MATA*: COMBINING LEARNABLE NODE MATCH-
ING WITH A* ALGORITHM FOR APPROXIMATE GRAPH
EDIT DISTANCE COMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Edit Distance (GED) is a general and domain-agnostic metric to measure
graph similarity, widely used in graph search or retrieving tasks. However, the ex-
act GED computation is known to be NP-complete. For instance, the widely used
A* algorithms explore the entire search space to find the optimal solution which
inevitably suffers scalability issues. Learning-based methods apply graph repre-
sentation techniques to learn the GED by formulating a regression task, which
can not recover the edit path and lead to inaccurate GED approximation (i.e., the
predicted GED is smaller than the exact). To this end, in this work, we present
a data-driven hybrid approach MATA * for approximate GED computation based
on Graph Neural Networks and A* algorithms, which models from the perspec-
tive of learning to match nodes instead of directly regressing GED. That is it
leverages the learned node matchings to prune unpromising search directions of
the A* algorithm. Specifically, aware of the combinatorial property of structure-
dominant operations (i.e., node and edge insertion/deletion) in GED computation,
a structure-enhanced Graph Neural Network is firstly designed to effectively learn
powerful node embeddings w.rf. node matchings. Based on this, the pairwise
node similarity matrix is next built. Second, top-k candidate matching nodes are
produced from the similarity matrix which is adhering to the combinatorial prop-
erty of multiple optimal node matchings. Third, benefiting from the candidate
nodes, MATA* only performs on the promising search directions, reaching the
solution efficiently. Finally, extensive experiments demonstrate the superiority of
MATA* as it significantly outperforms the combinatorial search-based, learning-
based and hybrid approaches and scales well to large-size graphs.

1 INTRODUCTION

Graphs are ubiquitous and widely used for structured data modeling in many domains, such as
chemical compounds |Carlos et al.| (2019)), social networks |Fey et al.| (2020), compute vision Yan
et al.[(2020) and programming languages |Li et al.| (2019). One of the fundamental issues related to
graph-based applications is to compute the graph similarity, among which graph edit distance (GED)
is a widely used metric due to its flexible and domain-agnostic features|Li et al.[(2019);|Chang et al.
(2020;2022)); |Bai et al.|(2019)). In general, GED computation refers to finding the minimum number
of edit operations (node insertion/deletion, edge insertion/deletion, and node/edge relabeling) to
transform the source graph to a target one |Blumenthal et al.|(2020) (see Fig.[l|for an example).

Exact GED computation guarantees optimality which is however NP-complete Kim et al.| (2019);
Chen et al.|(2019);|Chang et al.| (2020). It typically treats all possible edit operations as a pathfinding
problem where A* algorithm (a best-first search) is widely used to expand the search. These solu-
tions mainly focus on pruning unpromising search spaces using A* algorithm or filtering dissimilar
graph pairs to speed up GED computation. However, they all run in factorial time in the worst case
due to the exhaustiveness of their search spaces, such that they cannot reliably compute the GED of
graphs with more than 16 nodes in a reasonable time Blumenthal & Gamper| (2020).

Some recent works for approximate GED computation have been proposed with the help of the
graph representation techniques, which can be divided into two main categories: Learning-based

G1 insert(uﬁ,u4) Gy

Figure 1: An edit path from source graph G; to target graph Gs. Different colors represent the
node with different labels. Indeed, ged (G1,G2) = 4, i.e., at least four edit operations are required
to transform G to G, and the node mapping corresponding to the edit path is {uy, us, us, us} to
{v1,v2,v3,v4}. (1) Essentially, there are two optimal node matchings for ged (G1,G2) = 4, and
another node mapping is {1, us, uz, uq4} to {va, v3,v4,v5}. (2) Among the edit operations, there
includes one attribute operation (i.e., relabel ug) and three structure operations.

models |L1 et al.[(2019); Bai et al.| (2019); [Bai & Zhao| (2021); Bai et al.[(2020); |[Peng et al.| (2021}
and hybrid approaches |Wang et al|(2021));|Yang & Zou|(2021)). (1) For learning-based models, they
directly formulate the approximate GED computation as a regression task and supervised learn the
GED as a similarity score in an end-to-end manner. Although such learning-based methods can
speed up approximate computation, they could encounter the inaccurate GED approximation issue
(i.e., the predicted GED is smaller than the exact) and also fail to recover an actual edit path, which
is indispensable in specific tasks e.g., network alignment Koutra et al.| (2013)), graph matching|Cho
et al.| (2013)); Wang et al.|(2021)). (2) For hybrid approaches, recently|[Wang et al.|(2021) and|Yang &
Zou (2021)) separately propose two hybrid approaches, both of which apply Graph Neural Networks
(GNN?5) to optimize the search directions of A* algorithms. However, even though they exhaustively
explore the search space, they still fail to find the optimal due to inaccurate GED approximation
in the cost function estimation (i.e., the cost of unmatched subgraphs) of A* algorithms. Besides,
GNNs with the attention mechanism are employed to estimate the cost function, which take O(n?d+
d?n) time for extending each search, and encounter scalability issues Wang et al.| (2021).

It is known that GED computation equals finding the optimal node matching between the source
and the target graphs. Once the node matching is given, then GED can be easily calculated by only
scanning the two graphs once [Chang et al| (2020), which reveals the intrinsic connection between
GED computation and node matching. Besides, existing learning-based and hybrid approaches only
formulate GED as a regression task of graph or subgraph pairs, which fails to explicitly consider
the node matching in their models. Be aware of the intrinsic connection between GED computation
and node matching, in this work, we attempt to directly learn the node matching corresponding to
GED using GNNs. However, it is not trivial as the following two combinatorial properties essen-
tially exist in GED computation. (1) Multiple optimal node matchings (i.e., different matchings to
produce GED) makes it difficult to learn the node matching by modeling in end-to-end learning. (2)
Structure-dominant operations (i.e., most edit operations are involved in structure) create challenges
to incorporate structural information into learning models. Also, see Fig. [T]for an example.

To this end, in this work, we present a data-driven hybrid approach MATA * based on Graph Neu-
ral Networks and A* algorithms, which leverages the learned candidate matching nodes to prune
unpromising search directions of the up-to-date A* algorithm (i.e., A*LSa |Chang et al|(2020)) for
approximate GED computation.

Contributions. Our main contributions are summarized as follows.

(1) We present a hybrid approach based on GNNs and A* algorithms rather than via an end-to-end
manner, which models GED computation from the perspective of node matching and combines the
intrinsic connection between GED computation and node matching.

(2) A structure-enhanced Graph Neural Network (i.e., SEGCN) is put forward to learn powerful
node embeddings w.r.t. node matchings from a fine granularity, which captures the combinatorial
property of structure-dominant operations in GED computation.

(3) Further, top-k candidate matching nodes are produced to be aware of the multiple optimal node
matchings combinatorial property, which is built upon two complementary learning tasks, i.e., learn-
ing GED and learning node matching.

(4) We conduct extensive experiments on real-life datasets AIDS, IMDB, and CANCER to demon-
strate the superiority and scalability of MATA* from three types of methods: combinatorial search-
based, learning-based and hybrid approaches. Indeed, MATA* improves the accuracy by (45.15%,

21.54%, 11.35%) and reduces the average discrepancy by (12.4%, 9.1%, 24.5%) at least on (AIDS,
IMDB, CANCER), respectively.

2 RELATED WORKS

Computing the graph edit distance between graphs is a classical combinatorial optimization problem
over graphs and an extensive body of literature exists in various domains. (1) Combinatorial search-
based includes the exact methods by exhaustive searching the entire space Riesen et al.| (2007);
Chang et al| (2020; [2022); Kim et al.| (2019) and the approximate methods by trading-off sub-
optimal and efficiency Neuhaus et al.| (2006); Riesen & Bunke| (2009); |Fankhauser et al.| (2011)).
(2) Learning-based models use graph representation techniques to learn the GED as a similarity
of graphs [Bai et al.| (2019); [Li et al.| (2019); Peng et al.| (2021)); Bai & Zhao| (2021). (3) Recently,
hybrid approaches have been proposed which learn good heuristics from data to guide the search
for combinatorial algorithms Wang et al. (2021); [Yang & Zou| (2021). In Appendix [A] we present
a detailed overview of existing literature and highlight the connections and differences between our
approach and related studies.

3 PRELIMINARIES

We focus the discussions on the labeled and undirected simple graphs, that is a graph is denoted by
G ={V,E,®}, where V is the set of nodes, £ is the set of undirected edges with £ C V x V and ¢
is a label function that assign labels to each node or edge.

Graph Edit Distance (GED). The graph edit distance between graphs G; and G5 is defined as
the minimum number of edit operations (i.e., node insertion/deletion, edge insertion/deletion, and
node/edge relabeling) to transform G, to Go, denoted by ged(G1, Go) [Bai & Zhaol(2021).

Proposition 1: Given graphs Gy and Go with |V1| < |Va|, there is no node deletion in optimal edit
operations to transform Gy to Go|Chang et al.|(2020). O

Based on the commutativity of ged(:,-) and Proposition [I} w.l.0.g. for a graph pair G; and Ga, Gy
always refers to the graph with fewer nodes in later sections.

Proposition 2: The ged between Gy and Go equals the minimum edit cost among all node matchings
from Gy to Go|Chang et al.|(2020). |

Proposition [2] reveals the equivalence of the GED computation and the optimal node matchings.
Here, the node matching refers to an injective function from V; to Vs as [V1| < |Val.

Note that, GED describes the similarity of two graphs by edit operations where finding candidate
optimal node matchings is the core of GED computation and the nodes with similar attributes and
local structures are more likely to be matched |Chang et al.| (2020; 2022); |Fey et al.|(2020). Proposi-
tions[I] & 2] provide GED computation from the node matching perspective, and our hybrid approach
essentially learns to match nodes, which is inspired by these.

4 THE PROPOSED MODEL: MATA*

Different from formulating GED computation as a regression task via end-to-end learning, we model
it from the perspective of node matching and further incorporate the two combinatorial properties
(i.e.,structure-dominant operations and multiple optimal node matchings) to design the hybrid ap-
proach MATA*. It combines a structure-enhanced GNN (i.e., SEGCN) and an up-to-date combina-
torial search-based algorithm A*LSa for approximate GED computation.

Our approach MATA* consists of three components: embedding module, matching module, and
optimal finding module. The overview of MATA* is illustrated in Fig. 2]

4.1 EMBEDDING MODULE

From learning matching nodes to model GED computation, graph structural information is impor-
tant for graph edit distance computation task. (1) Structure operations (node and edge insertion/dele-

" Embedding Module

{ f Assignment Matrix ' |
i i 4 i
1 T o
H i3 o
e " H

E gM Structure | B : E
H) i N i
' [1 " i : 1
i i ; HEN : o
L] 1 " T '

i " H :

Enhanced

Graph

Neural Algorithm 1

Networks Top-k Candidate

Matching Nodes | | i

Figure 2: The framework of MATA*. The black arrows stand for the data flow in the training and
testing phases and the red arrows only denote that in the testing. (1) Embedding module takes graph
pairs as input and the fine-grained structural information is encoded into node embeddings via a
GNN tailored to the GED computation: SEGCN. (2) Matching module using node embeddings to
build two learning tasks, i.e., learning GED using graph representation and learning node matching
with the help of the pairwise node similarity matrix. Further, top-k candidate matching nodes are
generated from the assignment matrix. (3) Benefiting from the candidate nodes, MATA* only per-
forms on the promising search directions to find the optimal among these using A*LSa.

tion) lie the core of edit operations, and structure-dominant operations are a vital combinatorial
property. As illustrated in Table[I] for AIDS and CANCER, more than 62.0% of operations belong
to structure operations, while all of IMDB belong to structure operations as they are non-attribute
graphs. Besides, (2) GED intrinsically describes the similarity between graphs by the number of
edit operations, preference is given to matching nodes with similar attributes and local structures,
from the heuristic [Fey et al.[(2020).

Actually, there are many ways to encode the graph structural information such as|Ying et al.|(2021);
Mialon et al.| (2021)); Dwivedi et al.| (2022), and we encode the structural information relevant to the
GED task into our SEGCN in a simple and low-complexity way, which is described as follows.

Node feature encoding. We first initialize node features (z;) for each node. Specifically, for at-
tribute graphs, e.g., chemical compound graphs, we encode each node to a one-hot feature based on
its label. For non-attribute graphs, e.g., actor/actress ego-networks, we encode all nodes with the
same weights as initialized node features.

Importance encoding. We next propose the importance encoding (c;) to capture the importance of
different nodes. The node becomes important when it closely interacts with its local neighborhoods,
and such information has a different impact when building the similarity between nodes. For exam-
ple, the node u; in G; with a degree of 0 is more likely to match the node v; also with a degree of
0 in G5 in Fig.[I} To be specific, we encode the node importance according to its degree, that is we
assign each node with a learnable embedding c; based on its degree, and the weights are randomly
initialized, as the degree is a simple measurement of importance in the GED task.

Position encoding. The positional information (p;) is then encoded into the model, as the nodes
located with similar local positions are more likely to match. For instance, the node us is more
likely to match the node v3 as they have similar one-hop and two-hop neighbors in Fig. [I| Shortest-
path-distances |Ying et al.[(2021)), PageRank Mialon et al.[| (2021)) and random walk Dwivedi et al.
(2022); [Li et al.| (2020) are generally used to measure the relative position of nodes. From the
aspect of low-complexity, we employ the probabilities random walk of different steps as the relative
position encoding p; € R

D = [R(l) RY ... R(t)] (1)

(R R 7 AN » Mg
where R = AD™! is the the random walk operator, ¢ is the step of number of random walks, and

Rl(f) refers to the landing probability of the node i to itself in the ¢-¢h step of random walk. In such
a random walk diffusion manner, we encode the relative positional relationship between a node and
its t-hop neighbors from a fine granularity.

Finally, the initial node embeddings h9 € R? are built through a multilayer perceptron (MLP) by
concatenating (1) node features z;, (2) importance encoding c¢;, and (3) position encoding p;.

h) =MLP(x; @ ci @ p;), Vi€V @

Datasets \ Structure Operations | Attribution Operations

| Node Insertion | Edge Insertion | Edge Deletion | Relabeling
AIDS 18.3% 34.8% 8.7% 38.0%
IMDB 12.1% 61.8% 5.2% 0.0%
CANCER 4.6% 40.8% 35.5% 18.6%

Table 1: Statistics of types of edit operations. We randomly sample 1, 000 graphs for each datasets
and compute their edit operations.

GNN backbone. We adopt the GCN [Kipf & Welling| (2016) as the backbone of SEGCN to learn
the higher-order neighbor information. The node embeddings are aggregated from the embeddings
of its adjacency nodes and itself. The [-th iteration of aggregation could be characterized as:

1 a-
O = o 3 = TPuD) 3)
jeN; Y

where hl(-l) € R? is the representation of node i of I-th GCN layer, ; is the set of neighbors of node
i, and w® is the learned weights of I-th layer. In order to reduce the bias due to the different num-
bers of neighbors, the aggregated embeddings from adjacent nodes are also normalized by the total
number of adjacent nodes c;;. SEGCN takes the obtained h{ as the input embedding. After multiple
layers of GCNs, SEGCN enhances the learned embeddings by both initial structure information and
higher-order neighbor information. Hence, SEGCN combines the property of structure-dominant
operations and the heuristic strategy for matching nodes, which is tailored to the GED task.

By Proposition for a given graph pair G1, G2, we have [V;| < [Vs]|. After the encoding by SEGCN,
the node embeddings of Gy and G, are denoted as hy € RIV11*4 and hy, € RIV21%4 respectively.

4.2 MATCHING MODULE

Matching module targets to learn the node matchings based on the obtained node embeddings h; and
h; from SEGCN. Due to the inherent equivalence between GED computation and node matching,
two complementary learning tasks i.e., learning GED and learning node matchings are put forward,
where learning GED mainly focuses on learning the distance between graph representations that
assist the node matching task.

Learning GED. The GED actually measures the overall similarity of the graph pairs, and we apply
graph-level representations to learn GED. In order to highlight the different contribution of each
node w.7.t. GED, the attention mechanism is designed to derive the graph-level representation.

Specifically, it first generates a graph view v € R'*9, which is the average of node embeddings
followed by a nonlinear transformation:

v = tanh(h; Wy) 4)

where - is mean operation for the node embeddings, and the W € RI%4d i5 a learnable attention
weight matrix. Then the graph-level representation h{ € R'*¢ is computed by the weighted sum of
the node embeddings where the weight is the attention from the node to the graph view:

h? = o(vh])h; (5)
The graph-level representation h§ of G, is also obtained by the attention mechanism with shared

weight Wg. The normalized GED (by Equation[T1)) of G, and G , i.e., dg, g, is predicted using the
MLP operation which gradually reduces the concatenated graph-level representation h{ and hj.

dg, g, = MLP(h{ ® hj) (6)

Learning node matchings. By Proposition [2] we learn node matchings from fine-grained corre-
spondences, where a pair-wise node similarity matrix is first build. Then the optimal matching is
relaxed to find the node matching that maximizes the similarity of node sets from the similarity

matrix. Finally, the top-£ matching nodes are generated from the similarity matrix, which interprets
the multiple optimal node matchings involving in GED.

Similarity matrix. According to the node embeddings h; and hs, one could easily model the node

similarity matrix by h;hJ . However, it is too hard to learn the distance of the distribution w.r1. the
node embeddings. We model it in a more flexible way, and similarity matrix S € |V;| x |V,] is:

S = o(h] Wyhs) (7)

where W,, € R%*? is a learnable weights matrix that models the cost by transforming the embed-
ding h; to hy. All elements of similarity matrix S are positive after applying the sigmoid function,
and S, ; measures the similarity between Vy; and Vs, which is aware of the attribute and its local
structure information. Different from the operations of padding or resizing the similarity matrix |Bai
et al{(2020), a size of [V;] X |Vs] is enough to represent all possible matchings by Proposition

Assignment matrix. In order to find the node matching that maximizes the similarity of node sets,
we relax it to a linear assignment problem on the similarity matrix, which is typically solved by
Hungarian algorithm [Munkres| (1957). An efficient and simple algorithm Sinkhorn (Cuturi| (2013);
Fey et al.| (2020) is typically employed to learn the probabilities of the matchings, which is an
approximate and differentiable (as only matrix multiplication and normalization operators are in-
volved) version of Hungarian algorithm. Specifically, Sinkhorn net takes a non-negative similarity
matrix and finally coverts it into an assignment matrix S, € RV 1*1V2l i ¢ sum each row/column
equals 1, also called a doubly-stochastic matrix.

Sa = Sinkhorn(S) (8)

where it iteratively performs row-normalization, i.e., element-wise division by the sum of its row and
column-normalization until convergence. And hence, the element S,; ; of the assignment matrix
measures the probabilities of Vy; and V»; belonging to the optimal matching.

Top-k candidate matching nodes. It is natural to find top-k similarity nodes as candidate matching
nodes to be aware of the property of multiple optimal node matchings.

During the testing, indeed, one can repeatedly run Hungarian for k times to find optimal k& matching
nodes for each node. However, it is time-consumable as Hungarian runs in cubic time, i.e., O(kn?)
time in total. We further propose a greedy Algorithm [I]to find top-k candidate nodes, which runs in
O(kn?) time. In brief, it iteratively finds a node with the largest matching probability as a candidate
node from the unmatched nodes, where the injection constraint of node matchings is also guaranteed.
Detailed description and analyses of Algorithm [I]present in Appendix

ground-truth GED d, .y by Equation|11fand its corresponding node matching ML 2,y And the loss
function evaluates both the difference for learning GED from the predicted normalized GED d, , v
and predicted node matchings from the assignment matrix S,.

Loss design. MATA * is trained in a servised manner for graph pairs G, and G, using normalized

For learning GED task, we minimize the MSE loss:

1
Ly= > (dey —dy)? 9)
| | (z,y)€D

where D is the set of training graph pairs. For learning node matching task, we minimize the negative
log-likelihood of the node matchings on the assignment matrix:

Z > logSay (10)

z,y)€D (i,j)eML

Our final loss function is a combination of the above two: £ = L, + L,

Note that, different from the use of permutation cross-entropy loss Wang et al.| (2019) or Hungarian
loss |Yu et al.| (2020) for the graph matching task, only the node pairs belonging to a node matching
are penalized by L,,, the other node pairs are not penalized. The rationale behind this lies in that
multiple optimal node matchings typically exist, and these unmatched node pairs may also belong
to other node matchings corresponding to the GED.

4.3 OPTIMAL FINDING MODULE

MATA* finally integrates A*LSa algorithm |Chang et al.| (2020) to find the optimal edit distance
(i.e., node matching) among the learned top-%k candidate matching nodes, where A*LSa conducts a
best-first search after treating it as a pathfinding problem to compute GED. The search procedure of
MATA* is also pruned by the theoretical bounded estimation of unmatched subgraphs of A*LSa.

For example, a search tree of A*LSa on partial matching nodes is illustrated at the right of Fig.
ellipses represent node matching relationship. As can be seen, MATA * only executes on the candi-
date matching nodes (solid line) to find the optimal solution among these, and the unmatching nodes
(dashed line) are pruned from the search tree. That is MATA * performs the learned promising search
directions w.rt. node matchings from data to efficiently achieve approximate GED computation.

Note that, MATA* actually finds the sub-optimal solutions of GED computation. The detailed
description of A*LSa used in MATA* is demonstrated in Appendix [C] and the difference between
MATA * and other hybrid approaches are presented in Appendix [A]

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. In this work, three benchmark datasets i.e., AIDS [Bai et al.| (2019), IMDB |Yanardag &
Vishwanathan| (2015)), and CANCERE]aIe employed. (1) AIDS is a set of antivirus screen chemical
compounds labeled with 29 types. Following Bai et al.|(2019); Wang et al|(2021), 700 graphs with
no more than ten nodes are sampled as the AIDS dataset. (2) IMDB consists of 1, 500 ego-networks
of movie actors or actresses and each of which is an non-attributed graph. (3) CANCER consists of
32, 577 graphs of molecules discovered in carcinogenic tumors. To test the scalability and efficiency
of our MATA *, we sample 800 graphs with nodes from 21 to 90 as CANCER dataset, where the nodes
are labeled with 37 types of atoms. Statistics of the three real-life datasets are shown in Table 3]

Baseline methods. Our baselines include three types of methods, combinatorial search-based al-
gorithms, learning-based models and hybrid approaches. (1) The representative methods in the
first category include three well-known approximate algorithms A*Beam |[Neuhaus et al. (2006),
Hungarian Riesen & Bunke (2009) and VJ |[Fankhauser et al.| (2011). (2) The second category in-
cludes two common-used and one state-of-the-art learning models, i.e.,, SiImGNN [Bai et al.| (2019),
GMN|Li et al.|(2019) and GENN [Wang et al|(2021)). (3) We chose an up-to-date model GENNA* as
the representative of the third category, and our MATA * also belongs to this category.

Evaluation metrics. We adopt the following experimental metrics to evaluate the performance of
the various approaches, and the ground-truth is normalized by Equation [T1] (1) Edit path means
whether a method can recover the edit path. (2) Accuracy (ACC), (3) Mean Absolute Error (MAE),
(4) Mean Squared Error (MSE), (5) Precision at k& (p@10), and (6) p@20 are the common used
metrics. (7) Spearman’s Rank Correlation Coefficient (p) and (8) Kendall’s Rank Correlation (7),
both of which measure how well the computed results match with the ground-truth ranking results.
(9) Time, which records the average running time per graph pair. Refer to Appendix [D]for details.

Due to the fact that exact GED computation is NP-complete, the ground-truth of AIDS is produced
by exact algorithms and the ground-truth of IMDB and CANCER are generated by the smallest edit
distances of A*Beam, Hungarian, and VJ, following Bai et al.|(2019). Note that, MATA * is able to
achieve a smaller edit distance, and the ground-truth of IMDB and CANCER are further updated by
the best results of the four approaches. Therefore, the metrics on AIDS are calculated by the exact
solutions and the metrics on IMDB and CANCER are calculated by the updated ground-truth.

More details of experimental settings and the hyper-parameters of different approaches are presented
in Appendix [D] The source codes and data are available at https://anonymous.4open.
science/r/matal

'https://cactus.nci.nih.gov/download/nci/CAN2DA99.sdz

https://anonymous.4open.science/r/mata
https://anonymous.4open.science/r/mata

Edit

Datasets Methods ACCT MAE| MSE| p@l0tT p@201T pt 71

Path
A*Beam v 16.68 0.092 1.37 0.460 0.470 0.720 0.546
Hungarian v 4.19 0.194 4.77 0.293 0.328 0.541 0.386
V) v 0.95 0.216 5.64 0.215 0.273 0.543 0.387
AIDS SimGNN X 0.01 0.036 0.22 0.470 0.540 0.886 0.725
GMN X 0.02 0.034 0.19 0.401 0.489 0.750 0.673
GENN X 0.02 0.031 0.17 0.441 0.525 0.898 0.738
GENNA* v 20.05 0.034 0.46 0.407 0.556 0.515 0.378
MATA * v 65.20 0.027 0.32 0.542 0.569 0.856 0.723
A*Beam v 23.18 0.111 5.22 0.464 0.527 0.489 0.381
Hungarian v 22.53 0.115 5.38 0.438 0.498 0.465 0.359
V) v 22.24 0.115 5.38 0.436 0.495 0.465 0.359
IMDB SimGNN X 0.11 0.114 5.01 0.474 0.531 0.500 0.388
GMN X 0.29 0.128 5.01 0.479 0.542 0.513 0.392
GENN X 0.22 0.108 5.04 0.476 0.533 0.495 0.384
GENNA* v - - - - - - -
MATA * v 44.72 0.098 5.01 0.504 0.569 0.540 0.454
A*Beam Ve 44.23 0.053 1.14 0.161 0.266 0.446 0.352
Hungarian v 2.19 0.162 3.56 0.123 0.227 0.139 0.096
V)] Ve 0.00 0.184 4.85 0.095 0.187 0.188 0.133
CANCER SimGNN X 0.01 0.068 1.42 0.273 0.297 0.277 0.191
GMN X 0.00 0.071 1.47 0.280 0.285 0.254 0.174
GENN X 0.00 0.069 1.44 0.285 0.264 0.300 0.207
GENNA* v - - - - - - -
MATA* v 55.58 0.040 1.14 0.817 0.824 0.726 0.621

Table 2: Effectiveness evaluations. The metrics are calculated on the normalized edit distance by
Equation Top-k are set to 6, 6 and 8 for AIDS, IMDB and CANCER, respectively. The unit of
metrics ACC and MSE are % and 1072, respectively, and — refers to memory overflow on 32GB
machines or runs in more than 10 minutes for one graph pair.

5.2 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of MATA * from the effectiveness, scalability, efficiency
and ablation study. More experiments about top-k comparisons are demonstrated in Appendeix

Effectiveness evaluations. Table 2| shows the effectiveness of eight approaches on three real-world
datasets. MATA* consistently achieves the best performance under almost each evaluation metric,
which demonstrates the superiority of our hybrid method MATA * incorporating the two combinato-
rial properties of GED computation. We conduct the following findings from the evaluations.

(1) From the ACC, MATA* achieves smaller edit distances at least (58.1%, 32.1%, 53.6%) of graph
pairs on (AIDS, IMDB, CANCER) when comparing with combinatorial search-based and hybrid
approaches. Hence, the ground-truth of IMDB and CANCER are further updated by these, which
reduces MAE by at least (12.4%, 9.1%, 24.5%). (2) Only learning-based models can not recover the
edit path, as they directly learn GED as a similarity score and ignore the combinatorial nature. (3)
On IMDB, all methods perform worse than on AIDS and CANCER. IMDB is large with a range from
7 to 89 nodes. Besides, the graphs are much denser with |£|/|V| = 4.05 and the distances of pairs
are also larger, which increases the difficulty for combinatorial search and learning methods.

(4) The improvement of MATA* on ACC is such significant with at least (45.2%, 21.5%, 11.4%),
and the improvement of other metrics is relatively less significant. The rationales behind this lie
in that (a) MATA* models from the perspective of node matching of GED and explicitly build the
task of learning node matching, that is the learned top-k candidate nodes could directly improve the
accuracy due to the correspondence between GED and the node matching. (b) For fewer node pairs
whose matchings have not been learned by MATA *, it prunes the search subtree rooted at the these
node pairs, which leads to a larger edit distance reflected in other metrics.

SimGNN GMN GENN | A*Beam Hungarian VJ | GENNA* MATA*

AIDS 0.3 9.0 0.4 20.4 6.7 6.7 38624 4.4
IMDB 0.7 5.9 0.4 26.6 230.8 230.7 - 35.3
CANCER 5.5 91.5 9.5 271.7 38.8 32.7 - 146.8

Table 3: Efficiency evaluations. Average running time for solving one graph pair on test data (ms).
The training time of learning-based and hybrid approaches do not included.

Scalability w.r.t. graph size. Consider the overall performance of the same approach from small-
size, i.e., AIDS to large-size i.e., IMDB, CANCER. We find the following. (1) Our MATA* lever-
ages the learned candidate matching nodes to directly prune unpromising search directions, which
scales well to large-size graphs and also performs better on i.e., IMDB and CANCER from Table 2]
(2) Combinatorial search-based algorithms can be extended to large scale graphs with general per-
formance due to aggressive relaxation (Hungarian and VJ) or pruning strategies (A*Beam). (3)
Learning-based models add a bias to the predicted GED values to reduce the discrepancy between
the predicted and ground-truth. Their scalability heavily relies on the ground-truth produced by
combinatorial search-based algorithms. This is why they perform worse on IMDB and CANCER
than AIDS. (4) The hybrid approach GENNA* only completes AIDS for less than 10 nodes graphs
and fails to scale to IMDB and CANCER. This is because GENNA™* explores the entire space, i.e.,
factorial scale and takes O(n?d + d?n) time for each search as explained in the introduction.

Efficiency w.r.t. running time. The efficiency of eight approaches on three real-world datasets is
reported in Table [3] Due to the end-to-end learning, SimGNN and GENN achieve the best results
and run in several microseconds to predict the GED for one graph pair. Though our MATA* is
slightly slower than the learning-based models, its running time is close to combinatorial search-
based algorithms, and nearly 10* times faster than the other hybrid approach GENNA*.

Datasets GNN backbones ACC1T MAE] p@i0ftT pt

. SEGCN 6520 0.027 0542 0.856
GCN 62.03 0.020 0523 0.853
DB SEGCN 4472 0098 0504 0.540
GCN 4460 0.098 0510 0537
SEGCN 5558 0.040 0817 0.726
CANCER 50N 52.87 0.043 0.825 0.692

Table 4: Ablation study: SEGCN vs. GCN

Ablation study w.r.t. structural information encoding. We perform an ablation study on the im-
portance of designs in our proposed SEGCN on AIDS, IMDB, and CANCER. We re-train a model for
each dataset which has the same parameter settings and only replaces SEGCN by GCN, and the ab-
lation results are reported in Table[d From the table, the model with SEGCN outperforms the coun-
terpart built on GCN on ACC, MAE and p metrics, e.g., ACC is improved by (3.2%, 0.1%, 2.7%)
on (AIDS, IMDB, CANCER), respectively. This demonstrates the effectiveness of using importance
encoding and position encoding to capture graph structural information w.rt. structure-dominant
editing operations.

6 CONCLUSION

We have presented a data-driven hybrid approach MATA* based on Graph Neural Networks
(SEGCN) and A* algorithms, which leverage the learned candidate matching nodes to prune un-
promising search directions of A*LSa algorithm to approximate GED. We model it from a new
perspective of node matching and combine the intrinsic relationship between GED computation
and node matching. Besides, the design of our hybrid approach MATA* is aware of the two com-
binatorial properties involved in GED computation: structure-dominant operations and multiple
optimal node matchings. Finally, we conduct extensive experiments on AIDS, IMDB, and CANCER
to demonstrate the effectiveness, scalability, and efficiency of combinatorial search-based, learning-
based and hybrid approaches.

REFERENCES

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau. An exact graph edit
distance algorithm for solving pattern recognition problems. In ICPRAM, pp. 271-278, 2015.

Jiyang Bai and Peixiang Zhao. Tagsim: Type-aware graph similarity learning and computation.
Proc. VLDB Endow., 15(2):335-347, 2021.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. In WSDM, pp. 384-392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. In AAAI, pp. 3219-3226, 2020.

David B. Blumenthal and Johann Gamper. Exact computation of graph edit distance for uniform
and non-uniform metric edit costs. In GbRPR, volume 10310, pp. 211-221, 2017.

David B. Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
Pattern Recognit. Lett., 134:46-57, 2020.

David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and Luc Brun. Compar-
ing heuristics for graph edit distance computation. VLDB J., 29(1):419-458, 2020.

Garcia-Hernandez Carlos, Alberto Fernandez, and Francesc Serratosa. Ligand-based virtual screen-
ing using graph edit distance as molecular similarity measure. J. Chem. Inf. Model., 59(4):1410-
1421, 2019.

Lijun Chang, Xing Feng, Xuemin Lin, Lu Qin, Wenjie Zhang, and Dian Ouyang. Speeding up GED
verification for graph similarity search. In ICDE, pp. 793-804, 2020.

Lijun Chang, Xing Feng, Kai Yao, Lu Qin, and Wenjie Zhang. Accelerating graph similarity search
via efficient ged computation. IEEE Trans. Knowl. Data Eng., pp. Accepted, 2022.

Xiaoyang Chen, Hongwei Huo, Jun Huan, and Jeffrey Scott Vitter. An efficient algorithm for graph
edit distance computation. Knowl. Based Syst., 163:762-775, 2019.

Minsu Cho, Karteek Alahari, and Jean Ponce. Learning graphs to match. In /CCV, pp. 25-32, 2013.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurlPS, pp.
2292-2300, 2013.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.

Graph neural networks with learnable structural and positional representations. pp. Accepted,
2022.

Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. Speeding up graph edit distance computation
through fast bipartite matching. In GbRPR, volume 6658, pp. 102-111, 2011.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
ICLR-W, 2019.

Matthias Fey, Jan Eric Lenssen, Christopher Morris, Jonathan Masci, and Nils M. Kriege. Deep
graph matching consensus. In /CLR, 2020.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100-107, 1968.

Jongik Kim, Dong-Hoon Choi, and Chen Li. Inves: Incremental partitioning-based verification for
graph similarity search. In EDBT, pp. 229-240, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.
Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-

works. CoRR, abs/1609.02907, 2016.

10

Danai Koutra, Hanghang Tong, and David Lubensky. Big-align: Fast bipartite graph alignment. In
ICDM, pp. 389-398, 2013.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. In NeurIPS, 2020.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), ICML, volume 97, pp. 3835-3845, 2019.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. CoRR, abs/2106.05667, 2021.

James Munkres. Algorithms for the assignment and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1):32-38, 1957.

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation
of graph edit distance. In JAPR Workshops, volume 4109, pp. 163—-172, 2006.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Yun Peng, Byron Choi, and Jianliang Xu. Graph edit distance learning via modeling optimum
matchings with constraints. In IJCAI pp. 1534-1540, 2021.

Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image Vis. Comput., 27(7):950-959, 2009.

Kaspar Riesen, Stefan Fankhauser, and Horst Bunke. Speeding up graph edit distance computation
with a bipartite heuristic. In MLG, 2007.

Kaspar Riesen, Sandro Emmenegger, and Horst Bunke. A novel software toolkit for graph edit
distance computation. In GbRPR, volume 7877, pp. 142-151, 2013.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks for
deep graph matching. In ICCV, pp. 3056-3065, 2019.

Runzhong Wang, Tianqgi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learn-
ing of graph edit distance via dynamic embedding. In CVPR, pp. 5241-5250, 2021.

Junchi Yan, Shuang Yang, and Edwin R. Hancock. Learning for graph matching and related combi-
natorial optimization problems. In ZJCAI, pp. 4988-4996, 2020.

Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In SIGKDD, pp. 1365-1374. ACM,
2015.

Lei Yang and Lei Zou. Noah: Neural-optimized a* search algorithm for graph edit distance compu-
tation. In ICDE, pp. 576-587, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, pp.
2887728888, 2021.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In /CLR, 2020.

11

A APPENDIX: DETAILED RELATED WORKS.

In this section, we first present a detailed overview of existing literature from three categories: com-
binatorial search-based, learning-based and hybrid GED computation. We then classify the connec-
tions and differences between MATA* and related studies.

Combinatorial search-based. Combinatorial search-based algorithms either directly explore the
search space corresponding to GED, or relax GED computation to other combinatorial problems
with polynomial time complexity, e.g., bipartite matching problems. Combinatorial search-based
are developed from the exact and approximate.

Exact computation. A* search-based algorithms are widely used for exact GED computation|Riesen
et al.[(2007); [Hart et al.| (1968)), which treat it as a pathfinding problem and perform best-search to
expand the search path |Yang & Zou! (2021). Specifically, all possible matchings (w.r¢. the edit op-
erations) between two graphs are represented by a search tree, and search direction is explored by
the best-search, i.e., determined by the cost of matched subgraphs and estimation cost of unmatched
subgraphs. Different A*-based algorithms mainly focus on how to better estimate the cost of un-
matched subgraphs with the theoretical guarantee, such as using label sets|Riesen et al.|(2007; [2013)
or subgraph structures |(Chang et al.| (2020} |2022); [Kim et al.| (2019)). Besides, there are some efforts
of exploring the search tree in a depth-first search fashion to improve efficiency | Abu-Aisheh et al.
(2015)); Blumenthal & Gamper| (2017).

Approximate GED computation. Due to the search space of exact solutions growing factorially
with the number of nodes, different approximations are proposed to find the sub-optimal solutions.
Specifically, A*Beam is proposed based on A* search, which only explores the most possible di-
rections with limited beam size [Neuhaus et al.|(2006). Besides, GED computation is relaxed to
bipartite matching to trade off the efficiency and accuracy, where only the local structure is consid-
ered, and hence the Hungarian |Riesen & Bunke| (2009) and VJ [Fankhauser et al.|(2011)) are utilized
to find the optimal bipartite matching in O(n?) time.

Learning-based GED computation. With the progress of graph representation techniques of Graph
Neural Networks [Kipf & Welling| (2016)); [Ying et al.|(2021)); Dwivedi et al.| (2022)), some works di-
rectly model it as a regression problem and learn the approximate GED via an end-to-end manner
by treating GED as a similarity score between graphs. Different learning-based algorithms mainly
focus on designing different GNN models for the GED computation task. [Bai et al| (2019) first
presents a model using GCN [Kipf & Welling (2016) and attention mechanism to approximately
learn GED in an end-to-end fashion. Based on [Bai et al.|(2019), Bai et al.| (2020) further intro-
duces a multi-scale node comparison technique to extract the fine-grained information from the
node-to-node similarity matrix. Besides, |L1 et al.| (2019) incorporates both the node and graph level
information by the cross-graph module to trade-off the accuracy & computation. Bai & Zhao|(2021)
splits the graph edit distance into different types of edit operations and applies graph aggregation
layers to learn each type individually. More recently, |Peng et al.|(2021) designs a GED-specific reg-
ularizer to impose the matching constraints involved in GED, where the graph pairs are represented
by the association graphs.

Hybrid GED computation. Recently, by combining the progress of deep learning and
combinatorial-search techniques, some works that combine GNNs and A* algorithms have been
proposed Wang et al.| (2021); [Yang & Zou| (2021). Actually, these two papers employee GNNSs to
optimize the search directions of A* algorithms, both of which predict the estimation cost of un-
matched subgraphs during A* search algorithm. Specifically, |Yang & Zou| (2021) proposes graph
path networks incorporating pre-training edit path information and cross-graph information for train-
ing the model, and optimizes A* by predicting the cost of unmatched subgraphs using graph path
networks and beam size to prune the search of A* algorithm. |Wang et al.| (2021)) integrates a dy-
namic graph embedding network for predicting the estimation cost of unmatched subgraphs, where
the network is improved from Bai et al.[(2019).

Connections & differences. We highlight the connections & differences between our hybrid
MATA* and learning-based, existing hybrid approaches from the (1) formulation and effectiveness,
(2) efficiency and scalability.

(1) Existing hybrid methods modeling the cost of unmatched subgraphs (i.e., edit distances) in A*
algorithms as a regression problem. That is learning-based and hybrid approaches all explicitly and

12

Algorithm 1 Greedy matching

Input: The assignment matrix S,, and k
Qutput: Top-£ matching nodes matk

1:t=0

2: whilet < kandt=t+1do

3: cols = () i store all column ids of a node matching.
4 for all 7 in V; do

5: Find the greatest S,; ; with j not in cols;

6: Insert S,; ; into matk([t], and set S; ; to 0;

7 Update cols according to j;

8: end for

9: end while

10: return matk.

implicitly model GED as a regression problem, respectively. Hence, the intrinsic equivalence be-
tween the GED computation and node matching is not captured by their approximate GED models,
which limits the effectiveness of the algorithms.

(2) GNNs with the attention mechanism are employed to estimate the cost function for [Wang et al.
(2021) and |Yang & Zou| (2021)), which take O(nzd + d2n) time for extending each search, and
encounter scalability issues. Besides, due to the inaccurate GED approximation in the cost function
estimation of A*, the search space of [Wang et al.| (2021) and |Yang & Zou| (2021) all factorially
increase with the number of nodes in the worst case. And hence, Wang et al.| (2021) even runs
slower than the exact GED computation |Chang et al.[(2022). These methods are also difficult to
scale to large datasets. Due to the polynomial time complexity of the learning-based algorithms,
they run efficiently for approximate GED computation via an end-to-end manner. However, the
scalability heavily relies on the ground-truth produced by combinatorial search-based algorithms.

B APPENDIX: GREEDY TOP-k CANDIDATE NODES

Finding top-k candidate nodes from the assignment matrix is presented in Algorithm 1]

Specifically, it takes the assignment matrix S, and k as input, and returns the top-£ matching nodes
matk. It first initializes ¢ to 0 and iteratively executes ¢ for k times (lines 1, 2-9). In each iteration,
it initializes cols to an empty set, which stores the selected element’s column id of a node matching
(i.e., the corresponding node of Gs). cols is also used to guarantee the injection constraint (line 3).
Then, for each row of S, (i.e., each node of G,), it finds the largest element Sai,j with its column
id j not in cols. S,; ; is inserted into matk(t], and cols is updated according to j. That is node j
with the largest matching probability with node ¢ is selected for the candidate set. In such a way, a
candidate node mapping is found (lines 4-8). Once k iterations are completed, the top-k matching
nodes matk are returned (line 10).

It is easy to know that Algorithm takes O(kn?) time, where 7 is the maximum number of nodes
in G; and Gs.

C APPENDIX: DETAILED REVIEW OF A* FOR GED

We first present the idea of A* for computing GED, then review the recent algorithm A*LSa, which
is the most efficient both due to its powerful pruning strategy and low computation cost of the
strategy. Finally, we demonstrate how to integrate A*LSa into our hybrid MATA * to find the optimal
solution among top-k candidate matching nodes.

A*-based GED computation. A* algorithms treat it as a pathfinding problem and perform the
best-search to expand the search path. Specifically, given two graphs G; and G, all possible node
matchings, i.e., the search space of GED can be organized as a search tree 7. The root of T
represents to start constructing 7. The level ¢ of the T refers to the possible matchings between
the i-th node of ord and all unmatched nodes of G, and each node of T refers to a matching node
pair from G; to Gy (e.g., V1, to Vo). The parent-child relationships is naturally defined based on the

13

Algorithm 2 A*LSa|Chang et al|(2020)

Input: Graphs G; and G,
Output: ged(G1,Go)
1: Compute the matching order ord of V;;
2: Push (0,0, null, 0) into Q; > Initialize the priority queue @ by the root of 7.
3: while Q # 0 do
4: Pop (i, f, pa, Ib) with minimum (b from Q;
5: Compute the lower bound /b for each child ¢ of f;
6.
7
8

for all child c of f do
if i + 1 = |V1| then ged(G1, G2) = c.lb; break;
: else Push (i + 1, ¢, f,1b) into Q;
9: end if
10: end for
11: end while
12: return ged(G1, Go)

search tree 7. And hence, a path from the root to leaf nodes is a node matching, i.e., all nodes of
G1 are mapped to nodes of Go. A* algorithms indeed perform on the search tree to find a path from
the root to leaf nodes, where the directions are determined by the lower bound. The lower bound
of a partial node matching in 7 is defined as the sum of the edit cost of matched subgraphs and the
estimated cost of unmatched subgraphs. Note that, the GED can be easily computed by scanning
the G; and G5 one time if a node matching is obtained |(Chang et al.| (2020).

Review of A*LSa. A*LSa|Chang et al. (2020) conducts a best-first search on the search tree T
by computing the theoretical bounded estimation of unmatched subgraphs to exact compute GED,
shown in Algorithm 2] A priority queue () is maintained to store the search states (nodes of 7)
during the process, which contains its level ¢, current partial matching f, its parent matching pa and
its lower bound /b. After the matching order ord is computed, A*LSa initializes the priority queue
@ by the root of T (lines 1, 2). It then iteratively pops (i, f, pa, Ib) from @) with the minimum lower
bound, and extends the current matching f by computing the lower bound of each child (lines 3-6,
8). If the full node matching is formed, then ged(G;,Gs) equals its lower bound and is returned
(lines 7, 12).

For estimating the cost of the unmatched subgraphs, A*LSa proposes an anchor-aware label set-
based method to make use of the information of the matched nodes and their anchor sets, which
computes the lower bound cost for all children of f in O(&; + &) time |Chang et al.| (2020).

Integrate A*LSa to MATA*. For testing in MATA*, top-k candidate matchings are generated
from the assignment matrix using Algorithm[I} These matchings are first translated to the node of
the search tree 7 in the initialization of A*LSa. During the search procedure, for each child node
extending from the parent node in the search tree 7, MATA * only adds the child node corresponding
to the matchings into the priority queue (), and the other child nodes are directly pruned. Note that,
we do not modify the unmatched subgraph cost estimation of A*LSa.

D APPENDIX: DETAILED EXPERIMENTAL SETTINGS & RESULTS

In this section, we present the detailed experimental settings and the performance w.xt. different
top-k selection.

D.1 DETAILED EXPERIMENTAL SETTINGS.

Dataset processing. For each dataset, we generate the graph edit distance (or sub-optimal edit
distance) and its corresponding node matching of the graph pairs. Specifically, for AIDS, all graphs
are less than ten nodes, where the GED and exact node matching of all graph pairs are computed
by the exact algorithm A*LSa |[Chang et al|(2020). For the larger datasets IMDB and CANCER, the
exact solutions are unavailable as they are not reliable to compute in a reasonable time for more
than 16 nodes Blumenthal & Gamper| (2020). Following Bai et al. (2019) and [Peng et al| (2021),
we choose the smallest edit distance and its corresponding node matching computed by the three

14

#Graphs #Pairs avg(/&|/|V]) min(|V]) max(]V|) avg(|V])

AIDS 700 490K 0.98 2 10 8.90
IMDB 1500 2.25M 4.05 7 89 13.00
CANCER 800 100K 1.08 21 90 30.79

Table 5: Statistics of three real-life datasets. The graph pairs are partitioned 60%, 20%, 20% as
training, validation and test sets, respectively.

approximate algorithms (i.e.,, A*Beam, Hungarian, VJ) as ground-truth. The ground-truth distance
is also denoted by ged(-, -) for simplicity. Further, the computed distance is normalized by

exp{—ged(G1,G2) x 2/(V1 + V2)}, (11)

which transforms the ged(-, -) into a similarity score in the range of (0, 1].

In such a manner, we compute the ground-truth of graph pairs in (AIDS, IMDB, CANCER) with a
number of (490K, 2.25M, 100K), respectively, and we randomly partition 60%, 20%, and 20% of
graph pairs as training, validation and test sets for each dataset.

Parameter settings. We conduct all experiments on machines with Intel Xeon Gold@2.40GHz
CPU and NVIDIA Tesla V100 32GB GPU. Our model MATA* is implemented in PYTORCH
Paszke et al.| (2017) using the PYTORCH GEOMETRIC [Fey & Lenssen| (2019) and A*LSa al-
gorithm is implemented in C for the performance consideration, and is open-source. The number
of SEGCN layers is set to 3 and ReLU is utilized as the activation function, where the number of
feature channels of the three layers is all set to 64. The dimensions of learnable embedding c; for
importance encoding are set to 12, 40 and 18 for AIDS, IMDB and CANCER, respectively. The ran-
dom walk step ¢ is set to 16 for the three datasets. The beam size of A*LSa is set to in a range of
[2,1000] for IMDB and CANCER by rule. In the training phase, we set the batch size to 128 and use
Adam optimizer |[Kingma & Bal (2015) with 0.001 learning rate and 5 x 10* weight decay for each
dataset. In the testing phase, we set top-k to 6, 6 and 8 for AIDS, IMDB and CANCER, respectively.

We use the open-source implementation of three combinatorial search-based algorithms (A*Beam,
Hungarian and VJ), which is a Java software toolkit Riesen et al.|(2013). Along the setting with Bai
et al. (2019) and |Peng et al.|(2021)), we use the default configuration of the toolkit, where the beam
size is set to 10 for A*Beam. We also modify the implementation of SimGNN, GMN, GENN and
GENNA* to support CANCER dataset with their recommendation configurations. The batch sizes of
SimGNN and GENN are set to 128, and the batch size GENNA* and GMN are set to 1. Note that,
the experiments of GENNA* in their paper were only conducted on the datasets with no more than
10 nodes graphs [Wang et al|(2021), and the official implementation of GENNA* also fails to run
the larger datasets IMDB and CANCER due to memory overflow on 32GB machine or running with
more than 10 minutes for one graph pair.

Metrics (1) Edit path means whether a method can recover the edit path corresponding to the com-
puted edit distance. (2) Accuracy (ACC), which measures the accuracy between the computed dis-
tance and the ground-truth solutions. (3) Mean Absolute Error (MAE), which indicates the average
discrepancy between the computed distance and ground-truth. (4) Mean Squared Error (MSE),
which stands for the average squared difference between the computed distance and ground-truth.
(5) Precision at 10 (p@10) and (6) Precision at 20 (p@20), both of which mean the precision of
the top 10 and 20 most similar graphs within the ground truth top 10 and 20 similar results. (7)
Spearman’s Rank Correlation Coefficient (p) and (8) Kendall’s Rank Correlation (7), both of which
measure how well the computed results match with the ground-truth ranking results. (9) Time. It
records the running time to compute the distance for one graph pair. And the algorithms involving
learning only report the testing time.

D.2 PERFORMANCE w.r.t. TOP-k SELECTION.

We also study the performance w.rt. selecting different k of our hybrid approach MATA* on AIDS,
IMDB and CANCER datasets. We conduct the following findings from Table [6]

15

Datasets top-k ACCT MAE] MSE| p@l101T p@201T p7T 71 Time]

5 54.22 0.042 0.584 0.469 0.497 0.767 0.624 4.3
6 65.20 0.027 0.320 0.542 0.569 0.856 0.723 4.4
AIDS 7 75.93 0.016 0.166 0.614 0.649 0918 0.807 4.4
8 84.17 0.009 0.083 0.695 0.748 0.956 0.868 4.5
9 90.08 0.005 0.038 0.787 0.825 0.977 0.910 4.8
10 100.00 0.000 0.000 1.000 1.000 1.000 1.000 5.2
5 38.57 0.106 5.65 0.381 0.511 0.578 0.472 30.2
6 39.40 0.105 5.61 0.391 0.524 0.579 0.475 353
IMDB 7 40.97 0.103 5.55 0.401 0.529 0.582 0.480 43.3
8 41.56 0.102 5.52 0.400 0.532 0.582 0.482 519
9 44.47 0.100 5.47 0.412 0.536 0.587 0.491 53.2
10 45.05 0.100 545 0.415 0.541 0.588 0.492 55.3
5 5.01 0.104 2.08 0.452 0.431 0.678 0.497 129.8
6 7.37 0.091 1.80 0.486 0.497 0.709 0.528 146.8
CANCER 7 10.55 0.079 1.56 0.543 0.553 0.734 0.555 153.1
8 14.37 0.069 1.40 0.569 0.547 0.758 0.582 168.0
9 22.63 0.058 1.24 0.615 0.627 0.777 0.609 176.7
10 34.19 0.048 1.11 0.684 0.664 0.794 0.637 193.2

Table 6: Performance evaluations w.r.t. different top-k. The metrics are calculated in the same way
as those in Table

(1) Different k in the experiments emphasize the trade-off between solution quality and time. That
is setting larger k could improve the approximate GED solution quality, but the running time indeed
increases mainly due to the large search space of A*LSa.

(2) A1Ds is small with the exact solution dataset, and MATA* also achieves the optimal solutions
running in 5.2 microseconds, when £ is set to 10. Note that, MATA* degenerates to A*LSa when
all nodes of G, are selected as the candidate matching nodes.

(3) When k is set to 6, 8 for datasets IMDB and CANCER, the evaluation metric is worse than that
in Table @ Actually, k is set to 10 in this test, which achieves the smaller edit distance, and the
ground-truth of IMDB and CANCER are further updated by these. Hence, the evaluation metrics are
calculated by the updated ground-truth, which produces worse metrics on IMDB and CANCER.

16

	Introduction
	Related Works
	Preliminaries
	The Proposed Model: MatA*
	Embedding Module
	Matching Module
	Optimal Finding Module

	Experiments
	Experimental Settings
	 Experimental Results

	Conclusion
	Appendix: Detailed Related Works.
	Appendix: Greedy top-k Candidate nodes
	Appendix: Detailed Review of A* for GED
	Appendix: Detailed Experimental Settings & Results
	Detailed Experimental Settings.
	Performance w.r.t. top-k selection.

