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ABSTRACT

The problem of processing very long time-series data (e.g., a length of more than
10,000) is a long-standing research problem in machine learning. Recently, one
breakthrough, called neural rough differential equations (NRDEs), has been pro-
posed and has shown that it is able to process such data. Their main concept
is to use the log-signature transform, which is known to be more efficient than
the Fourier transform for irregular long time-series, to convert a very long time-
series sample into a relatively shorter series of feature vectors. However, the log-
signature transform causes non-trivial spatial overheads. To this end, we present
the method of LOweR-Dimensional embedding of log-signature (LORD), where
we define an NRDE-based autoencoder to implant the higher-depth log-signature
knowledge into the lower-depth log-signature. We show that the encoder success-
fully combines the higher-depth and the lower-depth log-signature knowledge,
which greatly stabilizes the training process and increases the model accuracy. In
our experiments with benchmark datasets, the improvement ratio by our method
is up to 75% in terms of various classification and forecasting evaluation metrics.

1 INTRODUCTION

Time-series data occurs frequently in real-world applications, e.g., stock price forecasting (Ariyo
et al., [2014; [Siami-Namini et al., 2018} [Jhin et al., |2021)), traffic forecasting (Reinsel, 2003}, [Ful,
20115 Bai et al., [2020; |[Fang et al., 2021), weather forecasting (Shi et al., [2015} |Seo et al., 2018;
Brouwer et al., 2019 Ren et al., 2021), and so on. However, it is known that very long time-
series data (e.g., a time-series length of more than 10,000) is not straightforward to process with
deep learning despite various techniques ranging from recurrent neural networks (RNNs) to neural
ordinary/controlled differential equations (NODEs and NCDEs). RNNs are known to be unstable
when training with such very long sequences and the maximum length that can be processed by
NODESs and NCDEs is more or less the same as that by RNNs (Morrill et al.| 2021} |Aicher et al.}
2020; Trinh et al.| 2018} Stoller et al.,|2019; Bai et al., [2018). However, one breakthrough has been
recently proposed, namely neural rough differential equations (NRDEs).

NRDEs are based on the rough path theory which was established to make sense of the controlled
differential equation:

dz(t) = f(=(t))dX (1), (1

where X is a continuous control path, and z(¢) is a hidden vector at time ¢. A prevalent example of X
is a (semimartingale) Wiener process, in which case the equation reduces to a stochastic differential
equation. In this sense, the rough path theory extends stochastic differential equations beyond the
semimartingale environments (Lyons et al., 2004).

One key concept in the rough path theory is the log-signature of a path. It had been proved that
the log-signature of a path with bounded variations is unique under mild conditions (Lyons & Xul,
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Figure 1: Two possible approaches to reduce the dimensionality of the higher-depth log-signature.
The dark gray means a processing in a higher-dimensional space and the light gray means that in a
lower-dimensional space. Our embedding method in (b) is better than the baseline in (a) in that i) the
higher-dimensional processing is deferred to the decoder which will be discarded after pre-training
the autoencoder, and ii) our method does not involve any higher-dimensional processing during the
main training and inference processes. We pre-train the autoencoder and in the main training step,
we discard the decoder, fix the encoder, and train only the main NRDE for a downstream task (cf.
Table E[) In this way, we can exclude the higher-dimensional processing as early as possible.

2018;|Geng, 2017) and most time-series data that happens in the field of deep learning has bounded
variations. Therefore, one can interpret that the log-signature is a unique feature of the path.

Given a N-length time-series sample {x;}, annotated with its observation time-points {t;}¥,
where tg = 0, ty = T, and ¢; < t;41, NRDEs construct a continuous path X (¢), where ¢t €
[0, T, with an interpolation algorithm, where X (¢;) = (x;,t;) for t; € {t;}Y,. In other words,
the path has the same value as the observation (x;,t;), when t; is one of the observation time-
points and otherwise, interpolated values. As shown in Fig.[T] a log-signature (each dotted yellow
box in the figure) is calculated every P-length sub-path, and another time-series of log-signatures,

T
denoted {LogSig” . (X )}iLfOJ_l, is created. The log-signature calculation has one important
hyperparameter D called depth — the higher the depth is, the more accurately represented each
sub-path is (cf. Eq.[d). For instance, the best accuracy score is 0.81 for D = 3 vs. 0.78 for D = 2 in
EigenWorms. The sub-path length P and the depth D decides the number and the dimensionality
of log-signatures, respectively.

However, one downside is dim(LogSig/” ... (X)) > dim(X), where dim(X) means the dimen-
sionality (or the number of channels) of X. As a matter of fact, dirn(LogSig,’?i’Ti+1 (X)) grows

rapidly w.r.t. dim(X) (Morrill et al., 2021). Since the dimensionality of the input data is, given a
dataset, fixed, we need to decrease D to reduce overheads. In general, NRDEs require more param-
eters to process higher-dimensional log-signatures (as shown in Table ] where the original NRDE
design always requires more parameters for D = 3 in comparison with D = 2.)

BIDMC32RR(P = 128) To this end, we propose to embed the higher-depth signatures onto
— NROE a lower-dimensional space to i) decrease the complexity of the main

—— LORD,.3 NRDE (the solid blue box in Fig. |I|), and ii) increase the easiness of

training (cf. Fig. ) and as a result, its model accuracy as well.
Fig. [I] shows two possible approaches where we directly reduce
the dimensionality of the higher-depth log-signature in Fig.[T](a) or
we adopt the autoencoder architecture to combine both the higher-
B e o depth and the lower-depth signatures in Fig. [I] (b) — the first ap-
proach in Fig.[T] (a) is a baseline model, and our proposed model is

Figure 2: The loss curve of the second approach in Fig.[T](b). Autoencoders are frequently used
LORD is stable. Other figures for (unsupervised) dimensionality reduction although there also ex-
ist other approaches. Since the higher-depth log-signature should
be reconstructed from the embedded vector, one can consider that

Train Loss
~
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are in Appendix [f
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the higher-depth log-signature is indirectly embedded into the vector. Moreover, the decoder is
discarded after its pre-training so our method does not involve any high-cost computation with the
higher-depth log-signature in the main training and inference steps as clarified in Table|[I]

Our proposed method, LOweR-Dimensional em-
bedding of log-signature (LORD), adopts an
NRDE-based autoencoder to combine the higher-

Table 1: Two phase training in our method

Pre-trainin Main trainin .
5 — £ o) £ depth and the lower-depth log-signature knowl-
Eﬁggg:: T;Z;Elﬁg lls:?)?éged edge, and utilizes the embedded knowledge by
Main NRDE | Not Applicable Training the encoder for a downstream machine learning

task as shown in Fig. [T] (b). The encoder embeds
the lower-depth log-signature from the continuous
path X, and the decoder reconstructs the higher-depth log-signature. This specific design is where
our key idea lies in. The encoded lower-depth log-signature will contain both the lower-depth and the
higher-depth log-signature knowledge because 1) it is an encoding of the lower-depth log-signature
and ii) the decoder should recover the higher-depth log-signature from it. After pre-training the au-
toencoder, we discard the decoder to exclude the higher-dimensional processing as early as possible
from our framework. After that, we fix the encoder and train only the main NRDE.

We conduct experiments with six very long time-series benchmark datasets and five baselines in-
cluding NODE, NCDE, and NRDE-based models. RNN-based models cannot process the very
long time-series datasets and we exclude them. Our proposed method significantly outperforms all
existing baselines. Our contributions can be summarized as follows:

1. We design an NRDE-based continuous autoencoder to combine the higher-depth and the
lower-depth log-signature information. Since the decoder is discarded after being trained,
we adopt the asymmetric architecture that the encoder is lightweight and the decoder is
heavyweight in terms of the number of parameters.

2. Our proposed method outperforms all baselines by large margins (up to 75% for various
evaluation metrics, e.g., R?) in standard benchmark datasets with much smaller model sizes
in comparison with the original NRDE design.

Our code is available in https://github.com/leejaehoon2016/LORD.

2 RELATED WORK AND PRELIMINARIES

NODEs NODEs (Chen et al.,|2018)) use the following equation:

2(T / F(a(t),t:60,)d )

which means z(T") is solely defined by the initial value z(0) — the entire evolving path from z(0) to
z(T) is defined by the initial value in ODEs. NODEs are not considered as a continuous analogue
to RNNs but to residual networks (Chen et al., 2018)).

NCDEs Let {x;}¥, be an N-length time-series sample and {t;})¥, be its observation time-
points. NCDE:s are different from NODE:s in that they use the following equation:

z(T /f ):0,)dX (¢ /f ()dt, 3)

where X (t) is a continuous interpolated path from {(x;,t;)}~,, where ty = T. In this re-
gards, NCDEs can also be considered as a continuous analogue to RNNs. The adjoint sensitivity
method can be used to decrease the space complexity of gradient calculation instead of backpropa-
gation (Kidger et al., 2020).

However, NCDEs has an inherent disadvantage that they are weak at processing very long time-
series samples, because NCDEs directly process the very long time-series samples.
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Signature Transform Let [r;,7;11] be a time duration, where r; < 7;41. The signature of the
time-series sample is defined as follows:

k .
i1y X"
Spnth(X) = // o (t;)dtj,

T4 <t1'<-~-<tk <Tit+1 J=1

S8 o (X) = ({87 oy COREO 807, (OVEREO L gt (XN ).

TiTit1 i,j=1 TiTit1 i1,..,4D=1
“)

However, the signature has redundancy, e.g., Sii(X) + Si; (X) = 85 ,(X)S2,(X) where we
can know a value if knowing three others. The log-signature LogSz’gfi’ riyy (X)) is then created
after dropping the redundancy from the signature. In this work, we use this log-signature defini-
tion in default to design our method. By creating a log-signature for every P-length sub-path, the
entire sequence length can be reduced — moreover, the log-signature is a unique feature of the sub-
path (Lyons & Xul 2018} |Geng, 2017)). For complexity reasons, we typically use the log-signature
of depth D < 3 (Morrill et al.| 2021).

NRDEs Owing to the log-signature transform of time-series, NRDEs (Morrill et al.| [2021) are
defined as follows:

LogSigP , (X
J(X.1) = 951Gy, (X)

fort € [ry,riy1),
Tig1 — T4 (5)

T
2(T) = 2(0) + / £ (2():07)g(X. t)dt,

where LogSig,[.f 7
LogS’igfz "

X) means the log-signature created from the path X within the interval

r (X . . N . . .
[ri,rig1)- T*l_lrfl is a piecewise approximation of the time-derivative of the log-signature

in the short interval [r;,r;1). D means the depth of the log-signature. Once we define the sub-

risa

path length P, the intervals {[r;, 7"2‘+1)},LL:%0J ! are decided, i.e., P = r; 11 — r; for all ¢. Then, the

T
time-series of Long'ig,,Di_ﬁ+1 (X) constitutes { LogSig). (X)}iLjOJ " in our notation.

Ti+1

NRDEs use Eq. [5|to derive z(T") from z(0), which can be considered as a continuous analogue to
RNNSs since it continuously reads the time-derivative of the log-signature. Therefore, z(T") is defined
by the initial value z(0) and the sequence of the time-derivative of the log-signature. We can also
use the adjoint sensitivity method to train NRDEs.

Long Sequence Time-series Input (LSTI) The problem of processing very long time-series data
is a long standing research problem. There are three ways to solve the LSTI problem. First, it
reduces the sequence through truncating/summarizing/sampling from a very long input sequence.
However, this method may lose information affecting the prediction accuracy. The second is to
give the gradient transformation. As the sequence becomes longer, the gradient vanishing problem
occurs. Therefore, in (Aicher et al., 2020), the model is trained using only the gradient of the last
step. It also solves the problem using auxiliary losses (Trinh et al.| |2018). Finally, CNNs (Stoller
et al.|[2019; Bai et al.| [2018) were used to solve the LSTI problem. The convolutional filter captures
long term dependencies, but the receptive fields increase exponentially, breaking the sequence.

3 PROPOSED METHOD

We describe our proposed method, LORD-NRDE. We first clarify the motivation of our work and
then describe our proposed model design.

Motivation It is known that NRDEs are a generalization of NCDEs (Morrill et al., 2021
Section 3.2). However, one problem in utilizing NRDEs in real-world environments is that
dim(LogSigk iy (X)) is arapidly growing function of dim(X') (Morrill et al., 2021, Section A).

Ti41
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Algorithm 1: How to train LORD-NRDE

Input: Training data Dyyqin, Validating data D,,q;, Maximum
iteration numbers max_iter og and max_iterrask

Higher-depth

J

[ Lightweight Encoder ] 2 for max_iter og iterations do
T T T T T T ‘ Train the encoder and the decoder using Lag ;
Lower-depth <P /* Main-training of LORD-NRDE */
for max_iterrask iterations do
Train the main NRDE using L1 ask;
Validate the best main NRDE parameters with D,,q;;
return the encoder and the main NRDE parameters;

> e 1 .

£ 1 Initialize the parameters of the encoder (i.e., 8¢, 05, ), the
Heavyweight Decoder g decoder (i.e., 0,, 04, ), and the main NRDE (i.e., 8y, 04,,
(Will be discarded after training) © 0 .

(E" ¢output )'7
g /+ Pre-training of the autoencoder */
=
S
)

w

Log-signatures with a lower-depth

Figure 3: The proposed NRDE-
based autoencoder
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This rapid blow-up of dimensionality causes two problems : 1) it hinders us from applying NRDEs to
high-dimensional time-series data, and ii) it makes the training process complicated since the hidden
representation of the large input should be made for a downstream task. Therefore, we propose to
embed the log-signature onto a lower dimensional space so that the training process becomes more
tractable and enhance the applicability of NRDEs to high-dimensional data. After the embedding, in
other words, the dimensionality of embedded vector is typically smaller than that of the log-signature
with depth D> in our setting but it has knowledge of the log-signature with depth Dy > D;.

Overall Architecture We describe our proposed method, LORD-NRDE, which consists of three
NRDE:s: i) an encoder NRDE, ii) a decoder NRDE and iii) a main NRDE to derive z(T") from z(0).
The role of each NRDE is as follows:

1. The encoder NRDE continuously embeds the log-signature with depth D; onto another
space. We use e(t) to denote the vector embedded from the log-signature at time ¢.

2. The decoder NRDE reconstructs the log-signature with depth Dy > D from e(t).
3. The main NRDE reads e(t) to evolve z(t) and derive z(T"). There is an output layer which
reads z(7") and makes inference.

We note that dim(LogSigP2. (X)) > dim(e(t)), where ¢ € [0,7T]. We require that the encoder

TiyTit1

produces embedding vectors that contain both the log-signature knowledge with D; and D5 depth.

LORD-NRDE To this end, we propose the following method:

T e

(1) =200+ [ gtalt)so,) " ©
T LogSigP (X

1) = e(0)+ [ 1(ewr0n e D g pori e friri), )
0 Ti+1 T

S(7) = s00)+ | ofs(0):00) " . ®)

where dim(e(t)) < dim(s(t)) = dim(LogSigP?. (X)), where t € [r;,7;41), with Dy > Dj.

TiyTi+1

The term de(t) can be considered as an embedding of the log-signature with depth D at time ¢, and
e(t) as an embedding of X (¢) constructed by the log-signature with depth D;. Similarly, ds(t) is a
reconstructed log-signature with depth Dy from the embedding, and s(t) as X (¢) reconstructed by
the log-signature with depth D5. Since e(0) and s(0) mean the initial values, we set ¢e (X (0); 0, ),
¢s(e(0); 0, ), where ¢ means a transformation function.

Therefore, e(t) and s(t) constitute an autoencoder based on NDREs as shown in Fig. [3] In our
design, we use the asymmetrical setting for them, where the encoder RDE is lightweight and the
decoder RDE is heavyweight in terms of the number of parameters, considering the applicability of
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our design to real-world environments. Since the decoder NRDE is discarded after its pre-training,
the heavyweight setting causes no problems afterwards — our method requires more resources for
the pre-training process though.

There are three functions g, f, and o in Egs. E]to and their definitions are as follows:

9(2(t);04) = FCout,y,Ny+1(Y(FChy N, (- 1(FChy 1 (2(1))..))), 9
f(e(t); ef) = Fcoutf,Nf+1(w(FChf7Nf("'n(FChf,l(e(t))"')))’ (10)
0(s(t); 00) = FCouty,No+1 (¥ (FChy,n, (---0(FCh,,1(s(1))...))), (11)

where FCy, is a fully-connected (FC) layer whose output size is h. Ny, N¢, N, means the number of
FC layers. ¢ and n are the hyperbolic tangent and rectified linear unit activations, respectively.

Training Method To train the NRDE-based autoencoder, we use the following loss:

Yito ll(s(rig1) — s(ri)) — LogSigP=, . (X)3
LT'econ = M ; (12)

Lap = Lrecon + cap (1073 + 10613 + 10, 13 + 105, 112) + cellell3, (13)

where M = L%J — 1, and cap is a coefficient of the Lo regularization terms. ce also regularizes
the scale of the learned embedding. In addition to L 4, we also have a task loss L1 45k which is
the standard cross-entropy (CE) loss or the mean squared loss (MSE) loss. From z(T"), we have an
output layer, which is typically a fully-connected layer with an appropriate final activation function
such as softmax, to produce a prediction 4. 0g,.,... denotes the parameters of the output layer.
Using the ground-truth information y, we define the task loss L1 45k . Therefore, the final loss can
be written as follows:

Lrask = CE(y, ) + crask (10513 + 106,13 + 100uspuc12): (14)

where crask is a coefficient of the Lo regularization terms, and C' E(y, §) means a cross-entropy
loss — we assume classification but it can be accordingly changed for other tasks.

To implement, we define the following augmented ODE:

LogSigot,. \ (X)
9(z(t);0q) f(e(t); 0f) —=—

d [A1) LogSigPt,.  (X)
% e(t) = f(e(t),ef)#’_l:l ) fort € [ri7ri+1)) (15)
s(t ZLo Sil by X
o(s(1); 6,) f(e(1); ) =222 rires )
LogSigP1 (X . .
where we replace dz(tt) with f(e(t); 0 f)%jl() (as defined in Eq. , and the initial values

are defined as follows:

e(0) | = |9e(X(0));05,)
s(0) ¢s(e(0); 05,)

where ¢, and ¢, are transformation functions to produce the initial values from the initial observa-
tion X (0), and ¢s is a transformation function to produce the initial reconstructed value from the
initial embedded vector e(0). We use a fully-connected layer for each of them.

[Z(O)] l¢z(X (0)); 9%)1
= , (16)

Alg.[T]shows the training algorithm. In Line[3] we pre-train the autoencoder for max_iter 4 itera-
tions. After discarding the decoder and fixing the encoder, we then train the main NRDE in Line 3]
for max _iterp ok iterations. Using D4, we validate and choose the best parameters.

4 EXPERIMENTAL EVALUATIONS

We describe our experimental environments and results. The mean and variance of 5 different seeds
are reported for model evaluation. We refer to Appendix [A]for reproducibility.
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4.1 EXPERIMENTAL ENVIRONMENTS

Datasets We use six real-word dataset which all contain very long time-series samples. There
are 3 classification datasets in the University of East Anglia (UER) repository (Tan & Webb):
EigenWorms, CounterMovementJump, and SelfRegulationSCP2, and 3 forecasting
datasets in Beth Israel Deaconess Medical Centre (BIDMC) which come from the TSR archive (Tan
& Webb): BIDMCHR, BIDMCRR, BIDMCSp0O2. We refer to Appendix@]for detail of datasets.

Baselines There are three types of baselines in our Experiments, ranging from NODE to NCDE
and NRDE-based baseline models. ODE—RNN is one of the state-of-the-art NODE models in pro-
cessing time-series. Following the suggestion in (Morrill et al.,2021]), we merge P observations into
one merged observation and feed it into ODE—RNN, in which case ODE-RNN is able to process much
longer time-series. The dimensionality of the merged observation is P times larger than that of the
original observation or equivalently, the length of the merged time-series is P times shorter than that
of the original one. NCDE is the original NCDE design in (Kidger et al., [2020). Attentive NCDE
(ANCDE) is an extension of NCDE by adding an attention mechanism into it, which significantly
outperforms NCDE (Jhin et al.| 2021). For the NRDE-type baselines, we consider i) the original
NRDE design (Morrill et al.l 2021}, and ii) the one in Fig. E] (a) which directly embeds the higher-
depth log-signature into a lower-dimensional space, each of which is called NRDE and DE-NRDE,
respectively. For those NRDE-based models, we clarify its one important hyperparameter, depth,
as part of its name, e.g., NRDE, means NRDE with D = 2. One important point is that NRDE is
a generalization of NCDE. Therefore, NRDE; is theoretically identical to NCDE, if using the linear
interpolation method, and for this reason, we set D > 1 for NRDE.

Hyperparameters When using NRDEs, there is one crucial hyperparameter, the log-signature
depth D. We use two depth settings which were used in (Morrill et al.,|2021). For our LORD-NRDE,
there are two depths, Dy and Dy, where D; < Dj. LORDp,_,p, means that LORD-NRDE’s
decoder recovers the Ds-depth log-signature from the D -depth log-signature. The number of layers
in the encoder, decoder and main NRDE, Ny, Ny, and N, of Egs. E] to are in {2, 3}. The hidden
sizes, hg, hy, and h, of Eqs.@]to 11] are in {32, 64, 128, 192}. The coefficients of the L, regularizers
in Egs. and are in {1 x 107°, 1 x 107%}. The coefficient of the embedding regularizer, c, in
Eq. is in {0, 1, 10}. The max iteration numbers, max _iter oy and max _iterr sy in Alg.[1} are
in {400, 500, 1000, 1500, 2000}. The learning rate of the pre-training and main-training is 1 x 10~3.
We also set dim(e(t)) = dim(LogSig?y. (X)), where t € [r;,7;41)-

TiTi+1

We also conduct experiments by setting the sub-path length P to 4, 8, 32, 64, 128, 256, or 512 ob-
servations. In other words, we create one log-signature for every P input observation for NCDE and
NRDE-based models. For ODE-RNN, as described earlier, we simply concatenate P observations
into one observation. The final time 7' is large in our experiments, e.g., T' > 10, 000, and the num-
ber of log-signatures is L%J We test both the adjoint sensitivity method and the backpropagation
through the solver.

Evaluation Methods We reuse the very long time-series classification and forecasting evalua-
tion methods of (Morrill et al., |2021) and extend the methods by adding more datasets and more
evaluation metrics. We use accuracy, macro F1, and ROCAUC for binary classification; accuracy,
macro/weighted F1, and ROCAUC for multi-class classification; and R2?, explained variance, mean
squared error (MSE), and mean absolute error (MAE) for forecasting — we list the complete results
in Appendix |D] after introducing key results in the main manuscript. We also show the number of
parameters for each model — for our LORD, we exclude the parameter numbers of the decoder since
it is discarded after the pre-training. We train and test each model 5 times with different seeds. If
the mean of score is the same, the smaller standard deviation is better.

4.2 EXPERIMENTAL RESULTS

Summary of Experimental Results Since our main result tables have many items, we quickly
summarize their highlights in Tables [2]and [3] To calculate the improvement in evaluation metrics,
we use the ratio of improvement over NRDEj for each metric averaged over all the sub-path lengths

LORD’s ROCAUC—NRDEQ’S ROCAUC NRDE2’s MSE—LORD’s MSE
and all datasets, e.g., we calculate NEDE, s ROCAUC and NRDE,'s MSE for all

classification cases and average them. The ratio of the number of parameters is calculated similarly.
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Table 2: Highlights in Classification Table 3: Highlights in Forecasting
Method Acc. Mac.F1 ROCAUC #Params Method R? MSE #Params
ODE-RNN -9% -19% -11% -20% ODE-RNN 44% 41% -36%
NCDE -4% -8% -5% -64% NCDE -45% -55% -30%
ANCDE 0% 0% 0% 15% ANCDE -34% -45% -52%
NRDE2 0% 0% 0% 0% NRDE2 0% 0% 0%
NRDE3 2% 4% 2% 537% NRDE3 0% -5% 82%
DE-NRDE -4% -7% -3% -48% DE-NRDE»> 39% 35% -20%
DE-NRDE3 -2% -2% 0% 177% DE-NRDEj3 62% 59% 31%
LORD1—52 16% 23% 11% -55% LORDj 52 53% 47% -65%
LORDj ;3 15% 20% 10% -46% LORDj_s3 51% 46% -59%
LORD2_3 8% 9% 4% 17% LORD2_s3 75% 72% -39%

Overall, LORD outperforms other baselines with smaller numbers of parameters. LORD p, _, p, has
a larger model size, excluding its decoder, than NRDE p, whereas it has a much smaller model
size than NRDEp,. However, the performance of LORDp, s p, is similar to or better than that of
NRDE p,, which proves the efficacy of our method. Using the encoder-decoder structure, the high
complexity of processing log-signatures can be reduced and it makes our model smaller and more
amenable to train.

In many cases for LORD, the adjoint method and the backpropagation method are comparable in
terms of model accuracy. Interestingly, we found that the backpropagation through the Euler method
is fast enough with a neglectable sacrifice of accuracy for several cases.

Detailed Experimental Results Table [d] show detailed results for some selected evaluation met-
rics — full tables with all metrics are in Appendix [D] One point is that many best outcomes are
made with moderate P settings. For EigenWorms, ODE-RNN can’t achieve good scores for all
P settings. Our proposed model, LORD, achieves the best scores. In particular, LORD;_,3 with
P = 32 has a much smaller number of parameters, compared with other baselines that have similar
performance. LORD»_, 3 also significantly outperforms NRDEg3 for both accuracy and mode size. For
CounterMovementJump and SelfRegulationSCP2, ODE-RNN is better than other NRDE
and NCDE-based baselines. However, LORD marks the best scores in all cases.

In all BIDMC experiments, LORD shows outstanding performance. LORD2_,3 shows the best perfor-
mance in almost all cases. Compared with NCDE and NRDE, DE—~NRDE has 40 ~ 60% improvements
and LORD has 50 ~ 70% improvements. However, LORD’s model size is reduced by 60% whereas
DE-NRDE’s model size is reduced by 20%. Therefore, our proposed method is a better embedding
method for log-signatures. Unlike EigenWorms, the time-series length in this dataset is rather
short. For that reason, ODE—RNN performs better. Overall, DE-NRDE3 with P = 128 has the best
performance, among the baseline models. This means that the training difficulty by the large log-
signature size can be alleviated by the direct embedding. However, LORD outperforms DE—-NRDE.

BIDMC32HR(D; =1,0,=3,P=8)  Additional Results and Visualization Fig. ] visually compares
=7 o Logsig™ | the three log-signatures and we note that the embedded signature
Logsig® of de(t) has the characteristics of both D; = 1 and Dy = 3. We
refer to our supplementary material for other visualization, detailed
results, sensitivity analyses, and reproducibility information.

5 LIMITATIONS AND CONCLUSIONS

Figure 4: PCA-based visual- The log-signature transform of NRDEs is suitable to irregular
ization of log-signatures and long time-series. However, the log-signature transform re-

quires larger memory footprints and to this end, we presented
an autoencoder-based method to embed their higher-dimensional log-signature into a lower-
dimensional space, called LORD. Our method is carefully devised to eradicate the higher-
dimensional computation as early as right after the pre-training of the autoencoder. In the standard
benchmark experiments of very long time-series, our proposed method significantly outperforms
existing methods and shows relatively smaller model sizes in terms of the number of parameters.
Nonetheless, it is still in its early phase to enhance NRDEs and there exist a couple of items to be
studied further, e.g., processing long time-series with many channels.
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Table 4: Detailed experimental results. The best results for each P is in boldface and for all P
settings additionally with asterisk. Moderate configurations of P are needed to see the best results
in many cases.

Accuracy Macro F1 #Params

P=4 32 128 4 32 128 4 32 128
ODE-RNN | 0.35+0.01 0.35%0.03 0.40£0.04 | 0.1120.00 0.15+0.07 0.25+0.11 | 2.9 x 10* 5.4 x 10* 1.4 x 10°
NCDE 0.68+£0.10  0.76£0.05 0.4620.05 | 0.61£0.12  0.69+0.07 0.41x0.07 [ 2.1 x 10* 2.1 x 10* 2.1 x 10*
g| ANCDE | 0812005 077+0.03 050£0.06 | 0.7740.07 0.73%0.06 0.4620.07 | 9.3 x 10* 9.3 x 10* 2.3 x 10*
5| wnROE: 0.74+0.04  0.78+0.03 0.7320.09 | 0.6620.08 0.71£0.04 0.66x0.11 [ 6.5 x 10* 6.5 x 10* 6.5 x 10*
= | NRDEg 0.72+#0.08  0.810.04 0.61£0.12 | 0.62+0.13  0.79£0.05 0.54+0.14 [ 3.0 x 10° 3.0 x 10° 3.0 x 10°
9 [ DE-NRDE; | 0.4420.05 0.73%0.07 0.7740.07 | 02320.07 0.63x0.14 0.72£0.08 [ 4.1 x 107 4.1 x 107 4.9 x 10"
| DE-NRDE3 | 0.42#0.07  0.6320.05 0.8420.04 | 0.2120.10 0.53+0.04 0.8120.03 | 1.8 x 10> 1.8 x 10° 2.4 x 10°
LORD; 52 | 0.80£0.05 0.84%0.05 0.76x0.06 | 0.74£0.05 0.84x0.06 0.75+0.08 | 3.9 x 107 3.9 x 107 3.5 x 10"
LORD1_,3 | 0.7740.09 0.86+0.05* 0.74+0.08 | 0.7320.12 0.85+0.06* 0.72+0.09 | 3.5 x 10* 3.5 x 10* 3.9 x 10*
LORDy_,3 | 0.82+0.05 0.84+0.02 0.8420.04 | 0.78£0.06 0.79+0.05 0.82+0.06 | 1.3 x 10° 1.3 x 10° 1.3 x 10°

P =64 128 512 64 128 512 64 128 512
2| ODE-RNN | 047+0.02 047+0.09 0.45:0.03 | 0.45:0.03 0.46+0.09 0442004 |2.5 x 10* 2.1 x 10° 1.4 x 10°
2 NCDE 0.35£0.06  0.40+0.06 0.41+0.05 | 0.32+0.09  0.35+0.05 0.38+0.06 | 5.8 x 10* 2.5 x 10* 4.7 x 10*
2| ANCDE | 0.35£0.04 0.47+0.06 0.4620.07 | 0.34+0.03 0.46+0.07 0.430.10 | 1.4 x 10° 2.5 x 10° 2.9 x 10°
9| NRDE 0.40£0.12  0.40£0.08 0.40£0.09 | 0.39+0.12  0.38+0.08 0.39+0.09 [ 1.1 x 10° 1.9 x 10° 5.0 x 10*
¢ | NRDE3 0.47#0.09  0.41£0.08 0.47+0.06 | 0.46£0.09 0.40£0.08 0.45+0.05 [ 5.3 x 10° 5.2 x 10° 2.1 x 10°
2 [ DE-NRDE; | 0.40£0.07 0.38+0.06 0.38+0.05 | 0.39+0.08 0.33x0.07 0.36x0.06 | 5.2 x 107 9.1 x 10* 3.9 x 10*
% | DE-NRDE3 | 0.41£0.07 0.47+0.04 0.42+0.07 | 0.3720.07 0.44£0.05 0.40+0.08 [ 2.0 x 10° 2.8 x 10° 7.3 x 10°
£ [ LORD1 2 | 0.59£0.04° 0.57£0.06 0.50£0.08 | 0.58+0.04" 0.5620.07 0.49+0.08 | 8.7 x 10° 5.1 x 107 6.5 x 10*
3| LORD1,3 | 0.5620.04 0.53£0.03 0.51£0.03 | 0.55+0.04 0.52+0.03 0.50£0.03 | 4.3 x 10* 1.4 x 10° 8.8 x 10*
© | LORDa2_,3 | 0.40+0.05 0.40£0.08 0.40£0.04 | 0.38+0.05 0.38£0.08 0.37#0.02 | 1.1 x 10° 1.5 x 10° 3.6 x 10*

P =32 64 256 32 64 256 32 64 256
~ | ODE-RNN | 0.55£0.05 0.58+0.01 0.56+0.04 | 0.54+0.06 0.46+0.05 0.48+0.04 | 5.7 x 10* 4.1 x 10* 1.4 x 10°
g NCDE 0.59+0.07  0.52+0.08 0.54+0.06 | 0.47£0.12  0.4620.16 0.54+0.09 [ 4.2 x 10* 2.2 x 10° 3.2 x 10°
S| ANCDE | 0.60:0.06 0.54£0.04 0.49+0.05| 0.55:0.05 0.490.05 043007 | 3.9 x 10° 1.3 x 10° 2.1 x 10°
| NRDE: 0.52+#0.11  0.56£0.09 0.52+0.11 | 0.5120.06 0.45£0.06 0.50+0.07 [ 3.2 x 10° 6.2 x 10° 6.2 x 10°
©| NRDEs 0.54+0.05  0.56+0.06 0.50£0.07 | 0.56£0.05 0.50£0.12 0.48+0.07 [ 3.4 x 105 1.7 x 10° 3.4 x 10°
g | DE-NRDEz | 0.59£0.10  0.55x0.06 0.53x0.08 [ 0.53x0.13  0.50+0.08 0.50+0.08 [ 1.1 x 10° 2.0 x 10° 2.0 x 10?
O | DE-NRDEg | 0.55#0.11  0.5140.08 0.5140.10 | 0.57+0.07 0.54£0.06 0.55:0.03 | 1.1 X 10° 5.4 x 10° 1.1 x 10°
& [LORD12 | 0.5720.10 0.58+0.12 0.53+0.08 | 0.57£0.06 0.61x0.06* 0.51x0.08 [ 2.4 x 10° 1.4 x 10° 7.5 x 10*
& | LORD1 5 | 0.57+0.06 0.62+0.10 0.53£0.10 | 0.50£0.06 0.59+0.11 0.56£0.04 | 1.4 x 10° 1.2 x 10° 1.6 x 10°
LORD2_,3 | 0.61£0.06 0.61+0.10 0.60£0.07 | 0.55+0.09  0.56£0.07 0.53+0.06 | 2.2 x 10° 5.3 x 10° 2.6 x 10°

R? MSE #Params

P=3 128 512 8 128 512 8 128 512
ODE-RNN | 0.57#0.29  0.92+0.01 0.8120.02 | 0412028 0.07£0.01 0.184¢0.02 | 4 x 10° 1.5 x 10* 5.2 x 10*
NCDE 0.39£0.04  0.23+0.04 0.19£0.04 | 0.59£0.04 0.74£0.04 0.78+0.04 [ 5.0 x 10* 5.0 x 10* 5.0 x 10*
w | ANCDE | 0.44%0.03 0.17+0.06 0.26+0.01 | 0.54+0.03 0.80+0.06 0.71x0.01 [ 4.7 x 10* 4.7 x 10* 4.7 x 10*
T | NRDEg 0.63£0.04  0.67+0.07 0.64£0.07 | 0.3620.04 0.32+0.07 0.3420.07 | 7.5 x 10* 7.5 x 10* 7.5 x 10*
9| NRDEs 0.65£0.08  0.58+0.13  0.40£0.13 | 0.34£0.08 0.40£0.13 0.58+0.13 [ 1.4 x 10° 1.4 x 10° 1.4 x 10°
Z [ DE-NRDE; | 0.8220.08 0.7620.05 0.64%0.02 | 0.1720.07 0.2320.05 0.35%0.02 | 6.3 x 10* 6.0 x 10* 5.9 x 10*
@ | DE-NRDE3 | 0.89£0.05 0.93£0.02 0.81+0.09 | 0.11+0.05 0.07+0.02 0.18+0.08 | 1.2 x 10° 1.0 x 10° 1.0 x 10°
LORD; 2 | 0.98£0.01F 0.94x0.01 0.44%0.04 | 0.02£0.01° 0.06x0.01 0.54+0.04 | 2.7 x 107 3.4 x 107 3.4 x 10*
LORD; 3 | 0.98£0.01% 0.92+0.01 0.45+0.03 | 0.02+0.01*  0.07£0.01 0.53+0.03 | 2.7 x 10* 6.5 x 10* 5.5 x 10*
LORD2_,3 | 0.98£0.01% 0.95:0.01 0.85+0.04 | 0.02+0.01*  0.04£0.01 0.15+0.04 | 3.6 x 10* 5.2 x 10* 5.4 x 10*
ODE-RNN | 0.54#0.20 0.724#0.01 0.65+0.02 | 0.45£0.19  0.27£0.01 0.34+0.02 | 5.4 x 10* 1.2 x 10° 3.4 x 10°
NCDE 0.21£0.03  0.34+0.05 0.24+0.03 | 0.7620.03  0.64£0.05 0.74+0.03 | 8.7 x 10* 8.7 x 10* 8.7 x 10*
w | ANCDE | 0.30:0.06 039£0.10 0.27+0.03 | 0.68+0.06 0.59£0.09 0.70+0.03 [ 4.7 x 10* 4.7 x 10* 5.6 x 10*
& NRDE2 | 0.27+0.04 0.52+0.08 0.50£0.16 | 0.70£0.04  0.46+0.08 0.480.16 | 1.2 x 10° 1.2 x 10° 1.2 x 10°
9| NRDE3 0.34+0.04  0.65+0.14 0.42+0.13 | 0.64£0.03  0.3420.13 0.56+0.13 | 2.2 x 10° 2.2 x 10° 2.2 x 10°
Z [ DE-NRDE; | 0.6420.01 0.58+0.06 0.55+0.06 | 0.3420.01 0.40£0.06 0.43%0.06 | 8.8 x 10* 1.0 x 10° 1.0 x 10°
@ | DE-NRDE3 | 0.7020.06  0.70£0.02 0.57+0.05 | 0.29+0.05 0.29+0.02 0.41*0.05 | 1.4 x 10° 1.6 x 10° 1.6 x 10°
LORD; 2 | 0.8120.02% 0.66x0.01 0.45x0.04 | 0.18+£0.02° 0.33x0.01 0.53x0.04 | 2.7 x 107 2.7 x 107 4.0 x 10*
LORD; 3 | 0.80£0.02 0.67#0.02 0.45+0.03 | 0.20£0.02  0.32+0.01 0.53+0.03 [ 2.7 x 10* 4.5 x 10* 4.5 x 10*
LORDy_,3 | 0.80£0.01  0.74£0.01 0.66£0.01 | 0.19£0.01  0.25+0.01 0.33+0.01 | 3.6 x 10* 1.4 x 10° 1.0 x 10°
ODE-RNN | 0.55+0.11  0.90£0.03 0.75+0.02 | 0.4620.11 0.10£0.03 0.26+0.03 | 4 x 10° 1.5 x 10* 5.2 x 10*
NCDE 0.24+0.07  0.21%0.07 0.3320.04 | 0.79£0.07 0.8120.08 0.69+0.05 | 8.7 x 10* 8.7 x 10* 8.7 x 10*
N | ANCDE | 031x0.03 033005 0.37+0.03 | 0.710.03 0.70£0.05 0.65+0.03 [ 4.7 x 10* 4.7 x 10* 4.7 x 10*
S NRDE, 0.22+0.08  0.47+0.10 0.61x0.18 | 0.8120.08 0.55+0.10 0.41+0.19 | 1.2 x 10° 1.2 x 10° 1.2 x 10°
N'| NRDEs 0.1320.09  0.68+0.15 0.60£0.18 | 0.90£0.09 0.33+0.15 0.42+0.19 | 2.2 x 10° 2.2 x 10° 2.2 x 10°
S [DE-NRDE; | 0.85£0.01 0.74£0.05 0.59+0.04 | 0.150.01 0.27x0.05 0.43x0.04 | 8.8 x 10* 1.0 x 10° 1.0 x 10°
S | DE-NRDE3 | 0.90£0.08  0.93+0.03 0.76£0.07 | 0.1020.08 0.08+0.03 0.25+0.07 [ 1.4 x 10° 1.6 x 10° 1.6 x 10°
“ ["LORD1 2 | 0.97+0.00 0.91+0.01 0.58+0.05 | 0.03£0.00 0.0940.01 0.43%0.05 | 2.7 x 107 3.4 x 107 6.2 x 10*
LORD; 3 | 0.98£0.01% 0.89+0.03 0.52+0.04 | 0.02+0.01*  0.12£0.03 0.49+0.05 | 2.7 x 10* 2.7 x 10* 3.8 x 10*
LORD2_,3 | 0.98£0.01%  0.94:0.01 0.83£0.03 | 0.02+0.01*  0.06£0.01 0.18+0.03 | 3.6 x 10* 5.6 x 10* 6.9 x 10*
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Table 5: The best hyperparameter Table 6: The best hyperparameter in NCDE and NRDE
in ODE—RNN

Hidden CDE Function’s #Hidden

Hidden Data P Path Size Hidden Size Layers

Data P b Sime D=12 3 1 2 3 123

o4 o4 ~ 64 64 64 128 128 128 128 3 2 3

Counter—  |he 556 " Countii 128 64 256 256 64 64 64 32 3
MovementJump g5 oy OVEMENtJUmP 515 128 64 256 64 64 256 32 3
%1% - 32 64 64 128 64 128 128 22 2

Self- 64 64 N lsetl.f s 64 256 128 256 64 64 32 2
RegulationSCP2 o0 ¢4 egutation 256 256 256 64 128 64 256 32 3

Table 7: The best hyperparameter in ANCDE Table 8: The best hyperparameter in DE-NRDE

hidden #ilLidden  Atention Compression #Hidden Hidden

Data P Path Size Layers Channel Size Data P D Ea;o 3 2Lay§rs 2S1ze3
EigenWorms 342 }gg g Zi 4 0.5 051 128 128
128 64 2 3 EigenWorms 32 0.5 05 1 1 128 128
o 3% 5 7% 128 07 07 1 1 64 128
Counter— 128 256 3 128 Counter— 64 03 031 2 128 128
Movement Jump 512 64 2 256 Movement Jump 128 0.3 05 2 2 128 64
3 %6 3 8 512 0.7 03 1 1 64 128
Self- 64 64 > 128 Self- 32 0.3 03 1 2 64 128
RegulationSCP2 . 4 03 032 2 64 64
256 128 2 128 RegulationSCP2 256 03 03 2 2 64 128

8 128 2 64 :
BIDMC32HR 128 128 2 64 8 07 072 2 64128
512 128 3 64 BIDMC32HR 128 07 07 1 1 128 128
3 5% 5 7 512 07 07 1 1 64 128
BIDMC32RR 128 128 2 64 8 0.5 0.5 1 1 128 128
512 128 3 64 BIDMC32RR 128 07 07 1 1 128 128
3 38 5 7 51207 07 1 1 64 64
BIDMC325p02 128 128 2 64 8 05 0511128 128
512 128 5 64 BIDMC32Sp0O2 128 0.7 0.7 1 1 64 64
512 07 07 1 1 64 64

A BEST HYPERPARAMETERS

Our software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON 3.7.10,
PYTORCH 1.8.1, CUDA 11.4, and NVIDIA Driver 470.42.01, 19 CPU, and NVIDIA RTX A6000.

A.1 BASELINE

There are 5 baselines in our experiments. Each model has its own hyerparameters. ODE-RNN
method has a hyperparameter of hidden path size. NCDE and NRDE have also the same hyperparam-
eter, and in addition, the size of hidden dimension and the number of hidden layers in their CDE and
RDE functions. The Attentive NCDE (ANCDE) has all of those hyperparameters and in addition,
the attention channel size. In DE-NRDE, there are addition hyperparameters related to embedding,
which are the embedding compression ratio, the size of hidden dimension, and the number of hidden
layers in the embedding layer.

In (Morrill et al., [2021)), there are three models ,0DE—RNN, NCDE and NRDE, and four datasets,
EigenWorms, BIDMC32HR, BIDMC32RR, and BIDMC32Sp02. For these combinations, we set
the hyperparameters as reported in (Morrill et al.|[2021). In other cases, we find the best hyperparam-
eters in the following range. All kinds of hidden size in ODE—-RNN, NCDE, ANCDE, and NRDE are in
{32, 64, 128, 256}. The number of hidden layers in those is in {2,3}. In DE-NRDE, the embedding
compression ratio, the hidden size, and the number of hidden layers in the embedding layer are in
{0.3,0.5, 0.7}, {64, 128}, and {1,2}, respectively. Tables[5to 8] show the best hyperparameters of
the baselines.

A.2 LORD-NRDE

Table 9] shows the best hyperparameter configuration of our method in each dataset.

12
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Table 9: The best hyperparameter in LORD

Method Data P Ny Ny No hy hy he cap  crask ce ,pilL

4 3 3 3 64 64 64 1x107% 1x107° 0 400 400
EigenWorms 3203 3 3 64 64 64 1x107% 1x107% 0 2000 400
12603 2 3 64 64 64 1x107% 1x107% 0 2000 400
Counter— 64 2 3 2 32 128 32 1x 10*‘; 1% 10*2 1500 400
Movementgump 128 3 3 3 64 64 64 1x 10_6 1x 10_6 1500 400
512 2 2 2 64 128 64 1x10 1x 10 1 1500 400
Self- 32 3 3 3 32 32 32 1x 10*‘; 1% 10*2 1 1000 400
LomD,.., | Regulationsce2 26; ; g 2 32 ]3228 32 1 X 1076 1x 1076 1500 400
3 x 10 1x 10 1500 400
8 3 3 3 64 64 64 1x107° 1x107° 0 400 2000
BIDMC32HR 1286 3 3 3 32 64 32 1x107° 1x107° 0 1000 500
512 3 3 3 32 64 32 1x107° 1x107° 0 1000 500
8 3 3 3 64 64 64 1x107° 1x107° 0 400 2000
BIDMC32RR 1286 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
512 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
8 3 3 3 64 64 64 1x107° 1x107° 0 400 2000
BIDMC32Sp02 128 3 3 3 32 64 32 1x107° 1x107° 0 1000 500
512 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
4 3 2 3 64 64 64 1x10°° 1x10°% 0 400 400
EigenWorms 32 03 2 3 64 64 64 1x107% 1x107% 0 2000 400
1286 3 3 3 64 64 64 1x107% 1x107% 0 2000 400
Counter— 64 2 3 2 32 64 32 1x 10:2 1x 10:2 1500 400
MovementJump 128 33 3 128 128 128 1x 1076 1% 1075 1 500 400
512 3 2 3 32 128 32 1x10 1% 10 1 500 400
colfo 32 02 3 2 32 128 32 1x107% 1x107% 1 500 400
2 : 64 3 3 3 32 128 32 1x107% 1x107% 1 1500 400

egulationSCP2 _ _
LORD13 256 3 3 3 128 128 128 1x107°% 1x107% 1 1500 400
8 3 3 3 128 64 128 1x107° 1x107% 0 400 2000
BIDMC32HR 12603 3 3 32 64 32 1x107° 1x107° 0 1000 500
512 3 3 3 32 64 32 1x107° 1x107° 0 1000 500
8 3 3 3 64 64 64 1x107° 1x107% 0 400 2000
BIDMC32RR 12603 3 3 64 64 64 1x107° 1x107° 0 1000 500
512 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
8 3 3 3 64 64 64 1x107° 1x107% 0 400 2000
BIDMC32Sp02 128 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
512 3 3 3 32 64 32 1x107° 1x107° 0 1000 500
4 3 3 3 64 64 64 1x10°° 1x10°% 0 400 400
EigenWorms 32 3 3 3 64 64 64 1x107°% 1x107% 0 2000 400
12603 2 3 64 64 64 1x107% 1x107% 0 2000 400
Counter— 64 3 2 3 128 128 128 1 x 10*2 1x 10*2 1 1500 400
Movementgump 128 2 2 2 64 128 64 1x107° 1x107° 1 1000 400
512 3 2 3 64 32 64 1x107% 1x107% 1 1000 400
Self- 32 3 2 3 32 64 32 1x 10*2 1% 10*2 1 500 400
LoRD,._, | ReulationscE 26546 ; : ; 13228 gg 13228 1 X 10_6 1% 10_6 1 1000 400
3 x 10 1x 10 1 500 400
8 3 3 3 64 64 64 1x107° 1x107° 0 400 2000
BIDMC32HR 1286 3 3 3 32 64 32 1x107° 1x107° 0 1000 500
512 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
8 3 3 3 64 64 64 1x107° 1x107° 0 400 2000
BIDMC32RR 1286 3 3 3 64 192 64 1x107° 1x107° 0 1000 500
512 3 3 3 128 64 128 1x107° 1x107° 0 1000 500
8 3 3 3 64 64 64 1x107° 1x107° 0 400 2000
BIDMC32Sp02 128 3 3 3 64 64 64 1x107° 1x107° 0 1000 500
512 3 3 3 128 64 128 1x107° 1x107° 0 1000 500

B DATASET

EigenWorms has a time-series length of 17,984 and a channel of 7 which contains the
movement data of roundworms. The goal is to classify each worm among 5 worm types.
CounterMovementJump has 4,250 length and 4 channels which means accelerations data of
each 3D-axis. Using accelerations data, the type of jump is predicted among 3 types. The object
of SelfRegulationSCP2 is to classify whether the subject moves the computer’s cursor up or
down, using 8 channels of the EEG data. Its time-series length is 1,153.
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For forecasting, three Beth Israel Deaconess Medical Centre (BIDMC) datasets are used. Using the
PPG and ECG information, each task is to predict a person’s heart rate (HR), respiratory rate (RR),
or oxygen saturation (Sp02), respectively. The time-series length is 4,000.

C VISUALIZATION
We show other PCA based visualizations of the log-signatures. Using PCA, we extract
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Table 10: EigenWorms

Method P Accuracy Macro F1 ~ Weighted FI ROCAUC #Params(D)  #Params(R)

4 0.354+0.011 0.107£0.002 0.193+£0.004 0.511+0.054 Not Applicable 28707

ODE-RNN 32 0.349+0.029 0.150+0.065 0.232+0.064 0.439+0.027 Not Applicable 53795
128 0.395+0.043 0.249+0.110 0.304+0.095 0.517+0.068 Not Applicable 139811

4 0.677%0.099 0.610£0.122 0.665%0.105 0.913+0.018 Not Applicable 21253

NCDE 32 0.759+0.047 0.690£0.065 0.756+0.052 0.907+0.016 Not Applicable 21253
128 0.456+0.046 0.415+0.066 0.458+0.051 0.678+0.055 Not Applicable 21253

4 0.815+0.046 0.770£0.065 0.810+0.046 0.957+£0.012 Not Applicable 92726

ANCDE 32 0.774£0.033 0.727£0.060 0.770£0.033 0.925+0.021 Not Applicable 92726
128 0.497+0.064 0.456+0.074 0.501+0.063 0.705+0.038 Not Applicable 22806

4 0.744£0.044 0.655+0.076 0.725£0.059 0.915+0.032 Not Applicable 64933

NRDEg 32 0.779+0.029 0.713+£0.044 0.774+0.027 0.934+0.011 Not Applicable 64933
128 0.728+0.088 0.661+0.106 0.726+0.092 0.908+0.037 Not Applicable 64933
4 0.718+0.083 0.616+0.127 0.695+0.101 0.914+0.023 Not Applicable ~ 297893
NRDE3 32 0.810+0.043 0.787£0.051 0.814+0.044 0.911+0.020 Not Applicable 297893
128 0.610£0.117 0.544+0.142 0.600£0.120 0.862+0.063 Not Applicable 297893

4 0.436+0.048 0.230+0.073 0.303+0.066 0.538+0.045 Not Applicable 41331

DE-NRDE> 32 0.728+0.074 0.631+0.141 0.711£0.095 0.918+0.026 Not Applicable 41331
128 0.769+0.068 0.723+0.078 0.770£0.070 0.939£0.016 Not Applicable 49304

4 0.421+0.074 0.206+0.096 0.281+0.091 0.583+0.086 Not Applicable 179371

DE-NRDE3 32 0.626+0.047 0.528+0.038 0.585+0.054 0.878+0.036 Not Applicable 179371
128 0.841+0.042 0.810+0.029 0.840+0.038 0.960+0.022 Not Applicable ~ 241223

4 0.795+0.051 0.744+0.051 0.787+0.053 0.948+0.009 24299 38973
LORD1—2 32 0.841£0.053 0.841+0.058 0.843+0.051 0.957+0.016 24299 38973
128 0.75940.064 0.748+0.082 0.760+0.061 0.900+0.009 24299 34813
4 0.774+0.088 0.733+0.122 0.759+0.101 0.944+0.023 86907 34813
LORD1 3 32 0.862+0.053 0.855+0.058 0.861+0.054 0.963+0.021 86907 34813
128 0.744+0.081 0.716+0.087 0.737+0.076 0.892+0.044 86907 38973
4 0.821+0.054 0.783£0.062 0.815+0.056 0.960+0.011 278679 132465
LORD2_3 32 0.841+0.021 0.793+0.053 0.835+0.027 0.963£0.008 278679 132465
128 0.841+0.038 0.823+0.055 0.835+0.049 0.949+0.023 278679 128305

Table 11: CounterMovement Jump

Method P Accuracy Macro F1 ~ Weighted F1  ROCAUC #Params(D)  #Params(R)

64  0.474+0.023 0.453+0.027 0.455+0.026 0.589+0.018 Not Applicable 24737
ODE-RNN 128 0.470+0.093 0.458+0.094 0.459+0.094 0.617+0.055 Not Applicable 213537
512 0.449+0.032 0.436+0.037 0.436+0.039 0.593+0.031 Not Applicable 139425
64 0.351%0.057 0.317+0.091 0.318+0.091 0.473+0.024 Not Applicable 58371
NCDE 128 0.404+0.064 0.350+0.050 0.352+0.050 0.520+0.007 Not Applicable 25475
512 0.411+£0.047 0.379£0.064 0.378+0.065 0.496+0.026 Not Applicable 46723
64 0.355+0.041 0.342+0.034 0.342+0.035 0.526+0.033 Not Applicable 135852
ANCDE 128 0.467+0.060 0.457+0.065 0.457+0.065 0.604+0.031 Not Applicable 252332
512 0.458+0.073 0.428+0.102 0.428+0.102 0.588+0.074 Not Applicable 285740
64 0.396+0.116 0.391£0.118 0.391+0.118 0.560+0.089 Not Applicable 107907
NRDE2 128 0.396+0.076 0.379£0.079 0.379£0.078 0.513+0.052 Not Applicable 189059
512 0.396+0.091 0.388+0.092 0.388+0.092 0.546+0.076 Not Applicable 50435
64 0.465+0.088 0.462+0.093 0.463£0.093 0.616+0.062 Not Applicable 529411
NRDE3 128 0.409+0.084 0.399+0.081 0.400+0.081 0.573+£0.070 Not Applicable 521859
512 0.465+0.055 0.453+0.050 0.453+0.051 0.618+0.045 Not Applicable 2107395
64 0.398+0.075 0.390+0.076 0.389+0.075 0.573+0.076 Not Applicable 51910
DE-NRDEo 128 0.384+0.058 0.334+0.071 0.334+0.071 0.567+0.054 Not Applicable 90886
512 0.375%0.054 0.359+0.064 0.359+0.064 0.525+0.055 Not Applicable 39114
64 0.409+0.072 0.373#£0.073 0.373+0.074 0.568+0.068 Not Applicable 204300
DE-NRDE3 128 0.474+0.038 0.437+0.053 0.437+0.054 0.626+0.030 Not Applicable =~ 279378
512 0.42540.069 0.396+0.076 0.398+0.076 0.571+0.059 Not Applicable 730892

64 0.589£0.038 0.580£0.041 0.580£0.041 0.717+0.023 3262 87191
LORD1_2 128 0.566+0.061 0.563+0.066 0.563+0.066 0.676+0.058 12158 51063
512 0.501+0.080 0.495+0.082 0.495+0.082 0.638+0.053 7998 65399
64 0.555+0.041 0.551£0.042 0.550+0.042 0.688+0.038 7282 43127
LORD1—3 128 0.528+0.029 0.523+0.027 0.523+0.027 0.656+0.024 53746 137879
512 0.508+0.033 0.499+0.028 0.499+0.028 0.637+0.020 8338 88439
64 0.396+0.049 0.383+0.052 0.383+0.052 0.540+0.061 77158 113265
LORD2 3 128 0.396+0.078 0.384+0.083 0.385+0.083 0.542+0.068 27110 146737
512 0.400£0.044 0.374+£0.022 0.375+0.022 0.537+0.047 31270 36369

D FULL EXPERIMENTAL RESULTS

In Tables |'1;0| to @ all experimental results are shown. #Params(D) and #Params(R) denote the
number of parameters in the decoder part and in the rest parts except the decoder, respectively.
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Table 12: SelfRegulationSCP2
Method P Accuracy F1 ROCAUC #Params(D)  #Params(R)
32 0.551+0.054 0.540+0.064 0.603+£0.041 Not Applicable 57375
ODE-RNN 64 0.579+0.012 0.462+0.051 0.564+0.019 Not Applicable 40991
256 0.558+0.045 0.480+0.039 0.533+0.055 Not Applicable 139295
32 0.586+0.071 0.471+0.124 0.577+0.130 Not Applicable 42241
NCDE 64 0.516+0.079 0.459+0.156 0.557+0.129 Not Applicable 214657
256 0.544+0.058 0.537+0.087 0.578+0.086 Not Applicable 316161
32 0.604+0.064 0.552+0.048 0.646+0.041 Not Applicable 391698
ANCDE 64 0.544+0.039 0.490+0.048 0.575+0.074 Not Applicable 134034
256 0.488+0.052 0.427+0.067 0.461+0.073 Not Applicable 208914
32 0.519+£0.110 0.513+0.058 0.572+0.092 Not Applicable 322689
NRDE3 64 0.561+0.090 0.449+0.062 0.575+0.071 Not Applicable 622209
256 0.516+0.110 0.498+0.071 0.564+0.096 Not Applicable 622209
32 0.537+0.052 0.560+0.050 0.561+0.049 Not Applicable 3402753
NRDE3 64  0.558+0.059 0.504+0.118 0.586+0.107 Not Applicable 1710977
256 0.498+0.066 0.483+0.074 0.543+0.079 Not Applicable 3438465
32 0.589+0.095 0.525+0.130 0.596+0.072 Not Applicable 111051
DE-NRDE2 64 0.551+0.063 0.496+0.081 0.566+0.073 Not Applicable 196747
256 0.530+0.078 0.501+0.078 0.538+0.088 Not Applicable 196747
32 0.551+0.109 0.570+0.074 0.655+0.076 Not Applicable 1092158
DE-NRDE3 64 0.505+£0.076 0.539+0.059 0.566+0.110 Not Applicable 542462
256 0.512+0.100 0.547+£0.031 0.591£0.069 Not Applicable 1137022
32 0.570+0.105 0.566+0.058 0.652+0.059 14572 24361
LORD1_2 64 0.582+0.119 0.613+0.057 0.681+0.071 76684 139433
256 0.530+0.081 0.512+0.081 0.536+0.087 76684 74857
32 0.572+0.058 0.501+0.056 0.584+0.036 70132 138761
LORD;_3 64 0.618+0.099 0.591+0.109 0.659+0.094 71188 123241
256 0.526+0.105 0.558+0.038 0.607+0.061 278452 161161
32 0.607+0.059 0.552+0.087 0.645+0.093 260580 216405
LORD2_,3 64 0.607£0.095 0.555+0.072 0.619+0.060 999684 534037
256 0.596+0.075 0.529+0.055 0.623+0.064 259524 254549
Table 13: BIDMC32HR
Method P R? Explained Variance MSE MAE #Params(D)  #Params(R)
8  0.569+0.290 0.570£0.290 0.415+£0.279 0.457+0.172 Not Applicable 3871
ODE-RNN 128 0.924+0.011 0.925+0.011 0.073+£0.011 0.167+£0.009 Not Applicable 15391
512 0.811+0.024 0.811+0.025 0.182+0.024 0.285+0.019 Not Applicable 52255
8  0.388+0.042 0.388+0.042 0.590+0.041 0.552+0.023 Not Applicable 49921
NCDE 128 0.227+0.042 0.231+0.046 0.745+0.040 0.638+0.017 Not Applicable 49921
512 0.191+0.041 0.192+0.041 0.779+0.039 0.654+0.018 Not Applicable 49921
8  0.437+0.031 0.440+0.031 0.542+0.030 0.527+0.019 Not Applicable 47194
ANCDE 128 0.173£0.062 0.174+0.062 0.796+0.060 0.666+0.019 Not Applicable 47194
512 0.264+0.011 0.270+0.012 0.709+£0.011 0.628+0.016 Not Applicable 47194
8  0.630+0.044 0.631+0.044 0.356+0.042 0.452+0.030 Not Applicable 74689
NRDEg 128 0.665+0.072 0.665+0.072 0.323+£0.069 0.409+0.047 Not Applicable 74689
512 0.642+0.071 0.643+0.071 0.344+0.069 0.419+0.054 Not Applicable 74689
8  0.650+0.082 0.650+0.082 0.337+£0.079 0.430+£0.054 Not Applicable 140737
NRDE3 128 0.582+0.131 0.583+0.131 0.402+0.126 0.458+0.085 Not Applicable 140737
512 0.395+0.131 0.396+0.131 0.582+0.126 0.535+0.039 Not Applicable 140737
8 0.822+0.077 0.822+0.077 0.171+£0.074 0.279+0.080 Not Applicable 63045
DE-NRDE2 128 0.758+0.051 0.759+0.052 0.233+0.049 0.332+0.045 Not Applicable 59589
512 0.640+0.024 0.643+0.023 0.346+0.023 0.412+0.016 Not Applicable 58885
8  0.885+0.049 0.885+0.049 0.111£0.048 0.222+0.050 Not Applicable 119050
DE-NRDEg 128 0.927+0.016 0.928+0.016 0.070+£0.016  0.176+0.024 Not Applicable 102538
512 0.810+0.085 0.810+0.086 0.183+£0.082 0.299+0.080 Not Applicable 102538
8 0.979+0.006 0.979+0.006 0.020£0.005 0.084+0.014 10285 27277
LORDj1_s2 128 0.937+0.009 0.937+0.009 0.061£0.008 0.119+0.005 3277 34189
512 0.441+0.039 0.443+0.041 0.538+0.038 0.479+0.033 3277 34189
8  0.982+0.005 0.982+0.005 0.018+0.005 0.079+0.008 12645 27277
LORD;_,3 128 0.922+0.012 0.923+0.013 0.075+£0.012 0.129+0.013 40997 65293
512 0.450+0.031 0.452+0.029 0.530+0.030 0.474+0.007 4613 54925
8  0.978+0.006 0.979+0.006 0.021£0.006 0.078+0.009 15471 35563
LORD2_,3 128 0.954+0.006 0.954+0.006 0.045+0.006 0.121+0.007 6095 51915
512 0.848+0.043 0.849+0.043 0.146+0.041 0.216+0.028 15471 54283
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Table 14: BIDMC32RR

Method P R? Explained Variance MSE MAE #Params(D)  #Params(R)
8 0.536+0.195 0.540+0.193 0.447+0.188 0.494+0.124 Not Applicable 53791
ODE-RNN 128 0.721+0.010 0.722+0.011 0.269+0.010 0.360+0.006 Not Applicable 122911
512 0.651+0.018 0.652+0.017 0.337+0.018 0.413+0.016 Not Applicable 344095
8  0.215+0.028 0.215+0.028 0.7574£0.027 0.663+£0.010 Not Applicable 86913
NCDE 128 0.337+0.053 0.339+0.053 0.639+£0.051 0.595+0.015 Not Applicable 86913
512 0.236+0.026 0.237+0.026 0.736+0.025 0.626+0.008 Not Applicable 86913
8 0.298+0.062 0.302+0.064 0.677+0.060 0.625+0.033 Not Applicable 47194
ANCDE 128 0.386+0.097 0.387+0.098 0.592+0.094 0.576+0.036 Not Applicable 47194
512 0.270+0.028 0.271+0.028 0.704+0.027 0.619+0.010 Not Applicable 55514
8  0.274+0.037 0.274+0.037 0.700£0.035 0.637+0.019 Not Applicable 123969
NRDEg 128 0.521+0.082 0.521+0.082 0.462+0.079 0.500+0.035 Not Applicable 123969
512 0.498+0.162 0.498+0.162 0.484+0.156 0.512+0.075 Not Applicable 123969
8  0.337+0.035 0.338+0.035 0.639+£0.034 0.600+0.019 Not Applicable 222785
NRDE3 128 0.646+0.138 0.647+0.138 0.341£0.133  0.403+0.087 Not Applicable 222785
512 0.424+0.130 0.424+0.130 0.556+0.126 0.537+0.071 Not Applicable 222785
8 0.644+0.013 0.647+0.012 0.343+0.013 0.388+0.017 Not Applicable 88196
DE-NRDE2 128 0.584+0.061 0.586+0.060 0.401£0.059 0.440+0.036 Not Applicable 100677
512 0.552+0.063 0.554+0.061 0.432+0.061 0.474+0.033 Not Applicable 99973
8 0.699+0.055 0.699+0.055 0.290£0.053 0.351+0.041 Not Applicable 139144
DE-NRDEg 128 0.703+0.017 0.703+0.017 0.287+£0.016 0.352+0.015 Not Applicable 164106
512 0.574+0.053 0.575+0.054 0.411£0.051 0.454+0.025 Not Applicable 162570
8  0.808+0.021 0.809+0.022 0.185+0.020 0.272+0.011 10285 27277
LORD1_2 128 0.662+0.007 0.664+0.007 0.326+0.006 0.386+0.012 10285 27277
512 0.448+0.044 0.450+0.044 0.532+0.042 0.522+0.012 10285 39757
8 0.798+0.017 0.799+0.017 0.195+£0.016 0.277+£0.014 12645 27277
LORD;1—3 128 0.671+0.016 0.672+0.015 0.318+0.015 0.376+0.012 12645 44973
512 0.451+0.026 0.453+0.023 0.530+0.025 0.520+0.012 12645 44973
8  0.800+0.007 0.801+0.007 0.192+0.007 0.281+0.008 15471 35563
LORD2_,3 128 0.744+0.011 0.744+0.011 0.247+0.010 0.315+0.010 15471 136459
512 0.662+0.015 0.664+0.014 0.326+£0.014  0.386+0.011 46511 103531
Table 15: BIDMC32Sp02
Method P R? Explained Variance MSE MAE #Params(D)  #Params(R)
8 0.551+0.108 0.552+0.108 0.464+0.112 0.487+0.082 Not Applicable 3871
ODE-RNN 128 0.899+0.025 0.901+0.023 0.104+0.026  0.225+0.035 Not Applicable 15391
512 0.749+0.024 0.749+0.024 0.259+0.025 0.365+£0.021 Not Applicable 52255
8 0.240+0.071 0.245+0.067 0.785+£0.073  0.686+0.034 Not Applicable 86913
NCDE 128 0.215+0.074 0.217+0.072 0.811£0.077 0.694+0.035 Not Applicable 86913
512 0.328+0.045 0.332+0.045 0.694+0.046 0.639+0.037 Not Applicable 86913
8 0.311+0.034 0.313+0.035 0.71240.035 0.662+0.014 Not Applicable 47194
ANCDE 128 0.327+0.049 0.327+0.049 0.696+0.050 0.631+0.017 Not Applicable 47194
512 0.372+0.033 0.374+0.034 0.648+0.034 0.592+0.013 Not Applicable 47194
8 0.218+0.078 0.219+0.078 0.807+0.080 0.694+0.036 Not Applicable 123969
NRDEs 128 0.470+0.100 0.471£0.100 0.547+0.103 0.559+0.048 Not Applicable 123969
512 0.607+0.180 0.607+0.180 0.406+0.186 0.455+0.123 Not Applicable 123969
8 0.131+0.091 0.134+0.090 0.898+0.094 0.720+0.027 Not Applicable 222785
NRDEg3 128 0.681+0.147 0.681+0.147 0.330+£0.151 0.410+£0.126 Not Applicable ~ 222785
512 0.596+0.181 0.596+0.181 0.417+0.187 0.463+£0.139 Not Applicable 222785
8  0.854+0.013 0.854+0.013 0.151£0.013  0.252+0.015 Not Applicable 88196
DE-NRDE 128 0.740+0.047 0.740+0.048 0.269+0.049 0.313+£0.039 Not Applicable 99973
512 0.586+0.042 0.586+0.042 0.428+0.043 0.453+0.033 Not Applicable 99973
8  0.903%0.079 0.903+0.079 0.100+£0.082 0.192+0.090 Not Applicable 139144
DE-NRDE3 128 0.926+0.026 0.927+0.026 0.076+0.027 0.164+0.024 Not Applicable 162570
512 0.759+0.067 0.761+0.067 0.249+0.069 0.357+0.061 Not Applicable 162570
8  0.975%0.003 0.976+0.002 0.025+£0.003  0.096+0.009 10285 27277
LORD1—2 128 0.909+0.009 0.910+0.009 0.094+0.009 0.172+0.013 3277 34189
512 0.583+0.047 0.583+0.047 0.431+£0.048 0.435+0.024 10285 61549
8  0.981+0.005 0.981+0.004 0.020+0.005  0.0860.006 12645 27277
LORD;1_3 128 0.889+0.025 0.889+0.025 0.115£0.026 0.186+0.029 12645 27277
512 0.521+0.045 0.522+0.044 0.495+0.046 0.459+0.024 4613 38349
8  0.981+0.005 0.981+0.005 0.019+£0.005 0.088+0.007 15471 35563
LORD2_,3 128 0.940+0.007 0.940+0.007 0.062+0.007 0.145+0.004 15471 56395
512 0.829+0.027 0.830+0.027 0.177+0.028 0.236+0.016 46511 69323
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Table 16: Sensitivity of maz_iter op in EigenWorms (P = 128)

Method max_iterag  Accuracy Macro F1 ~ Weighted F1 ROCAUC

0 0.656+0.094 0.588+0.107 0.649+0.100 0.847+0.056
100 0.713+0.042  0.716+0.058 0.71320.046 0.862+0.023

LORD; s 300 0.74420.048  0.727+0.059 0.744+0.051 0.893+0.029
500 0.733+0.105 0.725%0.104 0.738+0.111 0.889+0.035

700 0.774+0.049 0.7730.070 0.77720.056 0.908+0.026

900 0.723+0.091 0.702+0.092 0.722+0.083 0.891+0.054

0 0.600+0.140 0.513%0.215 0.561%0.188 0.8200.063

100 0.713+0.056 0.636+0.139 0.694+0.085 0.884+0.030

LORD; 15 300 0.733£0.069 0.725+0.053 0.730£0.063 0.868+0.036
500 0.733+0.039 0.722+0.054 0.730£0.046 0.872%0.035

700 0.744+0.031 0.730£0.043 0.74120.034 0.8720.021

900 0.744+0.048 0.724+0.040 0.740+£0.053 0.8840.015

0 0.477%0.059 0.338%0.105 0.420£0.078 0.7640.051

100 0.667+0.091 0.591+0.127 0.642+0.106 0.888+0.044

LORD 300 0.790+0.042  0.754+0.060 0.7830.050 0.927+0.017
2=3 500 0.826+0.071 0.789+0.113 0.825+0.072 0.951:0.029
700 0.846+0.101 0.816+0.126 0.847+0.103 0.928+0.046

900 0.856+0.067 0.833+0.087 0.857+0.067 0.949+0.027

E SENSITIVITY EXPERIMENTS

Fig.[6|and Table[T6]show that in general, the performance of LORD is improved as max_iter 4 g gets
larger in EigenWorms (P = 128). Our encoder-decoder structure can successfully integrate the
lower-depth log-signature and the higher-depth log-signature information into the embedding vector
e, and the well-integrated information helps the model perform better. In general, the lower-depth
and the higher-depth log-signature information are blended better as the encoder-decoder structure
is more trained.
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Figure 6: Sensitivity to maz_iterag

F TRAIN LOSS

Fig. 7| visualizes several training cases for our method and the original NRDE design. In general,
our method shows much better stability across the entire training period.

G END-TO-END TRAINING

LORD has two distinguished characteristics in its training process. First, LORD uses a two-phase
training strategy, a pre-training and a main training processes. Second, the training process of LORD
is not end-to-end. In other words, the decoder is not used and the encoder is fixed in the main
training phase. In this section, we test with various end-to-end-training settings for LORD.

There are three possible configurations for the end-to-end-training. The first configuration is training
the encoder (rather than fixing it) with L7 45k in the main training phase, which is denoted as
FineTuning. The second one is Co-Train where both Lsr and L1 45k are used for training
the encoder, the decoder and the main NRDE — recall that in FineTuning, we use only L1 45k
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Figure 7: Train loss of NRDE3 and LORD3_, 3

Table 17:
EigenWorms (P = 128)

Comparison between LORD and its

various end-to-end

training variations in

Method Accuracy Macro F1 ~ Weighted F1  ROCAUC
LORD 0.759+0.064 0.748+0.082 0.760+0.061 0.900£0.009
LORD FineTuning 0.744+£0.075 0.726+0.086 0.740+0.077 0.882+0.042
1=2 Co-Train 0.718+0.021 0.686+0.025 0.715+0.014 0.865+0.030
Co-Train(w.o. pre) 0.679£0.033 0.650+0.031 0.669+0.029 0.832+0.013
LORD 0.744+£0.081 0.716+0.087 0.737+0.076 0.892+0.044
LORD FineTuning 0.692+0.055 0.649+0.049 0.680+0.069 0.865+0.018
1=3 Co-Train 0.744+0.036 0.723+0.059 0.741+0.037 0.868+0.022
Co-Train(w.o. pre) 0.692+0.069 0.674+0.083 0.694+0.064 0.839+0.066
LORD 0.841+0.038  0.823+0.055 0.835+0.049 0.949+0.023
LORDs_. - FineTuning 0.731£0.061 0.687+0.075 0.714+0.062 0.919+0.005
23 Co-Train 0.808+0.061 0.772+0.074 0.803+0.071 0.948+0.021
Co-Train(w.o. pre) 0.583£0.112 0.499+0.145 0.557+0.117 0.804+0.065

to train the encoder. The last method is Co-Train (w.o. pre) whichisthe same as Co-Train
without any pre-training process. The same hyperparameters are used for all end-to-end models.

We experiment with EigenWorms (P = 128). Table[I6] shows the results. Among the three end-
to-end models, Co—Train shows the best performance. Co-Train (w.o. pre) has the worst
performance in general. These results prove that the pre-training makes the main training easier.

Table 18: The best hyperparameter

in ODE-RNN
Hidden
Data Path Size
1 128
Character-— 4 128
Trajectory 16 256
32 64
1 128
LiveFuel- 4 64
MoistureContent 16 64
32 128

Table 19: The best hyperparameter in NCDE and NRDE

Hidden CDE Function’s #Hidden

Data P Path Size Hidden Size ~ Layers
D=1 2 3 1 2 3 123

1 64 - - 256 - -3 - -

Character— 4 128 256 64 256 256 128 3 3 2
Trajectory 16 256 256 128 64 64 256 23 2
32 256 128 128 64 64 128 23 2

1 64 - - 64 - -3 - -

LiveFuel- 4 64 128 128 128 256 64 3 3 2
MoistureContent 16 64 256 64 64 256 256 2 3 2
32 256 256 64 256 128 64 33 2
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Table 20: The best hyperparameter in ANCDE  ypje 21: The best hyperparameter in DE-NRDE

Hidden #Hidden Attention

Data P . X Compression #Hidden Hidden
Path Size Layers Channel Size Data P Ratio Layers Size
1 256 3 256 D=2 3 2 3 2 3
Charlacter— 4 256 2 64 2 07 03 1 o4 123
Trajectory 16 256 3 64 Character-— 6 05 051 1 128 64
3]2 f;g § 22 Trajectory 35 97 051 2 128 128
LiveFuel- 4 128 3 128 LiveFuel— 4 0.7 072 2 64 128
) ‘ 6 03 032 1 64 64
MoistureContent 16 128 2 64 MoistureContent 2 07 05 2 2 128 64
32 256 3 64 : : :
Table 22: The best hyperparameter in LORD
_it
Method Data P Ny Ng No hy hg ho CAE CTASK Ce AgaxTergK
Character— 4 3 3 3 64 25 64 1x107° 1x107% 0 1000 400
Tra 16 3 3 3 64 128 64 1x107% 1x107% 0 1000 400
rajectory _6 _6
LORD; 2 32 3 3 3 128 256 128 1x 10 1x10 0 1000 400
LiveFuel 4 3 3 3 128 128 128 1x107% 1x107% 0 2000 400
- —6 —6
MoistureContent 16 3 3 3 256 256 256 1x 10_6 1% 10_6 0 2000 400
32 3 3 3 256 256 256 1x 10 1x 10 0 1500 400
Character— 4 3 3 3 128 128 128 1x10°% 1x10°% 0 1000 400
Trajectory 16 3 3 3 128 128 128 1x107% 1x1076 0 1000 400
LORD 32 03 3 3 128 64 128 1x107% 1x107% 0 1000 400
1—3
LiveFuel- 4 3 3 3 25 256 256 1x107% 1x107% 0 2000 400
Moi 16 3 3 3 64 64 64 1x107% 1x1076 0 2000 400
oistureContent _6 _6
32 3 3 3 128 64 128 1x10 1% 10 0 1500 400
Character— 4 3 3 3 128 256 128 1x10°° 1x10-° 0 1000 400
B 16 3 3 3 25 256 256 1x107% 1x107% 0 1000 400
rajectory —6 -6
LORD2_,5 32 03 3 3 128 256 128 1x10 1x 10 0 1000 400
LiveFuel- 4 3 3 3 25 64 256 1x107°% 1x107% 0 2000 400
Moi 16 3 3 3 128 256 128 1x107% 1x107% 0 2000 400
oistureContent —6 _6
32 3 3 3 64 25 64 1x10 1% 10 0 1500 400

H ADDITIONAL EXPERIMENTS WITH SHORT TIME-SERIES

In this section, we experiment with short time-series datasets. We use CharacterTrajectory
and LiveFuelMoistureContent from (Tan & Webb). The object of Character-
Trajectory is to classify 20 characters using the trajectory information of writing on a tablet.
Its length is 182. LiveFuelMoistureContent consists of daily reflectance data at 7 spectral
bands for predicting moisture rate in vegetation. Its length is 365. In Tables[I8]to[22] we summarize
hyperparameters. Because of the short time-series lengths, we test P = 1 for all except NRDE-based
models.

In Table 23] NRDE achieves the best scores among baseline models and LORD achieves the best
scores among all methods. In Table 24} DE-NRDE; is the best. Except DE-NRDEy, ODE—~RNN is
the best. However, LORD also has comparable scores. From these results, NRDE and NRDE-based
models are empirically useful for short-time series as well.
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Table 23: CharacterTrajectory

Method P Accuracy Macro F1 Weighted F1 ROCAUC #Params(D)  #Params(R)
1 0.716+0.036  0.697+0.041  0.712+0.038  0.969+0.007 Not Applicable 27570
ODE—RNN 4 0.950+£0.012  0.947+0.013  0.950+0.012  0.998+0.001 Not Appl?cable 29106
16 0.968+0.004  0.967+0.005  0.968+0.004 0.999+0.000* Not Applicable 103218
32 0.962+0.009  0.959+0.010  0.962+0.009  0.997+0.001 Not Applicable 17650
1 0.954+0.004 0.952+0.004  0.954+0.004  0.998+0.000 Not Applicable 149844
NCDE 4 0.951£0.005 0.948+0.005  0.951+£0.005  0.998+0.000 Not Appl%cable 233620
16  0.905£0.020  0.901+£0.020  0.905+£0.020  0.994+0.002 Not Applicable 93588
32 0.829+0.012 0.818+0.013  0.828+0.012  0.983+0.002 Not Applicable 93588
I 0.959+0.007 0.958+0.007  0.959+0.007  0.998+0.000 Not Applicable 669757
ANCDE 4 0.952+0.008 0.950+0.008  0.952+0.008  0.998+0.000 Not Appl?cable 286845
16 0.897+0.009 0.893+0.011  0.896+0.010  0.994+0.001 Not Applicable 538173
32 0.777£0.020  0.762+0.020  0.774+0.021  0.981+0.001 Not Applicable 103293
4 0.970+0.004 0.968+0.005  0.970+0.004 0.999+0.000° Not Applicable 795924
NRDEg 16  0.951+0.008  0.949+0.009  0.951+0.008  0.998+0.001 Not Applicable 193428
32 0.9504£0.007  0.948+0.008  0.950+0.007  0.998+0.000 Not Applicable 98836
4 0.966+0.006 0.965£0.006 0.966+0.006 0.999+0.000° Not Applicable 274132
NRDE3 16 0.960£0.006  0.960£0.006  0.961+0.006 0.999+0.000* Not Applicable 531604
32 0.961+0.002 0.959+0.002  0.961+0.002 0.999+0.000* Not Applicable 1088916
4 0.898+0.077 0.890+0.084  0.897+0.078  0.994+0.007 Not Applicable 599707
DE-NRDE2 16 0.907+0.013  0.900+0.012  0.906+0.012  0.996+0.002 Not Applicable 112281
32 0.897+0.018  0.890+0.018  0.896+0.017  0.995+0.001 Not Applicable 76187
4 0.933£0.031 0.926+0.035 0.932+0.032  0.997+0.001 Not Applicable 105885
DE-NRDE3 16 0.947+0.014  0.943+0.015 0.947+0.014  0.998+0.000 Not Applicable 286883
32 0.913+0.013  0.907+0.014  0.912+0.013  0.996+0.001 Not Applicable 617891
4 0.977£0.002 0.976+0.003" 0.977+0.002* 0.999+0.000* 12158 235880
LORD1_2 16 0.955+0.010  0.953+0.010  0.955+0.010  0.998+0.001 12158 96232
32 0.829+0.069 0.817+0.077  0.826+0.074  0.985+0.011 40126 261928
4 0.976+0.005 0.975£0.006 0.976+0.005  0.999+0.000* 53746 98568
LORD1_3 16 0.959+0.006 0.957+0.006  0.959+0.006  0.998+0.001 53746 98568
32 0.810£0.069  0.796+0.074  0.808+0.071  0.983+0.013 53746 63560
4 0.971x0.008 0.969£0.009 0.971£0.008 0.999+0.000* 77158 372418
LORD2 53 16 0.971+0.003  0.969+0.003  0.971+0.003  0.999+0.000" 218086 391650
32 0.964+0.008 0.963+0.008  0.964+0.008 0.999+0.000* 77158 372418
Table 24: LiveFuelMoistureContent
Method P R? Explained Variance MSE MAE #Params(D)  #Params(R)
1 0.026+0.005 0.026+0.005 1.064+0.005  0.775+0.001 Not Applicable 25631
ODE-RNN 4 0.029+0.003 0.029+0.003 1.062+£0.003  0.774+0.002 Not Appl?cable 10271
16 0.032+0.003 0.033+0.003 1.058+0.004  0.775+0.004 Not Applicable 16415
32 0.031+0.004 0.031+0.004 1.059+0.004  0.774+0.003 Not Applicable 57375
1 -0.009+0.037 -0.008+0.037 1.102+£0.040  0.787+0.010 Not Applicable 42241
NCDE 4 -0.004+0.020 -0.003+0.020 1.098+0.022  0.785+0.007 Not Appl@cable 91521
16 -0.043+0.031 -0.043+0.031 1.140+0.034  0.794+0.011 Not Applicable 42241
32 0.009+0.029 0.009+0.029 1.083£0.032  0.779+£0.005 Not Applicable ~ 660481
1 -0.025+0.078 -0.024+0.079 1.120+£0.086  0.785+0.009 Not Applicable 101714
ANCDE 4 0.014+0.007 0.015+0.007 1.0774£0.007  0.781+0.003 Not Appl?cable 241938
16 0.003+0.030 0.004+0.030 1.089+0.033  0.781+0.010 Not Applicable 93394
32 0.006+0.017 0.006+0.017 1.087+0.019  0.784+0.009 Not Applicable 177746
4 -0.010+0.043 -0.009+0.043 1.103+£0.047  0.785+0.004 Not Applicable 1284353
NRDEgo 16 -0.373%0.274 -0.373+0.274 1.501+£0.299  0.824+0.020 Not Applicable 2502657
32 -0.151%0.166 -0.151+0.166 1.258+0.182  0.816+0.023 Not Applicable 1240833
4 -0.480+0.311 -0.480+0.311 1.618+0.340  0.830+0.012 Not Applicable 1710977
NRDEg3 16 -1.308+2.265 -1.307+£2.264 2.522+2.475  0.863+0.089 Not Applicable = 3438465
32 -2.183+4.622 -2.182+4.621 3.478+5.051  0.896+0.174 Not Applicable 857601
4 0.040+0.007 0.040+0.007 1.049+0.007  0.770+0.005 Not Applicable 930650
DE-NRDE2 16 0.042+0.006 0.042+0.006 1.047+0.007  0.768+0.005 Not Applicable 799243
32 0.043+0.005" 0.043+0.005" 1.046+0.006* 0.767+0.006* Not Applicable 902042
4 -0.778+1.599 -0.776+1.599 1.943£1.747  0.796+0.039  Not Applicable 1256207
DE-NRDE3 16 -0.037+0.046 -0.036+0.046 1.133£0.051  0.790+0.010 Not Applicable 1103486
32 -0.657+0.831 -0.651+0.822 1.810+£0.908  0.829+0.045 Not Applicable 457191
4 0.017£0.015 0.018+0.014 1.074+£0.016  0.784+0.011 76684 120937
LORD1—2 16 0.019+0.007 0.020+0.008 1.072+0.008  0.781+0.007 216844 441481
32 0.013+0.007 0.014+0.007 1.078+0.007  0.784+0.002 216844 441481
4 0.018+0.010 0.018+0.011 1.074+0.011 0.782+0.006 612148 441481
LORD1_3 16 0.002+0.009 0.003+0.009 1.091£0.010  0.790+0.003 136180 70153
32 0.005+0.011 0.005+0.010 1.087+£0.012  0.788+0.007 278452 99529
4 -0.025+0.037 -0.025+0.038 1.1204£0.041  0.793+0.004 2081028 648629
LORD2_,3 16 -0.015+0.027 -0.014+0.027 1.109+£0.030  0.793+0.004 1016196 957557
32 0.008+0.002 0.008+0.002 1.085+0.003  0.788+0.002 508356 540181
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