, researchers turn to rely on statistical138

analysis of observational data to infer causal rela-139

tions.140

Statistical approaches to causal discovery can be141

broadly classified into: constraint-based methods,142

such as Peter and Clark (PC) (Spirtes et al., 2000)143

and inductive causation (IC) (Pearl, 2009); score-144

based methods (Heckerman et al., 1995; Chicker-145

ing, 2002; Koivisto and Sood, 2004; Mooij et al.,146

2016); and functional methods (Shimizu et al.,147

2006; Hyvärinen et al., 2010). These methods em-148

ploy statistical measures from observational data149

to construct causal graphs but have notable limi-150

tations. First, they require resource-intensive and151

extensive data collection. Second, theoretically,152

they cannot precisely identify ground-truth causal153

graphs but instead yield an equivalence class of true154

causal graphs (Spirtes et al., 2000; Pearl, 2009).155

Furthermore, many statistical approaches, such156

as PC and Greedy Equivalence Search (GES), op-157

erate under assumptions. Causal sufficiency as-158

sumption posits that all variables are observed and159

included, neglecting the potential unobserved vari-160

ables (Neal, 2020). Some algorithms, such as161

Tetrad condition-based (Silva et al., 2006; Kummer-162

feld and Ramsey, 2016) and high-order moments-163

based approaches (Adams et al., 2021; Chen et al.,164

2022) focus on only uncover specific types of un-165

observed variables, such as latent confounders (i.e.,166

common causes). However, our work aims to iden-167

tify more general unobserved variables, includ-168

ing confounders, mediators, causes, or effects of169

observed variables. Acyclicity assumption states170

that causal graphs contain no cycles, which allows171

causal discovery to align with Bayesian network172

and simplifies mathematical challenges. However,173

this assumption often contradicts real-world phe-174

nomena. Many causal graphs are known to con-175

tain feedback loops, such as the poverty cycle:176

poverty → limited access to education → low-177

paying jobs→ poverty, (Banerjee and Duflo, 2012;178

De Weiss and Sirkin, 2010) and the predator-prey179

cycle: increase in predator population→ decrease180

in prey population→ decrease in predator popula-181

tion (Schmitz, 2017; Abrams, 2001). In contrast182

to prior work, our causal discovery framework al-183

lows for the inclusion of unobserved variables and184

permits cycles within causal graphs to align with 185

real-world scenarios. 186

The advent of LLMs provides new opportunities 187

to address causal discovery (Kıcıman et al., 2023; 188

Zečević et al., 2023; Long et al., 2022). These 189

approaches require LLMs to determine the causal 190

relation between a given pair of variable names. 191

However, the reliability of such methods is under 192

scrutiny. Zečević et al. (2023) argue that LLMs 193

may function as "causal parrots", which depend on 194

memorization to recall the causal relations present 195

in their training data rather than infer causal rela- 196

tions. This raises concerns about LLMs’ gener- 197

alization to identify causal relations that are rare 198

or absent in pre-training data. Feng et al. (2024) 199

presents empirical evidence that suggests while 200

LLMs excel at reproducing frequent causal rela- 201

tions in pre-training data, they struggle to uncover 202

novel causal relations. 203

In contrast to approaches that directly employ 204

LLMs for causal discovery, Liu et al. (2024) utilize 205

LLMs to extract variables and their values from 206

collected documents, then apply statistical meth- 207

ods to uncover causal relations among these vari- 208

ables. Our work diverges from this approach by 209

only taking a set of initial variables as input and 210

employing an automated process to collect relevant 211

documents. After variable value extraction, we im- 212

plement a hybrid causal discovery approach, which 213

integrate both statistical and LLM-based methods. 214

Furthermore, our framework is capable of identi- 215

fying new variables that exhibit causal relations 216

with the initial set, thereby enabling an iterative 217

process of data collection and causal discovery on 218

an expanded variables set. This iterative method al- 219

lows for a comprehensive exploration of the causal 220

relations surrounding the initial variables. 221

3 Methodology 222

We introduce a real-time causal discovery frame- 223

work, IRIS. Our method differs from prior causal 224

discovery algorithms in three key aspects. First, 225

IRIS does not rely on pre-existing observational 226

data; instead, it automatically collects and extracts 227

observational data related to the initial variables. 228

Second, our hybrid causal discovery component 229

can utilize known causal relations and uncover 230

novel causal relations. Third, our approach relaxes 231

the acyclicity and causal sufficiency assumptions. 232
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3.1 Problem Definition233

Given a set of initial variables, Z = (z1, z2, ..., zN ),234

where each zi represents one variable, the goal235

of real-time causal discovery is to automatically236

collect relevant unstructured data D and extract237

variable values to form structured data X, which238

enables the discovery of causal relations through239

unstructured and structured data. After identifying240

causal relations among initial variables, the process241

involves identifying new variables causally related242

to the initial variables, resulting in an expanded set243

of variables Zm. The final output is an expanded244

causal graph G = (Zm,R), where R = (r1, ..., rl)245

represents the set of causal relations.246

3.2 Data Collection and Value Extraction247

The first step of IRIS comprises two main steps:248

collection of relevant documents and extraction of249

variable values. The detailed procedure is outlined250

in Algorithm 1 in Appendix A.3.251

Retrieval of Relevant Documents We retrieve rel-252

evant documents using the Google API 2. To max-253

imize the relevance to initial variables, we create254

search queries using a stepwise removal approach:255

1) Begin with queries containing all variable names256

(e.g., "smoking" AND "cancer" AND "pollution").257

2) Progressively remove one variable (e.g., "smok-258

ing" AND "cancer"). 3) Stop with single-variable259

queries (e.g., "smoking"). We also use synonyms260

of variables to enhance coverage. We select the top-261

k retrieved documents for each query. To ensure262

relevance to most variables, k is higher for queries263

containing more variables. The retrieval process264

continues until the total number of collected docu-265

ments reaches a predefined threshold. The resulting266

document set is denoted as D = (d1, .., dT ), where267

di represents one document.268

Extraction of Variable Values We use LLMs to269

extract variable values from collected documents D.270

Given an LLM M , we design a prompt l including271

a document di and a description of one variable zj .272

The variable description includes its name and the273

meaning of its values. We guide the LLM to gen-274

erate responses following multiple thinking steps,275

simulating human expert reasoning, and provide276

the final answer in a specific format (Lin et al.,277

2024). This generation process can be denoted as278

oij = M(l(di, zj)), where oij is LLM’s response279

regarding the value of variable zj in document di.280

2https://developers.google.com/custom-search/
docs/overview

We then extract the value vij from response oij . By 281

iterating through all variables and documents, we 282

construct a structured data X where each column 283

represents a variable and each row represents a doc- 284

ument. The prompt template for value extraction is 285

presented in Table 4 in Appendix A.4. 286

3.3 Hybrid Causal Discovery 287

We employ a hybrid causal discovery approach, 288

leveraging both statistical methods and LLM-based 289

relation extraction techniques. The detailed process 290

of our hybrid causal discovery method is outlined 291

in Algorithm 2 in Appendix A.3. 292

Statistical Causal Discovery For structured data 293

X, we employ statistical causal discovery algo- 294

rithms including PC (Spirtes et al., 2000), GES 295

(Chickering, 2003), and NOTEARS (Zheng et al., 296

2018). For instance, the PC algorithm performs 297

conditional independence tests between variable 298

pairs, progressively expanding the conditioning 299

sets to determine the presence of causal relations. 300

These algorithms process structured data X to pro- 301

duce a causal graph Ĝs as the output. 302

LLM-based Causal Relation Extraction We in- 303

troduce a novel causal relation extraction method 304

inspired by causal relation verification (Si et al., 305

2024; Wadden et al., 2022). We treat each potential 306

causal relation as a claim (e.g., "smoking causes 307

lung cancer") and find documents containing both 308

the cause and effect terms (e.g., "smoking" AND 309

"lung cancer"). To ensure the trustworthiness of re- 310

trieved documents, we restrict the search domain to 311

reputable academic repositories 3. We then employ 312

LLMs to assess whether each document supports 313

or refutes or not relates with the causal relation 314

using a carefully designed prompt (see Table 5 in 315

Appendix A.4). If a majority of documents support 316

the causal relation, we incorporate it into a causal 317

graph Ĝv. Otherwise, it is excluded. 318

Graph Merging The two branches of our hybrid 319

method produce two causal graphs: Ĝs from statisti- 320

cal methods and Ĝv from the LLM-based approach. 321

To merge them into the final causal graph Ĝ, we 322

post-process the causal graph Ĝs by adding high- 323

confidence causal relations from Ĝv and removing 324

those strongly refuted by the verification process. 325

This merging strategy is employed for two reasons: 326

(1) the structured data X from the value extraction 327

phase might contain noise; (2) causal relations that 328

3Our search is limited to the following academic website
domains: jstor.org, springer.com, ieee.org, ncbi.nlm.nih.gov,
sciencedirect.com, scholar.google.com, arxiv.org.
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are widely supported or refuted by trustworthy doc-329

uments can be treated as known knowledge.330

3.4 Missing Variable Proposal331

This step aims to identify missing variables not332

included in the initial set but potentially causally333

related to them, and append these to Zm, as out-334

lined in Algorithm 3 in Appendix A.3.335

Variable Abstraction We first use LLMs to ab-336

stract missing variables from the retrieved docu-337

ments D. For each document, LLMs are instructed338

to analyze the content of each document, identify339

variables that could influence or be influenced by340

the initial variables, and then provide the most pos-341

sible variable in a specified format. The prompt is342

provided in Table 6 in Appendix A.4.343

Variable Selection To select the most promising344

variables from all abstracted variables, we employ345

a dual approach combining causal relation verifi-346

cation and statistical measures. Causal Relation347

Verification: Using the method described in Sec-348

tion 3.3, we verify whether each new variable has a349

confirmed causal relation with any initial variable.350

Variables supported by the majority of documents351

are added to Zm. Statistical Measure: We compute352

the Pointwise Mutual Information (PMI) between353

each new variable and the initial variables to quan-354

tify their dependence, with higher PMI scores in-355

dicating stronger potential causal association. The356

PMI between two variables (zi, zj) is defined as:357

PMI(zi, zj) = log
p(zi, zj)
p(zi)p(zj)

= log

o(zi,zj)
C

o(zi)
C

o(zj)
C

= log
o(zi, zj)
o(zi)o(zj)

+���logC

(1)

358

where o(zi, zj) is the count of documents where359

(zi, zj) co-occur, o(zi) is the count where zi ap-360

pears, and C is the total number of retrievable docu-361

ments. Since C is constant, logC is ignored. These362

counts are obtained by the Google Search API. We363

compute the PMI score of each abstracted variable364

with the initial variables and append the top k vari-365

ables with the highest aggregate PMI scores to Zm.366

With the expanded variables Zm, we can iterate367

the data collection, value extraction, and causal368

discovery processes to generate an expanded causal369

graph G = (Zm,R) that incorporates these missing370

variables and new causal relations.371

4 Experiments 372

4.1 Evaluation of the IRIS Framework 373

4.1.1 Experimental Setup 374

We evaluate the quality of the resulting expanded 375

causal graphs from the complete pipeline of IRIS. 376

Datasets. The initial variables are from five 377

datasets: Cancer (Korb and Nicholson, 2010), Res- 378

piratory Disease, Diabetes, Obesity (Long et al., 379

2022), and Alzheimer’s Disease Neuroimaging Ini- 380

tiative (ADNI) (Shen et al., 2020). 381

Our Method and Baselines. We employ GPT- 382

4o as the LLM component, a choice supported by 383

its superior performance across value extraction, 384

causal discovery, and missing variable proposal 385

tasks (see Sections 4.2, 4.2.3, and 4.3). For the sta- 386

tistical causal discovery algorithms in our method, 387

we utilize the Greedy Equivalence Search (GES) al- 388

gorithm. This selection is based on GES achieving 389

the highest average F1 score and Normalized Ham- 390

ming Distance (NHD) ratio across all five datasets, 391

as demonstrated in Section 4.2.3. We introduce 392

a baseline method, coined "Prompt", which relies 393

solely on carefully crafted prompts (see Table 7 394

in Appendix A.4) with LLM to determine causal 395

relations among expanded variables proposed by 396

our missing variable proposal component. 397

Method P R F1↑ Pred edge NHD Ratio↓
Cancer

Prompt 0.64 0.32 0.43 14 0.57
IRIS 0.89 0.57 0.7 18 0.3

Respiratory
Prompt 0.67 0.36 0.47 12 0.53
IRIS 0.67 0.55 0.6 18 0.4

Diabetes
Prompt 0.70 0.46 0.56 17 0.45
IRIS 0.76 0.5 0.6 17 0.39

Obesity
Prompt 0.57 0.33 0.42 14 0.58
IRIS 0.67 0.58 0.62 21 0.38

ADNI
Prompt 0.47 0.29 0.36 17 0.64
IRIS 0.5 0.36 0.42 20 0.58

Table 1: Evaluation results of the complete framework.
Pred edge indicates the number of predicted edges.

Evaluation. To create ground-truth expanded 398

causal graphs, we hire three domain experts to in- 399

dependently annotate each expanded causal graph. 400

Edges are included if at least two annotators agree. 401

With a Krippendorff’s alpha of 0.88, inter-annotator 402

agreement is high (Krippendorff, 2011). The de- 403

tailed annotation instruction is in Table 8 in Ap- 404

pendix A.6. Following Kıcıman et al. (2023); 405
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Feng et al. (2024), we evaluate the results of406

causal discovery using precision, recall, F1 score,407

and the Ratio of Normalized Hamming Distance408

(NHD) to baseline NHD. The ratio is defined as409

ratio = NHD
baseline NHD , where the baseline NHD is410

derived from the worst-performing causal graph411

that has the same number of edges as the predicted412

graph. A lower ratio signifies a more accurate pre-413

dicted causal graph.414

4.1.2 Experimental Results and Analysis415

As presented in Table 1, IRIS consistently out-416

performs the Prompt baseline across all datasets,417

achieving higher F1 scores and lower NHD ratios.418

The average F1 score improvement is 0.14. The419

average NHD ratio decreased by 0.14. ADNI ex-420

hibits the lowest overall performance for both meth-421

ods. This may reflect the inherent complexity of422

Alzheimer’s disease causal relations. IRIS predicts423

more edges than the baseline (averaging 18.8 vs.424

14.8 edges), which ensures a higher recall than425

the baseline (averaging 0.51 vs. 0.35). This in-426

dicates that our method’s hybrid causal discovery427

can capture more causal relations effectively. The428

expanded causal graphs for each dataset are illus-429

trated in Figures 4, 5, 6, 7, 8 in Appendix A.7.430

4.2 Evaluation of Value Extraction431

4.2.1 Experimental Setup432

Datasets. We evaluate the value extraction compo-433

nent of our method using two table-to-text datasets:434

AppleGastronome and Neuropathic (Liu et al.,435

2024). These datasets are particularly suitable436

for our task as they provide tabular data where437

columns represent variables and rows represent438

samples. Each row is associated with a correspond-439

ing textual description. The datasets are structured440

as follows: AppleGastronome contains 7 variables441

and 100 samples. Variable values are -1, 0, or 1.442

Neuropathic contains 7 variables and 100 samples.443

Variable values are 0 or 1.444

LLMs and Baselines. We utilize state-of-the-445

art LLMs for our method: Llama-3.1-8b-Instruct446

(Meta, 2024), GPT-3.5-turbo (OpenAI, 2022), GPT-447

4o (OpenAI, 2024). Additionally, we compare our448

method with COAT, which also utilizes an LLM449

to extract values of variables from documents (Liu450

et al., 2024). To ensure a fair comparison, we use451

GPT-4o in both our method and the COAT imple-452

mentation.453

Metrics. Given that variable values are categorical,454

we frame the value extraction task as a classifica-455

AppleGastronome
P R F1

COAT - GPT-4o 0.74 0.76 0.75
IRIS- Llama 0.71 0.72 0.71
IRIS- GPT-3.5 0.75 0.77 0.76
IRIS- GPT-4o 0.79 0.82 0.79

Neuropathic
COAT - GPT-4o 0.72 0.80 0.79
IRIS- Llama 0.76 0.82 0.79
IRIS- GPT-3.5 0.71 0.89 0.79
IRIS- GPT-4o 0.73 1.0 0.84

Table 2: Result of evaluation of value extraction. Llama
represents Llama-3.1-8b-instruct

tion problem, predicting the value of a variable in 456

a given document. Therefore, we employ standard 457

classification metrics: precision, recall, and F1. 458

4.2.2 Experimental Results and Analysis 459

Table 2 presents the evaluation results of our value 460

extraction method across different LLMs on the 461

AppleGastronome and Neuropathic datasets. Our 462

method’s superior performance with GPT-4o, com- 463

pared to COAT using the same LLM, indicates that 464

our approach is more effective than COAT under 465

identical LLM. In both datasets, we observe a con- 466

sistent trend of improvement from Llama-3.1-8b- 467

Instruct to GPT-3.5, and further to GPT-4o when 468

using our method. This progression aligns with the 469

general understanding that more advanced LLMs 470

tend to perform better on complex tasks. Over- 471

all, the models perform better on the Neuropathic 472

dataset compared to AppleGastronome. This could 473

be attributed to the simpler binary values of the 474

Neuropathic dataset (values 0 or 1) compared to 475

the ternary values in AppleGastronome (-1, 0, 1). 476

The additional complexity in AppleGastronome 477

might introduce more opportunities for misclassifi- 478

cation. The high performance of GPT-4o suggests 479

that it could be highly effective for value extraction 480

in our framework. 481

4.2.3 Evaluation of Causal Discovery 482

4.2.4 Experimental Setup 483

Datasets. We evaluate our hybrid causal discov- 484

ery component to five datasets: Cancer (Korb and 485

Nicholson, 2010), Respiratory Disease, Diabetes, 486

Obesity (Long et al., 2022), and Alzheimer’s Dis- 487

ease Neuroimaging Initiative (ADNI) (Shen et al., 488

2020). These causal graphs are annotated by do- 489

main experts. The ground-truth causal graphs are 490

presented in Figure 3 in Appendix A.5. 491
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Figure 2: Evaluation results of causal discovery component on five datasets. A higher F1 score indicates better
performance, while a lower NHD ratio reflects better performance. VCR refers to verified causal relations that are
extracted from relevant academic documents and validated by LLMs. "Llama" refers to the use of the Llama-3.1-8b-
instruct model as a substitute for GPT-4o in our method.

Baselines. We compare our method against several492

baselines: 1) Pairwise-LLM constructs queries for493

each pair of variables, using LLMs to determine494

causal relations. The computational complexity of495

this method is O(n2) (Feng et al., 2024). 2) BFS-496

LLM employs a breadth-first search approach with497

LLMs, achieving linear computational complexity498

(Jiralerspong et al., 2024). 3) COAT utilizes LLM499

to extract values from documents, then applies the500

PC algorithm for causal discovery (Liu et al., 2024).501

In our hybrid causal discovery approach, for statis-502

tical algorithms, we utilize PC (Spirtes et al., 2000),503

GES (Chickering, 2003), and NOTEARS (Zheng504

et al., 2018). Among the three statistical methods,505

we select the one that demonstrates the best per-506

formance for hybrid causal discovery. Based on507

our value extraction results (see Table 2), we use508

GPT-4o, which demonstrated the best performance,509

as the LLM for both our method and the baseline510

approaches. To illustrate how different LLMs af-511

fect the performance of our method, we employ the512

Llama-3.1-8b-instruct model as a counterpart.513

Metrics.We evaluate the quality of causal graphs514

using precision, recall, F1, and NHD ratio as de-515

tailed in Section 4.1.516

4.2.5 Experimental Results and Analysis517

The evaluation results of the causal discovery com-518

ponent across five datasets are presented in Figure 2.519

More detailed results are presented in Table 9, 10,520

11, 12, 13 in Appendix A.8. In these results, our521

hybrid method consistently outperforms baseline522

methods across all datasets. This highlights the523

effectiveness of combining statistical algorithms524

with LLM-based methods.525

We observe that the performance of individual 526

statistical algorithms (GES, NOTEARS, PC) var- 527

ied across datasets. PC excels in Respiratory Dis- 528

ease and Obesity. GES demonstrates optimal per- 529

formance on Diabetes and Obesity. NOTEARS 530

performs best on Cancer and ADNI but struggles 531

significantly with Diabetes and Obesity, achieving 532

a 0 F1 score and a 1 NHD ratio. This variation 533

highlights the importance of selecting statistical 534

algorithms based on the characteristics of the ob- 535

servational data, which presents a compelling area 536

for further research. From our experiments, both 537

GES and PC exhibit strong performances; however, 538

GES outperforms PC, with an average F1 score that 539

is 0.09 points higher and an average NHD ratio that 540

is 0.09 points lower. Given these results, GES is 541

recommended as the primary choice when the suit- 542

ability of the algorithm is uncertain. When compar- 543

ing the performance of Llama-3.1-8b-instruct and 544

GPT-4o in our method, GPT-4o consistently out- 545

performs Llama-3.1-8b-instruct across all datasets, 546

with a particularly significant gap observed in the 547

ADNI dataset. We believe this discrepancy arises 548

because ADNI involves specialized knowledge that 549

is less commonly represented in the pre-training 550

data of Llama-3.1-8b-instruct. 551

LLM-based methods (Pairwise-LLM and BFS- 552

LLM) show competitive performance on simpler 553

datasets. They perform well on the Cancer and 554

Respiratory Disease datasets. However, their per- 555

formance degrades on more complex datasets like 556

ADNI. This suggests that while LLMs have po- 557

tential in causal discovery, they may struggle with 558

more complex causal relations, possibly due to the 559
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lower occurrence of such domain-specific causal560

relations in their training data (Feng et al., 2024).561

The COAT method yields results similar to IRIS-562

PC because both approaches extract values from563

documents and then perform causal discovery us-564

ing the PC algorithm.565

In conclusion, our experimental results consis-566

tently demonstrate that integrating the Verified567

Causal Relations (VCR) component with statistical568

algorithms significantly enhances causal discovery569

performance across datasets, thereby validating the570

effectiveness of our hybrid approach.571

4.3 Evaluation of Missing Variable Proposal572

Method Cancer
Respiratory

Disease
Diabetes Obesity ADNI

Prompt 0.4 0.25 0.5 0.25 0.25
MVP - NoVCR 0.6 0.75 0.5 0.75 0.25
MVP - NoStats 0.6 0.75 0.75 1.0 0.375
MVP (Llama) 0.4 0.5 0.25 0.5 0.125
MVP 0.8 0.75 1.0 1.0 0.5

Table 3: Evaluation results (success rate) of the missing
variable proposal (MVP) component. MVP-NoVCR ex-
cludes verified causal relation extraction; MVP-NoStats
omits statistical approaches; Llama is the Llama-3.1-
8b-instruct. Except MVP (Llama), other methods use
GPT-4o as the LLM.

4.3.1 Experimental Setup573

Datasets. Evaluating the missing variable pro-574

posal component presents a unique challenge: the575

ground-truth missing variables are inherently un-576

known in real-world scenarios. To address this, we577

simulate missing variables and assess our method’s578

ability to identify them. We start with complete,579

ground-truth causal graphs and systematically re-580

move variables to create incomplete graphs. We581

employ five causal graphs: Cancer, Respiratory582

Disease, Diabetes, Obesity, and ADNI. For each583

causal graph, we iteratively remove one variable at584

a time, creating multiple test cases per graph. We585

then apply our missing variable proposal compo-586

nent to these incomplete graphs, aiming to identify587

the removed variables.588

Our Method and Baselines. To ensure a com-589

prehensive evaluation, we introduced a baseline590

method that uses LLMs to directly suggest new591

variables via a prompt-based approach. For both592

our missing variable proposal component and the593

baseline, we use GPT-4o as the primary LLM. To594

compare the performance of different LLMs, we595

also replace GPT-4o with Llama-3.1-8b-instruct in596

our component.597

Metrics. We evaluate the performance using a suc- 598

cess rate metric, calculated as follows: 1) For each 599

incomplete causal graph, we check if our method 600

successfully proposes the removed variable in its 601

final set of proposed variables Zm. 2) We count 602

a "success" for each correctly proposed variable. 603

3) The success rate is computed as: Success Rate 604

= Number of Successes / Total Number of Incom- 605

plete Graphs. For instance, in a causal graph with 606

five variables, we create five different incomplete 607

graphs by removing each variable. If our method 608

correctly proposes the removed variable in three 609

of these five graphs, the success rate would be 0.6. 610

For the statistical approach, we select the top-5 611

variables based on their PMI scores. 612

4.3.2 Experimental Results and Analysis 613

The evaluation results of our Missing Variable Pro- 614

posal (MVP) component are presented in Table 3. 615

The MVP method consistently outperforms other 616

variants across all datasets. This demonstrates the 617

effectiveness of combining VCR with statistical 618

approach in identifying missing variables. Abla- 619

tion studies indicate that both VCR and statistical 620

approaches play a crucial role in enhancing the 621

success rate of the MVP. The performance gap 622

between MVP and MVP-Llama indicates the supe- 623

rior capability of GPT-4o in understanding and rea- 624

soning about causal relations. The prompt-based 625

baseline consistently underperforms compared to 626

our framework, indicating that relying solely on 627

the internal knowledge of LLMs is not reliable for 628

proposing missing variables. 629

5 Conclusion 630

In this paper, we introduce IRIS, a novel framework 631

that addresses several longstanding challenges in 632

causal discovery. By integrating automated data 633

collection, hybrid causal discovery methods, and a 634

variable proposal components, IRIS significantly 635

advances our ability to uncover causal relations 636

in real-world scenarios. Our approach not only 637

reduces the reliance on extensive manual data col- 638

lection but also leverages existing knowledge in 639

order to facilitate the discovery of novel causal 640

relations with novel variables. Our experimental 641

results show that IRIS consistently outperforms 642

competitive baselines. Future work could aim to 643

enhancing the scalability of IRIS for larger and 644

more complex causal graphs by integrating causal 645

relations extracted from texts with the ones identi- 646

fied through statistical algorithms. 647
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Limitations648

Our approach to uncovering causal relations using649

retrieved documents and LLMs has certain limi-650

tations. A primary challenge is the potential bias651

inherent in both the data and the LLMs. Retrieved652

documents may contain sampling biases, inaccu-653

racies, or incomplete coverage of causal relations.654

Likewise, LLMs may inherit biases from their pre-655

training data or face limitations in generalization,656

potentially affecting their interpretation of causal657

relationships. To mitigate these issues, we retrieve658

documents from reliable sources, such as academic659

websites, and leverage state-of-the-art LLMs like660

GPT-4.661

Ethics Statement662

We acknowledge the importance of ACL Code of663

Ethics and agree with it. We ensure that our study664

is compatible with the provided code.665

Our work involves uncovering causal relations666

using retrieved documents and LLMs, and we ac-667

knowledge the ethical considerations associated668

with this approach. The potential biases inherent669

in both the retrieved data and the LLMs pose a sig-670

nificant challenge. To mitigate these risks, we pri-671

oritize retrieving data from credible sources, such672

as academic publications and verified websites, to673

ensure the reliability of the input data. Addition-674

ally, we employ state-of-the-art LLMs, like GPT-4,675

which are designed to provide high-quality and676

robust outputs. However, we recognize that no677

system is entirely free from bias, and users of this678

framework should exercise caution in interpreting679

its results.680

The evaluation of our method involves hiring hu-681

man experts to annotate causal graphs. We have en-682

sured that the annotation process adheres to ethical683

guidelines, including providing fair compensation684

for their contributions. Rigorous measures have685

been taken to thoroughly anonymize the causal686

graphs, which do not contain any personally iden-687

tifiable information or sensitive data related to the688

contributors. The causal graphs were compiled689

with contributions from PhD students, which may690

inherently introduce biases influenced by their de-691

mographic backgrounds. We advise researchers692

utilizing this dataset to carefully account for these693

potential biases, particularly in studies related to694

AI fairness, bias, and safety.695
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A Appendix 940

A.1 Related Work 941

Causal Discovery Causal discovery aims to un- 942

cover causal structures among variables, distin- 943

guishing itself from relation extraction in NLP by 944

revealing novel causal relations rather than merely 945

extracting known relations. While experimental 946

approaches such as randomized controlled trials 947

are gold standard methods(Fisher, 1935), practi- 948

cal limitations often necessitate statistical methods 949

using observational data. These include constraint- 950

based and score-based approaches (Spirtes et al., 951

2000; Pearl, 2009; Heckerman et al., 1995). How- 952

ever, statistical methods face challenges in data 953

collection and theoretical limitations. Recent ad- 954

vancements in LLMs have introduced new pos- 955

sibilities for causal discovery without direct data 956

access (Kıcıman et al., 2023; Zečević et al., 2023; 957

Long et al., 2022). However, concerns about LLMs 958

functioning as "causal parrots" and their ability 959

to generalize to novel relations have been raised 960
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(Zečević et al., 2023; Feng et al., 2024). Alterna-961

tive approaches, such as using LLMs for variable962

proposer and combining them with statistical meth-963

ods (Liu et al., 2024), have emerged. Our work964

builds upon these ideas, introducing an automated965

document collection process, a hybrid causal dis-966

covery method integrating statistical and relation967

extraction techniques, and a hybrid approach for968

new variable proposal.969

Relation Extraction Relation extraction aims to970

transform unstructured textual relations into struc-971

tured relation tuples of the form < e1, r, e2 >,972

where e1 and e2 represent entities and r denotes the973

relation between them (Yang et al., 2022; Dasgupta974

et al., 2018). While relation extraction can identify975

cause-effect relationships from documents, it fun-976

damentally differs from causal discovery in that it977

relies on explicitly stated relations in texts, whereas978

causal discovery can uncover novel causal relation-979

ships from observational data even in the absence980

of explicit textual mentions. Nevertheless, relation981

extraction can serve as a complementary method982

for identifying commonly known causal relations983

in textual data. Several studies have focused on ex-984

tracting causal relations from natural language texts985

(Balashankar et al., 2019; Bui et al., 2010; Chang986

and Choi, 2006). The methods for causality ex-987

traction can be divided into pattern-based and deep988

learning-based approaches. Pattern-based methods989

utilize predefined linguistic patterns to extract rele-990

vant text segments, which are then converted into991

tuples using hand-crafted algorithms (Garcia, 1997;992

Khoo et al., 2000). However, these methods often993

suffer from limited coverage of causal relations and994

require significant effort in pattern design. Deep995

learning-based methods employ neural networks996

to learn high-level abstract features and represen-997

tations from sentences, framing relation extraction998

as a sequence-to-sequence task (Zhao et al., 2023,999

2024). While these approaches offer improved per-1000

formance, they typically require large fine-tuning1001

datasets and may not consistently produce struc-1002

turally correct output tuples.1003

A notable limitation of many relation extraction1004

systems is the lack of verification for extracted1005

relations, potentially leading to the extraction of1006

false or unreliable relations from untrustworthy1007

sources (Si et al., 2024; Wadhwa et al., 2023). Our1008

work addresses this issue by adopting a novel ap-1009

proach: instead of directly extracting causal rela-1010

tions from documents, we pre-create textual men-1011

tions of causal relations (e.g., "smoking causes lung 1012

cancer") and employ LLMs to verify the veracity 1013

of these relations based on relevant documents. We 1014

consider a causal relation to hold if the majority of 1015

documents support its veracity, thereby enhancing 1016

the reliability of our extracted causal relations. 1017

Claim Verification Claim verification aims to 1018

assess the veracity of claims based on relevant doc- 1019

uments (Bekoulis et al., 2021). This process typi- 1020

cally encompasses several key components: claim 1021

detection, document retrieval, veracity prediction, 1022

and explanation generation. Research in this field 1023

often focuses on specific aspects of the verifica- 1024

tion pipeline. For instance, Panchendrarajan and 1025

Zubiaga (2024) and Li et al. (2024) concentrate 1026

on identifying check-worthy statements from large 1027

text corpora. Others, such as Wadden et al. (2022) 1028

and Mohr et al. (2022), prioritize veracity predic- 1029

tion, while Wang and Shu (2023) emphasize the 1030

importance of generating explanations for verifica- 1031

tion outcomes. The emergence of LLMs has sig- 1032

nificantly influenced the field, with numerous stud- 1033

ies leveraging LLMs for claim verification through 1034

carefully crafted prompts (Kim et al., 2024; Bazaga 1035

et al., 2024; Asai et al., 2024). Building on these 1036

advancements, one branch of our hybrid causal dis- 1037

covery approach reframes causal discovery as a 1038

causal relation verification task. We employ LLMs 1039

to assess the veracity of causal relations based on 1040

retrieved documents, subsequently incorporating 1041

verified relations into a causal graph. This method- 1042

ology bridges the gap between traditional claim 1043

verification techniques and causal discovery, offer- 1044

ing a novel approach to uncovering and validating 1045

causal relations. 1046

A.2 Reproducibility Statement 1047

We release our code and scripts at https:// 1048

anonymous.4open.science/r/iris-7378. De- 1049

tailed descriptions of the algorithms used in each 1050

component of our framework can be found in 1051

Appendix A.3. We provide all prompts utilized 1052

throughout our framework in Appendix A.4. The 1053

ground-truth causal graphs employed in our eval- 1054

uation experiments are outlined in Appendix A.5. 1055

Additionally, Appendix A.6 presents human anno- 1056

tation instruction and interface for the human anno- 1057

tation tasks involved in evaluating the expanded 1058

causal graphs. The annotated expanded causal 1059

graphs, alongside the predicted causal graphs, are 1060

documented in Appendix A.7. 1061
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A.3 Algorithms1062

In this section, we provide detailed descriptions of1063

the algorithms for each component of our method.1064

The data collection and value extraction process is1065

outlined in Algorithm 1. The hybrid causal discov-1066

ery algorithm can be found in Algorithm 2. Finally,1067

the algorithm for proposing missing variables is1068

detailed in Algorithm 3.1069

Algorithm 1 Document Collection and Value Ex-
traction
Require: Initial Variables Z, LLM M , threshold

T , prompt l
Document Collection
D← ∅ ▷ Initialize an empty set for collected
documents
while |D| < T do

queries ←
[(z1, z2, . . . , zn), (z1, z2, . . . , zn−1), . . . , (zi)]

▷ queries considering all variables and their
synonyms

for each q in queries do
n← 20× len(q) ▷ Determine the

number of URLs to collect
urls← google_search(q, n) ▷ Search

with query q and retrieve top-n URLs
for each url in urls do

D ← extract text from url
D← D ∪ {D} ▷ Add extracted text

to the document set
end for

end for
end while

Value Extraction
V ← Matrix of dimensions T ×N ▷ Initialize
a matrix with T rows and N columns
for each di in D do

for each zj in Z do
oij ←M(l(di, zj)) ▷ Determine value

of zj in di by LLM
vij ← extract(oij) ▷ Extract value from

LLM output
V [i][j]← vij ▷ Store the value vij in

matrix V at position (i, j)
end for

end for
Output: D,V

A.4 Prompts 1070

In this section, we show prompts we used in IRIS 1071

in Table 4, 5, 6. The prompt used in the "Prompt" 1072

baseline in evaluation of expanded causal graphs is 1073

shown in Table 7. 1074

A.5 Ground-Truth Causal Graphs 1075

The ground-truth causal graphs for causal discovery 1076

can be found in Figure 3. 1077

(a) Diabetes

(b) Obesity

(c) Respiratory Disease

(d) Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)

(e) Cancer

Figure 3: The ground-truth causal graphs from original
sources (Hernán et al., 2004; Long et al., 2022; Shen
et al., 2020; Korb and Nicholson, 2010).
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Given a document: {doc}

Please complete the below task.
We have a variable named ’{var}’. The value of variable ’{var}’ is True or False.
True indicates that the existence of ’{var}’ can be inferred from the document, whereas False suggests that the existence of ’{var}’ cannot be inferred from this document.
Based on the document provided, what is the most appropriate value for ’{var}’ that can be inferred?
Please form the answer using the following format.
First, provide an introductory sentence that explains what information will be discussed.
Next, list generated answer in detail, ensuring clarity and precision.
Finally, conclude the final answer of the inferred value for ’{var}’ using the following template:
The value of ’{var}’ is ____.

Table 4: The prompt for value extraction, where doc indicates the content of a document, var refers to a variable
name.

Given a document: {doc}

Please complete the below task.
We have a claim: ’{claim}’. We need to check the veracity of this claim. The value of veracity is True or False or Unknown.
True indicates that the given document supports this claim,
False indicates that the given document refutes the claim.
Unknown indicates that the given document has no relation to the claim.
Please form the answer with a logical reasoning chain according to the following format.
First, provide an introductory sentence that explains what information will be discussed.
Next, list the logical reasoning chain in detail, ensuring clarity and precision.
Finally, conclude the veracity of claim ’{claim}’ using the following template:
The veracity of claim ’{claim}’ is ___.

Table 5: The prompt for causal relation verification, where doc indicates the content of a document, claim refers to a
causal relation (e.g., smoking causes lung cancer).

A.6 Causal Relation Annotation Task1078

The detailed instructions for the causal relation1079

annotation task are presented in Table 8. This ta-1080

ble provides comprehensive guidance to annotators1081

on how to identify and annotate causal relations1082

among the given variables.1083

A.7 human-annotated Causal Graphs1084

The human-annotated causal graphs are demon-1085

strated in Figure 4, 5, 6, 7, 8.1086

A.8 Evaluation of Causal Discovery1087

Component1088

The detailed evaluation results of the causal discov-1089

ery component are presented in Table 9, 10, 11,1090

12, 13.1091

(a) IRIS

(b) Human

Figure 4: Illustration of expanded causal graphs for
Cancer. Squared nodes represent initial variables, while
round nodes denote new proposed variables.
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Given a document: {doc}

Please complete the below task.
We have some given variables: ’{observed_variables}’.
What are the high-level variables in the provided document that have causal relations to variables in the given variable set?
Please form the answer using the following format.
First, propose as many variables as possible that have causal relationships with the given variables, based on your understanding of the document.
Please ensure these proposed variables are different from the ones already provided.
Next, refine your list of candidate variables by reducing semantic overlap among them and shortening their names for clarity.
Finally, determine the most reliable variable candidate as the final answer using the template provided below:
The new abstracted variable is <var>____</var>.

Table 6: The prompt for missing variable abstraction.

The task is to determine the cause-effect relation between two variables.
The variables are: {variable1} and {variable2}.
The answer should be {variable1} ->{variable2} or {variable1} <- {variable2} or no causal relation.
Let’s provide a step-by-step process to analysis the relation between them,
then provide your final answer using the following format:
The final answer is ___.

Table 7: The prompt used in the baseline for evaluation of expanded causal graphs.

(a) IRIS

(b) Human

Figure 5: Illustration of expanded causal graphs for
Respiratory Disease. Squared nodes represent initial
variables, while round nodes denote new proposed vari-
ables.

(a) IRIS

(b) Human

Figure 6: Illustration of expanded causal graphs for Di-
abetes. Squared nodes represent initial variables, while
round nodes denote new proposed variables.
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Causal Relation Annotation Task

Task overview:
Your task is to identify and annotate causal relations among a set of variables. A causal relation exists when one variable directly influences another.

Instructions:
1. Consider each pair of variables and determine if there is a direct causal relationship between them.
2. If you believe variable A causes variable B, indicate this as: A → B
3. Be cautious of confusing correlation with causation. Only mark a relationship if you believe there is a direct causal link.
4. Consider the direction of causality carefully. For example, "Obesity → Heart Failure" suggests obesity causes heart failure, not the other way around.
5. It’s okay to have multiple causes for a single effect, or multiple effects from a single cause.
6. Not all variables will necessarily have causal relationships with others.
7. Use your best judgment based on available knowledge and logical reasoning.

Examples:
lifestyle -> obesity
heart defect -> cardiac output
genetic disorder -> heart defect

Submission:
Please submit your annotations as a list of causal relations in the format: Variable A -> Variable B
Thank you for your careful consideration of this task!

Task 1: Cancer

Variables:
pollution
smoker
cancer
x-ray
dyspnoea
air quality
education
health issues
toxicity
chronic illness
covid-19
inflammation
respiratory issues
immunity
carcinogens
early detection

Causal Relations:
...

Table 8: Instructions and interface of causal relation annotation task.

Cancer (4 edges, 5 nodes)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.75 0.75 0.75 4 0.25
BFS-LLM 0.6 0.75 0.67 5 0.33
COAT 0.13 0.25 0.17 8 0.83
IRIS- GES 0.25 0.5 0.33 8 0.67
IRIS- NOTEARS 1.0 0.25 0.4 1 0.6
IRIS- PC 0.14 0.25 0.18 7 0.82
IRIS- VCR 1.0 0.75 0.86 3 0.14
IRIS (Llama) - NOTEARS+VCR 0.375 0.75 0.5 8 0.5
IRIS- NOTEARS+VCR 1.0 0.75 0.86 3 0.14

Table 9: Evaluation results of causal discovery on cancer graph. VCR refers to verified causal relations that are
extracted from and validated by relevant academic documents. "Llama" refers to the use of the Llama-3.1-8b-instruct
model as a substitute for GPT-4o in our method.
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Respiratory Disease (5 edges, 4 nodes)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 1.0 0.6 0.75 3 0.25
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 1.0 0.8 0.89 4 0.11
IRIS- GES 1.0 0.8 0.89 4 0.11
IRIS- NOTEARS 1.0 0.2 0.33 1 0.67
IRIS- PC 0.83 1.0 0.91 6 0.09
IRIS- VCR 1.0 0.8 0.89 4 0.11
IRIS (Llama) - PC+VCR 1.0 0.8 0.89 4 0.11
IRIS- PC+VCR 0.83 1.0 0.91 6 0.09

Table 10: Evaluation results of causal discovery on respiratory disease graph.

Diabetes (5 edges, 4 nodes)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.67 0.4 0.5 3 0.5
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 0.25 0.2 0.22 4 0.78
IRIS- GES 0.5 0.6 0.55 6 0.45
IRIS- NOTEARS 0 0 0 0 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 0.2 0.33 1 0.67
IRIS (Llama) - GES+VCR 0.67 0.4 0.5 3 0.5
IRIS- GES+VCR 1.0 0.6 0.75 3 0.25

Table 11: Evaluation results of causal discovery on diabetes graph.

Obesity (5 edges, 4 nodes)
Precision Recall F1↑ # of predicted edges NHD Ratio↓

Pairwise-LLM 0.83 1.0 0.91 6 0.09
BFS-LLM 0.6 0.6 0.6 5 0.4
COAT 0.25 0.2 0.22 4 0.78
IRIS-GES 0.25 0.2 0.22 4 0.78
IRIS- NOTEARS 0 0 0 2 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 1.0 1.0 5 0
IRIS (Llama) - PC+VCR 0.83 1.0 0.91 6 0.09
IRIS- PC+VCR 1.0 1.0 1.0 5 0

Table 12: Evaluation results of causal discovery on obesity graph.
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ADNI (7 edges, 8 nodes)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.5 0.14 0.22 2 0.78
BFS-LLM 0.33 0.14 0.2 3 0.8
COAT 0.11 0.14 0.13 9 0.87
IRIS- GES 0.08 0.14 0.11 12 0.89
IRIS- NOTEARS 0.33 0.14 0.2 3 0.8
IRIS- PC 0.11 0.14 0.13 9 0.87
IRIS- VCR 0.4 0.29 0.33 5 0.67
IRIS (Llama) - NOTEARS+VCR 0.08 0.14 0.11 12 0.89
IRIS- NOTEARS+VCR 0.38 0.43 0.4 8 0.6

Table 13: Evaluation results of causal discovery on ADNI graph.
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Algorithm 2 Hybrid Causal Discovery

Require: Initial variables Z, LLM M , structured
data X, prompt l, hyperparameters α, β
Statistical Causal Discovery
Ĝs ← causal_discovery_alg(X) ▷ Apply causal
discovery algorithms (e.g., PC algorithm)

Causal Relation Verification
Ĝv ← causal graph with no edges
remove_edges← ∅
for each zi in Z do

for each zj in Z do
if zi ̸= zj then

r ← "zi causes zj"
veracityr ← ∅ ▷ Initialize the

veracity list for relation r
for each d in Dzi,zj do ▷ Dzi,zj

denotes documents containing both zi and zj
verd ←M(l(r, d)) ▷

Determine the veracity of r based on document
d

veracityr ← veracityr ∪
{verd}

end for
if veracityr.count(True) > α ×

len(veracityr) then
Ĝv ← Ĝv ∪ {r} ▷ Add relation r

to the causal graph Ĝv
else if veracityr.count(False) >

β × len(veracityr) then
remove_edges ←

remove_edges ∪ {r}
end if

end if
end for

end for

Merge Ĝs and Ĝv
for each edge r in Ĝv do
Ĝs ← Ĝs ∪ {r} ▷ Add relation r to Ĝs

end for
for each edge r in remove_edges do
Ĝs ← Ĝs \ {r} ▷ Remove relation r from Ĝs

if it exists
end for
Ĝ ← Ĝs ▷ The final merged causal graph
Output: Ĝ

Algorithm 3 Missing Variable Proposal

Require: Initial variables Z, LLM M , collected
documents D, prompt l, hyperparameter α
Step 1: Abstraction of Missing Variable Can-
didates
Zc ← ∅ ▷ Initialize the set of candidates
for each document d in D do

z←M(l(Z, d)) ▷ Abstract a candidate
variable from document d

Zc ← Zc ∪ {z}
end for

Step 2: Missing Variable Proposal Based on
Verified Causal Relations
Zm ← ∅ ▷ Initialize the set of missing variables
for each variable zi in Zc do

for each given variable zj in Z do
r1 ← "zi causes zj"
veracityr1 ← ∅ ▷ Initialize the veracity

list for relation r1
for each document d in Dzi,zj do ▷

Dzi,zj denotes documents containing both zi and
zj

verd ←M(l(r1, d)) ▷ Determine
the veracity of r1 based on document d

veracityr1 ← veracityr1 ∪ {verd}
end for
if veracityr1 .count(True) > α ×

veracityr1 .count(False) then
Zm ← Zm ∪ {zi} ▷ Add zi to the

set of proposed variables
end if
r2 ← "zj causes zi" ▷ Repeat the

process for the reverse causal relation
. . .

end for
end for

Step 3: Missing Variable Proposal Based on
Statistical Methods
S← ∅ ▷ Initialize a set for PMI scores
for each variable zi in Zc do

si ← ∅
for each given variable zj in Z do

sij ← PMI(zi, zj) ▷ Compute PMI of
(zi, zj) by Equation 1

si ← si ∪ {sij}
end for
S← S ∪ {

∑
(si)} ▷ Aggregate the PMI

scores for zi
end for
Zm ← Zm ∪ top-k(S,Zc) ▷ Select the top-k
variables based on their PMI scores
Output: Zm ▷ Return the final set of proposed
missing variables
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(a) IRIS

(b) Human

Figure 7: Illustration of expanded causal graphs for
Obesity. Squared nodes represent initial variables, while
round nodes denote new proposed variables.

(a) IRIS

(b) Human

Figure 8: Illustration of expanded causal graphs for
ADNI. Squared nodes represent initial variables, while
round nodes denote new proposed variables.
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