Under review as submission to TMLR

Probabilistic Matching of Real and Generated Data
Statistics in Generative Adversarial Networks

Anonymous authors
Paper under double-blind review

Abstract

Generative adversarial networks constitute a powerful approach to generative modeling.
While generated samples often are indistinguishable from real data, there is no guarantee
that they will follow the true data distribution. For scientific applications in particular,
it is essential that the true distribution is well captured by the generated distribution. In
this work, we propose a method to ensure that the distributions of certain generated data
statistics coincide with the respective distributions of the real data. In order to achieve this,
we add a new loss term to the generator loss function, which quantifies the difference between
these distributions via suitable f-divergences. Kernel density estimation is employed to
obtain representations of the true distributions, and to estimate the corresponding generated
distributions from minibatch values at each iteration. When compared to other methods,
our approach has the advantage that the complete shapes of the distributions are taken
into account. We evaluate the method on a synthetic dataset and a real-world dataset and
demonstrate improved performance of our approach.

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014)) comprise a generator and a discriminator
network trained adversarially until the generator manages to produce samples realistic enough to fool the
discriminator. Since their conception, GANs have become a popular tool for generative modeling (Hong et al.,
2019; |Gui et al, 2021)). The GAN framework is generally applicable and it is probably best known for its
successes in image generation (Reed et al., |2016; Mathieu et al., [2016; (Isola et al., [2017; |Ledig et al., [2017)).

Although GANs have proven powerful, challenges such as mode collapse and non-convergence remain (Saxena,
and Caol, 2021). It is often the case that the generated samples, while realistic, stem from only a subspace
of the true data distribution, or do not reflect the relative frequencies with which they occur accurately.
For scientific applications in particular, such as in cosmology (Rodriguez et all 2018; [Villaescusa-Navarro
et al., |2021) or high-energy physics (Paganini et al., [2018} |Alanazi et al., [2021), where GANs may serve as
surrogate models for expensive but highly accurate numerical simulations, having a good match between the
distributions is essential (Kansal et al.| 2023]).

It is this latter aspect that we tackle in this work, by matching properties of the generated distribution with
those of the real data distribution. In particular, we consider statistics of the dataset such as the power
spectrum components, and match their distributions. We incorporate these requirements in the form of
probabilistic constraints since it is not properties of individual samples that are enforced, but collective
characteristics of the dataset. The approach is chiefly aimed at applications in science, where suitable statistics
to be matched can be chosen through domain knowledge. The only requirement on the statistics is that they
need to be differentiable.

The main ingredients of our approach are the following: we approximate both the distributions of the real
data and the generated data statistics efficiently via kernel density estimation (KDE) (Silverman) [1986). In
each iteration, the mismatch between true and generated distributions is then calculated through suitable
f-divergences and added as an additional term to the generator loss. That way, we end up with a constrained
generated distribution. Using f-divergences, as opposed to e.g. low-order moments of the distributions, has

Under review as submission to TMLR

the advantage that the full shapes of the distributions are taken into account. In the following, we refer to
our method as probabilistically constrained GAN (pcGAN).

2 Related Work

The field of physics-informed machine learning, where prior knowledge is introduced into the ML model, has
been an active area of research in recent years (Karniadakis et al., [2021; |(Cuomo et al.| |2022). In the context
of GANS, two main approaches for including prior knowledge in the model exist.

In the first approach, the constrained values can be fed as additional inputs into the discriminator, such that
it can explicitly use constraint fulfillment as a means to distinguish between real and generated data. In
Stinis et al.| (2019), GANs are employed for interpolation and extrapolation of trajectories following known
governing equations. The generated trajectories are constrained to fulfill these equations by passing the
constraint residuals as additional inputs to the discriminator; in order to prevent the discriminator from
becoming too strong, some noise is added to the residuals of the real data, which might otherwise be very
close to zero. When extrapolating, the GAN is applied iteratively from some initial condition; in order to
train stably, it learns to predict the correct trajectory from slightly incorrect positions of the previous step.

In Yang et al.| (2019), a physically-informed GAN (PI-GAN) is developed to model groundwater flow. They
make use of the same basic idea as physics-informed neural networks (Raissi et al.,|2019) and employ automatic
differentiation in order to obtain a partial differential equation (PDE) residual on the GAN output, which is
in turn fed into the discriminator. By evaluating the GAN prediction at many different points and comparing
to an equivalent ensemble of true values of the corresponding physical field, the GAN is constrained to adhere
to a stochastic PDE.

In the second approach, prior knowledge may be taken into account via additional loss terms in either
discriminator or generator loss: in [Khattak et al.| (2018} [2019), GANs are employed to simulate detector
signals for high-energy physics particle showers. Here, physical constraints such as the particle energy are
taken into account via additional generator loss terms.

In Yang et al.| (2021)), the incorporation of imprecise deterministic constraints into the GAN is investigated;
e.g. the case where the GAN output is supposed to follow a PDE, but where the PDE parameters are not
known accurately could be formulated as an imprecise constraint. In a first step, deterministic constraints
can be included by adding the constraint residuals as an additional loss term to the generator loss; they
argue that it is better to add such terms to the generator since this strengthens the weaker party in the
adversarial game, instead of giving an even larger advantage to the discriminator. In order to make the
constraint imprecise, they do not require that the residuals go to zero, but instead only include residuals
above a certain threshold value €2 in the loss.

The work closest in aim to ours is probably that by [Wu et al|(2020), where a statistical constrained GAN is
introduced. They add an additional term to the generator loss function in order to constrain the covariance
structure of the generated data to that of the true data. This additional term is a measure of similarity
between the covariances, and they concluded that the Frobenius norm was the best choice for this purpose.
They use their method to obtain better solutions for PDE-governed systems.

Similar to Wu et al.| (2020), our method also imposes probabilistic constraints via an additional term to the
generator loss. However, there are significant differences: firstly, our method does not consider the covariance
structure of the dataset in particular, but instead allows to constrain on arbitrary statistics of the data.
Secondly, our method uses f-divergences to match the distributions of true and generated data statistics
explicitly and takes the complete shapes of the distributions into account, instead of only the second-order
moments.

3 Background

The basic idea of generative adversarial networks (GANs) (Goodfellow et al., 2014)) is to train a generator
to generate samples of a given distribution and a discriminator (or critic) to distinguish between real and

Under review as submission to TMLR

B Bgen (bs = 64 Bgen (Optimal o) pi
0.05 Prrue 0.05 Pgen () Pgen (OP!) Pgen

— bs=32 —— bs=32 (with history)
bs=64

0.04 1 0.04 —— bs=256

0.03 0.03 4
0.02 0.02

0.01 4 0.01

0.00 +; T T T T T T
0 10 20 30 40 50 60
Zs

0.00 - v N - - ~— 0.00 4+ - ¥ v - - -
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Zs Zs

Figure 1: The various representations involved in matching the statistic z; are depicted. The histogram in the
background shows the true data distribution. Left: Representation of the true data distribution. Middle
left: Representation of the generated data distribution with batch size 64 for different choices of ¢ in the
kernel. Middle right: Representation of the generated data distribution for various batch sizes with optimal
choice for o (as determined via Algorithm [3|in the appendix). Right: Taking the recent minibatch history
into account (here with e = 0.9) can smoothen out fluctuations and lead to a more accurate representation.
In this figure, a perfectly trained generator has been assumed, i.e. the minibatches have been sampled from
real data.

generated data. During the training, both networks are pitted against each other in a minimax game with
value function

min max V(D, G) = Eyupya(a) [l0g D(@)] + E.np () [log(1 = D(G(2)))] - (1)

Here, D denotes the discriminator, G the generator, x samples drawn from the real data and z randomly
generated latent space vectors serving as input to the generator; pgata and p, denote the real data distribution
and the latent vector distribution, respectively. Discriminator and generator are then trained alternatingly
(with m > 1 discriminator updates between each generator update); in (Goodfellow et all) [2014)), it is shown
that a stable equilibrium to the minimax problem exists and that the optimal solution lies in the generator
producing samples from the true data distribution.

The standard GAN can be very difficult to train and often suffers from mode collapse. In[Arjovsky et al.
(2017), the Wasserstein GAN (WGAN) was introduced, where they suggest the earth-mover (EM) distance
as a new loss for the GAN. They show that the discriminator and generator losses can then be expressed as

Lp= D(mgcn) - D(mtruc)v (234)
L& = —D(zgen), (2b)

under the condition that the discriminator is Lipschitz continuous. Rather crudely, this is enforced by
clipping the weights of the discriminator. In the end, the terms in are approximated as expectations over
minibatches.

With this loss function, the discriminator can be interpreted as a critic that assigns scores to both true and
generated samples. These scores are not constrained to any specific range and can therefore give meaningful
feedback to the generator also when the discriminator is outperforming. Advantages of the WGAN include
improved learning stability as well as meaningful loss curves (Gui et al. 2021]).

In this work, we also consider two other common variants of the GAN: firstly, the WGAN with gradient
penalty (WGAN-GP) (Gulrajani et al. 2017), where the aforementioned weight clipping is avoided by
instead imposing a penalty on the discriminator that is supposed to enforce Lipschitz continuity. Secondly,
the spectrally normalized GAN (SNGAN) (Miyato et al.l |2018), where Lipschitz continuity is ensured by
constraining the spectral norm of each layer of the discriminator explicitely.

Under review as submission to TMLR

4 Method

The aim of our method is to consider the distributions of N, differentiable statistics z of the true dataset, such
as e.g. components of the power spectrum (compare Appendix [C.1]), and to ensure that the same statistics,
when extracted from the generated data, are distributed equally.

In order to match true (purue) and generated (pgen) distributions, we modify the generator loss as follows:

N
L& =La+)\Z Ash(ptrue(25)7pgen(zs))‘ 3)

s=1

The function & is an f-divergence that quantifies the mismatch between pirue and pgen, A is a global weighting
factor for the constraints, and the A, for which >~ A, =1, allow to weight the constraints individually.

Three important choices remain to be made: how to choose the function h, how to obtain suitable functional
representations for pyue and pgen, and how to adequately weight the different loss terms.

4.1 Quantifying the Mismatch

Let p, ¢ be arbitrary probability density functions (PDFs). For f-divergences h, it holds that h(p,q) > 0,
with equality if and only if p = ¢. These properties justify the use of f-divergences for the function h in
. A major advantage of using f-divergences, as opposed to e.g. the Wasserstein distance, is that they are
efficient to calculate.

The Kullback-Leibler (KL) divergence constitutes a straightforward choice for h and is defined as

oo

o) = KLGlo) = [pla)tog {;Egdx. (4)

The KL divergence is asymmetric and we consider the forward KL, also known as zero-avoiding, in order to
ensure a complete overlap of areas with non-zero probability of the distributions; in case of the reverse, or
zero-forcing, KL, the loss term would typically tend to match ¢ to one of the peaks of p and hence fail to
match the distributions in a way suitable for our purposes.

The Jensen-Shannon (JS) divergence, which can be thought of as a symmetrized version of the KL divergence,
as well as the total variation (TV) distance constitute further options:

(e,) = I8(0l) = 5 (KL(plla) + KL(al|p)), 6
M) = Vio—a) = [Ip(o) - ao)lds 0

An advantage of the latter choice is that no divisions by zero can occur, which may cause problems with the
other two options.

As an alternative to using f-divergences, we also discuss the maximum mean discrepancy (MMD) as a possible
loss function in Appendix [B:2l We show that there are drawbacks to using the MMD loss and that the
method performs better when using f-divergences.

4.2 Obtaining Representations

In order to evaluate the loss terms in , means of extracting representations for both the true and generated
PDFs are required. We denote these representations as pirue and pgen. Note that pirye Will need to be
determined only once, in advance of the GAN training, since it remains constant. In contrast to the true
distribution, the generated distribution changes during GAN training, and hence pgen also needs to be
determined anew after each generator update.

Under review as submission to TMLR

Kernel density estimation (KDE) (Silverman, [1986))
has proven effective for obtaining these represen-
tations. We chose to employ KDE with Gaussian
kernels. For the true distributions, we then get

N

1
ﬁtrue(zs) = N ZN(ZS; Zsjv(}g)v (7)

Jj=1

where N denotes the number of datapoints, and
where A corresponds to the PDF of the Normal
distribution with mean z,; and standard deviation
7s. The choice 0, = 545 (max;(zs;) — min;(z,;)) has
proven to give good results for the full dataset, as we
typically have N > 1000 and can afford to choose

such a small value.

We also approximate the generated distributions at
each iteration as mixtures of Gaussians, centered
around the constraint values as obtained from the
current minibatch samples. That is, we obtain the
approximate generated PDFs as

1 Mbatch

ﬁgen(zs) = Mbatch N(zs§zsj70'§)7 (8)

Jj=1

where npaten denotes the batch size.

For Pgen(2s), choosing o5 adequately is crucial and

Algorithm 1 High-level algorithm

Step 1: obtain piye via (@

Step 2: determine the optimal values f in (9)
(see Algorithm [3|in the appendix)

Step 3: train the pcGAN (see Algorithm

Algorithm 2 Training the probabilistically

constrained GAN (pcGAN)

Input: Untrained D and G; pirue; data {Tiruel;
h; A
Output: Trained D and G
for i =1 to N;; do
for k=1tom—1do
sample Tirue
generate Tgen
Lp = mean(D(Zgen)
update D
clip weights
end for
generate Tgen
L% = —mean(D(zgen))
for s =1 to N, do
calculate statistics {25, ;25" from gen

- D(mtrueD

determine pf., (zs) according to (10)
ls = h(ﬁtrue(zs)vﬁéen(zs))

requires more thought than in the case of Pgyye. This end for))
is due to the fact that there are much fewer samples n=1- Iim(l) +0.1(max(l) — min(l))
available in the minibatches. The standard devia- As = Z, Ngr
tions o5 are chosen separately for each constraint & = XZS Asls
2z, under the criterion that pgen as obtained from Lo =LY+ LS
minibatches drawn from the true data should have a update G
mismatch as small as possible with pipue. Since the end for
optimal values of o, would be expected to depend
both on the range of value z4 in the true dataset and
the batch size, we parameterized them as
0s(Mbaten) = std(2s)/ fa (Nbaten)- 9)

A detailed description of how to determine the optimal values for f is given in Appendix @

In order to improve the accuracy of Pgen (assuming that pgen does not change drastically between subsequent
iterations), we can include information from the preceding minibatches via an exponentially decaying historical

average:

Pien(2s) = (1 =)Pgen(25) + ePigen (25), (10)

where the parameter € defines the strength of the decay and ¢ denotes the current iteration. In this way,
the potentially strong fluctuations between minibatches are smoothened out, allowing for a more accurate

representation of pgen.

With representation for the generated distribution and for the true distribution, the one-dimensional
integrals required for evaluating A(Perue; Dgen) in can be carried out numerically. In Fig. |1} the various

representations are illustrated.

Under review as submission to TMLR

4.3 Weighting the Constraints

It has proven effective to weight the constraints according to how big their mismatches are relative to each
other with the following scheme: first, we calculate n = [— min(l) + 0.1(max(l) — min(l)), where [is a vector
with components /s = h(ﬁtrue(zs)vﬁéen(zs))- Then we assign A\s = Zn,ﬁf . The global weighting factor A has

to be chosen heuristically.

A high-level overview of the method is given in Algorithm [l]and the pcGAN training is detailed in Algorithm
Note that, while our training algorithm is based on the WGAN, the modified generator loss is more
general and can be used for other types of GANs as well.

5 Results []

In this section, we present the results obtained with our model. We introduce a set of evaluation metrics and
consider a synthetic example and a real-world dataset from physics. The evaluation metrics are chosen to
cover different aspects of the generated distribution and evaluate the GAN performance both in the sample
space and in a lower-dimensional space of high-level features, as is common practice (Kansal et al., 2023). We
compare the pcGAN to the unconstrained WGAN, WGAN-GP, SNGAN, and the statistical constrained GAN
from (Wu et al.| (2020). We investigate the impact that training parameters have on the model performance
and we combine the probabilistic constraint with the different GAN variants to evaluate its potential for
improving their performance.

More results are given in the appendices. In Appendix we investigate the impact that the choice of
kernel for the KDE has on the model performance. In Appendix [B:2] we evaluate how well the MMD loss
would perform instead of the f-divergences for matching the constraints. Additional information on the
datasets, the training parameters, and the high-level features is given in Appendix [C}

5.1 Evaluation Metrics

To compare the different models, we consider four evaluation metrics:

The Fréchet distance in the sample space, as an alternative to the widely used Fréchet Inception distance
(Heusel et al., 2017). It quantifies the agreement of the first and second-order moments of the real and
generated distribution and is calculated via

@b = =P+ T (D43 - 2V55), (11)

where p, 3 correspond to the true distribution and p/, ¥’ to the generated distribution.

The F1-score in the space of high-level features, which is defined as the harmonic mean between precision (P)
and recall (R):

5 PR
TP+ R

In the context of generative modeling, the precision is the fraction of generated samples that lie in the real
data manifold and the recall gives the fraction of real data samples that lie in the generated data manifold
Sajjadi et al.| (2018)). They are calculated as suggested in Kynk&anniemi et al.| (2019)), with choice k& = 10 for
the k-nearest neighbor.

Py (12)

The agreement of the distributions of the constrained statistics, by calculating the average of the total
variations of the differences between their histograms:

N
Y/ 1 - is is
Vo= = S VL) — ol (20)), (13)
S s=1

IThe code for the project will be made available on GitHub.

Under review as submission to TMLR

real PcGAN Wu et al. WGAN WGAN-GP SNGAN

60 80 [20 60 80 0 20 40 60 80

40 40
psl1] psi1l psll]

) 3 6 3
ps(15] ps (15] ps(15)

02 0.4 02 02 0.4 06 02 0.4 02 0.4 06 0.0 02
ps [50] ps [50] ps [50 0;

04
ps [50] ps [50]

04
ps [50]

]l

Figure 2: (Synthetic example) The distributions of three different power spectrum components ps as
obtained by the different models are depicted, where the orange lines show the true distribution as obtained
via KDE @ From left to right, the histograms correspond to the real data, the pcGAN, the method of
, WGAN, WGAN-GP, and SNGAN. For the histograms, 20000 generated samples have
been considered (or the full dataset, in case of the real distribution). Parameters for the pcGAN: bs = 256,
A =500, ¢ =0.9, h = KL.

where plist and plgiesrf are given by the outline of the histograms in e.g. Fig. Here, the histograms have

been chosen instead of KDE, in order to use a quantity that is not directly constrained (and hence without
the danger of overfitting to).

The agreement between the distributions of the N, high-level features (here denoted as z). We proceed in
the same way as for the constrained statistics:

Ny

¥ 1 i i

Vi = N V(ppist(xs) — pasi(ay))- (14)
=1

To get an idea of the complexity of each metric, it helps to consider them in the following way: the F1 score
takes the full shape of the data distribution into account, dp the first two moments, and V. and V; the
marginal distributions of the constrained statistics and the chosen set of high-level features, respectively.

5.2 Synthetic Example

For our first experiment, we consider a superposition of sine waves. Each wave consists of two sine waves,
x = %Zle sin(w;t), with angular frequencies sampled randomly from w; ~ |[N(1,1)|, and we generate
measurements for ¢ € linspace(0, 20, 200). In total, we create 100000 samples of size 200 to serve as training
data. We perform the Fourier transform for real-valued inputs for each time series in the dataset and we
use the square roots of the power spectrum components (i.e. the absolute values of the Fourier coefficients)
as the statistics to constrain when training the GAN; that is, we have 101 separate constraints (compare

Appendix |C.1)).

In Figure [2] results for the different GAN variants are depicted. The data generated by the pcGAN matches
the true distributions very well. The method of comes in second, managing to cover the
correct range of constraint values, but failing to adhere to the precise shapes of the PDFs. The unconstrained
WGAN, WGAN-GP and SNGAN are distinctly worse and tend to assign too much weight to the highest
peak of the distribution.

Under review as submission to TMLR

dZ (1) Fi(1) Ve(d) V()
] x| 025 x 14 X x
6000 5 % x o
" x < 1 % x 1.6 x x
5000 x x x 0.204 x ¥ x
x 1.0 1.4 x x
4000 X
0.15
x x 08 1.2
3000 x X x
0.10 x " X 0.6 x 10 x x
2000 x N x
X
04
10004 % N 0.054 x 0.8
0.2 x
0 * 0.00 1 x L 0s ¥
g 2 H Z z g e H 2 z g e H 2 H g e H 2 =
B g = g = g = g
s = = =

Figure 3: (Synthetic example) The different GAN variants are evaluated via different performance metrics,
defined in Section the Fréchet distance dp, the F1 score, the agreement of the constraint distributions V.,
and the agreement of the distributions of a selection of high-level features f/f. The arrows indicate whether
high or low values are better. Three runs have been conducted per model, where each cross corresponds to
the outcome of one run. Parameters for the pcGAN: bs = 256, A = 500, ¢ = 0.9, h = KL.

w000 dZ (L) Ve ()
0.359 -
x X x X d? (L) Ve(d)
4500 4 x 1.0+
030,x§xx 4500 % x
4000 4 *x % 0.99
4000 4 x
3500 0.254 % : 0.8
e x 3500 4 1%
3000 % 0204 % 0.7
2500 X * x 3000 4 x 0.6
x X% 0.15 x
2000 x X 2500 < 05
X x 4
130045 XX X ¥ wu| 017 % 2000 X 04 X N
] ¥ x X 03 x
1000 x| o054 % 1500 4 ¥ X % % x ’ x % ¥
n n o owmoaoun n o x ¥ x 0.2 x M 2 ¥
s s o Tecls s 3 1000 4
4 5l bl gl 4 s o o g g g g s o o g g g g
< <% ®ssSa <5 I S 2 = ~ n S I S 3 = ~ a S
] S8 a2 f s 89 ~ u [} AL AL A W ~ u [X A A 0
) B 85 bhan sS=2 ~ = < <~ = L
Iy o o o) non
3 5 b 3 6 b
33 33

(a)

Figure 4: (Synthetic example) The impact of different parameter choices on the performance of the pcGAN
is evaluated. (a) Different batch sizes with and without historical averaging are considered (with A = 500,
h = KL). The different colors indicate which columns belong to the same batch size. (b) Different values of
the weighting coefficient A are considered (with bs = 128, ¢ = 0.9, h = KL).

In Fig. 3] we evaluate the performance of the different models in terms of the evaluation metrics defined in
Section 5.1l The results for the constraint distributions are well reflected here and the unconstrained versions
of the GAN tend to perform worse than both the pcGAN and the method of [Wu et al.| (2020) on metrics
other than the F1 score. When considering the F1 score, SNGAN and pcGAN are ahead of the other models
and perform comparably. Between the pcGAN and Wu et al.| (2020), pcGAN outperforms |Wu et al.| (2020) in
all metrics apart from dg, where the method of [Wu et al.| (2020)) is slightly better. This makes sense since dg
only evaluates agreement of the first and second-order moments of the distribution; the latter are precisely
what the method of Wu et al.| (2020) constrains.

In Fig. [@ we evaluate the behavior of the pcGAN when various training parameters are changed. In the left
part of the figure, we consider the impact that the batch size and the historical averaging have on the results.
Both dp and constraint fulfillment improve with increasing batch size, although we observe diminishing
returns for batch sizes larger than 256. The inclusion of historical averaging improves dg, with higher values
of e yielding larger improvements, whereas the intermediate value € = 0.5 seems to be best for constraint
fulfillment. The larger the batch size, the smaller the impact of historical averaging.

In the right-hand plots of Fig. [4] the impact of the global weighting factor A is investigated. A clear
improvement is visible for both dr and the constraint fulfillment, up to A &~ 100. The fact that dp also
improves indicates that the constraints help to produce a better diversity of samples.

In Fig. we evaluate different options for the f-divergence h used for matching the statistics. The results
indicate that the JS divergence performs best and the total variation worst, with the KL divergence giving

Under review as submission to TMLR

) . d? (L) Ve ()
dZ (y) Ve(4) X 1.4 X
X 0.40 x 6000 . %
x x £ x x *
22009 035 5000 X x X 21y b
x 1.0
2000 x x 4000
x 030 x
X 0.8
1800 % 3000 x
" 025 x 06 *
1600 x " % ¥ 20004 x
X x 0.20 § % x 0.4
1400 x x 1000 1 x
x x jod %
x 015 ¥ ¥ x °21 L] X X &
1200 x % 0+
X X z 2 % & 5 & =z 2 z 2 % & 5 g =z &
0 o n @] @ b @ n @ n @ g +Z g + = + 9 + g +Z % + z + 9 +
T T T T T T T T T T T T 28 3 5 § 35 & =z =28 3 5 § 3 & =z
o & o b 4 o W & & b & W g8 = T g tzﬂ g g8 3 I g g s
g ! t : . : : ! : : ! . = 5 e 5
2 [g z o a 2 2 4 g @ a = > 3 & = Y g &
2 2 B I < < L 2 B 2 < < = = s E
(a) (b)

Figure 5: (Synthetic example) (a) Different choices for the f-divergence h quantifying the mismatch
between pirye and pgen in (3)) are considered (with bs = 128, A = 500). (b) Adding the probabilistic constraint
to the different GAN variants (with bs = 256, ¢ = 0.9, h=KL, and A = [500, 500, 500, 2500], respectively, from
left to right).

real PCGAN Wu et al. WGAN WGAN-GP SNGAN

—— KDE

20.0 20.0 200 20.0 20.0

175 175 175 175 175

15.0 15.0 15.0 15.0 15.0

125 ‘ 125
10.0

125 125 125

10.0 10.0 10.0

S

75 75 75 75 75

5.0 5.0) 5.0 5.0 5.0

25 25

OL,_,_A._ I

0- 0.0 0.0 0.0 0.0 = = 0. ==
-10 -09 -08 -07 -06 -05 -10 -09 -08 -07 -06 -05 -10 -09 -08 -07 -06 -05 -10 09 -08 -07 -06 -05 -10 -09 -08 -07 -06 -05 -10 -09 -08 -07 -06 -05
min min min min min min

Figure 6: (IceCube-Gen2) The distributions of minimum and maximum values as obtained by different
models are compared, where the orange lines show the true distribution as obtained via KDE @ From left
to right, the histograms correspond to the real data, the pcGAN, the method of , WGAN,
WGAN-GP, and SNGAN. For the histograms, 20000 generated samples have been considered (or the full
dataset, in case of the real distribution). Parameters for the pcGAN: bs = 256, A = 2, e = 0.5, h = KL.

intermediate results. Furthermore, we observe that increasing the factor € for the historical averaging tends
to improve the results; only for the JS divergence does the constraint fulfillment worsen slightly when going
from e = 0.5 to e = 0.9.

In Fig. we investigate whether adding the probabilistic constraint to GAN variants other than the WGAN
also leads to improvements in their performance. Both d% as well as V. exhibit improved performance when
including the constraint, for all of the models.

We conclude that the probabilistic constraint holds promise for improving the performance of many different
GAN variants. When training the pcGAN, larger batch sizes are advantageous. For smaller batch sizes, the
historical averaging can give significant improvements. When choosing the f-divergence for matching the
constraints, the KL divergence or the JS divergence should be selected rather than the total variation. The
weighting parameter A is essential to consider when tuning the pcGAN.

The architectures used for the discriminator and generator were inspired by the DCGAN architecture and the
ADAM optimizer (Kingma and Ba, [2015) was used for optimization. In terms of execution time, the pcGAN
takes about twice as long to train as the unconstrained WGAN. A detailed description of the architecture,
settings for the training procedure, and samples as obtained from the different models can be found in

Appendix [C.2]

Under review as submission to TMLR

d?({) Fi(1) Ve () V(L)
0.80
x 0.55 x x x
| 1.04
50 0.501 x % 0.75 4 % x
X
40 0.45 x 0.8 x| 5704
x x x x x %
0.40
30J o X < X 0.6 x 0.65 *
0351 % < x ¥
20 x X x ¥
x x| 030 x 0.4 0.60
X ¥
10 0.25 x 0.55 &
x 024 % x x
) x % 0.207 % o 0.501 %
= = z o z z = = o = =z ~ = o =z = = = o =
i I & § 3 : 3§ §¥ 3 g I § % i i 3§ § 3
= = = =
2 § g z 2 2 § ES z = g § H ES Z g g = 3z &
= s = =

Figure 7: (IceCube-Gen2) The different GAN variants are evaluated via different performance metrics,
defined in Section the Fréchet distance dp, the F1 score, the agreement of the constraint distributions V,
and the agreement of the distributions of a selection of high-level features ‘_/f. The arrows indicate whether
high or low values are better. Three runs have been conducted per model, where each cross corresponds to
the outcome of one run. Parameters for the pcGAN: bs = 256, A =2, ¢ = 0.5, h = KL.

5.3 IceCube-Gen2 Radio Signals

The IceCube neutrino observatory (Aartsen et all 2017) and its planned successor IceCube-Gen2 (Aartsen
et al., [2021)) are located at the South Pole and make use of the huge ice masses present there in order to
detect astrophysical high-energy neutrinos. Deep learning methodology has already been employed to extract
information such as shower energy or neutrino direction from radio-detector signals (Glaser et al. [2023;
Holmberg), 2022)). [Holmberg| (2022)) also investigated the use of GANs to simulate detector signals. We are
going to consider the filtered Askaryan radio signals from [Holmberg| (2022), which were generated using
the NuRadioMC code (Glaser et al.l |2020) according to the ARZ algorithm (Alvarez-Muniz et al., |2010)).
These signals take the form of 1D waveforms and in our experiments we want to focus solely on the shape
of these waves, not their absolute amplitudes; this is achieved by normalizing each signal to its maximum
absolute value. We use the pcGAN to constrain the generated data on the distributions of the minimum and
maximum values of the signals.

The results are depicted in Fig. [f] The pcGAN matches the characteristics of both minimum and maximum
distribution well. In particular, it manages to match the spikes at -1 and 1 more accurately than any of the
other models. The method of (Wu et al., [2020), on the other hand, assigns too much weight to the lower
maxima in the middle of the plots and does not achieve sudden spikes at -1 and 1. Out of the remaining
models, WGAN-GP matches the distributions best, with only slightly less pronounced spikes at -1 and 1
than the pcGAN.

In Fig. [7} the evaluation metrics are depicted for the GAN variants. Also here, pcGAN improves upon
WGAN. WGAN-GP performs best for dp and the F1 score, followed by pcGAN and SNGAN, which are
almost even. The method of [Wu et al.| (2020]) performs a bit worse than pcGAN on metrics other than dp.

The network architecture used for the GANs is based on that from [Holmberg| (2022)). More details on the
training procedure, as well as plots of generated samples, are given in Appendix

6 Conclusions and Future Work

We have presented the probabilistically constrained GAN (pcGAN), a method to incorporate probabilistic
constraints into GANs. The method is expected to be particularly useful for scientific applications, where
it is especially important for generated samples to represent the true distribution accurately and where
suitable statistics to be matched can be identified through domain knowledge. For a given statistic z, this is
achieved by adding the mismatch between the corresponding true and generated distribution as quantified via
a suitable f-divergence to the generator loss. Kernel density estimation is employed to obtain representations
for the distributions of the statistic. By adequately weighting the different loss terms, a large number of
statistics can be matched simultaneously.

10

Under review as submission to TMLR

We have evaluated our method using two different datasets. Our experiments clearly demonstrate that the
pcGAN is effective at matching the chosen dataset statistics. In terms of the evaluation metrics, it constitutes
a significant improvement over the standard WGAN and often manages to outperform WGAN-GP, SNGAN,
and the method of (Wu et all 2020). Combining the probabilistic constraint with GAN variants other than
the WGAN can also improve the respective models.

For future work, it would be interesting to extend the method to consider the joint distribution of different
statistics, in order to also include correlations between them in the constraint. Furthermore, it would be
important to find a way to make the method compatible with conditional GANs in order to widen the range
of possible applications. Investigating the applicability of the approach to other generative models, such
as autoencoders (Kingma and Welling, [2014) or denoising diffusion probabilistic models (Ho et al., [2020),
constitutes another promising avenue for future research.

References

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014.

Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. How generative adversarial networks and
their variants work: An overview. ACM Computing Surveys (CSUR), 52(1):1-43, 2019.

Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. A review on generative adversarial
networks: Algorithms, theory, and applications. IEEFE transactions on knowledge and data engineering,
2021.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee. Generative
adversarial text to image synthesis. In International conference on machine learning, pages 1060-1069.
PMLR, 2016.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square
error. 2016. 4th International Conference on Learning Representations, ICLR 2016.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1125-1134, 2017.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4681-4690, 2017.

Divya Saxena and Jiannong Cao. Generative adversarial networks (GANs) challenges, solutions, and future
directions. ACM Computing Surveys (CSUR), 54(3):1-42, 2021.

Andres C Rodriguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphaél Sgier, Janis Fluri, Thomas
Hofmann, and Alexandre Réfrégier. Fast cosmic web simulations with generative adversarial networks.
Computational Astrophysics and Cosmology, 5(1):1-11, 2018.

Francisco Villaescusa-Navarro, Daniel Anglés-Alcazar, Shy Genel, David N Spergel, Rachel S Somerville,
Romeel Dave, Annalisa Pillepich, Lars Hernquist, Dylan Nelson, Paul Torrey, et al. The CAMELS project:
Cosmology and astrophysics with machine-learning simulations. The Astrophysical Journal, 915(1):71,
2021.

Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Accelerating science with generative adversarial
networks: an application to 3d particle showers in multilayer calorimeters. Physical review letters, 120(4):
042003, 2018.

11

Under review as submission to TMLR

Yasir Alanazi, Nobuo Sato, Tianbo Liu, Wally Melnitchouk, Pawel Ambrozewicz, Florian Hauenstein,
Michelle P. Kuchera, Evan Pritchard, Michael Robertson, Ryan Strauss, Luisa Velasco, and Yaohang
Li. Simulation of electron-proton scattering events by a feature-augmented and transformed generative
adversarial network (FAT-GAN). In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pages 2126-2132, 2021.

Raghav Kansal, Anni Li, Javier Duarte, Nadezda Chernyavskaya, Maurizio Pierini, Breno Orzari, and Thiago
Tomei. Evaluating generative models in high energy physics. Physical Review D, 107(7):076017, 2023.

Bernard W Silverman. Density estimation for statistics and data analysis, volume 26. CRC press, 1986.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422-440, 2021.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco
Piccialli. Scientific machine learning through physics—informed neural networks: where we are and what’s
next. Journal of Scientific Computing, 92(3):88, 2022.

Panos Stinis, Tobias Hagge, Alexandre M Tartakovsky, and Enoch Yeung. Enforcing constraints for interpo-
lation and extrapolation in generative adversarial networks. Journal of Computational Physics, 397:108844,
2019.

Liu Yang, Sean Treichler, Thorsten Kurth, Keno Fischer, David Barajas-Solano, Josh Romero, Valentin
Churavy, Alexandre Tartakovsky, Michael Houston, Mr Prabhat, et al. Highly-scalable, physics-informed
GANs for learning solutions of stochastic PDEs. In 2019 IEEE/ACM Third Workshop on Deep Learning
on Supercomputers (DLS), pages 1-11. IEEE, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential equations.

Journal of Computational physics, 378:686-707, 2019.

Gul Rukh Khattak, Sofia Vallecorsa, and Federico Carminati. Three dimensional energy parametrized
generative adversarial networks for electromagnetic shower simulation. In 2018 25th IEEFE International
Conference on Image Processing (ICIP), pages 3913-3917, 2018.

Gul Rukh Khattak, Sofia Vallecorsa, Federico Carminati, and Gul Muhammad Khan. Particle detector
simulation using generative adversarial networks with domain related constraints. In 2019 18th IEEE
International Conference On Machine Learning And Applications (ICMLA), pages 28-33, 2019.

Zeng Yang, Jin-Long Wu, and Heng Xiao. Enforcing imprecise constraints on generative adversarial networks
for emulating physical systems. Communications in Computational Physics, 30(3):635-665, 2021.

Jin-Long Wu, Karthik Kashinath, Adrian Albert, Dragos Chirila, Heng Xiao, et al. Enforcing statistical
constraints in generative adversarial networks for modeling chaotic dynamical systems. Journal of

Computational Physics, 406:109209, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International conference on machine learning, pages 214-223. PMLR, 2017.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of Wasserstein gans. Advances in neural information processing systems, 30, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative
adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs trained
by a two time-scale update rule converge to a local Nash equilibrium. Advances in neural information
processing systems, 30, 2017.

12

Under review as submission to TMLR

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing generative
models via precision and recall. Advances in neural information processing systems, 31, 2018.

Tuomas Kynkéanniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision and
recall metric for assessing generative models. Advances in Neural Information Processing Systems, 32, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
International Conference on Learning Representations (ICLR), 2015.

Mark G Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen,
T Anderson, I Ansseau, et al. The IceCube neutrino observatory: instrumentation and online systems.
Journal of Instrumentation, 12(03):P03012, 2017.

Mark G Aartsen, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, P Allison,
NM Amin, et al. IceCube-Gen2: the window to the extreme universe. Journal of Physics G: Nuclear and
Particle Physics, 48(6):060501, 2021.

Christian Glaser, S McAleer, Sigfrid Stjarnholm, P Baldi, and SW Barwick. Deep-learning-based reconstruction
of the neutrino direction and energy for in-ice radio detectors. Astroparticle Physics, 145:102781, 2023.

Anton Holmberg. Fast simulations of radio neutrino detectors: Using generative adversarial networks and
artificial neural networks, 2022.

Christian Glaser, Daniel Garcia-Ferndndez, Anna Nelles, Jaime Alvarez-Muniz, Steven W Barwick, Dave Z
Besson, Brian A Clark, Amy Connolly, Cosmin Deaconu, KD de Vries, et al. NuRadioMC: Simulating the
radio emission of neutrinos from interaction to detector. The Furopean Physical Journal C, 80:1-35, 2020.

Jaime Alvarez-Muniz, Andrés Romero-Wolf, and Enrique Zas. Cerenkov radio pulses from electromagnetic
showers in the time domain. Physical Review D, 81(12):123009, 2010.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840-6851, 2020.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In International conference
on machine learning, pages 1718-1727. PMLR, 2015.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural networks via
maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906, 2015.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabas Péczos. MMD GAN: Towards
deeper understanding of moment matching network. Advances in neural information processing systems,
30, 2017.

13

Under review as submission to TMLR

dZ (1) Fi(1) Ve (d) V()
2400 1 x 018 x 032 x x
% 0.90
2200 0164 0.30 N
x| o085
0.28 x
2000 x 0.144 x x x bod x
< 0.26 x x 0.80
1800 0.124
% 0.24 x x x
1 x x 0.10 x x| 07 x %
1600 X x : " x 0221 x x X *
x 0.70 x
14004 x 0.08 % x X 0.204 % X N x x
] 0.65
1200 % x 0.06 x x 0.18 .
x 0.044] o16{X 0.60 1%
© S © = M © © © M S © M M © © c ”
[0 I by i S 0 I b5y T S I 0 g T S i i & v 8
x ~ Il X~ I ~ 1 x I x 1 x I x 1 x I
M x x x M ~ ~ x

Figure 8: (Synthetic example) The pcGAN with different choices of kernel k is evaluated via different
performance metrics, defined in Section the Fréchet distance dp, the F1 score, the agreement of the
constraint distributions V., and the agreement of the distributions of a selection of high-level features Vf.
The arrows indicate whether high or low values are better. Three runs have been conducted per model, where
each cross corresponds to the outcome of one run. Parameters: bs = 128, A = 500, ¢ = 0.9, h = KL.

A Algorithm to Determine f;

In order to determine the optimal value of f$ for a Algorithm 3 Determining the optimal value of f3

given constraint zg in @, we perform a grid search
over possible values f,. For each value of f,, we
evaluate the mismatch between the true distribu-
tion Pirue(2s) and the generated distribution
Pgen(2s) (8) via the f-divergences h.

The minibatches are sampled from the true data
since the aim is to obtain a mismatch as small as
possible for true data. The obtained values for the
mismatch are then averaged over 50 iterations and
subsequently, the value f, corresponding to the min-
imum mean value is determined; this value is the
desired optimal value f2. This procedure is summa-
rized in Algorithm [3]

B Additional Results

Input: true data {zs}; Prrue(2s), b

Output: f3

¢ = std(zs)

Navg = 50

ay, = logspace(—1,2,200)

for in € [0, Navg);is, € [0,len(ay,)]; do
sample minibatch {zs}

= Gy, li,]
determine Pgen(2s) according to using o
H[ifg’iN] = h(ﬁtruc(zs)aﬁgcn(zs))

end for

iy, = min (mean (H,dim = 1))

fs =ay,lig,]

In this appendix, we present more experiments and give additional results for the experiments discussed in

the main paper.

B.1 The Choice of Kernel

Here, we investigate the impact that the specific choice of kernel for approximating the distributions in
has on the performance of the pcGAN. We consider the following kernels: Gaussian (G), uniform (u),
Epanechnikov (epa), triweight (tri), and cosine (cos). The kernel widths are determined analogously to the
standard deviation @ in case of the Gaussian kernel, via Algorithm [3| The results are depicted in Fig.

It is apparent that the Gaussian kernel performs best overall. The reason why the Gaussian kernel is superior
presumably lies in its unbounded support. This means that there will always be some overlap between real
and generated distributions, as obtained via KDE, enabling informative gradients.

B.2 Using Maximum Mean Discrepancy to Match Statistics

The maximum mean discrepancy (MMD) is a kernel-based statistical test that can be employed to determine
whether two distributions are the same (Gretton et al., |2012)). It has been used as a loss function to establish

14

Under review as submission to TMLR

dZ (1) Fi(1) Ve (L) Ve (L)
014 12
3250 x x x x x
o124 % X 11 x 1107 x N
3000 x 1.05 1
x .
x| 0101 x 10 x x X x
27501 x X % 09 % X X % 1.004 X %
x x 0.081 % x x x x
25009 % x x x 0.95 %
x 0.8 ¥ x x
22501 % 0.06 1 0.90 x
X Xy X % x 0.7 x . % x %
i x 041 x .
2000 . X % x 0.0 x " x x 0s]¥ x 085 "
X
1750 % % 0.02 05 X 080
1500 x x % 0.75 x
W s 4 4 m o« e o= o o 4 e 4 b o~ e o= W e 4 4 a & e =
[[[o I I : f) ["o I [: f f) "o Il [: [) fi o [[:
§ § § s 1 § § o § § § § U g § o s § § § U g § o € § § s U § § °
4 w6 s o S 4 o4 4 w6 s g S 4 o4 o G w6 s g 8§ 4 o4 o 4 W s s S 4 4 =
S S o & wu oo o S S 4 & w\ o o S S 4 & «b o o I S S & & «a4 o o
[[I (-1 1 S 1 [[oS 1 1 S 1 1 I S I 1 S I i I I o [I S
< & L L 0§ & & ® I T T S S I . T s T S R . T T T T
< " < W < " ~< w
S B B S
Il Il [} [}
< < < <

Figure 9: (Synthetic example) The pcGAN with MMD loss is evaluated for different weighting factors
A and kernel widths o via different performance metrics, defined in Section the Fréchet distance dp,
the F1 score, the agreement of the constraint distributions V., and the agreement of the distributions of a
selection of high-level features Vf. The arrows indicate whether high or low values are better. Three runs
have been conducted per model, where each cross corresponds to the outcome of one run.

generative moment matching networks, a distinct class of generative models (Li et al.l |2015; [Dziugaite et al.l
2015). While an adversarial approach has been suggested to improve MMD networks by learning more
suitable kernels (Li et al., [2017)), they constitute their own model class and not an extension of the GAN. In
this appendix, we do not consider MMD networks but explore instead the effectiveness of using MMD as the
loss function for matching the high-level statistics. That is, we use the MMD loss instead of f-divergences

(compare Section [4.1)) in (3).
The kernel maximum mean discrepancy between two distributions is defined as
MMD? = E[k(X, X') — 2k(X,Y) 4+ k(Y,Y")], (15)

where X denotes real data and Y generated data. This leads to the following loss function, where we estimate
the expectations over minibatches and omit constant terms (i.e. terms that do not contain Y):

1 9 M N
£MMD = m Z k(ymaym/) - m Z Zk(ymvxn)v (16)

m#£m/ m=1n=1
where M is the number of generated samples and N the number of real samples in the current minibatches.

One drawback of this approach is the mixed loss term in equation ; it would be too computationally
costly to take into account the entire dataset at each iteration wherefore we also need to batch the real data.
When using f-divergences in loss of our approach, similar problems can be circumvented by evaluating
Ptrue ONce on a fixed grid in advance of the training. Here, the same trick does not work, since the statistics
as extracted from the generated data determine the points at which the kernel k£ needs to be evaluated.

The results for the MMD loss are depicted in Fig. [0] We consider different weighting factors for the loss
term, as well as Gaussian kernels with different bandwidth. The standard deviations of the Gaussian kernels
for the different constraints are given by the values o, in @ times the factors o(given in the figure. When
multiple factors are given, then the sum of the corresponding Gaussian kernels is used. Both in terms of
matching the constraints and in terms of the performance metrics, the method performs better than the
standard WGAN;, but worse than the pcGAN (compare Fig. [3).

B.3 Remaining Quantities

In Figs. and we give the evaluation metrics corresponding to Figs. [4|and 7?7, that were omitted from
the main paper for the sake of brevity. Furthermore, in Fig. we give a plot of the constraint fulfillment
for the experiment were we combined the probabilistic constraint with the different GAN variants. From
the figure, it is apparent that all of the constrained models reproduce the constraint distributions well, with
WGAN-GP + pc giving the smoothest fit.

15

Under review as submission to TMLR

Fi(1) V(L)
0.30 o
x x Fi(1) Ve(L)
0.8 x x x
0.25 0.18
* x X x 1.4
x o x X7 x 0.7 x % s % 0.16
0.20 " x x x x X X x x x
X M x xxx x X x 0.14 124 %
x x x X x
x 0.6 x
0.15 x X Xx % x x X x X o 0.12 x x x
¥ x x x x % x 1.0
¥ X ¥ X xx X 0104 % x x o
x 05 x x x
0101 X x x x x x x
% x x % 0.08 X x 0.8 x % x x
x x x X
0.06 x % X x
ocmMoaomoaomnaonaona OCmMaomMaomnaonaonao x x §
Tooladaladlddlad lcclooloolooloos 0.6 :
CTTeTTeTT T TeTT CTTeTTeTTeTTeNT 2 2 2 2 & o P 2 z <
R A R I A I A Y S 2 2 g 8 8 8 s 2 g 8 g 8 8
IR R R R R R R R R) S 3 5 § @ 3 0 s g o N a5
a PSS T SN TRR R TS S 2T P TSSTRL N An~SS ~ [[< < < 0 < I I A A A n
CaaaW T Q0w 4wy b N TR S T W= = = ~ ~ ~ ~
o R B S S N N B B S S N R N S T
8387838 8385414 838788838244
33 34
(a)

Figure 10: (Synthetic example) The impact of different parameter choices on the performance of the
pcGAN is evaluated. (a) Different batch sizes with and without historical averaging are considered (with
A =500, h = KL). The different colors indicate which columns belong to the same batch size. (b) Different
values of the weighting coefficient A are considered (with bs =128, ¢ = 0.9, h = KL).

_ Fi (1) Ve(L)
Fi(1) V(L) x M x
x x 0.25 164 x x *
0.225
0.85 x
0.200 0.20 1.4 x x
x x 0.80
. x %
x
0.175 % 015 % x " % 1.2
0.150 x 075 % ¥ x x x
x x x x X 1.04
x X x 0.70 x x 0104 X x X % 2 x
0.125 x X x 1704 x . % M
0.8
x
0.100 x 0.65 x x x
x x x x x 0.05 % % x
0.075 x x x X 0.6 o
x 0.60 x x ¥
00509 x X 0.00
T T T T T T T r T T T T zZ 8. % 8 & 8 % & Z 8. % & & 8 % &8
n a " o n & " o " o P o g 2 & ¢+ 2 T & 3 g 2 & § 2 ¢ 0§ 5
S S o o S = S S S =)] S = g 9 .z = = g ¢ .z =
T T i i 7 T i T T T i T Z0 2 = 5 & z 29 2 = & oz
4 4 4 4 4 4 4 4 4 4 4 4 g2 = £ g ¢ g gg £ & g 9 g
S S J J oy [y 3 3 J J w g == ° Z H == @ z =
g s ¥ i T T z g b b T T 2] o 2 I} @
< < = < < < < < = = < < = =
(a) (b)

Figure 11: (Synthetic example) (a) Different choices for the f-divergence h quantifying the mismatch
between pirue and pgen in are considered (with bs = 128, A = 500). (b) Adding the probabilistic constraint
to the different GAN variants (with bs = 256, ¢ = 0.9, h=KL, and A = [500, 500, 500, 2500], respectively, from
left to right).

C Details on the Experiments

In this appendix, we give additional information on the experiments conducted in Sections[5.2}5.3] in particular
on the network architectures and the training parameters. The code for the project will be made available on
GitHub; note, however, that only the data for the synthetic example is available there.

C.1 Constraints and High-level Features

We start by giving an overview of the different quantities that have been employed either as constraints or
performance metrics.

For the 1D signals z of length N, = 200 in Sections and we used the minimum and maximum
. o 1 N,—1
values, min = min(zo,...,2n,—1), max = max(zo,...,TN,—1), ean values, mean = ~ Yol " @i, the mean
N,—1 . .
absolute values, mean(abs) = NL Yoo ||, the number of zero crossings, Ny, and the number of maxima,
Nax, of the curves.

16

Under review as submission to TMLR

WGAN + pe (pcGAN) etal juetal + pc WGAN-GP + pe SNGAN + pc

Figure 12: (Synthetic example) The distributions of three different power spectrum components ps as
obtained with the different GAN variants, with and without probabilistic constraint, are depicted, where the
orange lines show the true distribution as obtained via KDE @ For the histograms, 20 000 generated samples
have been considered (or the full dataset, in case of the real distribution). Parameters for the probabilistically
constrained GANs: bs = 256, e = 0.9, h=KL, and A = [500, 500, 500, 2500], respectively, from left to right.

The discrete Fourier transform for real-valued inputs (as implemented in torch.fft.rfft) was utilized to obtain
the complex Fourier coefficients for positive frequencies k € [0, L%J + 1] below the Nyquist frequency,

N,—1 .
X = Z Tpe TN (17)
n=0

and the corresponding power spectrum components are obtained as Sy = NL|X x|?. The total spectral energy

Ne
is then calculated as S =) ,EjOJH Si. When employed as constraints, we did not constrain on the power

spectrum components directly, but instead on ps[k] = v/N,Sj.

For the different experiments, we considered the following set of high-level features: mean, mean(abs),
max-min, E, N,., and Np.x. For the IceCube-Gen2 experiment, we omitted the mean, since it did not exhibit
interesting structure in its distribution.

C.2 Synthetic Example (Section [5.2)

The synthetic dataset consists of 100000 samples of size 200, generated as described in Section [5.2] For
this example, we employed convolutional networks for both the discriminator and generator; details on the
corresponding network architectures are given in Tables 2] and [3] respectively. In layers where both batch
normalization and an activation function are listed in the column ‘Activation’, batch normalization is applied
to the input of the layer whereas the activation function is applied to the output. Padding is employed in
each layer such that the given output sizes are obtained; reflection padding is utilized.

Table 1: Hyperparameters used for the experiments.

EXp eriment Ni Ir fsched itsched ﬂl 52 Clamping

Synthetic 1' 100000 2e-4 0.5 70000 0 0.9 [0,0.005]
IceCube-Gen2 (5.3) 100000 5e-4 0.5 40000 O 0.9 [0,0.1]

In Figure the search for the best values f; in is illustrated for h = KL. It is apparent, that there
is a clear, batch size-dependent minimum of the KL-divergence for each constraint, with larger batch sizes
tending towards larger values of f7; this is due to the fact that more samples in the minibatch allow for a
more fine-grained approximation of the generated distribution. In the top right plot, optimal values of f7
are depicted for all components ps[i] of the power spectrum. The spike around ¢ = 10 is the result of some
outliers in the values of the power spectrum components; they lead to a high standard deviation of the true

17

Under review as submission to TMLR

ps [0] ps [15] ps [30]

— bs=32 — bs=32 — bs=32
bs=64 bs=64 bs=64
—— bs=256 —— bs=256 —— bs=256

v o v
1
107t 10t

1072 1072 1072
107t 10° 10t 10? 107t 10° 10t 10? 107! 10° 10! 10?

=
o
=
A
=
A

KL divergence
=
=3
=
=3

-
5
i

i - bs=32
0.05 bs=64
-~ bs=256

--- bs=32 1.4

bs=64
--- bs=256 12
—— KDE

-- bs=32
bs=64
-- bs=256

—— KDE

0 20 40 60 80 4 6 8 00 02 04 06 08 1.0 12
ps [0] ps [15] ps [30]

Figure 13: (Synthetic example) Determining optimal values f2 for h = KL. Top left: The three plots
on the top left depict the dependency of the KL divergence on the factor f, for different power spectrum
components; the curves have been averaged over 50 minibatches sampled from the original dataset. Bottom
left: The first three plots in the bottom row depict the distribution of the constraint values together with
their KDE representation, as well as curves obtained via from minibatches of different size (not averaged);
it is between them that the KL divergences in the top row have been calculated. Top right: Optimal values
of the factor f; are depicted for different batch sizes, where the index 4 gives the respective component of the
power spectrum.

distribution, which in turn requires a large f; in order to obtain small enough standard deviations for the
KDE to resolve the narrow peak well.

In the bottom row, approximations of the generated distributions as obtained via the minibatches are depicted.
It is apparent that the mixtures of Gaussians approximate them reasonably well, with larger batch sizes
typically giving better results.

In Figure [TI5] samples from the true distribution as well as generated samples from the different GANs are
depicted. All of the GANs produce reasonable-looking results, although upon closer inspection it becomes
apparent that they do not necessarily constitute a superposition of two sine waves. Only the WGAN seems
to have a tendency to produce rugged curves.

C.3 IceCube-Gen2 (Section

For this example, we considered 50000 IceCube-Gen2 radio-detector signals of size 200 (generated using
the NuRadioMC code (Glaser et al.| [2020)) according to the ARZ algorithm (Alvarez-Muiiz et al. [2010)),
normalized to their respective maximum absolute values. The networks employed are a mixture of convolutional
and fully connected networks, which have been based on the architectures used in [Holmberg) (2022)); details
on discriminator and generator architectures are given in Tables [4] and [5] respectively. For the discriminator,
the input to the network is first fed through four convolutional layers in parallel, the outputs of which are
subsequently concatenated into one long array. The LeakyReLU activation function with factor 0.2 is applied.

In Figure @ a plot on the process of determining optimal values for f7 is shown at the example h = KL.
Same as for the synthetic example (compare Fig. , the KL divergences as a function of f, exhibit clear
minima that depend on the batch size.

In Figure samples from the true distribution as well as generated samples from the different GANs are
depicted. Altogether, most of the generated samples look good, with none of the models clearly outperforming
the others.

18

Under review as submission to TMLR

10t 10t

— bs=32 — bs=32 20

38

36

kS

34

KL divergence
-
1)
2
=
)
2

32

107t 107!
107t 10° 10t 102 107t 10° 10t 102 0.0 0.2 0.4 0.6 0.8 1.0
fo fo i

801 ---- bs=32 30 -==- bs=32
70 bs=64 bs=64

-- bs=256 25 ---- bs=256
601 — KDE —— KDE
50 20
40 15
30 10
20
10 Al 3

AP h
ola AR ALY ; o
0.7 0.8 0.9 1.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5
max min

Figure 14: (IceCube-Gen2) Determining optimal values f2 for h = KL. Top left: The two plots on the
top left depict the dependency of the KL divergence on the factor f,; the curves have been averaged over 50
minibatches sampled from the original dataset. Bottom left: The first two plots in the bottom row depict
the distributions of the constraint values together with their KDE representation, as well as curves obtained
via from minibatches of different size (not averaged); it is between them that the KL divergences in the
top row have been calculated. Top right: Optimal values of the factor f are depicted for different batch
sizes, where the index ¢ gives the respective constraint.

C.4 Training Parameters

Here, we summarize the training parameters used for the different experiments. Nj; gives the number of
training iterations, Ir the learning rate, and A the weighting factor for the constraints in . In the column
‘clamping’, the range is given to which network parameters of the discriminator D were clamped in order to
enforce the Lipschitz constraint in WGANs (Arjovsky et al., |2017)). The ADAM optimizer (Kingma and Bal
2015) was used for training the networks, with hyperparameter values 8; and f33; a scheduler was employed
that reduced the learning rate by a factor of ficneq after itseneq iterations. The weighting factor for the
statistical constraint from [Wu et al.| (2020) was chosen as Awy = 1. The weighting factor for the gradient
penalty in WGAN-GP was chosen as A\gp = 10. The parameter m, which gives the number of discriminator
updates per generator update, was chosen as 1.

19

Under review as submission to

TMLR

Table 2: Discriminator architecture for the synthetic example.

Layer Output Size Kernel Size Stride Activation
Input 1 % 200

Conv 32 x99 3 2 BatchNorm, ReLU
Conv 32 x 99 3 1 BatchNorm, ReLLU
Conv 32 x99 3 1 ReLU

Conv 64 x 48 3 2 BatchNorm, ReLU
Conv 64 x 48 3 1 BatchNorm, ReLU
Conv 64 x 48 3 1 ReLLU

Conv 128 x 23 3 2 ReLU

Conv 128 x 23 3 1 ReLU

Conv 128 x 23 3 1 ReLU

Conv 256 x 10 3 2 ReLU

Conv 256 x 10 3 1 ReLLU

Conv 256 x 10 3 1 ReLLU
Flatten 2560

Linear 1

Table 3: Generator architecture for the synthetic example.

Layer Output Size Kernel Size Stride Activation
Input 1x5 BatchNorm
ConvTransp 256 x 25 3 16 BatchNorm, Tanh

Conv 256 x 25 3 1 BatchNorm, Tanh
Conv 256 x 25 3 1 BatchNorm, Tanh
ConvTransp 128 x 50 3 2 BatchNorm, Tanh
Conv 128 x 50 3 1 BatchNorm, Tanh
Conv 128 x 50 3 1 BatchNorm, Tanh
ConvTransp 64 x 100 3 2 BatchNorm, Tanh
Conv 64 x 100 3 1 BatchNorm, Tanh
Conv 64 x 100 3 1 BatchNorm, Tanh
ConvTransp 32 x 200 3 2 BatchNorm, Tanh
Conv 32 x 200 3 1 BatchNorm, Tanh
Conv 32 x 200 3 1 Tanh
Conv 1 x 200 3 1 Tanh

20

Under review as submission to TMLR

Table 4: Discriminator architecture for the IceCube-Gen2 data. The input is first fed through the layers
Conv01-Conv04 in parallel and the outputs are subsequently concatenated into one long array.

Layer Output Shape Kernel Size Stride Activation
Input 1 x 200
Conv01 32 x 49 5 4 LeakyReLU
Conv02 32 x 47 15 4 LeakyReLLU
Conv03 32 x 44 25 4 LeakyReLU
Conv04 32 x 42 35 4 LeakyReLU
Concatenate 32 x 182
Conv 1 x 182 1 1 LeakyReLLU
Linear 92 LeakyReLU
Linear 45 LeakyReLU
Linear 20 LeakyReLU
Linear 1

Table 5: Generator architecture for the IceCube-Gen2 data.

Layer Output Size Kernel Size Stride Activation
Input 5
Linear 24 ReLU
Conv 48 x 24 3 1 ReLU
Conv 48 x 24 3 1 ReLLU
ConvTransp 24 x 49 3 2 ReLU
Conv 24 x 49 3 1 ReLU
ConvTransp 12 x 99 3 2 ReLU
Conv 12 x 99 3 1 ReLU
ConvTransp 6 x 199 3 2 ReLU
Conv 1 x 200 4 1

21

Under review as submission to TMLR

real pcGAN Wu et al. WGAN WGAN-GP SNGAN
1.0 1.0
~0.05
0.14 —o1d
0.54 0.54 0.5 ~0.10
0.04
0.0 —0.24 -0.15
. 0.04 0.04 —o1]
o o . ~0.20
' e ~0.51 —021 ~0.25 1
-0, , J -Lod, -3, . 1o . 0304, . .
0 100 200 0 100 200 0 100 200 0 100 200 100 200 0 100 200
1.0
0.14) -0.14
051 0.0 001
0.51 00
-0.21
004 -0.14 0.0 —0.14 -0.24
-0.24 -0.34
~0.5 1 —0.3 —0:51 —0.21 —0.4 1
T T T T T T T T T T T T —0.41 T T T T T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0 0.75 9 0.0 9
05 0.50 1 0.04 —o1] o]
0.54 0.254
) —021
00 0.00 4 —0.1+ -0.2
001 _051 ~0.25 —031
~0.50 -0.24 —0.44 _03
051, - ~ -101, - - - - - - - -
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0]
-0.10 0104
051 021 051 001 -0.15 1 _0.151
004 0.04 001 o1 ~0.20 ~0.20
—0.25 1 ~0.25
—0.5 0.2+
—0.51 —0.2 ~0.301 ~0.30
-1.01 T T T —0.41 T T T T T T T T T T T T —0.351 T T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0 021
~0.10
) 0.04
051 0.0 05 0.0 ~0.151
~0.201
0.0 0.0 -0.24 -0.24 020
—021 ~0.25
—0.51 ~0.51 —0.41
04 ~0.41 -0.30
—0.41
v v v r v v v r v r v v v v v v v v
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
0.0
0.5 0.5 061 0.0 0.1
-0.14
0.44
) i -0.2
0.0 0.0 . Zo1]
- 034 -021
-0.51 —0.54 -0.
0.04 -0.24
—0.4
-1.01 T T T -1.04 T T T —0.24 T T T T T T T T T —031 T T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0 —0.05 4
0.50 1 o1
) 0.59 0.54 - -0.104
0.5 0251
) ~0.15
0.0 0.0+ 0.0 0.00 -02
~0.20
-0.51 -0.51 | ~0.25 .
—0> 03 -0.254
~0.50
-4 . 104, . \ , . , . > . . . 1 -0.30 4, . .
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

Figure 15: Samples for the synthetic example as obtained from the different models.

Under review as submission to TMLR

real pcGAN Wu et al. WGAN WGAN-GP SNGAN
1.0 1.0 1.0
0.5
0.5 0s 0.54
0.5 : 0.5
0.0+ 0.04 0.04 0.04
0.04 0.04
054 -0.54 0,54 -0.54
054 -0.5
T T A -0 ™ A -101, ™ ~ -1.04, T ™ ™ ™ - 101, ™ ™
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0
0.5 0.5 0.5 0.54
0.5
0.5
0.04 0.04 0.04 001 0.04
0.04
~0.5 -0.5 -0.5 —054 -0.5
0.5
T T T ! T T -1.01 T T -1.01 T T T -1.01 T T T -1.01 T T T
0 100 200 100 200 0 100 200 0 100 200 100 200 0 100 200
1.0 1.0 1.0 1.0
054 0.5
0.5 0.5 0.5 0.5
0.01 0.0
00 0.04 0.0 0.04
~0.5 -0.5
-0.51 —0:51 -0.51 051
~1.04 -1.0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0 1.0 1.0 1.0 1.0
0.54
.5 0.5
0.5 05 0.5 0.5
0.04
0.04 0.0 { ———
0.04 0.0 0.0
054 —o51 -0.5
-0.5
-0.5 —054
. . | -101, J 104 . 17 . 1 ~1.01 , .
0 100 200 0 100 200 0 100 200 100 200 0 100 200 100 200
10 1.0 1.0
0.5 0.54 0.54
0.5 0.5 0.54
0.04 0.0 0.04
0.04 r——| o.04 0.04
-0.5 -0.5 -0.5
=0.51 -0.5 0.5
-1.0 -1.04 -1.04
T T T T T T T T T T T T T T T T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
0.5] J
0.5 0.5 0.5 0.5 0.5 4
0.0+ 0.0 0.0 0.0 0.0 0.0d
—0.51 —0.5 -0.5 —0.5 -0.5 ~0.5
-1.01 T T T -1.01 T T A -1.01, T T ~1.01 T T T —1.01 T T A -101, T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1.0 1.0 1.0
0.5 0.5 0.5
0.5 0.5 1 0.5
0.04 0.04 0.0
004 0.04 0.04
-0.51 -0.54 =0.51
~0.51
-0.5 -0.5
—1.01 T T T 03 T T T T T T =101 T T T —1.01 T T T T T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

Figure 16: Samples for the IceCube-Gen2 dataset as obtained from the different models.

