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Abstract:
We apply multi-agent deep reinforcement learning (RL) to train end-to-end robot
soccer policies with fully onboard computation and sensing via egocentric RGB
vision. This setting reflects many challenges of real-world robotics, including ac-
tive perception, agile full-body control, and long-horizon planning in a dynamic,
partially-observable, multi-agent domain. We rely on large-scale, simulation-
based data generation to obtain complex behaviors from egocentric vision which
can be successfully transferred to physical robots using low-cost sensors. To
achieve adequate visual realism, our simulation combines rigid-body physics with
learned, realistic rendering via multiple Neural Radiance Fields (NeRFs). We
combine teacher-based multi-agent RL and cross-experiment data reuse to enable
the discovery of sophisticated soccer strategies. We analyze active-perception be-
haviors including object tracking and ball seeking that emerge when simply op-
timizing perception-agnostic soccer play. The agents display equivalent levels of
performance and agility as policies with access to privileged, ground-truth state3.
To our knowledge, this paper constitutes a first demonstration of end-to-end train-
ing for multi-agent robot soccer, mapping raw pixel observations to joint-level
actions, that can be deployed in the real world.

Keywords: robotics, reinforcement learning

1 Introduction

In recent years, access to accurate simulators combined with increased computational power has
enabled reinforcement learning (RL) to achieve considerable success across both single- and multi-
agent settings in robotics, including quadruped parkour [1, 2, 3], robot soccer [4], full-size hu-
manoid locomotion [5], dexterous manipulation [6], and quadrotor racing [7]. While these results
are promising, certain simplifying assumptions limit their general applicability. Notably, many of
these examples rely on depth sensing [1, 2], which can be expensive; external state estimation [4, 6],
which may not always be possible; or specifically-designed modular architectures [3, 7], which often
involve domain-specific assumptions; or do not address the problem of exteroception [5].
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Figure 1: Environment. We train agents
purely in simulation and align the simu-
lated environment (left) with the real-
world environment (right), to enable
zero-shot transfer. In simulation, the
camera view consists of a NeRF render-
ing of the static scene (i.e., the soccer
pitch and background), with the dynamic
objects overlaid. In the real world en-
vironment, which is 5m by 4m, we use
the output of the head-mounted RGB
camera. Agents receive downsampled
40× 30 resolution images.

In this work, we present an RL pipeline for training vision-based policies for multi-agent robot
soccer without any of these simplifying assumptions. Our policies use purely onboard sensing, con-
sisting of an IMU, joint encoders, and a head-mounted RGB camera. Robot soccer is a challenging
domain that requires not only agile low-level control, but also long-horizon planning for position-
ing, predicting and scoring against an opponent. Many of these challenges have been addressed by
previous work [4] using ground-truth state information. This paper builds on that work, but focuses
specifically on challenges that arise when perception is restricted to onboard sensors including, in
particular, egocentric RGB vision.

Egocentric vision renders the environment partially observed, amplifying challenges of credit as-
signment and exploration, requiring the use of memory and the discovery of suitable information-
seeking strategies in order to self-localize, find the ball, avoid the opponent, and score into the correct
goal. A moving opponent and ball add further complexity to the limited field of view and potential
motion blur that vision-based policies must contend with. To perform well, agents must learn to
combine agility and precise control (for example, to kick a moving ball) together with information-
seeking behavior via active vision. This combination of behaviors is difficult to manually script,
due to the existence of multiple simultaneous objectives, the dynamic environment, and the highly
context-dependent nature of the optimal behavior.

We present a method for training vision-based RL agents end-to-end from pixels and propriocep-
tion for one-vs-one soccer using the MuJoCo simulator [8] and Neural Radiance Fields (NeRF) to
provide a realistic rendering of the real physical scene [9, 10] (shown in Figure 1) which enables
zero-shot transfer to the real world. We combine agent experience across training iterations, to im-
prove learning speed and asymptotic performance [11]. Importantly, our approach does not involve
any changes to the task or reward structure, makes no simplifying assumptions for state-estimation,
and does not use any domain-specific architectural components.

We observe strong agent performance and agility even in this partially-observable and dynamic
setting. Our vision-based agents walk as fast and kick as strongly as a state-based agent that has
access to ground-truth egocentric locations of the opponent, ball, and goal. While our training setup
includes no explicit rewards for active perception, information-seeking behaviors such as searching
for the ball emerge naturally during training, from the simple incentive to play soccer well. Our
analysis shows that the agents are able to track moving objects even when occluded and out-of-view
in both simulation and the real world, and have a propensity to track moving balls of various shapes
and colors. They demonstrate complex opponent-aware behaviors like blocking and shielding the
ball and accurately score even when the goal is out of view. Our accompanying website (https:
//sites.google.com/view/vision-soccer) includes video analysis and full games showing
agile soccer play from vision.

The key contributions of this work are as follows:

• A soccer agent trained end-to-end with RL using RGB pixels; a first demonstration of this
kind on this challenging partially-observable task.
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Figure 2: Method Overview. In each experiment, we train the agent with off-policy RL via Replay
across Experiments (RaE) [11] from a mixture of current experience and previously collected data.
We additionally regularize the agent in later training stages towards teacher policies. The agent
is trained purely in simulation, and transferred zero-shot to the physical world. The agent only
perceives onboard observations, consisting of RGB images and proprioception.

• A detailed analysis of soccer play and agent behavior with a focus on emergent vision-
specific skills, including active perception of the ball and opponent tracking.

• A quantitative comparison that shows our vision-based agents maintain a similar level of
agility to state-of-the-art agents with access to ground-truth state information.

2 Method

In this section we present our approach to learning RGB-vision based soccer. As discussed in
Section 1, learning to play soccer from vision is substantially more challenging and requires differ-
ent information-seeking optimal strategies compared to learning with access to ground-truth state.
Therefore, we propose a training pipeline that focuses on learning end-to-end from vision, rather
than distilling vision policies using state-based agents [6, 12].4 Our approach uses the two-stage RL
method described in Haarnoja et al. [4] which we summarize in Section 2.1, but with key additional
components such as the use of Replay across Experiments (RaE) [11] to increase data usage effi-
ciency and the use of calibrated NeRF rendering [9, 10] with multiple NeRFs which we discuss in
Section 2.2. The soccer agents are trained entirely in simulation using MuJoCo [8], and deployed
zero-shot on the real platform (Figure 2).

2.1 Two-Stage Training with Reinforcement Learning

Our method uses the two-stage reinforcement learning pipeline of Haarnoja et al. [4], which uses the
Maximum a-posteriori Policy Optimization (MPO) algorithm [13] and a distributional critic [14]. In
the first stage, two separate experts are trained: one to get up from the ground and another to score
against a fixed, random opponent. In the second stage, these experts are distilled into one agent
using RL with adaptive KL-regularization. In this stage, the opponent is randomly selected from the
first quarter of the agent’s saved policy snapshots. This ensures that the agent progressively plays
against increasingly challenging opponents, and encourages learning robust multi-agent strategies.
Random perturbations and physics randomization are used to improve zero-shot transfer to the real
world. In contrast to the original pipeline [4], which does not rely on long-term memory, we use
an Long Short-Term Memory (LSTM) architecture [15] with a long unroll length to incorporate
memory over time and permissive head joint limits to allow more freedom for active perceptual
behaviors (see Appendix A).

2.2 Training from Egocentric Vision

When training from vision, we provide the critic with ground-truth state information [16] including
the egocentric position and velocity of the ball, opponent, and goal and the visual and proprioceptive

4We compare the benefits of our approach to state-to-vision transfer empirically in Section 3.4.
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Figure 3: Emergent behaviors. Each row shows a different emergent behavior. The agent’s camera
view is at the top right of each frame. Top row: The agent pivots to scan the scene and localize the
ball, walks towards it, and positions itself to shoot. Middle: Agents scramble for the ball and try to
shoot past each other. Bottom: The agent positions itself to prevent the opponent from scoring.

information that is provided to the policy. This simplification exploits the fact that the critic is not
required at deployment. In addition, we introduce further key components to enable learning from
vision which we describe below:

Rendering For realistic camera observations, we rely on real-to-sim transfer by generating various
NeRFs of the real soccer scene [9, 10] using 250-300 photographs. This enables rendering the static
scene from novel viewpoints. We render dynamic objects such as the ball and opponent robot using
MuJoCo and overlay them on the static scene to produce a final composite camera view. During
training, a scaled down version (to 40x30 pixels) of this image is provided as visual input to the
policy, as shown in Figure 1. To capture the NeRF we use a Sony α7C camera which differs from
the robot’s camera, a Logitech C920 webcam. To reduce this sim-to-real gap, we calibrate the NeRF
colors using a linear transformation (see Appendix A).

NeRF Randomization We apply various randomizations to the agent’s visual observations includ-
ing commonly used image augmentations like random perturbations to the brightness, saturation,
hue, and contrast of the input. In addition, we collect 4 NeRFs under differing lighting conditions
and with different arrangements of background objects, and randomly select from them, per episode,
during training. This simple addition introduces variations to the scene which we leverage as an ad-
ditional form of domain randomization.

Data Transfer and Offline-Online Mixing Training from vision is considerably more complex,
expensive and time-consuming than from state: actors must render at each step and are slower to
generate data, and each batch of learning data is slower to process. To reduce iteration time and
use visually diverse data for training (to reduce visual overfitting), rather than training from scratch
on every iteration, we reuse transition data from previous experiments (with different policies, hy-
perparameter settings etc.) [11]. This addition significantly improved asymptotic performance and
enabled learning across both stages of the training pipeline.

3 Experiments

We deploy policies on Robotis OP3 humanoid robots [17], on a pitch that is 4 m wide by 5 m long
(Figure 1). The robots are 51 cm tall, weigh 3.5 kg, and have 20 actuated joints. We add minor
modifications, including 3D-printed bumpers (which are also rendered), to increase physical robust-
ness [4]. The robot’s sensors consist of joint position encoders, an IMU, and RGB images from a
head-mounted Logitech C920 camera— running at 30 frames per second. Images are downsampled
to 40 × 30 to reduce onboard policy inference time. The robot’s head controls the camera pan and
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Figure 4: Shooting behavior, real-world: The agent smoothly transitions between skills and scores.

tilt. We use 40 Hz joint position control 5, and smooth actions with an exponential filter6 to avoid
damaging the actuators with high-frequency action variation.

Our experimental analyses seeks to answer the following questions:

• What behaviors emerge naturally from training vision-based agents with RL to play soccer?
• Can memory-augmented agents robustly track objects (e.g. the ball and opponent) in scenes

with partial observability and occlusion?
• Does training from vision affect agility, compared to training with privileged information?
• Instead of training entirely from vision, can we distill knowledge from state-based agents?

We investigate these questions with comparisons to a “state-based” agent with access to ground-truth
state information at test time, consisting of egocentric position and velocity of the ball, opponent,
and goal. For complementary videos, please refer to our accompanying website.

3.1 Soccer Behaviors

Figure 3 highlights behaviors that emerge while training agents in simulation: searching for the ball,
scrambling, and blocking a shot. These complex, long-horizon, multi-agent behaviors rely on active
vision and are difficult to manually script. Interestingly, such behaviors emerge naturally from the
soccer task reward, and without the need for explicit reward terms for, say, finding the ball.

Arguably the most important skill for a soccer agent is the ability to shoot and score. Figure 4 shows
an example of the learned shooting behavior, transferred zero-shot to the real robot. Classical ap-
proaches sequentially compose individual behaviors, often with rough transitions between different
motions. In contrast, here the agent smoothly transitions between walking towards the ball, position-
ing itself, and kicking without pauses or discontinuities. Section 3.3 presents a quantitative analysis
of this shooting behavior compared to the state-based agent.

3.2 Object Tracking from Vision

Agent Representation Probes To probe the agent’s object tracking ability, we train linear layers
downstream from the frozen encoder features of the policy [18], to predict the positions of various
objects using Gaussian mixture models (see Appendix A).

Figure 5 visualizes these predictions in simulation using a heatmap, and shows the predicted posi-
tions of the agent, opponent, and ball are fairly accurate and become more confident over time. In
the first row, the agent localizes its position using distinguishing features of the environment (e.g.
the orange goal) and remembers its location even when these features are out of view. Although
opponent tracking is less accurate, a similar tracking ability emerges. Ball tracking is remarkably
accurate: the agent precisely locates the ball once it is in view and, importantly, is able to predict
ball movement (and hence implicitly velocity) even after kicking it out of view. We observe similar
results in the single-scene real world analysis of Figure 6. This suggests that object tracking is robust
to visual changes (like lighting and camera blur) that arise when using the onboard camera, albeit
with a slight decrease in prediction accuracy. Overall these analyses indicate that tracking dynamic
objects in the visual scene emerges naturally via our training pipeline.

5The different rates for policy and camera imply that the visual input may be held constant across two
timesteps which we do not find that this present an issue in practice.

6ut = 0.8ut−1 +0.2at, where at is the policy output and ut is the action applied to the robot at timestep t.
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Figure 5: Position prediction results: Each row shows the predicted positions of either the agent,
opponent, or ball across time. Each frame shows the simulation with the egocentric camera view in
the top right and the predicted quantity in the bottom right. The heatmap of the Gaussian mixture
model converges to a point as the certainty increases. Ground truth is indicated by a black cross.

Figure 6: Position prediction results, real world: Each column displays the egocentric camera
view (top), predicted agent (middle) and ball (bottom) position from the same instant in time. Ini-
tially the agent is uncertain about both its own position and the ball’s position. After finding the ball
the predictions become more certain and are relatively accurate. After kicking the ball (column 4),
the agent continues to accurately predict the ball location even when the ball is no longer in view.

Head Movement Probes Qualitative observations of the agent’s behavior during game play sug-
gest it actively moves its head camera to track the ball. To study this behavior in isolation, we
initialize the robot in simulation in a standing position with the ball directly in front of it and mov-
ing with a random initial velocity of up to 1 m/s. We only allow the agent to move the head pan
and tilt joints, which control the camera orientation. We then measure the angular distance between
the center of the camera gaze and the location of the ball across 16 episodes of 100 timesteps each.
Compared to a baseline where the head is fixed, the agent moves the camera to ensure the ball
remains in the field of view (Figure 7a).

We observed the same head tracking behavior on the real robot, where the agent robustly moved
its head to follow moving balls with a range of colors and sizes (Figure 7b). We do not directly
incentivize the agent to localize the ball; this example of active perception emerges naturally from
training on the soccer task reward.

3.3 Analysis of Agility

In this section we evaluate our vision-based agents on agility and scoring ability. We follow the
setup described in [4], with minor modifications to ensure a fair comparison (see Appendix B).

In terms of agility, the vision-based agent fares better across all metrics (walking speed, turning
speed, and kicking power) when compared to the scripted baseline and is on-par with the state-
based agent for walking speed and kicking power (Table 1).7 This indicates that comparable agility
can be achieved from onboard sensing alone.

7Note that turning speed is measured by initializing the agent and ball on opposite corners of the pitch, with
the agent facing away from the ball. A state-based agent knows the location of the ball behind it and thus turns
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(a) Active ball tracking (b) Real-world head tracking

Figure 7: (Left): Histograms of the angular distance between the center of the camera view and the
ground-truth ball location, over 16 episodes. The vertical line indicates the approximate size of the
camera’s field of view. In the red control group, the camera is fixed facing forward while in the blue
trajectories the learned policy is allowed to only move the head. (Right): We freeze all joints except
head pan and tilt to demonstrate the learned use of controlling the head camera for active perception.
Ball color randomization ensures the agent is able to track balls with a range of colors.

(a) Simulation Environment (b) Real Environment

Figure 8: Scoring ability: Top down view of simulated (left) and real-world (right) penalty shoots.
The opponent (blue circle) is stationary, the agent (red circle) is initialized on the floor at random
positions in its own half, and the ball (white circle) is initialized in the pitch center. Solid lines show
the agent’s path and dotted lines show the ball’s path. The target goal is blue, and the agent’s own
goal is red. Positions for the real environment (determined via a motion capture system), are used
purely for analysis. Scoring in simulation is near-perfect with minimal variance whereas scoring in
real fares worse. In the real world, robot behavior is more stochastic, and both agent and ball paths
are affected by the slightly uneven ground.

We measure scoring ability across 250 penalty shoots in simulation and 20 in the real world, with
trajectories visualized in Figure 8. The agent is initialized on the ground in a random initial position
and is given 12 seconds to score. In simulation, the vision- and state-based agents have similar
scoring accuracy, an average of 0.86 versus 0.82. In the real world however, both agents suffer from
a drop in performance, with a lower average accuracy of 0.4 for the vision-based agent versus 0.58
for the state-based agent. For the state-based agent, in Haarnoja et al. [4] this drop in real-world
performance was largely attributed to sources of noise that are difficult to simulate, such as sensor
noise, battery state, and the state of the robot hardware. This is exacerbated for vision agents, with
additional sources of noise including changes in lighting conditions and motion blur.

Metrics Scripted State-based Vision-based
Walking Speed 0.20 ± 0.05m/s 0.51 ± 0.01m/s 0.52±0.02m/s
Turning Speed 0.71±0.04rad/s 3.17± 0.12rad/s 2.78±0.08rad/s
Kicking Power 2.07 ± 0.05m/s 2.03 ± 0.19m/s 1.95 ± 0.31m/s
Scoring (sim) - 0.82 ± 0.05 0.86 ± 0.04
Scoring (real) - 0.58 ± 0.07 0.4 ± 0.11

Table 1: Analysis of agility: Comparison of the vision-based agent against state and scripted base-
lines for behaviors in simulation (top four) and real (bottom). Mean and standard error are across 10
trials for all except scoring, which is over 250 episodes in simulation and 20 episodes in real.

quickly to arrive there, whereas a vision-based agent is at a disadvantage, since it does not “know” a-priori that
it must do a full 180-degree turn.
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Figure 9: Data source analysis: Comparing transfer
performance when using data generated by a state-
based expert (that also renders camera observations)
and data generated by a vision-based agent to learning
from scratch.

3.4 Data Sources Analysis

Finally in this section we will provide some evidence that argues in favor of training end-to-end
from vision over distilling knowledge from state-based agents. For this analysis, we generate game-
play data from a state-based agent while rendering from the agent’s camera; which ensures the data
is compatible for learning with RaE. We compare this to data generated using our vision learning
pipeline. We find that while reusing data generated from a state agent can improve performance,
there is a notable difference to using vision data directly (Figure 9). Intuitively the behaviors dis-
cussed in the previous sections require actively controlling and coordinating movements between
the head and body: since state-based agents do not require such behaviors, reusing their data may
be of limited use.

4 Related Work

While several works have developed techniques for sim2real transfer of RL controllers, none have
addressed RGB perception with end-to-end RL in a dynamic, long-horizon, multi-agent task like
soccer. External state estimation [4, 6] or depth sensing [19, 1, 3] are often used to simplify extero-
ception while domain randomization [20, 21, 22] has been studied for RGB perception on simpler
tasks. Recently, real2sim techniques [23, 24] which can produce realistic visuals in simulation have
shown promising results in fully observed tasks like goal-directed navigation [10]. [25] addressed
the task of vision-based dribbling with a quadrupedal robot and specific architectural assumptions
(e.g. fall detectors to switch to a recovery policy). Our approach is most closely related to the work
of Haarnoja et al. [4], Byravan et al. [10] but we consider a more challenging partially observable
setting which requires additional domain randomization and training protocols (e.g. data reuse [11]).
Consequently, the focus of our analysis are active-vision behaviors which arise without any explicit
rewards unlike in prior work [26, 27].

While multi-agent soccer has been studied extensively in simulation and the real world through,
in particular, the RoboCup competition [28, 29], our work focuses on a simplified setting (e.g. no
fouling, substitutions, set-pieces, coach or communication), with simplified game dynamics (e.g.
ramps to rebound balls which are out-of-bounds), to facilitate a more directed study of RL. While
RL has been used in specific soccer settings within RoboCup [30, 31, 32, 33, 34, 35], to the best
of our knowledge, our work is the first demonstration of real-world transfer for vision-based poli-
cies trained with end-to-end RL for the dynamic, long-horizon task of robot soccer. An extended
discussion of related work is in Appendix D.

5 Conclusions

We introduce a system for vision-based multi-agent soccer via end-to-end RL and zero-shot transfer
to real robots. Our vision-guided agents show similar levels of agility as state-based agents and show
active-perceptual behaviors with no explicit rewards and use multiple NeRFs and RaE as general
tools that enable learning. We provide a list of limitations under Appendix E.
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Open-ended learning in symmetric zero-sum games. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learn-
ing Research, pages 434–443. PMLR, 2019. URL http://proceedings.mlr.press/v97/

balduzzi19a.html.

[49] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D. Silver, and T. Grae-
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Appendix

A Training Details

Our training setup is similar to the one proposed by [4] with a couple of important changes that
we detail in this section. Since our training pipeline relies entirely on onboard sensing with the
egocentric camera, we do not require motion capture markers for tracking the agent, opponent and
ball position. We only use these markers occasionally for analysis; for example to measure the
number of goals scored in the penalty set piece. Please find additional videos and descriptions on
our website 8.

Reinforcement Learning setup We consider reinforcement learning in a Partially-Observable
Markov Decision Process (POMDP) consisting of state space S, action space A, transition prob-
abilities p(st+1|st, at), and rewards r(st, at). The agent perceives observations ot which only con-
tain part of the state information st. We consider policies π(at|xt) that are history-conditional
distributions over a length-l history of previous observations xt = (ot−l, ..., ot−1, ot). The goal
of RL is to learn an optimal policy π∗ that maximizes the expected sum of discounted rewards:
π∗ = argmaxπ(Eπ[

∑
t γ

tr(st, at)]).

Joint Limits We limit the joint range in software as done in [4] but vary the limits of the head
joints to allow the walker to more freely search for the ball. The full list of joint limits used in our
work is listed in Table 2.

Reward Description We do not modify the reward specification from [4] in any way. We observe
information-seeking and visual tracking behaviors emerge naturally through the course of training
without the need to specify any additional rewards to encourage this. We refer the reader to [4] for
a full description of the rewards used for training.

NeRF calibration To capture the NeRF we use a Sony α7C camera which differs from the robot’s
camera, a Logitech C920 webcam. To reduce this sim-to-real gap, we place the Logitech C920
camera to the center of the soccer pitch and rotate it by 360 degrees while recording a 30fps video
(about 30 seconds). Then we record an analogous video inside the NeRF simulation. We calibrate
the NeRF colors using a per-pixel and per-channel linear transformation which is learned by match-
ing the per-pixel mean and variance of the RGB colors in the two videos. Specifically, let µreal and
µnerf be the average pixel RGB values across all frames in the real and NeRF video respectively,
and let σreal and σnerf be the standard deviations of the pixel RGB values. When we render from
the NeRF, we apply the following transformation to the color of every pixel in every frame:

color = clip
[
σreal

σnerf
(colornerf − µnerf ) + µreal, 0, 255

]
. (1)

Agent Training We use the Maximum a-posteriori Policy Optimisation (MPO) algorithm [13]
with a categorical distributional critic [14] for training. We condition the critic on privileged in-
formation including the egocentric position and 2-D velocities of the opponent and ball and the
egocentric locations of the goal. The actor is conditioned on proprioceptive information including
joint positions and information from the IMU. Finally both actor and critic are conditioned on a
40 × 30 rendering of the egocentric view. During training we sample an image of this resolution
from one out of 4 randomly chosen NeRFs of the same scene that were created with variations in
background and lighting. The opponent and ball are rendered using Mujoco and overlaid on top
of the image generated by the NeRF to obtain the final image for training. During evaluation we
downsample images rendered from the onboard camera to a resolution of 40× 30 to run the policy

8https://sites.google.com/view/vision-soccer
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at a 40Hz frequency. Note that the camera operates at a lower frequency of 30Hz which means the
visual input to the policy repeats across two consecutive timesteps.

Figure 10: Network architectures used for training. The top row shows the architecture used for
the policy with the prediction probes discussed in Section 3.2. The bottom row shows the critic
architecture.

Network Architecture The network architecture we use for training is based on the architecture
used in [10] and are shown in Figure 10. As the figure shows, image inputs are encoded using a
sequence of 3 residual blocks of size 8, 16 and 16. The output features from this transformation are
then processed by an LSTM block of size 64. The output of this is then transformed using an MLP
layer to parameterize a categorical distribution for the critic, or a Gaussian distribution in case of the
actor. The policy network also shows the prediction heads that are used to predict various quantities
like the egocentric position of the ball and goal in Section 3.2. When training the prediction probes
the losses only flow through the arrows indicated with a dotted line.

Distributed Training Setup We use a distributed training setup with 64 V100 GPU actors and a
TPU v2 learner pod arranged in a 2 × 2 topology. The data produced by the actors is written to a
replay buffer ensuring that on average 16 environment steps are taken for each learner update with
the ability to combine these with offline stored datasets as described in the main paper. A full set of
hyperparameters used for training are presented in Table 3.

Ball Randomization To enable real world application with differently colored balls and to in-
crease robustness to different lighting conditions we apply variations to the ball during training. In
particular, we take the base RGB value, radius and weight of the ball in simulation (that were gen-
erated using a ground-truth orange ball in the real world) and uniformly sample from distributions
ranging from 0.8 to 1.2 times the actual value.

Training Workflow As described in the main text, we train expert policies for getting up from the
ground and scoring and required one iteration of RaE to generate a successful scoring policy. We
then train the final policy using regularization to the experts and reusing the data generated for train-
ing the scoring expert. The scoring expert is trained using a random opponent with a an environment
termination on falling. We train the final policy for 240,000 episodes with RaE using two datasets
of 400,000 episodes and 220,000 episodes (that were generated from training the scoring expert).

The scoring expert policy is trained using a trajectory length of 48 (which is effectively the context
window of the LSTM) but to enable longer histories for the final policy, we used a trajectory length
of 145. We also use the multi-agent curriculum training strategy as described in the main text to
generate the complex behaviors described.
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ID Joint
Name

Min Max

19 head pan -2.5 2.5
20 head tilt -1.26 -0.16
16 l ank pitch -0.4 1.8
18 l ank roll -0.4 0.4
6 l el -1.4 0.2
12 l hip pitch -1.6 0.5
10 l hip roll -0.4 -0.1
8 l hip yaw -0.3 0.3
14 l knee -0.2 2.2
2 l sho pitch -2.2 2.2
4 l sho roll -0.8 1.6
16 r ank pitch -1.8 0.4
17 r ank roll -0.4 0.4
5 r el -0.2 1.4
11 r hip pitch -0.5 1.6
9 r hip roll 0.1 0.4
7 r hip yaw -0.3 0.3
13 r knee -2.2 0.2
1 r sho pitch -2.2 2.2
3 r sho roll -1.6 0.8

Table 2: Joint Limits

Parameter Value(s)
Batch size 80
Trajectory length 48, 145
Max replay size 100000
Actor learning rate (ADAM) 1e-4
Critic learning rate (ADAM) 1e-4
Temperature learning rate (ADAM) 1e-2
Tradeoff learning rate (MPO) 1e-4
Action samples (MPO) 20
ϵ KL Mean (MPO) 0.0025
ϵ KL Covariance (MPO) 1e-6
Discount factor 0.99

Table 3: Hyperparameters used during training

B Experiment Details

We perform set piece tests coarsely in line with prior work on evaluating state based soccer agents.
However, based on camera resolution provided to the agent we need to adjust the Walking Speed
set-piece. Instead of placing the agent at position (0.1, 0.5) relative to the pitch and ball at the end of
the pitch at a location of (0.9, 0.5), we place the ball at position (0.7, 0.5) since the original location
did not enable the agent to see, and therefore walk to, the ball.

C Additional Experiments

C.1 Privileged Information for Asymmetric Actor Critic

Figure 11 compares learning performance with and without passing additional privileged ground-
truth state information of the location of the opponent and ball. We find that learning is significantly
affected by this choice and performance without the ground truth information remains very low.
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Figure 11: Critic with privileged information including ground truth states and without. Performance
without privileged information is considerably lower.

C.2 Scoring Comparison Between State and Vision-based Soccer

A direct comparison between state- versus vision-based agents is heavily biased against vision-based
agents: state-based agents are given ground-truth locations of the opponent, ball, and goal, whereas
vision-based agents must infer this from vision and proprioceptive observations. Our analysis in
the main text shows that despite solving this more challenging task, vision-based agents maintain
similar levels of agility as state-based ones.

However, when we match the agents head-to-head, the state-based agent’s knowledge of ground-
truth information enables it to more quickly reach the ball and attempt to score. We ran an analysis
comparing vision- and state-based agents over 100 matches in simulation, where each match lasts
up to 40 seconds or terminates early when an agent scores. We found that averaged across the games
the vision-based agent won 27 percent of the games, indicating that the state-based agent wins about
3 times as often which serves as a reference for the scale of the challenge faced when playing from
visual inputs.

D Extended Related Work

Sim2Real Transfer for Robot Locomotion Several works have developed techniques for
sim2real transfer of locomotion controllers, e.g. [36, 37, 38, 19, 39, 4, 1, 3]. However, few works
have addressed the complexity of transfer with RGB perception when applying end-to-end RL in a
dynamic, long-horizon task like soccer. Some approaches partly address this challenge by replacing
RGB perception with external state estimation [4], height sensors [19], or depth sensors [1, 3]. On
the other hand, other approaches have addressed the problem of transfer with RGB-based percep-
tion but in less challenging domains. Early such approaches studied domain randomization, where
randomizing lighting, textures and other rendering options [20] can improve transfer (see [21, 22]
for a review). Rendering based randomization usually involves task-specific, engineering heavy
processes which are typically more involved and require variation in the shapes, position and tex-
tures of objects (and distractors) in the scene as well as characteristics of the camera like lighting,
location and orientation [20, 6]. More recently real2sim techniques which rely on a small amount
of real data to accurately reproduce scene visuals in simulation have become popular [23, 24, 10]
and have shown promising results in tasks like goal-directed navigation and dribbling but do not
address challenges like partial observability and long task horizons that are present in soccer. Our
approach is inspired by and builds upon these ideas be relying on a number of NeRFs to recreate
visual characteristics that the agent is likely to encounter in the real world. Finally, [25] introduced
a pipeline for training a quadruped robot that is capable of dribbling a soccer ball from visual inputs.
Their pipeline demonstrates remarkably robust behavior but is less general and relies on specific
architectural assumptions (e.g., a fall detector to switch to a recovery policy).
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Our work builds on and extends the domain randomization and system identification protocols of
Haarnoja et al. [4], Byravan et al. [10]. While our approach is inspired by and combines previous
work, to the best of our knowledge, our work is the first demonstration of real-world transfer for
vision-based policies trained with end-to-end RL for a dynamic, long-horizon task.

Multi-Agent Reinforcement Learning Competitive play has historically been used to demon-
strate breakthroughs in artificial intelligence [40, 41, 42, 43, 44] and, more recently, as a mechanism
that leads to emergent capabilities [45, 46, 47]. This research continues that line of work beyond
simulation and simple embodiments to real robots in a partially-observed environment with ego-
centric vision. Learning in non-stationary competitive environments can be unstable [e.g. 48], and
several works [e.g. 49, 50] have applied techniques from game theory [51] to reinforcement learning
to stabilize training and reach principled equilibria as solutions. Similarly, [44] trained against a
league of opponents. Our more practical approach, motivated by those ideas, also aims to achieve
robustness against a variety of opponents.

Skill and Data Transfer Knowledge transfer in RL agents has been facilitated in various ways
including the reuse of data or using agent policies or skills to accelerate learning and asymptoti-
cally improve performance [52, 53, 54]. The idea of composing together previously learnt skills has
been explored using regularization [55, 56, 57] or in the context of Hierarchical RL where a high
level controller leans to compose behaviors together to learn new solutions [58, 59, 60, 61, 62, 63].
Knowledge transfer can also be enabled through the use of previously collected data to bootstrap
learning; either as expert data to bootstrap learning [64, 65, 66, 67, 68] or by learning from of-
fline datasets [66, 69, 70, 71, 72]. In this work, we leverage both forms of knowledge transfer by
regularizing to previous teachers [73, 4] and using previously collected data to bootstrap learning
[11].

Robot Learning and Learning in Robocup Isolated skills such as running, climbing and jump-
ing have been demonstrated on bipedal robots [74, 75, 76, 77, 78, 79, 37, 39]. Our work tackles
the problem of robot soccer requiring integration of multiple skills, and uses egocentric vision.
The RoboCup competition [28, 29] uses simulated and real soccer environments in a multi-player
soccer game with comprehensive rules. In comparison, our work focuses on 1v1 play under simpli-
fied rules (e.g. no fouling, substitutions, set-pieces, coach or communication) and with simplified
game dynamics (e.g. ramps to rebound balls which are out-of-bounds) in order to facilitate a more
straightforward study of fully learned approaches. Reinforcement learning based approaches have
been successful in the 2D [30] and 3D simulation leagues [31, 32], where skills learned with RL
are combined using a hierarchical system. Reinforcement learning has also been used to train spe-
cific isolated soccer skills on real quadruped [33, 34] and wheeled [35] embodiments. In contrast,
our work presents an end-to-end system in which perception, low-level motor skills and long-term
planning are integrated, and with a real humanoid embodiment. Similar work was presented in [4],
but we consider the more challenging setting of using egocentric vision rather than external state
estimation. Importantly, our solution relies on general algorithmic improvements (reuse of data and
skills along with improved visual domain randomization) and makes no modifications to the task or
reward structure.

Many works have used RL to learn active vision policies, e.g. recently [26] for general manipu-
lation and [27] for viewpoint selection in the specific context of RoboCup. These works address
the specific challenge of controlling the agent camera or choosing a viewpoint by using particular
information-seeking reward functions. By contrast, in this work, active perception behaviors emerge
naturally with no direct reward term for perception and are thus smoothly integrated in the full task
of soccer.
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E Limitations

While our work shows promising results for 1v1 soccer from egocentric vision, there are a number
of limitations in the current system that can be considered in future work. For instance, the agent’s
visual policies are conditioned on low-resolution images (40 × 30) which allow for faster training
and inference at deployment but may lose important information present in the environment partic-
ularly for more complex tasks. In addition, changes in the environment scene that are not modeled
by the set of NeRFs will reduce the reliability of the policy. These considerations may become
more important when considering a full multi-agent soccer game where it is important to be able
to differentiate between opponent agents and team-mates and infer strategies to inform game-play.
In addition, the current limited horizon for training LSTM-based agents may also be insufficient to
learn about complex, long-term interactions.
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