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Abstract

Precision and Recall are fundamental metrics in machine learning tasks where
both accurate predictions and comprehensive coverage are essential, such as in
multi-label learning, language generation, medical studies, and recommender
systems. A key challenge in these settings is the prevalence of one-sided feedback,
where only positive examples are observed during training—e.g., in multi-label
tasks like tagging people in Facebook photos, we may observe only a few tagged
individuals, without knowing who else appears in the image. To address learning
under such partial feedback, we introduce a Probably Approximately Correct
(PAC) framework in which hypotheses are set functions that map each input to a
set of items, extending beyond single-label predictions and generalizing classical
binary, multi-class, and multi-label models. Our results reveal sharp statistical
and algorithmic separations from standard settings: classical methods such as
Empirical Risk Minimization provably fail, even for simple hypothesis classes.
We develop new algorithms that learn from positive data alone, achieving optimal
sample complexity in the realizable case, and establishing multiplicative—rather
than additive—approximation guarantees in the agnostic case, where achieving
additive regret is impossible.

1 Introduction

Precision and Recall are fundamental metrics in many machine learning applications, including multi-
label learning, medical studies, generative models, information retrieval, and recommender systems,
where the goal is to learn a set for each input and both accurate prediction and comprehensive coverage
are critical. For example, in multi-label learning—where each input may correspond to multiple
labels (e.g., an image containing multiple objects or a group photo containing multiple people)—the
objective is to return the complete set of labels associated with each input. Recommender systems
also rely heavily on precision and recall; for instance, Netflix aims to recommend a list of shows
that includes all those a user would enjoy and excludes those they would not. In medical studies,
precision, called positive predictive value (PPV), and recall, called sensitivity, are key performance
metrics. For instance, if a test predicts that 10 patients have a condition and 9 truly have it, its PPV
(precision) is 90%. If 5 patients actually have the condition and the test correctly identifies 4 of them,
its sensitivity (recall) is 80%. In language identification and generation in the limit Gold (1967);
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Kleinberg & Mullainathan (2024); Kalavasis et al. (2024), hallucination denotes a failure of precision,
where the model produces strings outside the true language, whereas mode collapse denotes a failure
of recall, where the model’s outputs become so constrained that valid, previously unseen strings are
never generated .

A critical aspect of designing such systems is balancing two key metrics:

* Precision — the proportion of output items that are in the ground-truth set. Low precision loss
means that most output items are correct.

* Recall — the proportion of ground-truth items that are included in the output. Low recall loss
means the system captures most of the correct items.

Precision and recall are often at odds. Increasing the size of output set can improve recall but may
reduce precision. In an ideal scenario, we might consider a full information model where, for each
input in the training data, the algorithm has access to the set of all the ground-truth items. This setup
implicitly includes negative examples, as items not in the set are known to be incorrect. At test time,
the algorithm would then predict a set of items for each given input. Such a setting aligns well with
the standard Probably Approximately Correct (PAC) framework Valiant (1984), allowing us to apply
standard PAC solutions (e.g., Empirical Risk Minimization).

However, the assumption of full information is often unrealistic in many applications. In real-world
scenarios, we typically observe only a small fraction of the ground-truth items (e.g., some objects in
an image) during training, with no explicit information about unobserved items (e.g., which objects
are not in the image). This situation is better characterized as a partial-information model. For
instance, on Facebook, for each photo in the training data, we might only know some of the tagged
individuals, without knowing whether any untagged person appears in the photo or not. To formalize
this setting, we consider a simple abstraction: during training, for each input, we observe only a
single item sampled uniformly at random from its ground-truth set. At test time, given a random
input, the model is expected to return the full set of associated items, not just one.

Following standard practice in learning theory, given an input space X and a label space ), we
consider a hypothesis class . Each hypothesis is a set function g : X — 2% that maps each input in
X to a set of labels in ). For example, in the context of multi-label learning, inputs may be images
and items may be objects; a hypothesis maps an image to the set of objects it contains. Our goal is
to find a set function that minimizes both precision and recall losses. These losses are defined with
respect to a target hypothesis g™, which captures the ground-truth label sets, using the standard
counting measure:

gprecision(g) = ]E;cND [|g(x) |\g<g;a)rget(x)|:| and grecall(g) — E(L‘ND [gtarizi':i(\x.;(x)] ,

where D denotes the distribution over inputs. Precision and recall are equal to 1 minus the precision
and recall losses, respectively. Binary and multiclass PAC learning can be viewed as special cases of
our model, where we restricted the set size to be 1. Note that, for each given x, we adopt the standard
counting measure to quantify the difference between g(z) and g*'¢'(x). While other measures are
possible, it is often challenging to define more sophisticated alternatives in a principled and intuitive
way. To the best of our knowledge, the only generalization of precision and recall beyond counting
measure is proposed by Sajjadi et al. (2018), though the resulting notions are relatively complex.
Hence, we will be focusing on the counting measure in this paper and leave a more general notion of
precision and recall as a open question.

We distinguish between two settings- realizable and agnostic. In the realizable setting, we assume the
target hypothesis g™ is in the class H, and, aim to find a hypothesis with small precision and recall
losses. In the agnostic setting, we do not assume that a perfect hypothesis is in the class. Instead, we
aim to compete with the “best” hypothesis in the class, acknowledging that some error is unavoidable.
In the context of the agnostic setting, defining the “best” hypothesis is subtle. One hypothesis might
have high precision but low recall, while another has the opposite. Depending on the application’s
needs, one may prefer higher precision over recall or vice versa.

This naturally leads us to the concept of Pareto-loss objective, which captures the trade-offs between
precision and recall along the Pareto frontier.>

3The term “Pareto” originates from Vilfredo Pareto, an economist who observed that certain distributions
followed a pattern where improvements in one dimension often involved trade-offs in another. The concept



Namely, the “best” hypotheses are on a Pareto frontier, which is the set of hypotheses where no other
hypotheses are better in both precision and recall simultaneously (see, e.g., Figure 1). Here, we try,
given desired precision and recall losses parameters (p, r) to return a hypothesis whose precision and
recall losses (p’, ') satisfy p’ < p and r’ < r. For example, one might aim to optimize precision

while keeping recall below a specific threshold (e.g., at most 0.5).

Our goal is to design algorithms whose sample complexity
is polynomial in the log size of the class and the inverses
of the accuracy and confidence parameters, and in some
cases, on the maximum size of the output (which is ar-
guably small in certain applications). We focus on finite
hypothesis classes and aim for sample complexity bounds
that depend logarithmically, rather than linearly, on the
size of the class. This goal is motivated by standard sam-
ple complexity bounds in PAC learning and is particularly
relevant when training data is costly to obtain, as is often
the case with human-provided feedback.*

Our learning problem is significantly more challenging
than standard supervised learning tasks due to the absence
of negative examples—that is, input-label pairs where the
label is not in the ground-truth set. We observe only pos-
itive examples, making it impossible to estimate precision
loss directly: without knowing which labels are incorrect,
we cannot determine how many incorrect labels a hypoth-
esis might output. This limitation undermines standard
supervised learning approaches, which rely on access to
both positive and negative examples.

In standard supervised learning, a classical solution known
as Empirical Risk Minimization (ERM) involves finding a

empty
set

Recall loss

complete

Precision loss

Figure 1: Example of hypotheses with
varying precision and recall losses. Each
point is a distinct hypothesis, with red
points on the Pareto frontier, showing op-
timal trade-offs between precision and
recall losses. The empty set function
(which always return the empty set) al-
ways achieves zero precision loss (but
has no guarantee on the recall loss),
while the complete set function (which
always return the entire label space )
for any given input x) always achieves

zero recall loss (but has no guarantee on
the precision loss).

hypothesis that best fits the data by minimizing the average
loss over all observed examples. However, in our case, the
absence of negative examples means that ERM cannot be
applied effectively, as there is no way to determine how
well a hypothesis avoids incorrect labels. For example, the complete set function (where g(z) = )
outputs all items) is consistent with every training set, since we have no negative examples to
contradict it. However, such a hypothesis might have poor precision. Without negative examples
in the training set, any hypothesis that covers all observed positive examples appears equally valid,
even if it recommends many irrelevant items and incurs a high precision loss. The failure of the
ERM principle is not unique to our learning problem; it also occurs in other learning problems,
such as multi-class classification Daniely et al. (2015), density estimation Devroye & Lugosi (2001);
Bousquet et al. (2019), and partial concept learning Alon et al. (2022).

In fact, it is not just that ERM would fail; we provide an example in which two hypotheses have
nearly the same recall loss but very different precision losses, making it impossible to determine
which hypothesis has better precision loss based solely on the training data (see Example 1 for more
details). These challenges necessitate novel approaches to learning and evaluating hypotheses.

Our Contributions

* Learning Model: We propose a learning model that operates under partial information, where the
algorithm observes only positive examples. For each input drawn from unknown distribution D, it
observes one label sampled uniformly at random from its ground-truth set. This model reflects

of Pareto frontier, inspired by this principle, represents optimal trade-offs between competing objectives. Our
Pareto loss captures the balance between precision and recall, aiming to improve both while acknowledging the
trade-off.

*While it would be interesting to explore infinite hypothesis classes and characterize them via a combinatorial
measure in the style of VC dimension, the findings in Lechner & Ben-David (2024) suggest that such a dimension
may not exist in this setting. We leave this as an intriguing open question, as addressing it falls beyond the scope
of this work, which focuses on the finite case—a setting that is already challenging.
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real-world constraints and is more practical than assuming access to complete ground-truth set as
done in multi-label learning.
* Realizable Setting: We design algorithms that, given a sample of size
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achieve recall and precision losses of at most € with probability at least 1 — §. We propose two
distinct approaches to achieve this goal: the first circumvents the challenge of estimating precision
by minimizing an appropriate surrogate loss, while the second takes a more intuitive approach
inspired by the maximum likelihood principle Shalev-Shwartz & Ben-David (2014). In essence,
this second algorithm, when presented with two hypotheses consistent with the data, prioritizes
the one with smaller output sizes in a suitably quantified sense.

» Agnostic Setting: We demonstrate that achieving a vanishing additive error, as is standard in
learning theory, is impossible in this setting by providing lower bounds on the sum of precision
and recall losses, with multiplicative factors greater than 1. In the other direction, we show that
constant multiplicative factor guarantees are indeed achievable by adapting our realizable setting
algorithms to the agnostic case. Closing the gap between our upper and lower bounds on the best
achievable multiplicative factor (5 vs. 1.05) remains an open question. For the Pareto-loss case,
we establish both upper and lower bounds for the following question: Given that there exists a
hypothesis in the class with precision and recall losses (p, '), which guarantee pairs (p’, ') are
achievable? Finally, we pose open questions about the optimal factors in the agnostic setting.

Related Work Precision and recall are natural and standard metrics used broadly in machine
learning, spanning applications from binary classification (Juba & Le, 2019; Diochnos & Trafalis,
2021), multi-class classification (Grandini et al., 2020), regression (Torgo & Ribeiro, 2009), and time
series (Tatbul et al., 2018) to information retrieval (Arora et al., 2016) and generative models (Sajjadi
et al., 2018). Beyond precision-recall, another related metric—the area under the ROC curve (AUC)—
has also been extensively studied in the history of binary classification (Cortes & Mohri, 2003, 2004;
Rosset, 2004; Agarwal et al., 2005), with a focus on generalization. Our work, however, studies a
different problem of multi-label learning where the goal is to output a list of labels for each input.
In the context of recommender systems, recommending a list of items has also been addressed in
cascading bandits (Kveton et al., 2015). However, while our objective is to identify the items that each
input likes, their focus is on learning the top K items that are liked by most inputs. Another feature
of our learning problem is that we can only learn from positive examples. PAC learning for binary
classification from positive examples has been studied in the literature (Denis, 1998; De Comité et al.,
1999; Letouzey et al., 2000; Bekker & Davis, 2020).

Multi-label learning (McCallum, 1999; Schapire & Singer, 2000) has been an area of study in machine
learning, with various, primarily experimental approaches (see, e.g., (Elisseeff & Weston, 2001;
Petterson & Caetano, 2011; Kapoor et al., 2012) and (Zhang & Zhou, 2014; Bogatinovski et al.,
2022) for surveys). In multi-label learning, the training set consists of examples, each associated
with multiple labels rather than just one. The goal is to train a model that can learn the relationships
between the features of each example and all its labels. At test time, the learner predicts a list of
labels for new examples, aiming to capture all the relevant labels, rather than just a single one.

Some works have examined multi-label learning from a theoretical standpoint, focusing in particular
on the Bayes consistency of surrogate losses. Bayes-consistency in multi-label learning ensures
that minimizing a surrogate loss also leads to minimizing the true target loss, which is crucial in
multi-label settings where optimizing the actual loss is often computationally infeasible as it is non-
convex, discrete losses in multi-label settings. Initiated by Gao & Zhou (2011) who first addressed
Bayes-consistency for Hamming and ranking losses, showing binary relevance’s consistency with
Hamming loss but highlighting ranking loss difficulties. Extensions include rank-based metrics
like precision@x and recall@x (Menon et al., 2019), which are loss functions defined under the
constraint that the number of labels predicted by the model is limited to . Recently, Mao et al.
(2024) established H-consistency bounds for multi-label learning, offering stronger guarantees than
Bayes-consistency by providing non-asymptotic guarantees that apply to finite number of samples.
Our model is inherently more challenging than traditional multi-label learning because our training
set consists of examples, each associated with only a single correct label rather than all possible
correct labels, with no negative feedback. Yet, at test time, the learner still needs to predict a list of
relevant labels for new examples.



2 Model

As is standard in learning theory, we assume a hypothesis class H of set functions, our goal is to
design algorithms whose sample complexity is polynomial in the log size of the class and the inverses
of the accuracy and confidence parameters. More specifically, we are given a input space X, a label
space ) and a hypothesis class #, in which every hypothesis A : X' — 2Y maps each z to a set of
labels in ). We denote an unknown target hypothesis ¢**¢®. The training set consists of a sequence
(24, v;), with (z;,v;) € X x Y. The inputs 1, . . ., ,, are drawn IID from unknown distribution
D. For each input z;, a random label v; is drawn uniformly from its ground-truth set, g (z;)
defined by the target hypothesis. The algorithm then outputs a hypothesis g°""™™, and the goal is to
minimize the expected precision and recall losses:

precision / _outputy ,__ |goulput($) \gtarget@j)‘
E (g ) - E:pND )

ngou(pul (I’)

grecall(goutput) = Epp |:|g‘arget(x) \ goutput(x)]
= L~ )
ngmrgcl (aj‘)

where for any hypothesis g, ny(x) = |g(z)| denotes the set size of g at x.

We focus on designing learning rules that can compete with the “best” hypothesis in H. Specifically,
if there is a hypothesis g € H with precision and recall losses p and r, respectively, can we output
a hypothesis g°""P"* whose precision and recall losses are comparable to p and r? To answer this
question we consider two natural metrics: scalar loss and Pareto loss.

Scalar-Loss Objective The scalar loss is defined as the average of precision and recall losses’

scalar gprecision + grecall
/ 1 (g) — (9)2 (g) ]

For any o > 0, we say a-approximate optimal scalar loss is achievable if there exists a polynomial P
such that, for any finite hypothesis class H, there is an algorithm A such that the following holds:
For any €, d > 0 and any distribution D, if A is given an IID training set of size P(log|H|, 1/e,1/6),
with probability at least 1 — 4, it outputs a hypothesis with scalar loss satisfying

Escalar outputy -~ « - min gscalar Te.
(g™ < o - min £%¥(g)

Our primary focus is on finite hypothesis classes, where we discuss dependencies on the cardinality
of the hypothesis class, as is common in standard learning theory. We emphasize that the average loss
is a natural way to combine precision and recall losses. Other scalarizations, such as the F1 score, are
also possible. Several results in this paper extend to alternative definitions of scalar loss functions,
which we discuss in the Discussion section.

Pareto-Loss Objective Let p,p’,r, 7' € [0,1]. We write (p,7) = (p,r’) to denote the
following statement: there exists a polynomial P such that, for any finite hypothesis class H, there is
an algorithm .4 such that the following holds: If D is a distribution for which there exists a hypothesis
in H with precision and recall losses (p, ), then for any ¢, > 0, if A is given p,r and an IID
training set of size P(log|#|,1/¢,1/4), with probability at least 1 — 4, it outputs a hypothesis with
precision and recall losses at most p’ + £ and r’ + ¢.°

We are asking the following a question for each of our losses:

What is the smallest o such that a-approximate optimal scalar loss is achievable?
Given p,r € [0, 1], which pairs (p/, ') satisfy (p,r) = (p/,7')?

This hypothesis learning problem is considerably more challenging than standard supervised learning.
If the entire ground-truth set g®''(xz;) were observed in the training set rather than a random label
v; ~ Unif(g"*&(x;)), the task would reduce to standard supervised learning. However, observing
only a random label prevents an unbiased estimate of precision loss, complicating the problem. We
demonstrate it in the following example.

>The results can be generalized to any weighted sum of precision and recall losses via w1 5" (g) +
w2£recall(g) S 2 max(wl, wQ)escalar(g).
8 Actually, our algorithms only requires the knowledge of r.



Example 1. In Fig 2, the target hypothesis associates input x; with a large number n of labels. Our
hypothesis class contains two hypotheses, each predicting exactly one label for input x;. In the red
hypothesis g1, the predicted label is always a true positive (i.e., it belongs to the ground-truth set),
while in the blue hypothesis gs, the predicted label is a false positive (i.e., it is not in the ground-truth
set). Both hypotheses incur high recall loss: (*““"(g,) = =L and ¢"““"(g,) = 1. However, they
differ significantly in precision loss: gy has a precision loss of 0, as it always predicts a correct label,
whereas gs has a precision loss of 1, as it always predicts an incorrect label. Since n is large, the
probability of observing either predicted label in the training data is very low, making it impossible
to distinguish between these two hypotheses—despite their drastically different precision losses.

T4

U1 Uz u3 Un—1 Un u

Figure 2: The target hypothesis (black) outputs ¢ (x;) = {uy,...,u,} where n is huge. The
hypothesis ¢; (red) outputs only one label u,, € ¢"**(x;) while go (blue) outputs only one label

’U/ ¢ gtargel (zq ) .

One might argue that the issue in the above example arises from the large size of the ground-truth
set; however, we will later show that even when the ground-truth set has a small size, accurately
estimating and optimizing precision remains impossible.

We emphasize that, unlike in other supervised learning settings, such as PAC learning, where
minimizing empirical risk is often straightforward (e.g., by outputting any classifier that is consistent
with the training set), here the learner only observes a single label v; per input z;, rather than its
entire ground-truth set. As a result, minimizing empirical precision loss in this context is far from
trivial. For instance, regardless of the ground-truth set, a complete set function, which outputs the
entire label space ) for any input, is always consistent with the training data but can still incur high
precision loss.

3 Main Results

The Realizable Setting We begin by presenting our results in the realizable setting, where the target
hypothesis belongs to the hypothesis class . In this case, there is no distinction between optimizing
the scalar-loss objective and the Pareto-loss objective. We propose two new algorithms that achieve
both the scalar-loss and Pareto-loss objectives: one based on maximum likelihood estimation, and the
other on minimizing a surrogate loss.

Theorem 1. In the realizable setting, there exist algorithms such that given an IID training set of

(W), with probability at least 1 — 0, the output hypothesis g°"""" satisfies

sizem > O

grecall(goutput) <e¢ , gprecision (goutput) <eg.

Since 1(v; ¢ g(w;)) is an unbiased estimate of the recall loss £ (g), any consistent hypothesis
(i.e., hypothesis g with > | 1(v; ¢ g(x;)) = 0) will have low recall loss. But ERM does not work
as the training set contains only positive examples, and a complete set function is consistent with
any training set but can incur high precision loss. Hence, the main challenge lies in minimizing the
precision loss. Below are high-level descriptions of two algorithms designed to tackle this problem.

Algorithm 1: Maximum Likelihood. One of our proposed algorithms is based on the natural
idea of maximum likelihood. At a high level, although multiple hypotheses may be consistent with

the training set, for any observed input-label pair (x;, v;), if v; is contained in g(x;), the probability
of observing this label is ﬁ when g is the target hypothesis. The maximum likelihood method
T m 1(vi€g(xi))

output — arg max,cy | i BN which is equivalent to returning the hypothesis with

returns g



the minimum sum of log output sizes among all consistent hypotheses, i.e.,
m

arg min Z log(ng(x;)) -
g:g is consistent i—1

output __

g

Consequently, we can rule out the complete set function, as its sum of log output size
> log(ng(x;)) is huge. Any consistent hypothesis will have low empirical recall loss by applying

standard concentration inequality and thus, frecall (g°"'"") is small and we only need to show that the
empirical precision loss is small. The main technical challenge in the analysis is how fo connect
precision loss with likelihood.

Algorithm 2: Minimizing a Surrogate Loss. The other algorithm is more directly aligned with
the scalar-loss objective. While we cannot obtain an unbiased estimate of the precision loss, and
hence the scalar loss, we introduce a surrogate loss that both upper- and lower-bounds the scalar loss
within a constant multiplicative factor. Then we output a hypothesis minimizing this surrogate loss.

For any hypothesis g, we define a vector v, : H x H — [0, 1] by

1 m
vylg's9") = — D Putnitg(en (v € g (i) \ g (2:)).-
i=1

Intuitively, vy (g, g”") represents the fraction of correct labels that are output by ¢’ but not by g’ in the
counterfactual scenario where g is the target hypothesis. If g is indeed the target hypothesis, then this
quantity should be consistent with our training data, vy(g’, g"’) = v5(g’, g"’), where g is the observed
(empirical) hypothesis; i.e., the hypothesis in which every z; is only associated with the random label
v; which is observed in the training set.

We then define a metric dy; between two hypotheses g; and g2 by

dw (91, 92) = [[vg, — Vgslloo -

Surprisingly, we show that dy; (g™, ¢) is a surrogate for the scalar loss, providing both lower and
upper bounds on the scalar loss with a constant multiplicative factor.

The Agnostic Setting In the agnostic setting, we show in the next two theorems that it is impossible
to achieve an additive error for both scalar-loss and Pareto-loss objectives as is standard in learning
theory.

Theorem 2. There exists a class H = {g1,g2} of two hypotheses, such that for any (possibly
randomized improper) algorithm, there exists a target hypothesis g'""$¢" with bounded output set size
(that is, there exists a constant C such that |g""%*'(x)| < C for all x € X) and a data distribution D
with mingey (9% (g)) > 0 s.t. for any sample size m > 0, with probability 1 over the training set,
the expected (over the randomness of the algorithm) loss of the output """

E es‘calur output\] ~ 1.05 - mi Escalar )
[ (g”")] 2 1.05 - min(£"(g))

Theorem 3. There exists a class H = {q1,g2} of two hypotheses, such that for any (possibly
randomized improper) algorithm given the knowledge of (p,r) = (%, %) there exists a target
hypothesis g“8¢" with bounded output set size and a data distribution D for which there exists a
hypothesis gt € H with @ (gt) = % and prrecision (gt = % s.t. for any sample size m > 0, with
probability 1 over the training set, the expected (over the randomness of the algorithm) precision and

recall losses of the output g°"'"" satisfy

E [Zrecall(goufput)] 4 %E Vprecision (gautput)] Z g )

Remark 1. Hence the output hypothesis either suffers (7@ (goupur) > % = preeal(ghy or
gprectswn(goutput> > % — %gprecwwn(gi‘). Thus (1167 i) ?5 (1776 + 0017 % + 001)

For any hypothesis g, it’s precision loss at any input x is

W and we only get a random
e

label v ~ Unif(¢""¢*'(z)). If we are given the knowledge of the output size njus () of the target



hypothesis, then we can obtain an unbiased estimate of the precision loss, i.e., 1 — nj; argg;(;g )
g

g(zx)). But the difficulty lies in that we don’t kKnow ngure ().

1(v e

Based on these two lower bounds, in the scalar-loss case, we allow for a multiplicative factor .. In the
Pareto-loss case, we ask a more general question: which pairs of guarantees (p’, r’) are achievable,
given that there exists a hypothesis in the class with precision and recall losses (p,)? Since the recall
loss is optimizable, for any given 7, if there exists a hypothesis in the class with recall loss r, we can
always achieve that recall loss. Therefore, we refine our question as follows: given any p,r € [0, 1],
what is the minimum precision loss p’ such that (p,r) = (p’,r)?

Since the recall is estimable, when we have an algorithm achieving a-approximate scalar loss, we
can first eliminate all hypotheses with recall loss higher than 7 and then run this algorithm over the
remaining hypotheses. Then we can achieve (p,r) = (a(p +1),7).

Theorem 4. There exist an algorithm such that given an IID training set of size m > O(log(‘EM),

with probability at least 1 — 0, the output hypothesis g°*"" satisfies
Escalar outpury 5. min gscalar te.
(g™"") < 5 min (9)

This implies that for any p,r € [0,1], (p,r) = (5(p+7r),r).

This result is achieved using the same surrogate loss idea in the realizable setting. However, in
the agnostic setting, applying maximum likelihood directly no longer works. This is because it is
possible that none of the hypotheses in the hypothesis class are consistent with the training set and
thus all hypotheses have zero likelihood. Instead, we make some modifications to adapt the maximum
likelihood idea work for Pareto-loss objective.

As mentioned earlier, the maximum likelihood method is equivalent to returning the hypothesis with
the minimum sum of log output sizes among all consistent hypotheses. Hence, it can be decomposed
into two steps: minimizing the recall loss and then regulating by minimizing the sum of log output
sizes. In the agnostic setting, given any r, we first find the set H of all hypotheses in the hypothesis
class with recall loss at most 7 + 2¢, and then regulate by minimizing the sum of log truncated output
sizes by returning

ng (i) A dng(z;)
& ng(x;) A dng (z;)

output

)

) 1
= arg min max — E lo
-~ m
g'eH 9EH i€[m]

g

where a A b := min(a, b). The truncation plays an important role here. Intuitively, let g' denote
the hypothesis with precision and recall losses p and r, respectively. If there exists an x; such that
ngt () is very large, minimizing the sum of log-untruncated output sizes will never return g'. By
applying truncation, we limit the effect of a single input with a very large output size.

As we can see, there is a gap between the upper and lower bounds in the agnostic case, leaving an
open question: What is the optimal multiplicative approximation factor « in the scalar case, and what
is the optimal p’ such that (p,r) = (p/,7)?

The Semi-Realizable Setting The results in the agnostic setting fail to offer meaningful guarantees
in certain natural scenarios, such asp = 0 and r = % (i.e., when there exists a hypothesis that captures
half of ground-truth labels without outputting any incorrect labels). We are therefore interested in the
following question: whether (p = 0,7) = (p' = 0,r' =r)?

We propose an algorithm with sample complexity depending on output set size of the target hypothesis
and show that it is impossible to achieve zero precision loss with sample complexity independent of
the target hypothesis’s output set size.

As discussed previously, it’s impossible for us to estimate the precision loss. However, we can still
separate hypotheses with zero precision loss and non-zero precision loss if the the target hypothesis’s
output set size is bounded. If the precision loss of hypothesis g at input z is 0, i.e.,

_ lg@) \ g™t @) _ o Jg(e) N gtE (@)

gPrecision (g, :C) -1 -0
ng(z) ng(z) ’
we have -
|g($) N gtarget(l.)| _ 1— gprecmon(g, J)) _ 1
ng (Qj) . 'n,gmrge( (I) nglarge! (I) 'n,gmrge( (I) ’



If the precision loss ¢Pecision (g 1) is positive, we have

9(@) N g @) _ 1= g 0)

= < .
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precision loss, and it is estimable. For each hypothesis g, when the gap of this quantity between
hypothesis with zero precision loss and g is Ay p := E,p [%} —E,p {M] > 0,

n gtarget (T ng(x) N guarget ()

then by obtaining A% samples of x, we can tell that g has nonzero precision loss. Let Ap be the
g9.,D

Hence, we can use the quantity E,p { } to separate hypotheses with zero and non-zero

smallest gap of this qﬁantity between hypotheses with zero and nonzero precision losses:

AD = mln Ag7p .
g€ H :precision (g) >0

Then we can have sample complexity dependent on this gap.

Theorem 5. There exists an algorithm such that if there exists a hypothesis g' € H with Precision (g =
8 yP g g
recall ( 1\ — : . . log(|H|/9) . -, .
- D 2 » »

0 and £7*"(g") = r, then given an IID training set of size O(==5 ), with probability 1 — 6, it
D
outputs a h othesis Wlth gprecision output _ 0 and grecall output) _ r

P yp g g

When the target hypothesis’s output size n g () is bounded by C' almost everywhere, we have

target 1— precision 1 precision

o [lot@) ng (@WZE[ ‘ <%m}SE[ }_E[e @wq.
ng (x) . nglarget (x) nglargel (x) nglargel (x) C

Therefore, we have Ay p > ") | This implies that when the target hypothesis has bounded

output size, we are able to find the hypothesis with zero precision loss. However, when the target

hypothesis’s output size becomes too large, we show that it is impossible to achieve precision-recall
of (0,r).

Theorem 6. There exists a class H = {g1, g2} of two hypotheses, for any m > 0 and any (possibly
randomized improper) algorithm A, there exists a target hypothesis g"'$*' and a data distribution D
for which there exists a hypothesis gt € H with (P¢"(g1) = 0 s.t. with probability 1 — § over the
training set, the expected (over the randomness of the algorithm) precision and recall losses of the
output guutpur satisfy either E Vrecall<goutpuz)] > mingE’H frecall(g> + Q(l) orE [Epreci.s‘iun(gouzput)] —
Q(1).

In the proof of the theorem, we construct a target hypothesis with output size much larger than
the sample size m, as well as hypotheses g; and go with output size 1. In this setup, regardless of
whether g; has perfect precision (i.e., the output of g; is a subset of the ground-truth set) or very poor
precision, we cannot distinguish between these two cases because we never observe a label in the
output of g; being sampled. Therefore, the only way to achieve zero precision loss is to output the
empty set function, which, however, results in a high recall loss.

4 Discussion

One of the main goals of this paper is to study the Pareto front of precision and recall, which is
reflected in our Pareto-loss objective. There are other scalar measures of predictive performance,
the F; and the Fg scores. F; and F3 are direct functions of precision and recall, which is weaker
than our Pareto-loss objective, and thus, the hardness results can be extended directly. We also note
that in the realizable setting, we can minimize other alternatives for scalar losses as we can optimize
both precision and recall simultaneously. Nevertheless, hypotheses with optimal F or Fig scores are
specific points on this Pareto front, and it will be interesting for future work to find them efficiently.

Beyond that, there are two natural open questions. First, there is a gap between the upper and
lower bounds. For the scalar-loss objective, we demonstrate that an oz = 5 approximate optimal
scalar loss is achievable, while o = 1.05 is not, leaving it unclear what the optimal « is. For the
Pareto-loss objective, we establish an upper bound of (p,r) = (5(p + r),r) and a lower bound of
(p,7) # (p+ 0.01,7 + 0.01), again suggesting a gap that we do not yet know how to close.



Second, it remains an open question whether there exists a combinatorial measure, similar to the
VC dimension in standard PAC learning, that characterizes the learnability of precision and recall.
Each hypothesis implicitly defines a distribution at each node—specifically, a uniform distribution
over its neighborhood. In Section B.3, we also link the scalar loss to the total variation distance,
thus reducing the scalar loss learning problem to a special case of distribution learning. However,
as shown in Lechner & Ben-David (2024), there is no such a dimension characterizing the sample
complexity of learning certain distribution classes (in their case, a mixture of point mass and uniform
distributions). This result suggests a potential limitation in identifying a combinatorial measure for
our learning problem.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction provide a summary of contributions that accu-
rately reflect the new model and the results of this paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See discussion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provided all the assumptions and complete proofs (some are in the ap-
pendix).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments. All results are carefully proven and
do not require experiments to establish correctness.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered inputs), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theoretical paper. All results are carefully proven and do not require
experiments to establish correctness.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read and comply with the NeurIPS code of ethics. This
work is theoretical and we do not foresee harmful consequences.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: We note that our work is theoretical. We do not foresee any societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: The work is entirely theoretical; we do not release new data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that inputs adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only used LLMs for editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof Overview

Given a sequence of IID inputs 1, . .., Z,,, let

Zprecision(g) _ 1 & |g(zl) \gtarget(zi”

m i=1 ng(xl)

and

m -
freca gy — L g (i) \ g ()|
m i1 ngtargel(‘ri)
denote the empirical precision and recall losses. It suffices to focus on empirical precision and recall
losses minimization since by standard concentration bounds, minimizing these empirical losses leads
to the minimization of the expected recall and precision losses.

Minimizing Precision Loss Through Maximum Likelihood The maximum likelihood method

returns ¢*""P" = arg maxX, ¢y e, %, which is equivalent to returning the hypothesis with

the minimum sum of log output sizes among all consistent hypotheses, i.e.,

m

WP  gre min Z log(ng(x;)) .

g:g 1s consistent i=1

9

Any consistent hypothesis will have low empirical recall loss by applying standard concentration

inequality and thus, ¢recal! (g°"""") is small and we only need to show that the empirical precision loss
is small. The main technical challenge in the analysis is how to connect precision loss with likelihood.

Since g™ is contained in the hypothesis class in the realizable setting and it is consistent with the
training data, due to our algorithm, we have

Z 10g(ngompul($i)) S Z log(ngmgm(a:i)) . (1)
i=1 i=1

We first prove that for any hypothesis g, its empirical precision loss can be bounded by a term of log
output size and the empirical recall loss as follows:

L 2 ng(z;) .

gprecision g <= log g + 2£recall g). (2)
) m nzg:(w N gunee (27) (@)

]:"gmrge‘(mi)f

i€[m
By combining Eq (1) and (2), we have

el 2 T output (ZZJ ) ESg
gprecision outputy ~ 7 lo g ? ) érecdll output .
(g ) - m Z g ngtarget (CL'Z) (g )

.7 goutput (€3)

: " gtarget ()

. goutput (4 )

is small. This is
T gtarget (IL)

However, with high probability, the first term —% > mgoupu (=) log
i

T gtarget (z4)

because, for any hypothesis g, the probability of outputting g is

Py,... (67" = g) < Py, (gis consistent) < H _ng(@i) .
: : e (og) ’n,gmrget ("Ez)
n gljgel (11—1)

ng(zi)
’I’Lgmrgct (ml) ’

For any hypothesis g with large —% > g <1 log the probability of outputting such
¢ )

: " gtarget (z;

a hypothesis is low.
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Modifying Maximum Likelihood in the Agnostic Setting In the agnostic setting, all hypotheses
in the hypothesis class may have zero likelihood of being the true hypothesis; thus, the standard
maximum likelihood method doesn’t work. However, we can make slight modifications to the
maximum likelihood method to make it work for the Pareto-loss objective.

As mentioned earlier, the maximum likelihood method is equivalent to returning the hypothesis with
the minimum sum of log output sizes among all consistent hypotheses. Hence, it can be decomposed
into two steps: minimizing the recall loss and then regulating lly minimizing the sum of log output
sizes. In the agnostic setting, given any r, we first find the set /{ of all hypotheses in the hypothesis
class with recall loss at most  + 2¢, and then regulate by minimizing the sum of log truncated output
sizes by returning

ng () A dng(x;)
ng(zi) A dng (z;)

output

. 1
= arg minmax —

7 m
g'er 9EH T oy

g

)

where a A b := min(a, b). The truncation plays an important role here. Intuitively, let g' denote
the hypothesis with precision and recall losses p and 7, respectively. If there exists an x; such that
ngt () is very large, minimizing the sum of log-untruncated output sizes will never return g'. By
applying truncation, we limit the effect of a single input with a very large output size.

Minimizing the Surrogate for the Scalar Loss Here we consider an alternative learning rule
based on two simple principles for discarding sub-optimal hypotheses. We illustrate these principles
with the following intuitive example: consider a music recommender system, and assume we are
considering two candidate hypotheses, ¢’ and ¢g”. Both hypotheses recommend classical music;
however, g’ recommends pieces by Bach 20% of the time and pieces by Mozart 10% of the time,
while g” never recommends any pieces by Mozart or Bach.

Now, suppose that in the training set, users frequently choose to listen to pieces by Mozart. This
observation suggests that g” should be discarded, as it never recommends Mozart. This leads to our
first rule: if a hypothesis exhibits a high recall loss, it can be discarded. The second rule addresses
precision loss, which is more challenging because it cannot be directly estimated from the data. To
illustrate the second rule, imagine that in the training set, users tend to pick Bach pieces only 5% of
the time. This suggests that ¢’ is over-recommending Bach pieces, and therefore, g" might also be
discarded based on its likely precision loss.

We formally capture this using a metric defined in the following. For any hypothesis g, let U7 denote
the uniform distribution over the output set g(x;) at z;. Then, for any hypothesis g, we define a vector
vg 1 H x H —[0,1] by

1 1

vy(9'9") = — Y UG (@) \ g" (@) = - Y Puwps (ve g (x:)\ g ().
i=1 i=1

Intuitively, vg(g’, g’") represents the fraction of items inputs like that are recommended by ¢’ but
not by ¢’ in the counterfactual scenario where g is the target hypothesis. If g is indeed the target
hypothesis, then this quantity should be consistent with our training data, v, (g’, 9”) =~ v5(¢’, g"),
where ¢ is the observed (empirical) hypothesis; i.e., the hypothesis in which every z; is mapped to
the random number v; which is observed in the training set. In the above example, vy (g’, ) is 20%
while v5(g’, g") is 5% and thus ¢’ is unlikely to be the target hypothesis.

We define a metric d between two hypotheses g; and g, by

d?—l(glng) = val - v92||00'

Surprisingly, we show that dy, (g, g) is a surrogate for the scalar loss, providing both lower and
upper bounds on the scalar loss with a constant multiplicative factor:

dH (gtarget’ g) S 2€scalar(g) < 4d?—[ <glarget’ g) 492 ml% Escalar(g/) )
g'e

A standard union bound argument yields that with probability at least 1 — 4,

dH(g’ gtarget) <0 (\/log|7'l| +10g(1/5)) '

m
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By triangle inequality, we have

dy (9™, 9) < dw (3, 9) + O <\/1°gH Hog(l/é)) .

m

Then, we return a hypothesis g°""*"* € H such that

dv (3 outputy __ .+ dw (3 )
71(9, g™""™) min (3, 9)

The Hardness of No Knowledge of the Target Hypothesis’s Output Size For any hypothesis g,

it’s precision loss at any input z is %‘E‘S‘W and we only get a random label v ~ Unif (g™ (z)).

If we are given the knowledge of the output size ngue () of the target hypothesis, then we can obtain

ng:‘T;()x) -1 (v € g(x)). But the difficulty lies in

an unbiased estimate of the precision loss, i.e., 1 —
that we don’t know 7 gure ().

Consider the following example illustrated in Fig 3. For a given input z, there is a set of n items
equally divided into two sets Ny (z) and No(x). Consider two hypotheses—g; with output set
g1(x) = Ny (z) and go with output set go(x) = Ni(x) U Na(x) being all n items.

In a world characterized by 3 € [% 3 3} the target hypothesw is generated in the following random
way: Randomly select 2 - Bn items from Ny () and 1 - Bn items from N»(z). No matter what £3 is,
w.p. %, v is sampled uniformly at random from N; (z) and w.p. i, v is sampled uniformly at random
from Na(x). That is, every item in N (z) has probability % of being sampled and every item in
Ny (z) has probability ﬁ of being sampled. Hence, if we have never seen the same input twice, we
cannot distinguish between different 3’s.

For any ¢"*"€® generated from the above process, the scalar loss of g1 at x is

)

escaldr target mgl( )| + |gtarget(x)mgl(x)| —1_ (3/4677* + 3/4,871
2|g1 2|gereet(z)| n 28n
5

2 35
3 1"

and the scalar loss of g5 at z is

gscalar(gQ’x) —1_ (|gtarget(x) N g2(z) + ‘gtarget(x) ﬂfh(ﬂ:)) —1_ (6” Bn ) 1

1
2/g2()] 2lgre ()] 2m) ~2 2"

When £ is large, g; has a smaller loss; when [ is small, go has a smaller loss. With a huge input
space X and the distribution D being uniform over such a huge space X, it is almost sure that we
will never observe the same input twice and, therefore, cannot distinguish between different /3 values.
Consequently, it’s impossible to determine which of the two hypotheses has a smaller loss. We show
that, in this example, even if algorithms are allowed to be randomized and improper, it still impossible
to compete with the best hypothesis in the hypothesis class.
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Figure 3(c): ¢'** for small /3 Figure 3(d): g€ for large 3

Figure 3: Illustration of g1, g2 and randomly generated g'*€',

B Algorithms and Proofs

Notations Let /P (g 7) and £l (g, 2) denote the precision loss and recall loss of hypothesis
g at input x:
gprecision( _ |g($) \ gtarget(x”
g,xw) ="
ng(x)
grecall(g l’) — |gtarget(x) \g($)|
’ ngwrge[ (.I,')

)

Then the empirical precision and recall losses are (Precision(g) = LS gerecision(g ;) and frecall (g) =
LS greeall(g, 2;). Let a A b := min(a, b).

B.1 Maximum Likelihood Method in the Realizable Case

In the realizable setting, the target hypothesis g€ is in the hypothesis class. Given the IID training
data (z1,v1), .-, (Zm, Um), the maximum likelihood method returns the hypothesis

m

1(v; € g(x,
goutpul — argmaxH (Uz € g(x)) )
geEH i=1 ng(xl)

In other words, g°"'"" is a hypothesis in H satisfying

* consistency: ., L(v; ¢ g™ (x;)) = 0;
« regulation: among all consistent hypotheses, the output hypothesis satisfies that g°""" =
arg Ining:g is consistent Z:il log(ng (1’1))7
Theorem 1. In the realizable setting, there exist algorithms such that given an IID training set of
size m > O(W), with probability at least 1 — 0, the output hypothesis g°*"" satisfies

Erecall(goutput) <e eprecision (goutput) <e
— ) — :
Proof of Theorem 1. Tt suffices to prove that for any fixed (z1,. .., %, ), when m > w,

w.p. at least 1 — d/2 over v1.,,, the empirical values of recall and precision are small, Z‘ecall(g°”‘P“‘) <

5/2 and Zprecision (goutput) < 5/2 Then we can show grecall (goutput) <eg and gprecision (goutput) <eg by
applying empirical Bernstein bounds to both precision and recall losses. Now we prove this statement.

"the base of log in this work is 2.
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Bounding recall loss is easy as y .-, 1(v; ¢ g(z;)) is an unbiased estimate of recall loss. With
probability 1 — /4 over the randomness of v; ~ Unif (¢®#(z;)) for all i € [m], the empirical loss
for recall is

target( m

@ecal](g):lz:'g Z (vi ¢ g(z;)) +e/6=¢/6, 3)

m P ng(argel ‘T1

for all consistent g with 37", 1(v; ¢ g(x;)) = 0. Hence, w.p. 1 — 6/4, el (gouput) < ¢ /6,

Bounding precision loss is more challenging. Let A, = {i € [m]|ngue(x;) < 2n4(z;)}. Then we
can decompose the empirical precision loss as

Zprecision (g)

}Z 9(a \g‘ﬂfﬁ@t( )l

1 target 1 m
SE Z |g(z )n\sz (@ %Z

S;ZA: . <2|g(? \g(‘zge)% z) ) ERS |gmg: g > g)@m
i€A gareet i i, gtar o (x;

= Z min (ngm) o) gt —ngetm), ;) P2y o)
Py gueet (4 oy goree (T

S% 2:9 min (nnmgrii;)) 1, ;) i = gtarg:;([a(ge?(lsg( ;)| n Z Z |9targ::(i:e?(>g)($i)|
i€Ay 9 ¢ i€A, g i igA, g i

The second term is the empirical loss for recall, which is upper bounded by Eq (3).

— Z min ) -1 E
ng(argsl ,I1) ’ 2
1 ; 1
LY (”g(m) .y )
m nglargel ('TZ ) 2

._ng(zy) 1

1
™ gtarget (z;) =2

For the first term,

1 i 1
< Z min M —1,=
m T target (,’EZ) 2
. ng(x;) g
:"g!arget(-"”z) 21
ng(x:)
< ) lg TS

T ptarget ( 5
ng(x;) >1 9 ( Z)

T gtarget (@) =

where the last inequality adopts the following fact: for all z > 1, min(z — 1, %) < log z. On the
other hand, we have

1 S log ng(z:) 1 S log ngun ()
m ngmrget(.’lﬁi) m ng(acl)
._ng(z;) >1 ._ng(=@;) 1

) ™ gtarget (z;) = ‘n glarget (z;)

when ¢ satisfies Zl log(ng(z;)) < Y, log(ngusa(z;)). Hence, for any hypothesis g with
gprecmon(g) > & £ and grecall(g) < %’ we have

N gtarget (T M “srecision “recal
> 1og;(x(_)) > T (fin () — 9B () > m - 2/12 > log(4[H/0)
ng(x;) g

2t
n_target (T4
glarg et (@)

<1
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The probability of outputting such a hypothesis g is

P

i 1)
(g is consistent) < H ng(x:) <

output __ <P )
(g g) - ngmgel(xi) 4‘7‘”
1

Vim Viim

._ng(zq)

(N
"rglargsl (z5)

Hence, with probability at least 1 — §/2 over v1.,,, g°"P™ will satisfy

z}ecall (goutput) < 6/6 Zprecision (goutpul) < 8/2 .

Then we are done with the proof. [

B.2 Modified Maximum Likelihood Method in the Agnostic Case

In the agnostic setting, we shift our goal from finding a hypothesis with nearly zero precision
and recall losses to determining, given any p,r € [0, 1], the minimum precision loss p’ such that

(p,r) = (',7)-

In fact, we can show something stronger: we do not need to know p. Specifically, given any 7 € [0, 1],
let p = min g, grecan gy <, £P°*'°"(g) be the optimal precision loss among all hypotheses with recall loss

at most . What is the smallest p’ such that we achieve ¢! (goutPut) <y and precision(goutput) < 49

Theorem 3. There exists a class H = {g1,g2} of two hypotheses, such that for any (possibly
randomized improper) algorithm given the knowledge of (p,r) = (%, 1), there exists a target
hypothesis ¢'“"¢¢" with bounded output set size and a data distribution D for which there exists a
hypothesis gt € H with £ (gT) = L and rreeision(gt) = % s.t. for any sample size m > 0, with
probability 1 over the training set, the expected (over the randomness of the algorithm) precision and

recall losses of the output g°*"" satisfy

E [grecall (gourput)] 4 %E Vprecision (guurput)] > g .

Recall that in the realizable case, the maximum likelihood method selects the consistent hypothesis
with the smallest empirical log output size, i.e., g™ = argmin,,; i consistent 211 108(1g (2)).
Basically, the consistency guarantees small recall loss and the empirical log output size is used as a
regulation term to bound precision loss. In the agnostic setting, the maximum likelihood method fails
as there may be no consistent hypothesis. We present a modified version of the maximum likelihood
method, which still has the “consistency”” component and adopts log output size as a regulation term.
The algorithm operates as follows.

Algorithm:

1. Finding a set of plausible hypotheses which make at most m - (r 4 ¢) mistakes: For
any hypothesis g, let I, = {i|v; ¢ g(x;)} denote the indices of training points that the

hypothesis g is inconsistent with. Then let H = {g € H||I;| < m - (r +¢€)} be the set
of hypotheses making at most m - (r + €) mistakes.

2. Returning the hypothesis with low empirical log truncated output size: Return
ng (z;) A dng(z;)
ng(zi) ANdng (x;)

) 1
OUPY = arg min max —

geH gEH M

9 “

1€[m]

Theorem 7. Given any r € [0,1] and m > O(w) IID training data, the modified
maximum likelihood method can return a hypothesis satisfying

Krecall(gomput) <r4e gprecixion (goutpm) < 287 + 15]7 T

where p = min . peca(g) <, £/ (g).

Proof Sketch. Let g’ to be the hypothesis with recall loss at most r and precision loss p. Let
7 =1+ 2¢ and p = p + 2¢. Similar to the realizable setting, we build connection between precision
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and recall with empirical log output size (Lemma 2), i.e., for any constant ¢ € (0, 1],

Zprecision(g) < 1+c Z log Mg (-131) A\ 2ngunrgm(xi) N 1+ C@ecau(g) |
" i€[m]: ng(®;) >1 ng‘afge‘(xi) c

n gtarget () =

ng (zi)/\Qngnargen (z4)

It suffices to upper bound Zie[m]: “g;;g ) > log gz (72) . We first decompose it into
g 7
Z log Ng (xl) A\ 2nglargel(xi)
. () ng(arge( (I’L)
ic[m]: "gljgel (Zl'i) =
_ Z log ng(ﬂj‘z) A\ Qnglargcl(xi) _ Z log ’I’Lg (sz) A 2nglmgcl (xz) ’
icB nglargel(:fi) . () ngtargel(xi)
ZGB:”glurgcl(mq‘,) 1
(@)
(b)
where B = {z|% > 1}. The term (b) is lower bounded by the recall loss in Lemma 4.
gtarget (T4

(Ii)/\Qngtargel (Iz)

Intuitively, if Zo is small, the recall loss must be large while any hypothesis in H has a

n gtarget ($1 )
small empirical recall loss.

. - 11 — = Qi — .. . n(‘f(l‘i) .. 1
For term (a), since ¢! (gT) < 7 and ¢Precision (¢t) < 5, at most training points, m isin 3, 2]

(if it’s too large at x;, precision loss is large; if it’s too small, recall loss is large). Also, for any

hypothesis in #, the empirical recall loss is small and thus, at most training points, % > %
n gt (4)

ngmrgc( (Jfl )

isin [1,2] and

L 7 output () > 1 we have

At these training points satisfying T (@) 2 20
g arget 1

Ng (i) A 2n gurer ()

< log ng(xi) A 4n gt (x;)
N guareer (2;) N g (2;)
ng(xi) A dngr (2 Nt (15) A dng ()
e (22)

ng (i) A dngr(x; ngt (2;)

ngt (25) A dng(x; ngurse (2;)

The first term is bounded due to our algorithm while the second term is bounded by the empirical
ngT (17 )

n grarget ()

log

+ log

ngt (15) A dng(x;

~_ | — — | —

<log

precision (in Lemma 5). Intuitively, if is large, the empirical precision of g' is large. [

B.2.1 Proof of Theorem 3

Proof of Theorem 3. Consider the size of the input space X being infinite and D being the uniform
distribution over it. For each input z, there is an individual set of 12 items, denoted as N (z) =
{V3,1,V5,2, ...,V 12}. The hypothesis g; outputs the first 8 items g1 (z) = {vg,1,V2.2,---, Vs 8}
and the hypothesis g2 outputs the last 8 items go(z) = {vy 5, Vs 6, - - - ; Vz,12}- There are two worlds
in which the target hypothesis g is generated differently:

« World I: Wop. 1, ¢“*'(z) = gi(z); wp. 3, ¢ (z) = {us,uz} where uy
is sampled uniformly from {v;s5,vz6,...,Vs8} and ug is sampled uniformly from
{Ua;,Qa Vg,105 -« -5 U:c,12}-

« World Il: W.p. 1, g (z) = go(z); w.p. 3, 9™ (x) = {u1, us} where u; is sampled uni-
formly from {v; 5, V56, - -, Uy,s} and ug is sampled uniformly from {v, 1,vz.2, ..., V5 4}

These two worlds are symmetric. In world I,

1 11 3 .. 1 11 9
recall(gl):§~1+§~§=l precmon(gl):§-1+§~gzﬁ,
1 1 1 3 .. 11 11 3
recall(gg):§~§+§~1:? precmlon(gg):§-§+§~1:§.
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Both g; and g» have the same recall and g; has a better precision in the world I. In world II, g; and
go switch their losses. Hence, in either world, we have

1 isi 7
: Erecal] i i gprecision ——
min F5(g) = 7, min 9) =15

In both worlds, the distribution of v is identical, i.e., w.p. %, v is sampled from Unif (g, (z)) and

w.p. 1, v is sampled from Unif(g2(z)). Hence, if no z has been sampled twice, no algorithm can
distinguish the two worlds. Since the input space is huge, we will not sample the same input twice
almost surely. For any output hypothesis g°"P"!, we let

n1 = [¢*"""(z) N {vz1,vz2, ..., vza}| €{0,1,...,4},
ne = [¢*"""(z) N {vs5, V26, - .- vus}| € {0,1,...,4},
ng = |[¢*"""(z) N {vs.0, vz 105 - -, vz12} € {0,1,...,4}.

Then in world I, the expected recall and precision of g°“*" is

1 /ni+ny ng+ns n1 + 2n9 + ng
E target 11 Output = — p—
gt [recall (g, 2)] 5 ( < 2 > T ,
1 4 5
E g [prSCISlon(goutput’x)] _ 1 ( ny + na ng +n3 > _ Am +ong+ng )
2 \ny+ng +ng 4(’[7,1 + no + n3) 8(77,1 + ng + n3)

Then suppose we randomly choose one of the two world. By taking expectation over the world, z,
and the randomness of the algorithm, we have

2 2
E [(recall(goutput)’ precision(gompm))] —F |:<Tl1 + 2n2 + ng 5(711 + 2n9 + n3) ):|

16 " 16(ny + n2 + n3)
) n1+2n2+n3’£+£. n2
16 16 16 ny+ng+ns
Let’s denote by r(n1,ne,n3) = %62““‘ and p(nq,ng, ng) = 1% + 1573 m Then for any
(n1,n2,n3) € {0,...,4}3, we have
12
T(n17n27n3) + gp(n17n27n3)
7TL1 + QTLQ +ns3 § § N9
B 16 4 4 ny+ng+ng
8 3 3
S%GJFRS + 1 + m (maximized at no = 4)
<2. (maximized at ny + ng = 0 or 8)

Hence, we have

E [recall(g*""")] + %E [precision(g™*™")] < 2.

This is equivalent to

. 7
E Ereca]] output E pprecision outputy] ~ _
[ gouout)] 4 L =E| (9] > =
[
B.2.2 Proof of Theorem 7
Proof of Theorem 7. Let A = 4/ M F=r+2Aandp = p + 2A. Let g' denote the

hypothesis with prec1s10n and recall losses (p, ) We know that with probability atleast 1 — 4, all

hypotheses in 7 have empirical recall loss no greater than 7 and g' also has ﬂ’r“‘s“’“(gT) < p. Then
the proof is divided into two parts:
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(i) hypothesis g' satisfies that

7 gouput (23 ) Adng (24)

1
Therefore, we have max 57 7 i) 108 7457 Tt o (1)

<6r+4p+ 2.

ngs (zi)Adng(z;)

Eﬁﬁﬁm7;5<6mr+4mp+2h%

gprecision (/) < 98y 4 15p + o(1). Hence, g™ can achieve good precision.

(ii) any hypothesis ¢’ satisfying max, g Zze m] log

We prove part (i) by Lemma 1 and part (ii) by combining Lemma 2 and 3. [

Lemma 1. For any x4, ..., ., and hypothesis g with Z’““”(g) < T, we have

1 Z 1 ngt (25) A dng(x;)

2
o <6r+4p+ —.
& ng(zi) Ndng (x;) — P

i€[m]

Proof. Let E = {z\nrfagrgf(m > 1.1< % < 2}. According to Lemma 6, we know

|=E| < 4m7 + 2mp.

ng i(xs) A dng( i(x;) Ndn
Pt ng(xl) N dngi = ng x;) Ndng (v ( Z)
<> log ot (1) + 4mF 4 2mp
icE g Il /\nglargel(x )
i /\ target i _ _
_Zl Zl (i) Ay (x)+4mr+2mp
icE ng(argel xl icE nglargel(ml)
<6mr +4mp + 2. (Applying Lemmas 4 and 5)
O
Lemma 2. For any x1, ..., &y, any hypothesis g, and any positive constant ¢ € (0, 1], the empirical
loss for precision (P (g) satisfies
o~ 1+4+¢ Nng(T;) N 21 gare (25 1+ s
épreaswn(g) < Z log 9( ) g ( ) + ) ll(g)'

m N grareer () c

. ngl(ey)
Ze[m]' "gmrgergmi) 21
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Proof of Lemma 2. Let Ay = {i € [m]|ngue(z;) < (14 ¢)ng(z;)}. Then we have

Eprecmlon (g)
L lg) o)
m = ng(x;)
1 i larget
<= lg(xi) \ g + Z]l ¢ A,)
m i€A, TLg(
y target (.. 1 target (.. X
L5 i (LG ) b o ) o)
m iGAg nglargel(xi) c-m ’L¢Ay nglargel(xi)
REY mm<n9<xi>+|gmfgﬂ<xz—>\g<xi>|ngmmm ) Lo o 9" ) \ o)
nglurgel<.’1}7;) c-m ’}’Lgnr et Iz)

£
=)

m
1+c . ng(z;) 1+c lg e () \ g(;) 1 + c g () \ g(4)|
< AL VA
< ( L)+ Yy PD

m iEAg ’I’Lgmrgcl(CCZ‘) 1€A Tl,gtarget ,IZ,L) 1¢A ngl'ugel le)
Sl_'_c min( ng(ﬂl‘z) _1,1> + 1+cz\recall(g).
m ieAg ng!arge! (1'74) C
Now we upper bound the first term.
Z min <n9(@) —1, 1)
& \ng(a)
) ng(x;
= Z min (q(l) -1, 1)
no(ms) . ng(arge‘ (xl)
1€[m] n nil et(ZJ— )Z 1+c
< 3 min (”g(m) —1 1>
= . . ngmrgel (.’Ez) 9
z€[m]: T"glargel (z4) 21
< Z min (log M7 1)
. ng (@) Mg (2:)
ic[m]: . gtarget () =
— Z lo Ng () A 2nguse ()
- g ’
. e (21) ’n,g(argel (:UZ)
le[’,n]: nglaigcl (7‘E’L) Z
where the last inequality adopts the fact: for all z > 1, min(z — 1, 1) < log 2. O

-~ ng(xi;)A\dn i
Lemma 3. For any g satisfying ("““"(g) < T and * Zie[m] log % <6r+4p+ 2
we have % > ng) -, 108 —n"(w7b)2i7j‘(7;lg)'(w) <187 4+ 12p + E'

n mrgez(T ) =

1€[m]:
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Proof of Lemma 3. Let B = {z\% > 2} and C = {i[§ < 0
the value of log %W is in [—1, 1]. Then we have

log ng (i) A 2ngune ()

2.

ng(x;)

ng(argel (xl)

ngi (i)

<2} For any i € B,

gtarget (x4

Ze[m] n l\rg(,l(l' )21
_ Zl ng(xz) AN 2nglargel(xl) . Z IOg Ng (ZL’Z) A\ QTLglarge!(Z'i)
icB ’ngur;,a (x’b) ieBio ia?g:(ljl) ngwrgez (,’EZ)
< Z 10 .'177, /\Qngmrbel(xl) + |‘|C| ZlOg ZCZ /\’I’Lgmr,et(_’ljl>
a i€eCNB N gtasget (xl) icB nglarget(ilfz)
< Z 10 /\ 47’l ( “C‘ Zl IZ /\ ’I’Lgtmbet(_fl,‘l)
_lecmB T gtarget (Iz) ieB ng‘arm(;pz)
-y ng(2:) A dng: + 3 log ngr (25) Adng(z:) -]
i€eCNB ngf( ) A 477’ icCNB ngmgm(zz)
Zl ng x; /\ngmrgcl( )
i€B ngtarget("l}' )
G ) A4 4
Z "9 x’ T LTIV TR o L i I

— en
. Z 1 TLg ,131 /\ T gtarget (Iz)
ieB N gtarg ez(xl)

<18mr 4+ 12mp+4.

i€CNB

Note that in the second last inequality, we adopt the fact that ””M”

Lemma 4. For any hypothesis g with I ecall(g) < 7 and any subset S
Z 1 ng(%) N Tl,grmgez(x7)

Mg N grareer ()

> 5}

where B = {i| %

n turgel

Proof of Lemma 4. Now let’s focus on the rounds in .S N B. We have

Z (1 ng (xl) A\ ng(arge[ Z; )

i€SNB Mg (xl
Our problem becomes computing

l’z /\ nglarge! (LCZ)
g ()

i€SNB

min Z log

i€SNB
ot Y Male) A g (o)
ieSMB ’I’Lgmrge( (LE/L)
By applying Lemma 7, we know

min Z log nQ(xi)

n glareet

>|SNB|—

/\ nglargel (,’L‘l)

(z:)

Thus, we have
g(x5) N ngume (z;)

€l;

Z grecall g

> =2mr

ng (%) A nguse ()

ng[arget (:Ul )

(Applying Lemmas 4, 5 and 6)

,4] for all z,y > 0. O

C [m], we have

> -2mr —1.

, <mr

—1.

Zlo

€S

> min Z log

’LGSﬁB ng(argel (.’EZ)

ngmr et (.’ﬂz)
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Lemma 5. For any hypothesis g with ghrecision (g) < f) and any subset S C [m], we have
Z log <2mp+1.
ieSnA '(Lgmrget €T; )

where A = {i|-"e2) - < 9},

N grarget (LE@) -

Proof of Lemma 5. Since the empirical precision loss is bounded by p, we have

3 <1 ngmgﬂ(x»A"g(”)) < ) g ) <mp.

i€SNA ng(xi) i€ESNA

By re-arranging terms, we have
Z ngane () A g () > |SNA|l -
ieSnA ng(21)
By applying Lemma 7, we have

target /\ i _
min Z log ngens (1) ng(x)272mp71.
i€SNA (.1?1)

Hence, we have

S log <Y log—T) g
ieSnA ng!arget xi) nglarge( (ml) A ng (Zl)

Lemma 6. For any g withe Z’““”(g) < T, we have

ZH(M < 1) < 2mF.
N grarger (Cﬂ i ) 2

%

For any g withe gprecision (9) <D, we have

Z]l M@)o o,
n

glarset £E1

Proof of Lemma 6. When % < 1, wehave

érecall(g7mi) >1- ng(xl) A ng”"ge‘(xi) =

1
nglm‘gcl (l‘l) 2 ’

Thus, we have )", 1(%1)) < 1) < 2m7. Similarly, when M‘)) > 2, we have

7 gtarget (T 7 gtarget (T

éprecision(g7 z)>1— Ng (i) A ng‘““ge‘(xi) > 1 .
ng(wi)
Thus, we have ), 1(=2el) 5 9) < omp. O

N grarget ()

[\

Lemma 7. Forany k € Ny, ¢ > 0, let OPT denote the optimal value to the following constrained
optimization problem:

k
min 3 logai
k
s.t.Zai >k—c,
=1
1 .
5 §a2 § 1,VZ€ [k]

We have OPT > —2c¢ — 1.
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Proof of Lemma 7. We prove the lemma by showing that in the optimal solution, there will be at
most one entry of a1, not in {1, 1}. In this case, there are |2c| many 3’s and one ¢ — % Then,
we have
k

Zlogai > —2c—1.

i=1
Hence, it suffices to prove that in the optimal solution, there will be at most one entry of a;.;, not in
{3,1}. Suppose that there are two entries a; < az € (,1). Forany A > 0s.t. a; — A ag + A €
[1,1], we have

A
G2+ ) < log( “

1
os( as a; — A

)

A

which is due to % is monotonically decreasing in x. By re-arranging terms, we have

log(a; — A) + log(as + A) < log(ay) + log(az)

Hence, we can always decrease the function value by changing a;, as to a; — A, as + A. By setting
A = (1 —az) A (ay — ), either ay is changed to § or ay is changed to 1. We reduce the number of

entries not being % or 1. We are done with the proof. O

B.3 Surrogate Loss Method in Both Realizable and Agnostic Cases

Again we focus empirical precision and recall losses minimization. Let z1,...,z,, € X denote a
sequence of inputs. For each hypothesis g, let U denote the uniform distribution over the output
g(x;). For any pair of hypotheses ¢’, g”’, define the following:

s 1\
precision.loss(g’ | ¢) = recall.loss(g” = z_: ")\ 9" (x:)) -

Here precision.loss(g’ | ¢”) is the precision loss of hypothesis ¢’ when the target hypothesis
is ¢"” and recall.loss(g” | ¢') is the recall loss of hypothesis ¢’ when the target hypothesis
is ¢’. Thus, the goal is to output a hypothesis g with small precision.loss(g | ¢™¢") and
recall.loss(g | g"'e).

Our learning rule is based on two simple principles for discarding sub-optimal hypotheses. We
illustrate these principles with the following intuitive example: consider a music recommendation
system, and assume we are considering two candidate hypotheses, g; and g». Both hypotheses
recommend classical music; however, g; recommends pieces by Bach 20% of the time and pieces by
Mozart 10% of the time, while g, never recommends any pieces by Mozart.

Now, suppose that in the training set, users frequently choose to listen to pieces by Mozart. This
observation suggests that g5 should be discarded, as it never recommends Mozart. This leads to our
first rule: if a hypothesis exhibits a high recall loss, it can be discarded. The second rule addresses
precision loss, which is more challenging because it cannot be directly estimated from the data. To
illustrate the second rule, imagine that in the training set, users tend to pick Bach pieces only 5% of
the time. This suggests that g; is over-recommending Bach pieces, and therefore, g; might also be
discarded based on its likely precision loss.

We formally capture this using the following metric.
Definition 1. For a hypothesis g define a vector vy : H x H — [0, 1] by

v zm (i) \ " ().

Define a metric dy between hypotheses by dy (g1, g2) = ||vg, — Vg, || co-
Let g be the observed (empirical) hypothesis; i.e. the hypothesis which outputs {v;} at x; for all

(x4, v;) in the training set and outputs the empty set for all unobserved input. A standard union bound
argument yields:
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Lemma 8. Let g% denote the true hypothesis (i.e. the data is generated from g'“'¢¢'). Then, with
probability at least 1 — §:

log|H| + log(l/é)).

m

@) < 0(y/

We now present our algorithm. We present two variants, one in the realizable setting (when g€ € H)
and one in the general (agnostic) setting.

Algorithm (realizable case): Let ¢ denote the desired error. Output a hypothesis g°""" € H
such that

1. Forall g € H, vz(g, g°""") = 0.
2. Forall g € H, vgounu (g™, g) > & = v5(g™"™, g) > 0,

Notice that Item 1 corresponds to the first principle for discarding suboptimal hypotheses described
earlier in this section, while Item 2 corresponds to the second principle.

Algorithm (agnostic case): output a hypothesis g°*'P* € H such that

Output)

dwy (3 — mindy (3, g).
(9,9 min +(9,9)

We prove that
Theorem 8. Let '8¢ denote the target hypothesis. Then, for
B O(log|H| + log(l/é))

2

the agnostic-case algorithm outputs a hypothesis """ such that with probability at least 1 — 6,
escalar outpury 5 min gscalar te.
(g™™") < 5 min £ (g)

Remark 2. In the realizable setting, our algorithm achieves a quadratic improvement in sample com-
10g|7—l|+10g(1/6))

plexity: learning with recall and precision losses at most & can be achieved with O ( -

examples.

B.3.1 Proof of Theorem 2

Proof of Theorem 2. For simplicity, we adopt payoffs instead of losses here. The payoff of hypothesis
gatxis

larget ) N g(a:)| N |gtarget(x) N g(x)|
2|g(x)| Q‘Qtargel(:ljﬂ .

If g(z) = 0 and ¢! () # 0, u(g,z) = 1 if both are empty set u(g, z) = 1. The expected payoff

is U(g) =E,wp [u(g,x)] =1— gscalax(g).

u(g,z) = 19

Construction of g“‘rget and D Let’s start by focusing on one single input x. There are n items
] and N2 = {5 +1,...,n}. Consider two hypotheses—g; with g; (x) = Ny (z) and
gg w1th 92 (2x U NQ( ). So g1 () contains half of the items in go(x).
In a world characterized by 8 € [8 , 3] g€ (z) is generated in the following random way: Randomly
select 3 - Bn items from Ny () and 1 - Bn items from N (z). We denote this distribution by Ps. No
matter what [ is, w.p. %, v is sampled uniformly at random from N, (z) and w.p. i, v is sampled
uniformly at random from Ny (z). That is, every item in N; (z) has probability % of being sampled
and every item in Ny(z) has probablhty - of being sampled.
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For any ¢g'*¢ generated from the above process, the payoff of g; at x is

target n target N 3/4 . 3/4. 3 3
1thx):|g (@) Ngr(@)] | |9 (@) Vg1 ()| _ 3/4-Bn 3/ n _3,5. 3
2[g1 ()| 2|gureet ()| n 26n 4 8
and the payoff of g at x is
PR TaT G O A C0 B U P
2|ga()| 2|geet ()| 260 27 2

We make infinite copies of {, N1(z), Nao(z)}. In each of the copy, ¢1(z) = Ni(x) and g2(z) =
Ni(z) U Ny(x). For each x, we independently sample ¢g*¢'(z) from Pg. Let the data distribution
over all of such copies of z. Then almost surely, there is no repentance in the training data, i.e., there
does not exist ¢ # j such that z; = x;. And for any random sampled test point, w.p. 1, it has not
been sampled in the training set.

lg™™ (= )ﬂNl(r)I \9"““’“‘(fr)ﬂN2(w)|

Analysis For any unobserved = ¢ {z;|i € [m]},leta; = and g =
Note that oy, v are in [0, 2] and are possibly random variables if A is randomized. Then the expected
(over the randomness of ¢g**"¢") payoff of g°"'*" at x is

‘gtargel(x) N0 goutput(x” |glarget(x) n goutput(m)‘
2] ()] 2]ge ()]
_04171'%54'@2”'%5 ain- 38+ am- 33
2(a1 + ag)n 208n
a8 B

S V- S PN ©)
"2 tay) 44Tt

]Eg!argel [u (goutput 5 x) ] :Eglarget

which is monotonically increasing in ovy. Hence Eguret [u(g™"P™, z')] is maximized at a; = 3. Then
1 3 1
E et output < é . 1 e - )
gt [u(g ,x)}_4 (7%+a2+ )+8+4a2

Note that 3 is not observable if we never sample the same = more than once (and thus the distribution
of v conditional on 3 is identical for any 3). Hence g°**" is independent of 3.

o f Pop(aa(z) < i) > %: when 3 = %, E gureet [u(g®"P", )] < i(ﬁ + ) + ;}—3 is
monotonically increasing in co. Hence,

1.9 49 ) 5

E target output > (— - 2 = _ Y pscalar )

(92) [wg™™)] 255~ 55) = 103 — it (92)
« If Poop(ag(z) > §) > 5: when § = 2, Bguee [u(g™™, 2)] = 53657 + §02 + 55 is
maximized at ap = 1 for a € [, 1]. Hence,
1.7 5 1 1

— E juuge ouputy] > (- By = = Zysealarg

u(gr) = Bgume [u(g™™)] 2 5(3 = 5) = 5 = 50" (91)

Therefore, for any algorithm A, for any 1.y, Vi:m, Eguase [£9037(gO"P) ] s worse than 1.05 -
min{ (< (g ), 54 (go)} at either 8 = £ or B = 2. So there exists a target hypothesis such that
gscalar(goutput) > 1.05 - min{gscalar(gl), gscalar(QQ)}' O
B.3.2 Proof of Theorem 8

We use the following auxiliary metric between hypotheses:
Definition 2. For rwo hypotheses g', g" define

dp+(g',¢") = precision.loss(¢'|g”) + recall.loss(¢'|g")
= precision.loss(g”|g') + recall.loss(g”|g’).

34



For any hypothesis g, the scaler loss £*¥%(g) = 1d,, . (g°"™, g""¢). In the remainder of this section,
we focus on proving Theorem 8. The basic idea is to show that d3; can be used as a surrogate for dp, ...
The following lemma plays a crucial role in our proof.

Lemma 9. For every pair of hypotheses g1, go:

dH(gla.QQ) S dp,r(gla 92)
If in addition g1, g2 € H, we have:

doc(91,92) < 2d3(91,92).
We first use Lemma 9 to prove Theorem 8, and later prove the Lemma.

Proof of Theorem 8. Assume m = O(w) is such that dg (¢°""P", g¢) < £/4 with
probability at least 1 — 4, and assume the latter event holds. Let g € H, by the trlangle inequality:

dp r(goutput’ gtdrgel) < dp r(goutput’ g) + dp r(g7 gldrget) .
We upper bound the first term on the right-hand side as follows:

dp (g™, g) < 2dp (g™, 9) (Lemma 9)
< 2dy (goutput’ gtarget) + 2dy (gtarget7 g)
< Ady (99, g) + € (see below)
< Adp (9", g) + €. (Lemma 9)

Altogether,
dp,r (goutput’ gtargel) S 5dp,r(g7 gla.rget) _|_ c.

It remains to explain the second to last inequality above. It follows by two applications of the triangle
inequality:

d?—[ (goutput7 gtarget) < d’H (goutput7 j(]\) + 6/4 (d’H (g‘arge‘, /g) < 6/4)
dy(9,9) +¢c/4 (g°"P" € arg mingey du(g,9))

dw (g, 9""%") 4+ ¢/2. (dw (g™, q) < e/4)

O

Proof of Lemma 9. For the first inequality, note that both of the distributions UJ* and UJ* are uniform
over their supports and hence TV(U/*, U??) = max{U" (g1(x;) \ g2(2:)), U7 (g92(x:) \ g1 (x:))}.
Thus, for every ¢’, ¢ € H:
U7 (g (i) \ g (20)) — U (9" (i) \ 9" ()]
<TV(U}", U*)
U (g1(2i) \ g2(wi)) + U (g2(2:) \ 91(24))-

Hence, by averaging the above inequalities overi = 1,...,n:

1 m
d < =N TV(U,U??) <dy(g1,92),
1(91,92) < mz (U, UP) < dyx(91,92)

i=1
which yields the first inequality.

For the second inequality, assume g1, g2 € H. Thus,

dn(91,92) > maX{ ZUgl g1(xi) \ g2(x:)) ZU92 92(w; \91(%))}

N % i Ufl (g1(z:) \ g () —; UiQZ(gz(xi) \ g1(2:))
- %dp,r(gl,gg.
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B.4 Algorithm and Proofs in the Semi-Realizable Case

In the semi-realizable case, there exists a hypothesis in the class with zero precision loss. The question
is whether we achieve zero precision loss while allowing for the worst recall loss in the class.
Theorem 5. There exists an algorithm such that if there exists a hypothesis g' € H with (Preision (g') =
log%#), with probability 1 — 6, it
outputs a hypothesis with (Prcision(gouruty — () gnd recall (gowrur)y = ?

0 and 07<?!'(g") = r, then given an IID training set of size O(

The algorithm works as follows.

Algorithm: output

output _ arg min = Il(Ui S g(l‘i)) )

g
geEH i=1 ng(l'z)

If there are multiple solutions, we break ties by picking the hypothesis with smallest empirical
recall loss.

Proof of Theorem 5. For any hypothesis g, 1(v; € g(x;)) is an unbiased estimate of the recall

NG (2, 1(v; ; . . . NGt (g,
lg(@)ng™ (i)l ppy L0i€I(@)) j¢ an yunbiased estimate of [2(Z)09™ (@)l
N gtarget (T) ng(x;) ng (i) M gtarger (T5)

lg(zi)Ng"™™ ! (x

Since ¢’ has zero precision loss, EES) )l — 1 almost everywhere. Thus, we have
g (3

b

f;“%g(%))_za[ ! H . \/log<|H|>+10g<1/6>

ng(arge( (I) m

for all g € H. Then if Ap > 0, we need A% samples to separate g’ from other hypotheses in the
D
hypothesis class. O

Theorem 6. There exists a class H = {g1, g2} of two hypotheses, for any m > 0 and any (possibly
randomized improper) algorithm A, there exists a target hypothesis g"'¢¢' and a data distribution D
for which there exists a hypothesis gt € H with P¢" (g1} = 0 s.t. with probability 1 — § over the
training set, the expected (over the randomness of the algorithm) precision and recall losses of the
output goutput satisfy eitherIE Vrecall(goutpm):l 2 mingE’H [recall(g) + Q(l) OI’E I:gprecision(goutput)] —
Q(1).

Proof of Theorem 6. Let’s start by focusing on one single input z. Let N = {vy, ..., v, } for some
n > m. Let g1(z) = {v1} and g2(z) = {v2}. In world I, ¢""¢*'(x) is generated in the following
way.

* wp. 5, 9% () = N\ {va}.

e w.p. 1, g% (z) = {vy, vo}.
We construct a symmetric world II by switching v; and vo, i.e.,

* wp. 3, g9 (@) = N\ {v1}.

* wp. 5. g9 (2) = {v1,v2}.

We make infinite independent copies of (x, V) and let D to be the uniform distribution over such x’s.
Hence, in world L gprecision (91) =0 and [recall(gl) — % _ ﬁ; gprecision (92) — % and erecall (92) — %
When n — oo, we can’t distinguish between two worlds. In order to achieve £Pecision (gomPit) = () jn
both worlds, we need to make g°"'"*(x) = ) for almost every x. Then the recall loss would be 1. [
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