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Figure 1: Overview of MATA. (a) Linear pipelines (previous methods) execute modules in a fixed,
manually designed order. (b) MATA organizes agents as states in a hyper automaton. A trainable
hyper agent learns high-level transitions between agents (blue arrows), enabling collaboration and
competition, while each agent runs a small rule-based sub-automaton for reliable micro-control
(black arrows). (c) To train the hyper agent, we expand a transition-trajectory tree per image-query,
score the leaves using task metrics, and convert each node’s snapshot into a supervised pair current
memory — best next state for supervised finetuning (SFT), forming MATA-SFT-90K.

ABSTRACT

Recent vision-language models have strong perceptual ability but their implicit
reasoning is hard to explain and easily generates hallucinations on complex
queries. Compositional methods improve interpretability, but most rely on a sin-
gle agent or hand-crafted pipeline and cannot decide when to collaborate across
complementary agents or compete among overlapping ones. We introduce MATA
(Multi-Agent hierarchical Trainable Automaton), a multi-agent system presented
as a hierarchical finite-state automaton for visual reasoning whose top-level tran-
sitions are chosen by a trainable hyper agent. Each agent corresponds to a state
in the hyper automaton, and runs a small rule-based sub-automaton for reliable
micro-control. All agents read and write a shared memory, yielding transpar-
ent execution history. To supervise the hyper agent’s transition policy, we build
transition-trajectory trees and transform to memory-to-next-state pairs, forming
the MATA-SFT-90K dataset for supervised finetuning (SFT). The finetuned LLM
as the transition policy understands the query and the capacity of agents, and it
can efficiently choose the optimal agent to solve the task. Across multiple visual
reasoning benchmarks, MATA achieves the state-of-the-art results compared with
monolithic and compositional baselines. The code and dataset are available at
https://github.com/ControlNet /MATA.
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1 INTRODUCTION

Visual reasoning is the cognitive process of interpreting and analyzing relationships among entities
in a visual scene to support decision-making and problem-solving (Ke et al.l 2025b). Although
recent Vision-Language Models (VLMs) (Liu et al.| [2023a; |Chen et al.| [2024; Bai et al., |2025b)
demonstrate strong perceptual ability, their implicit reasoning is difficult to audit and often causes
hallucinations on complex queries involving spatial relations, spatial attributes, and counting. Com-
positional approaches (Suris et al.,[2023; [You et al.||2023; [Ke et al.|[2024; |Cai et al., |2025)) improve
interpretability by decomposing a task into planning, perception, and reasoning stages, typically em-
ploying Large Language Models (LLMs) (Gemini-Team, 2023}, OpenAl, 2024} DeepSeek-Al, 2025)
as planners or code generators and Vision Foundation Models (VFMs) (Radford et al.| 2021} [Liu
et al.,|2023b; [ Xiao et al.| 2024; Yang et al.l 2024)) as perceptual tools. Despite these improvements,
non-agentic compositional methods (Suris et al.l |2023; [Lu et al.||2023)) struggle in practice: they are
limited to a single-turn reasoning, thus lacking the ability to incrementally reason in a closed-loop.
Due to these limitations, agentic methods (You et al., 2023} Ke et al., [2024} |Gao et al., [2024}; [Zhong
et al.,|2025) treat visual reasoning as a multi-step feedback loop in which agents actively take actions
based on the current state (Ke et al., [2025b)).

However, most agentic systems still employ a single agent, which is often insufficient for complex
reasoning (Wang et al.l 2025c)) as different skills are required for different parts of a problem. Fur-
ther, in prior multi-agent methods (Hong et al., 2023} [Li et al., [2024; Nguyen et al., 2025} [Zhang
et al., 2025) (developed for other domains), collaborative agents are assigned disjoint roles for dif-
ferent subtasks and are organized into hard-coded pipelines. While this is simple and interpretable,
it prevents error and hallucination handling, and tends to propagate upstream mistakes through the
pipeline (Gao et al.,|[2024; Ke et al., 2025a). In contrast, a competition mechanism where function-
ally overlapping agents for the same subtask work together is under-explored in previous work. In
this paper, we explore compositional multi-agent visual reasoning in an environment where collab-
orative and competitive agents exist.

Motivated by the requirements above, we cast this decision problem as a finite-state automaton
where the transition function picks a discrete next state and the lifecycle is naturally expressed by
explicit states and transitions. This provides explainability, verifiable control flow, and modularity
that yield greater versatility, reliability, and performance. A recent work (Cai et al.| 2025) also used
an automaton, but its hand-written rule-based transitions are inflexible and difficult to manually
define as states and transitions grow (Wang et al., 2025a; |Yue et al., 2025; |Dang et al., 2025; [Wan
et al.|2025). When new agents are added, their transitions need to be manually defined. Designing
rules to select among functionally overlapping (competitive) agents is hard since the criteria are
ambiguous and task-dependent, and human priors about which agents fit which tasks and queries
are uncertain. We therefore design a trainable hyper agent to learn a transition policy that selects
the next state. Notably, not every transition needs learning: within an agent, micro-steps (e.g.,
LLM/VLM prompting, verifier checks, tool I/O) follow clear procedures that are easy to define. As
the number of agents grows, the main difficulty is cross-agent transition rather than agent’s inside
control. This motivates a hierarchical automaton in which each top-level state is an agent with
a small rule-based sub-automaton, and a trainable hyper agent provides the transition function that
observes the shared memory and selects the next agent. All agents read and write to a shared memory
that records variables, tool outputs, code history, and verifier feedback, recording an explainable
process. This replaces an inflexible rule-based transition policy with a data-driven, error-aware,
and dynamic policy that can redirect to alternative solutions when needed. This design focuses on
learning the ambiguous selection between competitive agents, while preserving reliable execution
inside agents.

We introduce these ideas in MATA (Multi-Agent hierarchical Trainable Automaton), a hierarchical
automaton for visual reasoning. MATA contains a specialized agent for fast, System 1-style percep-
tion (e.g., object detection, simple question answers); a slow, System 2-style step-wise reasoner that
generates and executes Python programs for multi-step inference; and a one-shot workflow reasoner
that solves queries without iteration.

To supervise the hyper agent, we need labeled transition decisions. We therefore run the system for
each image-query pair, expand a transition trajectory tree (Kearns et al.,[2002) and log the state his-
tory, prompts, intermediate artifacts (detections, captions, code), feedback, and performance results.
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The leaves are scored by the appropriate task performance, and each decision is labeled with the
child that leads to the highest-scoring subtree. This generates memory-to-next-state pairs (MATA-
SFT-90K) for LLM supervised finetuning (SFT), as shown in[Figure ] (c).

The contributions of our paper are:

* A hierarchical deterministic finite-state automaton-based system, MATA, that unifies neuro-
symbolic framework with collaborative and competitive multi-agent design for visual reasoning.

* Proposing (i) a learnable mechanism that trains a hyper agent as the transition policy of the hyper
automaton over collaborative and competitive agents; (ii) a transition-trajectory data generation
pipeline and the dataset, MATA-SFT-90K, for supervised finetuning (SFT) of the hyper agent.

* Comprehensive experiments across visual-reasoning benchmarks, with extensive ablations and
analysis.

2 RELATED WORKS

Monolithic vision-language models (VLM) map images and text directly to answers with a sin-
gle forward pass (Xiao et al.| [2024; Liu et al., [2023bj |Li et al., 2023afjb; [Wu et al., 2023} |Stanic
et al.| 2024} Zhu et al.| [2023)). While these models have strong perceptual capabilities, their implicit
reasoning processes are hard to explain and often degrade on queries requiring spatial relations,
counting, or multi-step reasoning (Jahangard et al.| 2024} 2025)). This motivates modular designs
that expose intermediate, explainable symbolic processes (Andreas et al., 2016; Hsu et al.| [2023)).
Compositional methods decompose a task into multiple stages (Ke et al.,2025b), often by having an
LLM generate grounded actions (e.g., programs or JSON) executed by tools (Gupta & Kembhavi,
2023; |Suris et al., 2023} |Shen et al., 2023}, |Lu et al.| 2023)). These pipelines improve interpretability
and enable external tools use, but usually operate in a single forward pass with a fixed manually
designed pipeline. They thus lack a flexible mechanism to engage in multi-step reasoning from
feedback.

Recent works (You et al., 2023} |Ke et al., 2024} \Gao et al.| [2024; Zhong et al., [2025)) explore agentic
systems where an LLM/VLM reasons in multiple steps and calls tools (Ke et al., 2025b). However,
most agentic approaches in visual reasoning remain single-agent. In broader domains, multi-agent
frameworks assign disjoint roles and connect them with hand-crafted collaboration patterns (Hong
et al [2023; [Li et al.| 2024} [Nguyen et al.| 2025} |Zhang et al., [2025), achieving better performance
in reasoning. However, this idea is still under-explored for visual reasoning. Notably, noise from
perception and LLM/VLM hallucinations can accumulate across steps (Ke et al., 2025a) from the
collaborating pipelines, and most designs overlook competition between functionally overlapping
agents (Wang et al., |2025c). This lack of a learned transition policy limits flexibility and robustness
on complex and diverse queries.

Finite-state automata as abstractions provide explicit control flow and interpretability. NAVER in-
troduces probabilistic logic inside an automaton and equips modules with self-correction (Cai et al.}
2025)), but relies on a hand-crafted transition policy that is hard to manually define as states grow.
HYDRA introduces an agent that includes a planner, an RL controller, and a code-executing rea-
soner (Ke et al., 2024). While data-driven, it still focuses on instruction-level planning without a
learned, high-level policy for switching across qualitatively different agents on demand. By contrast,
we propose MATA that explicitly learns the inter-agent transition function over a hyper-automaton
whose states are agents, while keeping intra-agent micro-steps rule-based. This learned transition
function enables collaboration and competition among overlapping experts and transfers across dif-
ferent domains and tasks (section 4.2)), which previous visual reasoning methods with hand-written
transitions or single-agent controllers do not address. States are agents; each agent runs a small,
rule-based sub-automaton for reliable micro-control, while a trainable hyper agent learns cross-agent
transitions over a shared memory. This hierarchical view retains the interpretability of explicit state
machines, avoids hand-coded transitions, and supports both collaboration and competition. Unlike
prior work (Ke et al., 2024} |Cai et al., [2025)), our controller is supervised-trained from transition-
trajectory data to transit between agents and to report a final result only when it is certain of the
answer, directly addressing the gap identified above.
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Figure 2: Pipeline of MATA. A trainable hyper agent reads a snapshot of the shared memory, pre-
dicts the next state with an LLM State Controller. Its decision (blue arrows) routes control among
agent states in the hyper automaton: Oneshot Reasoner, Stepwise Reasoner, and Specialized Agent.
Each agent runs a rule-based sub-automaton that iterates until return to the hyper automaton. All
agents read/write an append-only Shared Memory, enabling the hyper agent to access the current
context for choosing the optimal next state. Lifecycle states INITIAL and FAILURE are shown out-

side the agents (see for details).

3 METHODOLOGY

We explore multi-agent visual reasoning by learning a high-level transition function over agents
within a hierarchical automaton, enabling data-driven collaboration and competition among over-
lapping skills and replacing inflexible hand-written pipelines.

3.1 OVERVIEW

A visual reasoning instance is an image-query pair (v, ¢) mapped to an output y (Ke et al., 2025b).
MATA organizes inference as a hierarchical automaton operated by a trainable hyper-agent. Infor-
mally, the hyper automaton My is a top-level automaton whose states include a set of sub-agents,
with each sub-agent running a small rule-based sub-automaton, and the trainable hyper agent con-
trolling the learned transition dg. Formally, it can be described as a Mealy machine (Mealyl, [1955)):
My = (S, 50,3, A, 0p,T") where S denotes the set of states (containing both agent states for task
execution and lifecycle states for process coordination), Sy the initial state where reasoning begins,
3 the inputs drawn from shared-memory snapshots (storing intermediate results from agents), A
the answer space of visual reasoning queries (e.g., discrete labels, bounding box coordinates, or
free-text responses), dy the learned transition function that determines the next state based on the
current state and memory inputs, and I" the output function that generates the final answer ¢ once
the automaton reaches a terminal state. Detailed breakdowns of the states, transition mechanics, and
output generation process are provided in the subsequent sections (Figure 2)).

3.2 HYPER AUTOMATON

States. The finite state set is the union of agent states and lifecycle states: S = Sagent U Siifes
where Sygent = {ONESHOT, STEPWISE, SPECIALIZED}, Sjire = {INITIAL, FINAL, FAILURE} and
the initial state Sp = INITIAL. Agent states invoke concrete skills; lifecycle states orchestrate the
progression and termination of the reasoning episode (e.g., starting the task, handling uncertainty,
concluding with an answer). Details of the states are shown in[Table I]

Agents in our system are intentionally both collaborative and competitive. When control transitions
from one agent to another, the successor agent reads the shared memory containing the prior history
and feedback, and builds on that context; this is collaboration. At the same time, multiple agents
may attempt the same task; if one agent stalls or fails, another can take over and complete it; this is
competition. The learned transition policy dy selects among them based on context (e.g., ONESHOT
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Table 1: States of the hyper automaton. The table specifies the description and the triggering
condition for each state. dy: transition function of hyper automaton.

State | Description | Selected by
INITIAL The unique state where reasoning begins. Initial state
ONESHOT A workflow agent that executes a single-pass program generation and exe-

cution workflow for solvable queries, equipped with a lightweight verifier.
STEPWISE A stepwise reasoner that produces step-wise Python programs for complex

queries; code is verified and executed in a sandboxed environment to ensure

correctness. 59

SPECIALIZED | An expert agent that performs fast perception tasks; built-in verifiers vali-
date outputs and adapt parameters.

FINAL A terminal state in which sufficient evidence has accumulated; the output
function I is invoked when in this state to produce the final answer g.
FAILURE A state triggered by unrecoverable errors or exceeding iteration limit. Error occurs

vs. STEPWISE for moderately compositional VQA; SPECIALIZED vs. ONESHOT for grounding with
simple perception). This overlap is intentional, as the three agents represent a spectrum: perception
(system 1), one-shot reasoning (fast thinking), and stepwise reasoning (slow thinking). Although
all agents can answer all queries, each agent has different advantages and disadvantages, enabling
hyper agent to choose the optimal transition and re-route on failure. The implementation details of

agents are shown in the supplementary material (Appendix BJ.

Shared Memory. All agents read from and write to a structured shared memory m; at the t-th step
that accumulates intermediate variables, perception results, program history, verifier feedback, and
task metadata. We keep the formalism minimal: when an agent runs for one cycle, it appends its
new memory Amy, and my+1 = m; U Am,. Memory is append-only so the full reasoning process
is auditable and visible to the hyper agent.

Execution Step. At step ¢ the system is in (s, m;). The hyper-agent observes the memory m;
and selects the next state s;11 via the learned transition function Jp:

St41 = 0g(s¢,my), S141 € S. (1)

If 5,41 € Sagent, the corresponding agent executes its rule-based sub-automaton until returning to
the hyper automaton and updating the memorys; if s;4; = FINAL or ¢ > T" where 7' is the max step
limit, the episode terminates.

Output. The answer space A contains the required output ¢ for visual reasoning. For example,
A = {y | yis text for VQA, bounding box for VG, etc}. The output function I" extracts the output
from the memory m; at FINAL state: § = T'(FINAL, m).

3.3 TRAINABLE TRANSITION FUNCTION (HYPER AGENT)

The transition function dy in is implemented by a trainable LLM-based hyper agent Fy.
This agent acts as the state-transition controller, selecting the next state s;; from a limited set of
available candidate states. Since the LLM requires textual input, we derive a prompt z; from the
shared memory m;. The template for constructing z; from m, is shown below:

Prompt 3.1: LLM State Controller in Hyper Agent

You are an Al assistant to control the state of a multi-step visual reasoning system. Your task is to decide
the next state the system should transition to based on the current state and history.
<TaskDescription>{task_title}{task_description }</TaskDescription>

<Query>{query }</Query>

<Feedback>{feedback }</Feedback>

<Code>{code}</Code>

<Variables>{variables }</Variables>

<StateHistory>{state_history }</StateHistory>

\ J
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<State>{state }</State>

<CurrentStep>{current_step }</CurrentStep>

Based on the information above, determine the next state the system should transition to. Choose from the
following states:

<StateCandidates>{next_state_candidates } </StateCandidates>

Return the name wrapped in <NextState> tags.

Our hyper agent F» maps the prompt z; to a distribution over the available states, from which s ;
is selected, either through greedy decoding or stochastic sampling.

The parameter 6 of the hyper agent is supervised finetuned (SFT) on our collected transition tra-
jectory dataset D (subsection 3.4). Each training example provides a textual memory x; as prompt
and a target next state chosen by scanning branches in the trajectory tree that lead to successful and
higher final scores:

0 < arg mein Lspr(0;D) 2)

This objective guides the hyper agent on how to switch between sub-agents, and finalize the output.

3.4 DATASET GENERATION

Learning the transition policy of the hyper automaton requires examples of how agent states interact
during visual reasoning. We therefore build a dataset of transition trajectories. We regard the set of
possible transition trajectories from an initial state as a trajectory tree 7 (v, ¢) (Kearns et al., [2002)
that records, for each node: the state history, intermediate reasoning outcomes, and final metric
scores, as a textual prompt z; based on We collect this data by running MATA while
systematically traversing each next-state option rather than committing to a single path. Unlike end-
to-end LLM/VLM training, this procedure explicitly explores the space of possible agent states and
yields labeled decisions for our model.

Concretely, we sample images and queries from the training splits of GQA (Hudson & Manning,
2019), OK-VQA (Marino et al.}2019), and RefCOCO/RefCOCO+/RefCOCOg (Kazemzadeh et al.,
2014) and run the hyper automaton My step-wise. Rather than limiting to a single route, we expand
a bounded trajectory tree to depth 7': at each node (state) the controller branches over the possible
next states s;+1 € S, executes the corresponding sub-automaton, and saves a memory checkpoint
my+1. When a terminal state is reached (e.g., FINAL), which by construction corresponds to a leaf
of the tree 7, the output function I" produces a prediction g for the given image-query pair (v, q)
with ground truth y. We then compute a scalar task score for that leaf: for VG we use IoU(g,y);
for VQA we use Acc(@, y). During data collection we perform a near-exhaustive expansion of the
transition tree to a fixed depth, which is tractable with the current three agents but, we acknowledge,
grows rapidly as more agents/states are added.

Bottom-up node scoring. As a result, each leaf node s € Leaves(7) is associated with a predic-
tion ¢, and ground truth y, from which we compute a scalar score. We assign values to all nodes by
propagating these scores upward from the leaves:

V(S) L metric(ﬁsv y)a CES Leaves(T), (3)
maxy ecpild(s) V (s'), otherwise.

To train the LLM state controller, we convert each multi-choice transition into supervised examples.
For every decision point at state s; with corresponding textual prompt x;, we determine the optimal
next state sy by selecting the child node that leads to the subtree with the highest propagated value.
Formally, for a state s; with its set of next states Child(s;) C S, we choose:

sy € arg Seérﬁﬁ((m V(s). 4)

The chosen state s; becomes the label for the corresponding node prompt x;, and together they form
a training example. Repeating this over all decision points produces a dataset of message histories
paired with optimal next states, D = {(z;, s¥)}},. Finally, we reformat the collected examples
into instruction-completion pairs suitable for supervised finetuning of LLM. Training on this dataset
enables the model to learn how to control the transitions of a hyper automaton. In total, we build
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the SFT dataset MATA-SFT-90K containing N = 90,854 examples. We show the data example in

[]
Append

3.5 INFERENCE

Given an image-query pair (v, ¢), we initialize the shared memory m and enter the initial state
so = INITIAL. At step ¢, the hyper agent Fy reads the current context z; and selects the next
state sy, 1 using the learned transition in If $411 € Sagent, the corresponding sub-agent
executes one cycle of its rule-based sub-automaton, appends its intermediate result to memory, and
returns to the hyper automaton. If s;; = FAILURE, this state indicates that the selected agent s;
reports an unrecoverable error and the system will invoke the hyper agent to choose a new state s;1
while temporarily removing the failed agent s; from the state candidates to avoid infinite retries. If
s¢+1 = FINAL or the step ¢ exceeds the limit 7', the system terminates and returns the final result .

4 EXPERIMENTS AND RESULTS

Implementation Details. We implement MATA in PyTorch (Paszke et al., 2019) and conduct all
experiments on 4 RTX 4090 GPUs. The system uses interchangeable foundation models; unless
otherwise stated we adopt InternVL2.5 (8B) (Chen et al., 2025) as the VLM, Florence2-L (Xiao
et al.l 2024) for object detection, DepthAnythingV2 (Yang et al., [2024) for depth, and a Qwen3
(4B) (Yang et al., [2025) LLM for the trainable state controller in the hyper agent. The LLM is
supervised finetuned on MATA-SFT-90K using AdamW, cosine decay with 5% warm-up, global
batch size 64, for 8 epochs; decoding is guided at inference to ensure the output format. As MATA-
SFT-90K is a dataset collected by running our pipeline on multiple source datasets, “training on
dataset X" means training on the subset of MATA-SFT-90K whose trajectories were generated from
the training split of X. We use three SFT configurations for the hyper agent: (i) domain-specific:
trained on the training split of the target dataset and evaluated on its test split; (ii) domain—transfe{'}
trained on the dataset which is not the target dataset for evaluation; and (iii) general: trained jointly
on the whole dataset. We follow the official splits of all the benchmark datasets, reporting accuracy.
For fairness, when comparing with compositional baselines we keep the same foundation models,
and for monolithic models we use the available public checkpoints with their official code. In the
inference, we limit the max step of MATA T = 15 to avoid infinite running. The prompt template

is shown in the[Appendix G|in supplementary material.

Evaluation Protocol. We evaluate on GQA (Hudson & Manning, [2019), OK-VQA (Marino et al.,
2019), RefCOCO/RefCOCO+/RefCOCOg (Kazemzadeh et al., 2014), and Ref-Adv (Akula et al.,
2020) following the previous works (Suris et al.l [2023; [Ke et al) 2024} |Cai et al.| |2025), with
accuracy as the metric. We compare against the previous compositional methods which are training-
required (Khan et al., [2024; |[Ke et al.}|2025a)) or training-free (Suris et al.,[2023; Ke et al., [2024} |Cai
et al.| [2025)), and monolithic methods (Li et al.| |2023b; |Zhu et al., 2023} [Liu et al.,[2023a}; \Su et al.,
2023} |[Han et al., 2023} |Dai et al., 2023} [Li et al., |2023aj [Wang et al., |2024} |Bai et al., | 2025b; |(Chen
et al.;, 2025; Zhu et al., [2025} [Wang et al.| |2025b; |OpenAl, 2024; Tiong et al., [2022; [Yang et al.,
2022;|Alayrac et al., [2022).

4.1 QUANTITATIVE RESULTS

Compositional Image Question Answering. On GQA (Hudson & Manning| 2019), which em-
phasizes complex compositional reasoning over spatial relations and attributes, MATA reaches
64.9% accuracy (Table 2)), surpassing previous trainable compositional methods HYDRA and Vis-
Rep, training-free baselines such as ViperGPT. It is also competitive with strong monolithic VLMs,
exceeding InternVL3.5 and Qwen2.5-VL. The gains stem from the learned transition policy, and
the hyper agent understands the capacity of agents. Easy queries invoke SPECIALIZED perception
first and escalate to ONESHOT or STEPWISE only on failure or low confidence, whereas difficult
cases route directly to STEPWISE to maximize the reasoning. When the range of data is narrow
and distinctive, the domain-specific setting can calibrate priors more precisely; when compositional

'Our domain-transfer term is scoped to the hyper agent: it is trained on non-test-dataset transition trajecto-
ries, and never sees the optimal trajectories in other datasets.



Published as a conference paper at ICLR 2026

Table 2: Performance on GQA dataset. Table 3: Performance on OK-VQA dataset.
Type | Method | Acc. Type | Method | Ace.
e [ BLIP-2 (Li et al.[[2023b} 455 e [ PNP-VQA (Tiong et al.[[2022) 359

e | MiniGPT-4 (13B) (Zhu et al.||2023) 30.8 e | PICa (Yang et al.|[2022) 433

e | LLaVA (13B) (Liu et al.|[2023a) 413 e | BLIP-2(Li et al.[|2023b) 459

e | PandaGPT (13B) (Su et al.||2023) 41.6 ¢ | Flamingo (9B) (Alayrac et al.|[2022) 44.7

o | * | ImageBind-LLM (7B) (Han et al.{[2023) | 41.2 o | * | MiniGPT-4 (13B) (Zhu et al.[|2023) 37.5
£ | o | InstructBLIP (13B) (Dai et al.|[2023) 49.5 £ | o | LLaVA (13B) (Liu et al.|[2023a) 42.5
Z | o | Otter (7B) (Li et al.] 2023a) 50.0 | o | InstructBLIP (13B) (Dai et al.|[2023) 479
51 e Qwen2-VL (7B) (Wang et al.||2024) 343 51| e Qwen2-VL (7B) (Wang et al.||2024) 28.3
= . Qwen2.5-VL (7B) (Bai et al.|[2025b) 62.4 = . Qwen2.5-VL (7B) (Bai et al.|[2025b) 71.8
e | Qwen3-VL (4B) (Bai et al.[[2025a) 51.6 e | Qwen3-VL (4B) (Bai et al.[[2025a) 444

e | InternVL2.5 (8B) (Chen et al.||2025) 61.5 e | InternVL2.5 (8B) (Chen et al.||2025) 75.2

e | InternVL3 (8B) (Zhu et al.[[2025) 62.4 e | InternVL3 (8B) (Zhu et al.[[2025) 74.7

e | InternVL3.5 (8B) (Wang et al.||2025b) 63.8 e | InternVL3.5 (8B) (Wang et al.[|2025b) | 75.7

e | GPT-40-2024-05-13 (OpenAl||2024) 58.5 e | GPT-40-2024-05-13 (OpenAl||2024) 334

= | O | IdealGPT (You et al.|[2023) 41.7 e Ideal GPT (You et al.|[2023) 19.4
5 | o | ViperGPT (Suris et al.[[2023) 37.9 S | o | ViperGPT (Suris et al.|[2023) 40.7
‘% e | VisRep (Khan et al.|[2024) 51.4 .2 | e | VisRep (Khan et al.|[2024) 46.7
8. | O | HYDRA (Ke et al.[|[2024) 52.8 'Z | O | HYDRA (Ke et al.|[2024) 59.4
g O | MATA (Ours) (General) 64.9 g O | DWIM (Ke et al.[[2025a) 62.8
O | O | MATA (Ours) (Domain-Specific) 64.7 8 O | MATA (Ours) (General) 76.0
O | MATA (Ours) (Domain-Specific) 76.5

Agentic types: ® non-agentic/non-specified; O single-agent; © multi-agent.

Table 4: Quantitative comparison (accuracy) on referring expression comprehension task on
RefCOCO, RefCOCO+, RefCOCOg (Kazemzadeh et al.| [2014) and Ref-Adv (Akula et al.| [2020)
set. Note there is no training set in Ref-Adv, so all scores are domain-transfer.

Type | Method | RefCOCO RefCOCO+ RefCOCOg Ref-Adv
e [ GLIP-L (Li et al.[[2022) 55.0 51.1 54.6 55.7
e | KOSMOS-2 (Peng et al.|[2023) 57.4 50.7 61.7 -
e | YOLO-World-X (Cheng et al.||2024) 12.1 12.1 329 322
o | ® | YOLO-World-V2-X (Cheng et al.|[2024) 19.8 16.8 36.5 33.1
% e | GroundingDINO-T (Liu et al.[[2023b) 61.6 59.7 60.6 60.5
Z | e | GroundingDINO-B (Liu et al.|[2023b) 90.8 84.6 80.3 78.0
g | o | SimVG (Dai etal.. 2024) 94.9 91.0 88.9 74.4
= | . Florence2-B (Xiao et al.|[2024) 94.5 91.2 88.3 72.2
e | Florence2-L (Xiao et al.|[2024) 95.1 92.5 90.9 71.8
e | GPT-40-2024-05-13 (OpenAl![2024) 30.5 26.2 - -
e | Qwen2.5-VL-72B (Bai et al.;|2025b) 94.6 92.2 90.3 -
o | Code-bison (Stani¢ et al.|[2024) 44 4 38.2 - -
= | * | ViperGPT (Suris et al.[[2023) 68.6 73.8 68.7 58.2
§ | e | VisRep (Khan et al.||[2024) 552 51.1 - -
=2 | 0 | HYDRA (Keet al.|[2024) 65.7 66.2 59.9 48.3
8. | O | DWIM (Ke et al.[[2025a) 82.7 74.2 - -
g O | NAVER (Cai et al.[[2025) 96.2 92.8 91.6 75.4
O | O | MATA (Ours) (General) 96.3 93.8 90.7 71.3
© | MATA (Ours) (Domain-Specific) 96.3 93.9 90.8 -

Agentic types: ® non-agentic/non-specified; O single-agent; © multi-agent.

patterns are shared across sources, joint training (general) regularizes transitions and reduces over-
fitting. In GQA we observe the latter, many patterns appear across sources in MATA-SFT-90K, so
the general setting achieves better performance.

External Knowledge-Dependent Image Question Answering. On OK-VQA (Marino et al.
2019), which requires external knowledge, MATA achieves 76.5% accuracy (Table 3), surpass-
ing prior compositional systems such as DWIM (62.8%) and HYDRA (59.4%), respectively, and
outperforming recent monolithic VLMs including Qwen2.5-VL (71.8%) and InternVL3.5 (75.7%).
Gains come from the learned hyper agent transition: for easy queries the hyper agent first invokes
SPECIALIZED perception and escalates to the STEPWISE or ONESHOT reasoner only on failure or



Published as a conference paper at ICLR 2026

Table 5: Ablation of hyper agent. In this table, we report the accuracy for all VQA and referring ex-
pression comprehension benchmarks, and the inference time per query (tested on GQA). HA: Hyper
Automaton. Transition: Transition policy (0g). SFT: Supervised finetuning. Refer to
for details.

Components Accuracy (1) Time ()

HA Transition SFT | GQA OK-VQA RefCOCO RefCOCO+ RefCOCOg Ref-Adv Avg Sec.
X Exhaustive X 57.7 71.5 87.7 85.6 81.7 73.1 34.58
v Random X 57.1 71.1 85.3 83.8 81.1 73.2 6.91
v LLM X 58.5 75.1 95.8 93.5 88.0 76.0 8.07
v LLM v 64.9 76.5 96.3 93.9 90.8 713 8.01

Table 6: Generalizability results. The top-left header cell uses a diagonal split to indicate Training
Data (rows, |) versus Test Data (columns, —). Diagonal values (domain-specific) train and test on
the same dataset; off-diagonal values evaluate cross-domain/task transfer (domain-transfer) . The
last row reports joint training on the whole MATA-SFT-90K dataset (general) . Off-diagonal values
are close to the diagonal ones, indicating strong generalizability of the learned transition policy.

Test VQA Visual Grounding

Training GQA OK-VQA | RefCOCO RefCOCO+ RefCOCOg Ref-Adv
GQA 64.7 75.8 96.1 93.7 90.4 77.0
OK-VQA 64.1 76.5 96.2 93.8 90.5 76.9
RefCOCO 63.8 75.5 96.3 93.9 90.8 77.2
RefCOCO+ 63.6 75.4 96.2 93.9 90.7 77.1
RefCOCOg 63.1 75.4 96.1 93.7 90.8 77.2
All 64.9 76.0 96.3 93.8 90.7 77.3

low confidence; for difficult queries it directly selects STEPWISE for multi-step reasoning, with com-
petitive re-entry into SPECIALIZED or ONESHOT to reason combining the previous findings and new
evidence. We observe the domain-specific setting holds a small edge, likely because of the narrow
diversity of the reasoning pattern required in the dataset, whereas joint training (general) slightly
dilutes these knowledge.

Referring Expression Comprehension. On popular benchmarks RefCOCO, RefCOCO+, Ref-
COCOg (Kazemzadeh et al.,2014)) and Ref-Adv (Akula et al.| | 2020), MATA obtains state-of-the-art
performance (Table 4). It sets a new state-of-the-art on these datasets, exceeding strong mono-
lithic and compositional baselines. Notably, Ref-Adv only contains a test set, which means the
MATA-SFT-90K does not contain the data collected from it, showing promising domain-transfer
generalizability of MATA. Note that due to learned transition, short simple queries are solved by
SPECIALIZED perception with verification, while complex cases trigger STEPWISE and ONESHOT
reasoning. Domain-specific SFT is slightly stronger because the language query styles is dataset-
specific.

4.2 ABLATION STUDIES

Hyper Agent. [Table 5|isolates the main contribution of the trainable hyper agent and the hierar-
chical automaton design. We compare: (1) Exhaustive Ensemble without hierarchical automaton
(HA): exhaustively call all sub-agents and aggregate with a VLM; (2) Random Transition: HA
enabled but the next state is chosen randomly; (3) LLM without SFT: a pretrained LLM is used as
the state controller (no supervised finetuning); (4) LLM + SFT: a supervised finetuned LLM con-
trols transitions. Both the exhaustive baseline and random transition yield the weakest performance,
but introducing the hyper automaton already cuts runtime significantly. Replacing random with a
pretrained LLM in hyper agent improves accuracy across tasks. This suggests that (i) the hyper
automaton and the LLM primarily drive effective multi-agent collaboration and competition and (ii)
SFT further helps the understanding of the capacity of agents in different types of questions.



Published as a conference paper at ICLR 2026

GQA: Accuracy vs. Size OK-VQA: Accuracy vs. Size GQA Accuracy vs. #Agents
0.65 0.66
e a 0.75 4
5 0% A % 3 g 0.64
Q 1) .
g 0.55 A Type g 0.70 Type §
2 450 —e— Without SFT | § —e— Without SFT P
: SFT on GQA 0.65 SFT on OK-VQA g 062
0.45 - —8— SFT on All —8— SFT on All
0.6 1.7 4.0 8.0 0.6 1.7 4.0 8.0 1 2 3
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Figure 3: Results of different LLM sizes. Accuracy versus the Figure 4: Results of different

model size (in billions of parameters) of the hyper agent’s LLM numbers of sub-agents. X-
state controller. Left: GQA; right: OK-VQA. X-axis: LLM axis: number of sub-agents; Y-
size; Y-axis: accuracy. axis: accuracy in GQA.

Generalizability. We conduct generalization analysis by training the hyper agent on GQA subset
only of MATA-SFT-90K dataset, OK-VQA subset only, or the whole dataset. organizes re-
sults by different training/evaluation types: domain-specific, domain-transfer, and general. domain-
transfer performance is strong in both directions (GQA—OK-VQA; OK-VQA—GQA) with less
than 1% difference. The model trained on all data reaches similar performance to the model trained
on the corresponding subset only, indicating the controller learns a task-agnostic transition policy
with minimal negative impact. We further discuss the effects in the next paragraph.

LLM Size. [Figure 3|compares the sizes of the LLM state controller from 0.6B to 8B under three
settings: (i) no SFT, (ii) domain-specific SFT, and (iii) SFT on all. With domain-specific SFT, even
small models (0.6B/1.7B) perform competitively matching 4B and 8B. When finetuned jointly on all
data, small models are worse than 4B/8B by a few percentage points, indicating limited capacity to
absorb cross-task knowledge. Without SFT, accuracy drops sharply for smaller models and improves
mainly with size. Balancing accuracy and efficiency, we choose 4B as default, as it produces near-
optimal results with substantially lower memory, while larger models yielding only marginal gains.

Number of Agents. We ablate the number of agent states to quantify benefits beyond our 3-agent
design. On GQA, a single Specialized agent reaches 61.5%, adding the Oneshot reasoner lifts accu-
racy to 64.5%, and adding the Stepwise reasoner yields a marginal further gain to 64.9% (Figure 4).
The small improvement from 2 to 3 agents indicates diminishing improvements on current bench-
marks, suggesting that the agent count is not the major factor. We therefore use three agents in
MATA.

More Analysis. We discuss more analysis for generalizability in hyper agent in
efficiency in[Appendix E| comparison with direct SFT in[Appendix F| and the qualitative
examples in[Appendix I|in supplementary materials.

5 CONCLUSION

We present MATA, a visual reasoning method that uses a trainable hyper agent to learn the transition
policy of a hierarchical finite-state automaton. By transitioning between agents based on a shared
memory, the system reduces hallucinations, and preserves explainability through explicit states and
context. To supervise the hyper agent, we introduced the transition-trajectory dataset MATA-SFT-
90K, which converts the trajectory data into a standard SFT format and adapts as agents are added.
From experiments, MATA achieves state-of-the-art performance across multiple datasets. Limita-
tions. The data generation pipeline performs a near-exhaustive transition search over the state space;
this is tractable with the current three agents but may become costly as the number of states grows.
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