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ABSTRACT

Adversarial training (AT) can help improve the robustness of a deep neural net-
work (DNN) against potential adversarial attacks by intentionally injecting ad-
versarial examples into the training data, but this way inevitably incurs standard
accuracy degradation to some extent, thereby calling for a trade-off between stan-
dard accuracy and robustness. Besides, the prominent AT solutions are vulner-
able to sparse attacks, due to “robustness overfitting” upon dense attacks, often
adopted by AT to produce a threat model. To tackle such shortcomings, this pa-
per proposes a novel framework, including a detector and a classifier bridged by
our newly developed adaptive ensemble. Specifically, a Guided Backpropagation-
based detector is designed to sniff adversarial examples, driven by our empirical
observation. Meanwhile, a classifier with two encoders is employed for extract-
ing visual representations respectively from clean images and adversarial exam-
ples. The adaptive ensemble approach also enables us to mask off a random sub-
set of image patches within input data, eliminating potential adversarial effects
when encountering malicious inputs with negligible standard accuracy degrada-
tion. As such, our approach enjoys improved robustness, able to withstand both
dense and sparse attacks, while maintaining high standard accuracy. Experimen-
tal results exhibit that our detector and classifier outperform their state-of-the-art
counterparts, in terms of detection accuracy, standard accuracy, and adversarial
robustness. For example, on CIFAR-10, our detector achieves the best detection
accuracy of 99.6% under dense attacks and of 98.5% under sparse attacks. Our
classifier achieves the best standard accuracy of 91.2% and the best robustness
against dense attack (or sparse attack) of 57.5% (or 54.8%).

1 INTRODUCTION

Deep neural networks (DNNs) have been reported to be vulnerable to adversarial attacks. That is,
maliciously crafting clean images under a small distance can mislead DNNs into incorrect predic-
tions. Such vulnerability prevents DNNs’ wide adoption in critical domains, such as healthcare,
autonomous driving, finances, among many others. In a nutshell, adversarial attacks can be roughly
grouped into two categories, i.e., the dense attack and the sparse attack. The former (e.g., Goodfel-
low et al. (2015); Moosavi-Dezfooli et al. (2016); Madry et al. (2018); Croce & Hein (2020); Yao
et al. (2021)) tends to perturb almost all pixels on the clean image, whereas the latter (e.g., Papernot
et al. (2016); Carlini & Wagner (2017); Modas et al. (2019); Dong et al. (2020); Pintor et al. (2021);
Zhu et al. (2021)) modifies only a limited number of pixels to fool the DNN models.

So far, adversarial training (AT) is widely accepted as the most effective method to improve DNNs’
robustness against adversarial attacks, by intentionally injecting adversarial examples into the train-
ing data. In particular, multi-step ATs Madry et al. (2018); Zhang et al. (2019); Jia et al. (2022)
perform multi-step dense attacks (e.g., PGD attack) to find the worst-case adversarial examples for
training, achieving state-of-the-art robustness but incurring a significant computational overhead.
On the other hand, by using the single-step dense attack (e.g., FGSM attack), one-step ATs Wong
et al. (2020); Andriushchenko & Flammarion (2020); Kim et al. (2021); Li et al. (2022); Wang
et al. (2022) can significantly reduce the computational overhead while achieving decent robustness
under dense attacks. Despite effectiveness, existing ATs suffer from two shortcomings: i) a trade-
off between standard accuracy (i.e., the accuracy on clean images) and adversarial robustness (i.e.,
the accuracy on adversarial examples), with improved robustness yielding non-negligible standard
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accuracy degradation and ii) robustness overfitting on dense attacks, making improved robustness
vulnerable to sparse attacks.

One promising direction to address the trade-off between standard accuracy and adversarial robust-
ness is via a detection/rejection mechanism, that is, training an additional detector to reject malicious
input data, with various detection techniques proposed Roth et al. (2019); Ma & Liu (2019); Yin et al.
(2020); Raghuram et al. (2021); Tramèr (2022). Unfortunately, the detection/rejection mechanism
is still ineffective to defend against sparse attacks, as sparse attacks only perturb a limited number
of pixels. Even worse, the detection/rejection mechanism can be applied merely to a limited num-
ber of scenarios. For example, it cannot be generalized to the application domains where natural
adversarial examples exist, as reported in a recent study Hendrycks et al. (2021).

In this work, we consider the robustness under a more general and challenging scenario (than that
addressed earlier by the detection/rejection mechanism), where the malicious input is not allowed
to be rejected. Note that a robust model under such a scenario is crucial for applying DNNs to
critical domains. For example, an autonomous driving car is expected to recognize a road sign even
if it has been maliciously crafted. Our goal is to develop a novel framework, including a detector
and a classifier, to boost adversarial training for improving DNN’s robustness against both dense
and sparse attacks at a small expense of standard accuracy degradation. Specifically, our frame-
work is adversarially trained by using one-step least-likely adversarial training, adopted from Fast
Adversarial Training Wong et al. (2020) with slight modification (see Section A.2 in Appendix for
details). We incorporate two new designs in our detector to make adversarial examples more notice-
able. First, we resort to Guided Backpropagation Springenberg et al. (2015) to expose adversarial
perturbations, driven by our empirical observations. Second, the Soft-Nearest Neighbors Loss (SNN
Loss) Salakhutdinov & Hinton (2007); Frosst et al. (2019) is tailored to push adversarial examples
away from their corresponding clean images. As such, our detector is effective in sniffing both dense
attack-generated and sparse attack-generated adversarial examples.

Our classifier includes two encoders for extracting visual representations respectively from clean
images and adversarial examples, aiming to alleviate the negative effect of adversarial training on
standard accuracy. We separate the training process into “pre-training” and “fine-tuning” for rep-
resentation learning and classification, respectively. In the pre-training, our goal is to jointly learn
high-quality representations and encourage pairwise similarity between a clean image and its adver-
sarial example. Specifically, we extend Masked Autoencoders (MAE) He et al. (2022), i.e., learning
visual representations by reconstructing the masked images, for adversarial training via a new de-
sign. That is, we reconstruct images from a pair of masked clean image and masked adversarial
example, for representation learning, with a contrastive loss on visual representations to encourage
pair similarity. In the fine-tuning of classification, we freeze the weights on the two encoders and
fine-tune an MLP (Multi-layer Perceptron) for accurate classification by using our proposed adap-
tive ensemble to bridge the detector and the classifier. Meanwhile, our adaptive ensemble allows us
to mask off an arbitrary subset of image patches within the input, enabling our approach to mitigate
potential adversarial effects when encountering malicious inputs with negligible standard accuracy
degradation. Extensive experiments have been carried out on three popular benchmarks, with the re-
sults demonstrating that our solutions outperform state-of-the-art detection and adversarial training
techniques in terms of detection accuracy, standard accuracy, and robustness.

2 RELATED WORK

Our work closely relates to two research scopes, i.e., detection/rejection mechanisms and adversarial
training approaches. This section discusses how our work relates to, and differs from, prior studies.

Detection Mechanisms. Detecting adversarial examples (AEs) and then rejecting them (i.e., detec-
tion/rejection mechanism) can improve the model robustness. That is, the input will be rejected if
the detector classifies it as an adversarial example. Popular detection techniques include Odds Roth
et al. (2019), which considers the difference between clean images and AEs in terms of log-odds;
NIC Ma & Liu (2019), which checks channel invariants within DNNs; GAT Yin et al. (2020), which
resorts to multiple binary classifiers; JTLA Raghuram et al. (2021), which proposes a detection
framework by employing internal layer representations, among many others Lee et al. (2018); Yang
et al. (2020); Sheikholeslami et al. (2021). Unfortunately, existing detection methods are typically
ineffective in sniffing sparse attack-generated AEs, which just modify limited numbers of pixels.

2



Under review as a conference paper at ICLR 2023

Besides, the detection/rejection mechanism only works in limited scenarios. For example, it cannot
be generalized to domains where natural adversarial examples exist. Differently, our work resorts to
the Guided-Backpropogation technique, which can largely expose adversarial perturbations, based
on our empirical observation. Then, we adopt the Soft-Nearest Neighbors (SNN) loss, which can
further maximize differences between clean images and adversarial examples.

Adversarial Training Approaches. Adversarial training (AT) aims to improve the model robust-
ness by intentionally injecting adversarial examples into the training data. For example, PGD-
AT Madry et al. (2018) proposes a multi-step attack to find the worst case of training data,
TRADES Zhang et al. (2019) addresses the limitation of PGD-AT by utilizing theoretically sound
classification-calibrated loss, EAT Tramèr et al. (2018) uses an ensemble of different DNNs to pro-
duce the threat model, FAT Wong et al. (2020) reduces the computational overhead of AT by utilizing
FGSM attack with the random initialization, LAS-AWP Jia et al. (2022) boosts AT with a learnable
attack strategy, Sub-AT Li et al. (2022) constrains AT in a well-designed subspace, and many oth-
ers Shafahi et al. (2019); Andriushchenko & Flammarion (2020); Kim et al. (2021); Wang et al.
(2022). However, prior ATs suffer from the dilemma of balancing the trade-off between standard
accuracy and adversarial robustness. Besides, their improved robustness is vulnerable to sparse at-
tacks. Although we adopt the threat model in FAT, by using the proposed adaptive ensemble, our
method can be generalized to defend against sparse attacks. Meanwhile, it mitigates the standard
accuracy degradation by employing two encoders for extracting visual representations respectively
from clean images and adversarial examples.

3 OUR APPROACH

3.1 PROBLEM STATEMENT

We consider a set of N samples, i.e., X = {(xi, yi) | i ∈ {1, 2, . . . , N}}, where x ∈ RH×W×C
is the input image and y ∈ [C] denotes its label. Here, (H,W ) represents the resolution of input
images and C is the number of channels. For notational convenience, we let d = H ×W × C. A
classifier is a function fθ: Rd → [C], parameterized by a neural network. In this paper, we consider
two types of inputs, i.e., the clean image xcln sampled from the standard distribution Dstd and the
adversarial example xadv sampled from the adversarial distribution Dadv. We assume Dstd and Dadv
follow different distributions. The clean image xcln itself or its augmented variant can be the input,
while the adversarial example xadv is a malicious version of x within a small distance, that is, for
some metric d, we have d(x,xadv) ≤ ε, but xadv can mislead conventional classifiers. Parameterized
by another neural network, a detector gφ is to tell whether an input image is a clean image or not,
i.e., gφ : Rd → {±1}, where +1 and −1 indicate the clean image and the adversarial example,
respectively. The binary indicator function 1{·} is 1 if both the detector gφ and the classifier fθ
make correct predictions. In this paper, we follow previous studies Madry et al. (2018); Zhang
et al. (2019) by referring standard accuracy Astd and adversarial robustness Aadv, as classification
accuracy on clean images and on adversarial examples, respectively.

We start by defining standard accuracy. Given a clean image, the incorrect prediction made either
by the detector or by the classifier is counted as an error.

Definition 3.1 (Standard accuracy). Let f ◦ g be a model with a classifier fθ : Rd → [C] and a
detector gφ : Rd → {±1}. Its standard accuracy is defined by the expected rate at which both the
detector and the classifier make correct predictions on the clean image:

Astd(f ◦ g) := E
(xcln,y)∼Dstd

[
1{gφ(xcln)=1 ∧ fθ(xcln)=y}

]
. (1)

Similar to standard accuracy, adversarial robustness regards the incorrect prediction on an adversar-
ial example made either by the detector or by the classifier as an error.

Definition 3.2 (Adversarial robustness). Let f ◦g be a model, including a detector gφ : Rd → {±1}
and a classifier fθ : Rd → [C]. Given the input (x, y), the adversarial robustness at a small distance
ε, i.e., d(x,xadv) ≤ ε, is defined as:

Aεadv(f ◦ g) := E
(xadv,y)∼Dadv

[
1{gφ(xadv)=−1 ∧ fθ(xadv)=y}

]
. (2)
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(a) Clean image
“acoustic guitar”

(b) Guided Grad-CAM
“acoustic guitar”

(c) Guided Backprop
“acoustic guitar”

(d) Adversarial example
“maze”

(e) Guided Grad-CAM
“maze”

(f) Guided Backprop
“maze”

Figure 1: Different visualizations on the clean image (Top) and the adversarial example (Bottom).
Left: Original clean image and adversarial example with their predicted labels. Middle: Guided
Grad-CAM visualization. Right: Guided Backpropagation visualization.

3.2 DETECTION

Parameterized by a neural network with parameters φ, the detector gφ : Rd → {±1} is to determine
whether the input is a clean image or not, where +1 and −1 indicate the clean image and the
adversarial example, respectively. Mathematically,

gφ(x) =

{
+1, if x is a clean image
−1, otherwise.

(3)

Aiming to generalize the robust model to critical domains (e.g., autonomous driving), the input will
not be rejected in this study. That is, the detector also outputs the estimated probability of p ∈ [0, 1]
for the clean image and 1− p for the adversarial example 1.

The design of our detector architecture is motivated by our empirical observation in that the ad-
versarial perturbation is detectable after Guided Backpropagation visualization. Due to the small
distance between a clean image and its corresponding adversarial example, their difference is no-
toriously imperceptible (see Figures 1a and 1d), making it theoretically hard to detect adversarial
examples Tramèr (2022). In our empirical study, we resort to Guided Backpropagation Springen-
berg et al. (2015) to visualize the difference between the clean image and the adversarial example.
Surprisingly, we discovered that after Guided Backpropagation visualization on the adversarial ex-
ample, its adversarial perturbation is quite noticeable; See Figure 1c versus Figure 1f, i.e., visualiza-
tion on the clean image versus on the adversarial example. Notably, our experiments also include the
visualization comparison under Guided Grad-CAM Selvaraju et al. (2017), developed recently; see
Figure 1b versus Figure 1e. However, Guided Grad-CAM exhibits inferior performance (compared
to Guided Backpropagation) in terms of exposing adversarial perturbation. This empirical study
motivates us to maximize the difference between clean images and adversarial examples by using
Guided Backpropagation visualization.

Figure 2 illustrates our detector architecture. Given an input image x ∈ Rd, we perform Guided
Backpropagation on the original image, arriving at an input variant x′ ∈ Rd. Note that we employ
the label predicted by a pre-trained model to be the target concept for Guided Backpropagation;
hence, no ground-truth label is required during the detection. Following the standard Vision Trans-
former (ViT) Dosovitskiy et al. (2021), we patchify the two inputs into two sets of image patches

1Notably, our approach is readily generalizable to the detection/rejection mechanism. We can reject the
input data if the detector identifies it as a malicious input, i.e., gφ(x) = −1.
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Figure 2: Our detector architecture.
and embed them via linear projection, arriving at two sets of patch embeddings, i.e., Ep ∈ RM×D
and E′p ∈ RM×D, respectively for the original input and its input variant. Here, M represents the
number of patches and D indicates the hidden dimension. Driven by the above empirical obser-
vation, we add two sets of patch embeddings together, expecting that the adversarial perturbation
exposed by Guided Backpropagation can help differentiate adversarial examples from clean images.
Similar to the standard ViT, we fill the position embeddings Epos ∈ RM×D for remaining positional
information. Hence, we have the input sequence E of the detection encoder (i.e., a Transformer
Encoder) as follows,

E = [Ep1 + E′p1 ; Ep2 + E′p2 ; · · · ; EpM + E′pM ] + Epos, (4)
where Epi (or E′pi ) denotes the i-th patch embedding in the original input (or its input variant
produced by Guided Backpropagation). Following the ViT architecture in Masked Autoencoders
(MAE) He et al. (2022), we perform the global average pooling on the full set of encoded patch
embeddings, with the result fed into an MLP (i.e., multiple-layer perceptron) for telling whether the
input is a clean image or not.

Aiming to further differentiate adversarial examples from clean images, we propose a novel loss
function to train our detector, including a Cross-Entropy (CE) Loss Lce and a Soft-Nearest Neigh-
bors (SNN) loss Lsnn Salakhutdinov & Hinton (2007); Frosst et al. (2019), for jointly penalizing the
detection error and the similarity level between the clean image and the adversarial example, i.e.,

Ldet = (1− λ) · Lce(gφ(x), ydet) + λ · Lsnn(zcln, zadv), (5)
where λ ∈ (0, 1) is a hyperparameter to control the penalty degree of the two terms, and zcln and
zadv denote the global representations, i.e., the global average pooling on the encoded representa-
tions, for the clean image and the adversarial example, respectively.

The SNN loss is a variant of contrastive loss, allowing for the inclusion of multiple positive pairs. We
regard members belonging to the same determined class (e.g., two clean images) as positive pairs,
while members belonging to different determined classes (e.g., a clean image and an adversarial ex-
ample) as negative pairs. We consider a mini-batch of 2B samples, with one half being clean images,
i.e., {(xi, ydeti =1)}Bi=1, and the other half of adversarial examples, i.e., {(xadv

i , ydeti =−1)}2Bi=B+1,
the SNN loss at temperature τ is defined below:

Lsnn = − 1

2B

2B∑
i=1

log

∑
i 6=j,ydeti =ydetj ,j=1,...,2B exp(−sim(zi, zj)/τ)∑

i 6=k,j=1,...,2B exp(−sim(zi, zk)/τ)
, (6)

where zi is the visual representations for the input xi and the similarity metric sim(·, ·) is measured
by the cosine distance. The SNN loss enforces each point to be closer to its positive pairs than to
its negative pairs. In other words, the SNN loss penalizes the similarity level between clean images
and adversarial examples, making adversarial examples more discernible by our detector.

3.3 CLASSIFICATION

Inspired by self-supervised pre-training for vision tasks Chen et al. (2020); Bao et al. (2022); He
et al. (2022), we separate our adversarial training into two stages, i.e., pre-training and fine-tuning,
for learning high-quality visual representations and fine-tuning a robust classifier, respectively.
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Figure 3: Our classifier architecture: (a) pre-training and (b) fine-tuning.

Pre-training. Our architecture for the pre-training is inspired by MAE He et al. (2022). Different
from MAE, however, we utilize two encoders, denoted as the clean encoder and the adversarial en-
coder, for learning visual representations from clean images and adversarial examples, respectively.
The decoder aims to reconstruct the original inputs from the visual representations encoded by the
two encoders. Figure 3a shows the architecture of our pre-training. Given an input image x ∈ Rd,
let xcln and xadv denote its clean and adversarial variants, respectively, with the clean variant ob-
tained by augmenting the original input. Regarding the clean variant xcln, we randomly mask out
a large proportion of image patches (e.g., 75%) and then feed the subset of visible patches into
the clean encoder. The masked tokens are inserted into corresponding positions after the encoder.
Finally, the decoder reconstructs the clean variant x̄cln from the full set of image patches, includ-
ing encoded visible patches and masked tokens. The reconstruction of the adversarial variant xadv

follows a similar procedure, except that its visible patches are encoded by the adversarial encoder.
Notably, the position of masked image patches in the adversarial variant xadv is the same as that in
the clean variant xcln in order to minimize their visual representation difference during pre-training.

Denote z̄cln and z̄adv respectively to be the global representations of the clean and adversarial vari-
ants, i.e., the global average pooling on the input sequence for the decoder. Different from MAE,
our design utilizes a new loss function to learn visual representations by simultaneously minimizing
the reconstruction error and the visual representation difference, i.e.,

Lenc = (1− Ω) · Lrec(x, x̄) + Ω · Lcl(z̄
cln, z̄adv), (7)

where Ω ∈ (0, 1) is a hyperparameter and x̄ is the reconstructed image. Lrec and Lcl denote the
reconstruction loss and the contrastive loss, respectively. Given a set of B input images, we first
generate their adversarial variants, arriving at a mini-batch of 2B samples, consisting of B clean
variants {xcln

i }Bi=1 and B adversarial variants {xadv
i }2Bi=B+1. We consider the form of contrastive

loss in SimCLR Chen et al. (2020), and define our contrastive loss at temperature τ as follows:

`(i, j) = − log
exp(sim(z̄i, z̄j)/τ)∑

i6=k,k=1,...,2B exp(sim(z̄i, z̄k)/τ)
,

Lcl =
1

2B

B∑
k=1

[`(k, k +B) + `(k +B, k)] ,

(8)

where z̄i denotes visual representations for xcln
i (or xadv

i ) and the similarity level sim(·, ·) is mea-
sured by the cosine distance. In particular, we regard the clean and adversarial variants from the
same input as the positive pairs, while the rest in the same batch are negative pairs. Therefore, our
contrastive loss decreases when visual representations for the clean and the adversarial variants of
the same input become more similar.

Fine-tuning. Figure 3b depicts our architecture during fine-tuning, which only keeps two pre-trained
decoders with frozen weights for producing visual representations during adversarial training, and
the decoders are dropped after pre-training. Different from MAE, which encodes the full set of
image patches during fine-tuning, our approach randomly masks out a relatively small proportion
of image patches (e.g., 45%), aiming to eliminate the potential adversarial effect if the input is an
adversarial example.

Given an input image (x, ycls), where x ∈ Rd is either a clean image or an adversarial example
with the label ycls ∈ [C], we randomly mask the input image twice, arriving at two different masked
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inputs. Two subsets of visible patches from the two masked inputs are fed into the clean and the
adversarial encoders, respectively. The masked tokens are introduced onto their corresponding po-
sitions after the decoder, obtaining two full sets of visual representations, i.e., ẑcln and ẑadv which
are partially encoded by the clean and the adversarial encoders, respectively. We then perform the
global average pooling on the adaptive ensemble of ẑcln and ẑadv, with the result fed into an MLP
for classification.

Adaptive Ensemble. Although randomly masking an input image can eliminate the potential ad-
versarial effect, this way inevitably hurts standard accuracy during fine-tuning. In this paper, we
propose adaptive ensemble to tackle this issue. That is, the global representation for an input image
is derived from the sum of ẑcln and ẑadv with an adaptive factor p ∈ [0, 1], where ẑcln and ẑadv are
visual representations encoded by the clean and the adversarial encoders, respectively, and p is the
probability of the input image being a clean image estimated by our detector.

Let A be a full set of image patches and V be a subset of A, including visible patches only. 1V (·)
is the indicator function for evaluating whether an image patch is visible. Hence, for every image
patch of A, we have,

1V (i) =

{
1, if the i-th patch is visible
0, otherwise

, for i = 1, 2, . . . ,M, (9)

where M is the number of image patches, i.e., |A|. For notational convenience, we let 1cln
V in-

dicate the visible patches fed into the clean encoder. Likewise, 1adv
V indicates the visible patches

fed into the adversarial encoder. Let ẑi be the visual representation of the i-th image patch, with
i ∈ {1, 2, . . . ,M}. Then, our adaptive ensemble is defined by:

ẑi =
p · 1cln

V (i) · ẑcln
i + (1− p) · 1adv

V (i) · ẑadv
i

max
(
p · 1cln

V (i) + (1− p) · 1adv
V (i), ε

) , (10)

where the denominator serves to normalize the adaptive ensemble of ẑcln
i and ẑadv

i , and ε is a small
value to avoid divison by zero (i.e., ε = 1e − 12 in this paper). The intuition underlying Eq. (10)
is that if our detector has a high confidence that the input is a clean image (i.e., p is large), the
global representation ẑi will be mostly encoded by the clean encoder. Otherwise, ẑi will be mainly
encoded by the adversarial encoder. In addition, as our pre-training encourages the similarity level
of the clean and the adversarial variants from a given input (see Eq. (7) and Eq. (8)), and two
different masked inputs exist upon fine-tuning, the invisible image patches in one masked input can
be glimpsed from the other masked input.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three widely-used benchmarks. (i) CIFAR-10 Krizhevsky
et al. (2009): 60, 000 32x32 RGB images of 10 classes. (ii) CIFAR-100 Krizhevsky et al. (2009):
60, 000 32x32 RGB examples in 100 categories. (iii) Tiny-ImageNet Deng et al. (2009): 120, 000
64x64 RGB images of 200 classes.

Compared Methods. We compare our approach with four detection approaches, i.e., Odds Roth
et al. (2019), NIC Ma & Liu (2019), GAT Yin et al. (2020), and JTLA Raghuram et al. (2021).
Meanwhile, to exhibit how our approach boosts adversarial training (AT), we compare our method
with six AT counterparts: PGD-AT Madry et al. (2018), TRADES Zhang et al. (2019), FAT Wong
et al. (2020), EAT Tramèr et al. (2018), Sub-AT Li et al. (2022), and LAS-AWP Jia et al. (2022).
Hyperparameters for the baselines, if not specified, are set as reported in their original literature.

Evaluation. We consider both dense attacks and sparse attacks for evaluating detection accuracy
and adversarial robustness. In particular, we utilize (i) four dense attacks, i.e., FGSM Goodfellow
et al. (2015), PGD Madry et al. (2018), DeepFool Moosavi-Dezfooli et al. (2016), and AutoAt-
tack Croce & Hein (2020), and (ii) three sparse attacks, i.e., C&W L0 Carlini & Wagner (2017),
SparseFool Modas et al. (2019), and FMN Pintor et al. (2021). For notational convenience, we let
PGD-20/50 denote the PGD attack with 20 or 50 steps.
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Parameter Settings. Inspired by the recent success of Vision Transformer (ViT) Dosovitskiy et al.
(2021), we use the ViT as the backbone network for our detector and classifier, with their ViT
architectures respectively following DeiT Touvron et al. (2021) and MAE He et al. (2022). But
we prune our model size as small as possible in order to conduct a fair comparison with baselines.
Due to the page limit, we defer the details of the model size and hyperparameters to Section A.1 in
Appendix.

4.2 OVERALL PERFORMANCE

Table 1: Overall comparisons on CIFAR-10, with the best results shown in bold

Method Standard
Accuracy

Dense Attack Sparse Attack

FGSM PGD-20 DeepFool AutoAttack C&W L0 SparseFool FMN

PGD-AT 82.3 48.4 45.6 46.2 41.2 16.5 10.3 12.5
TRADES 84.7 52.5 45.5 46.2 42.1 14.1 9.9 12.4

FAT 84.9 51.9 45.9 48.6 40.2 10.4 13.3 12.7
EAT 83.5 52.8 50.1 47.9 47.1 16.4 18.9 16.9

Sub-AT 80.5 52.3 51.0 49.6 48.1 19.1 16.2 11.3
LAS-AWP 85.6 57.1 56.3 53.9 51.3 20.5 13.8 16.1

Ours 91.2 57.5 56.6 54.6 49.4 54.8 52.5 51.4

Comparisons to Baselines. We first conduct extensive experiments on CIFAR-10 and compare our
approach to state-of-the-art adversarial training (AT) counterparts listed in Section 4.1 in terms of
standard accuracy, robustness against dense attacks, and robustness against sparse attacks. Table 1
lists comparative results. It is observed that our approach achieves the best performance under all
three scenarios. In particular, our approach achieves the standard accuracy of 91.2%, outperforming
the best state-of-the-art (i.e., LAS-AWP) by 5.6%. This is contributed by employing two encoders
to extract visual representations respectively from clean images and adversarial examples, able to
significantly mitigate the adverse effect of adversarial training on standard accuracy. Besides, in
terms of robustness against dense attacks, our approach outperforms its all competitors under every
scenario except LAS-AWP on robustness against AutoAttack. This is because LAS-AWP employs
an automatic attack strategy to produce the threat model, similar to the attack strategy of AutoAttack.
It should be noted that our approach significantly outperforms all compared counterparts under all
sparse attacks, unlike prior ATs that tend to suffer from robustness overfitting upon dense attacks.
Take LAS-AWP as an example, its robustness degrades from 57.1% under dense attack (i.e., FGSM
attack) to 20.5% under sparse attack (i.e., C&W L0 attack). By contrast, our approach exhibits only
2.7% robustness degradation under the same case, i.e., 57.5% under FGSM attack versus 54.8%
under C&W L0 attack. This evidences that our proposed masked adaptive ensemble can boost
adversarial training by generalizing robustness improvement to defend against sparse attacks.

More experiments for overall comparisons on CIFAR-100 and Tiny-ImageNet are also conducted,
with the results deferred to Section A.3 in Appendix to conserve space.
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Figure 4: Illustration of the performance stability under different scales of datasets and different
types of attacks.
Performance Stability. We next conduct experiments on CIFAR-10, CIFAR-100, and Tiny-
ImageNet to evaluate the performance stability under different scales of datasets and different types
of attacks. We compare our approach with three baselines, i.e., EAT, Sub-AT, and LAS-AWP. Fig-
ures 4a, 4b, and 4c illustrate the comparative results of standard accuracy, robustness against dense
attack (i.e., PGD-50), and robustness against sparse attack (i.e., C&W L0), respectively. We have
three discoveries. First, as depicted in Figure 4a, our approach suffers from the least standard accu-
racy degradation of 35.5% (with standard accuracy ranging from 91.2% on CIFAR-10 to 55.7% on
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Tiny ImageNet), outperforming EAT (i.e., 39.7% degradation), Sub-AT (i.e., 44.0% degradation),
and LAS-AWP (i.e., 41.0% degradation). Second, under the strong dense attack (i.e., PGD-50),
our approach and LAS-AWP achieve similar robustness on CIFAR-10, but our method outperforms
LAS-AWP by 2.9% on CIFAR-100 and by 9.7% on Tiny-ImageNet, as illustrated in Figure 4b.
Third, as shown in Figure 4c, all competitors suffer from poor robustness (≤ 20.5%) under the
C&W L0 attack, where our approach still exhibits decent performance, with its robustness equaling
54.8%, 36.8%, and 28.9% on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively. These re-
sults validate that our approach is more stable when upscaling to large datasets and when defending
against different types of attacks.

4.3 EVALUATING OUR DETECTOR

Table 2: Comparisons of detection accuracy on CIFAR-10 under dense and sparse attacks

Method Dense Attack Sparse Attack

FGSM PGD-20 DeepFool AutoAttack C&W L0 SparseFool FMN

Odds 96.9 93.4 90.1 90.6 72.5 69.2 68.5
NIC 96.8 97.2 91.9 92.1 74.3 76.5 72.8
GAT 95.4 92.6 92.3 92.4 73.4 79.6 68.7
JTLA 97.5 95.1 93.1 93.5 77.7 74.9 69.5

Ours 99.6 99.1 97.9 98.4 96.4 98.5 97.1

In this section, we conduct experiments on CIFAR-10, and compare our detector with four detec-
tion baselines, i.e., Odds, NIC, GAT, and JTLA. Table 2 lists the detection accuracy values under
both dense and sparse attacks. We observed that our detector always achieves superior detection
performance under all scenarios, i.e., more than 97.1%, outperforming all competitors. Specifically,
our approach achieves the best detection accuracy of 99.6% under the dense attack (i.e., FGSM)
and of 98.5% under the sparse attack (i.e., SparseFool). Besides, state-of-the-art counterparts are
ineffective to sniff sparse attack-generated adversarial examples, with much inferior detection ac-
curacy. For example, their best detection accuracy under sparse attacks is only 77.7%, i.e., JTLA
against C&W L0. In sharp contrast, our approach under C&W L0 yields the detection accuracy of
96.4%, drastically outperforming the best counterpart of JTLA by 18.7%. The statistical evidence
exhibits that our two new designs for the detector, i.e., our propose loss (i.e., Eq.(5)) and the Guided
Backpropagation-based input variant, are effective for exposing adversarial perturbation, boosting
the detector to far better defend against sparse attacks.

Due to the page limit, we defer ablation studies on our classifier (including the impacts of different
masking ratios and of our adaptive ensemble) and on our detector (including the effects of Guided
Backpropagation and of the SNN loss) to Section A.4 and Section A.5 in the Appendix, respectively.

5 CONCLUSION

This article has proposed a novel framework, including a detector and a classifier, to defend against
adversarial attacks. With our newly developed adaptive ensemble to bridge the detector and the clas-
sifier, our approach can boost adversarial training to defend against both dense and sparse attacks,
and can also achieve a better trade-off between standard accuracy and robustness. Our key idea
includes applying the Guided Backpropagation to expose adversarial perturbations for better detec-
tion and employing two decoders to extract visual representations respectively for clean images and
adversarial examples so as to reduce the negative effect of adversarial training on standard accu-
racy. Meanwhile, our adaptive ensemble allows us to eliminate potential adversarial effects when
encountering adversarial examples by masking out a random subset of image patches across input
data. Extensive experiments have been conducted for evaluation, with results demonstrating that our
solutions significantly outperform their state-of-the-art counterparts in terms of detection accuracy,
standard accuracy, and robustness.

Since our approach lies in one-step adversarial training, which typically suffers from “catastrophic
overfitting” Wong et al. (2020), where improved robustness may suddenly drop to 0% under the
strong PGD attack. We defer the extension of our approach for addressing this possible “catastrophic
overfitting” to our future work.
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A APPENDIX

A.1 MODEL SIZE AND HYPERPARAMETER DETAILS

Table 3: Model Details used in our design

Model Layer Hidden Size Head MLP Size Params

Detector DeiT-Tiny 12 192 3 768 5.4M

Classifier Encoder 12 384 6 1536 21.4M
Decoder 4 192 3 768 1.8M

Model Size. To conduct a fair comparison with existing studies, we develop our detector and clas-
sifier as small as possible, with Table 3 listing the model size details. Our architecture includes a
detector and a classifier with two encoders and one decoder, with 50M parameters in total. This
is similar to the model size of Wide ResNet Zagoruyko & Komodakis (2016) employed by most
previous studies. For example, the Wide ResNet adopted by TRADES Zhang et al. (2019) contains
48.3M parameters.

Hyperparameters. For all our models, if not specified, we use AdamW Loshchilov & Hutter (2019)
with β1=0.9, β2=0.999, the weight decay of 0.05, and a batch size of 1024. We follow the setting
in Goyal et al. (2017) to train our detector for 100 epochs, with the base learning rate of 1e − 3,
the linear warmup epochs of 5, and the cosine decay schedule Loshchilov & Hutter (2017). For our
classifier, we pre-train it for 400 epochs, with the base learning rate of 1e − 4, the linear warmup
of 40 epochs, and a masking ratio of 75%. After pre-training, we drop the decoder and freeze the
weights on the two encoders. Then, we finetune the classifier for 100 epochs, with the base learning
rate of 1e− 3, the linear warmup of 5, and the cosine decay schedule, and a masking ratio of 45%.
The patch size is set to 2 (or 4) for CIFAR-10/CIFAR-100 (or Tiny-ImageNet). We grid-search λ in
Eq.(5) and Ω in Eq.(7) and empirically set λ to 0.15 and Ω to 0.35 for all datasets.

A.2 ONE-STEP LEAST-LIKELY ADVERSARIAL TRAINING

This section supports the main paper by presenting the technical detail of one-step least-likely ad-
versarial training.

Adversarial training (AT) improves the model’s robustness against adversarial attacks by intention-
ally feeding adversarial examples into the training set. Given a model f with parameters θ, a dataset
with N samples, i.e., X = {(xi, yi) | i ∈ {1, 2, . . . , N}}, the cross-entropy loss function L, and a
threat model ∆, AT aims to solve the following inner-maximization problem and outer-minimization
problem:

min
θ

N∑
i

max
δ∈∆
L(fθ(xi + δ), yi), (11)

where the inner problem aims to find the worst-case training data for the given model, and the outer
problem aims to improve the model’s performance on such data. Recently, one-step Fast Adversarial
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Table 4: Overall comparisons on CIFAR-100, with the best results shown in bold

Method Standard
Accuracy

Dense Attack Sparse Attack

FGSM PGD-20 DeepFool AutoAttack C&W L0 SparseFool FMN

PGD-AT 54.6 35.3 34.7 31.9 27.5 12.3 7.4 11.3
TRADES 56.8 35.6 32.2 28.9 27.8 11.5 9.3 10.6

FAT 53.1 34.3 34.3 31.8 28.7 9.7 11.2 8.4
EAT 56.6 37.5 32.1 30.1 28.9 12.8 11.5 7.8

Sub-AT 57.9 36.9 31.9 35.7 30.6 15.8 12.7 10.6
LAS-AWP 62.8 38.1 35.4 36.3 29.7 15.6 11.5 11.3

Ours. 69.6 40.4 38.3 38.6 37.5 36.8 35.9 34.3

Table 5: Overall comparisons on Tiny-ImageNet, with the best results shown in bold

Method Standard
Accuracy

Dense Attack Sparse Attack

FGSM PGD-20 DeepFool AutoAttack C&W L0 SparseFool FMN

PGD-AT 41.7 17.5 15.3 14.9 10.2 6.9 9.5 8.4
TRADES 36.6 18.1 15.9 13.8 12.7 7.7 8.3 6.6

FAT 42.9 19.1 15.6 14.1 12.5 7.8 6.2 5.4
EAT 43.8 18.8 13.8 12.3 11.7 7.4 4.6 6.2

Sub-AT 36.5 20.3 18.2 13.2 11.1 8.7 9.3 6.2
LAS-AWP 44.6 26.5 22.5 18.3 17.5 8.2 4.7 7.2

Ours. 55.7 34.2 32.2 31.7 29.6 28.9 26.8 26.1

Training (FAT) Wong et al. (2020) is popular due to its computational efficiency. FAT sets the threat
model under a small and l∞ constraint ε, i.e., ∆ = {δ : ‖δ‖∞ ≤ ε}, by performing Fast Gradient
Sign Method (FGSM) Goodfellow et al. (2015) with the random initialization, i.e.,

δ = Uniform(−ε, ε) + ε · sign(∇x L(fθ(xi), yi)),

δ = max(min(δ, ε),−ε), (12)

where Uniform denotes the uniform distribution and sign is the sign function. Notably, the second
row in Eq. (12) serves to project the perturbation δ back into the l∞ ball around the data xi.

To find the worst-case adversarial examples, we extend FAT by performing the least-likely targeted
attacks, inspired by prior studies Kurakin et al. (2017); Tramèr et al. (2018). That is, given an
input xi, we perform targeted FGSM by setting the targeted label as its least-likely class, i.e., ylli =
arg min fθ(xi), arriving at,

δ = Uniform(−ε, ε) + ε · sign(∇x L(fθ(xi), y
ll
i )),

δ = max(min(δ, ε),−ε),
(13)

Our one-step least-likely adversarial training is to utilize Eq.(13) to produce the threat model.

A.3 OVERALL COMPARSIONS ON CIFAR-100 AND TINY-IMAGENET

This section supports the main paper by comparing our approach with adversarial training (AT)
counterparts on CIFAR-100 and Tiny-ImageNet.

Table 4 and Table 5 list the experimental results on CIFAR-100 and Tiny-ImageNet, respectively.
From Table 4, we discovered that our approach achieves the best performance in terms of standard
accuracy, robustness against dense attacks, and robustness against sparse attacks. In particular, our
approach achieves the standard accuracy of 69.6%, outperforming the best competitor (i.e., LAS-
AWP) by 6.8%. Besides, our approach achieves the best robustness of 40.4% under the dense attack
(i.e., FGSM) and of 36.8% under the sparse attack (i.e., C&W L0). Moreover, existing ATs achieve
very poor robustness against sparse attacks (less than 15.8%), while our approach, even in the worst
case (i.e., under FMN attack), still maintains a decent robustness of 34.3%.

We have three observations from Table 5. First, our approach outperforms all counterparts under
all three scenarios on Tiny-ImageNet. In particular, our approach achieves the standard accuracy of
55.7%, outperforming the best competitor (i.e., LAS-AWP) by 11.1%. Besides, compared to LAS-
AWP under robustness against dense attacks, our method achieves the performance improvements
ranging from 7.7% (under FGSM attack) to 13.4% (under DeepFool attack). Third, our approach
still achieves decent robustness under sparse attacks (e.g., 28.9% under C&W L0 attack), while all
competitors perform very poor when encountering sparse attacks (i.e., less than 10%).
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Figure 5: Comparison of the reconstruction quality from masked adversarial examples by employing
our approach with/without the contrastive loss, denoted as our approach (w/ CL) and our approach
(w/o CL), respectively. From left to right are the original adversarial example, the masked input,
reconstruction by our approach (w/o CL), and reconstruction by our approach (w/ CL), respectively.

A.4 ABLATION STUDIES ON OUR CLASSIFIER

This section supports the main paper by conducting ablation studies on our classifier, including the
impact of the contrastive loss on reconstruction quality, as well as the effects of different masking
ratios and our proposed adaptive ensemble on the standard accuracy and robustness.

Pre-training: Contrastive Loss. We qualitatively and quantitatively exhibit the impact of our
proposed loss, i.e., Eq.(7), on learning visual representations. We first present the qualitative evalua-
tions. Specifically, we reconstruct masked adversarial examples and compare reconstruction quality
by utilizing our approach with/without the contrastive loss (CL) in SimCLR Chen et al. (2020).
Figure 5 illustrates the qualitative results. For images on each row, from left to right, are original
adversarial example, the masked input, the image generated by our approach without the CL (i.e.,
w/o CL), and the image reconstructed by our approach with the CL (i.e., w/ CL). We observed that
when using the CL, our approach always achieves a better reconstruction quality; See the 3rd (and
7th) column versus the 4th (and 8th) column. Besides, we discovered that our approach (w/o CL),
in some cases, reconstructs adversarial examples with poor quality; See the 3rd and 7th columns in
the last row. By contrast, our method (w/ CL) still achieves a high reconstruction quality on these
examples; See the 4th and 8th columns in the last row. These empirical results demonstrate that
our proposed loss can boost the performance when learning visual representations from adversarial
examples.

Following MAE He et al. (2022), we quantitatively evaluate visual representations by using the lin-
ear probing accuracy. Specifically, we consider the standard accuracy, the robustness under a dense
attack (i.e., PGD-50), and the robustness under a sparse attack (i.e., C&W L0). Table 6a presents the
experimental results. We observed that by utilizing the contrastive loss, our approach achieves per-
formance improvement of 2.6%, 11.3%, and 10.7% on the standard accuracy, the robustness against
PGD-50, and the robustness against C&W L0, respectively. These empirical results demonstrate the
necessity and importance of our proposed loss for learning high-quality visual representations.

Fine-tuning: Masking Ratio. In this section, we conduct experiments on CIFAR-10 to explore
how different masking ratios affect the performance of our approach during the finetuning. 12
groups of masking ratios are taken into account, ranging from 25% to 80%. Note that in the pre-
training, we directly set the masking ratio to 75% by following MAE He et al. (2022); hence, no
similar ablation study requires. We consider the trade-off between the standard accuracy and the
robustness, including robustness against a dense attack (i.e., PGD-50) and against a sparse attack
(i.e., C&W L0).

Figures 6a and 6b illustrate the experimental results. From Figure 6a, we observed that increasing
the masking ratio will negatively affect the standard accuracy (i.e., the grey line) in all scenarios. In
contrast, when the masking ratio is small (i.e., ≤ 50%), a larger masking ratio benefits the robust-
ness against the dense attack (i.e., the blue line). But when the masking ratio is greater than 50%,
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Table 6: Ablation studies on our classifier, including (a) pre-training and (b) fine-tuning, as well as on our
detector, including (c) Guided Backpropagation

Method Standard
Accuracy

Robustness

PGD-50 C&W L0

w/o CL 75.8 37.1 36.5
w/ CL 78.4 48.4 47.2

(a) Pre-training: Contrastive Loss (CL)

Method Standard
Accuracy

Robustness

PGD-50 C&W L0

w/o AE 79.7 49.3 49.4
w/ AE 91.2 55.9 54.8

(b) Fine-tuning: Adaptive Ensemble (AE)

Method PGD-20 C&W L0

w/o GB 95.7 82.6
w/ GB 99.1 96.4

(c) Detection: Guided Backpropagation (GB)

30 40 50 60 70 80
Masking Ratio (%)

30

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

Clean
PGD-50

20

25

30

35

40

45

50

55

R
ob

us
tn

es
s (

%
)

(a) Under PGD-50 attack

30 40 50 60 70 80
Masking Ratio (%)

30

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

Clean
C&W L0

25

30

35

40

45

50

55

R
ob

us
tn

es
s (

%
)

(b) Under C&W L0 attack

Figure 6: Illustration of how different masking ratios in the finetuning affect the performance.

increasing the masking ratio hurts the robustness. This is because a small subset of masked patches
can eliminate the adversarial effect of adversarial attacks, while a large subset of masked patches
would prevent our classifier from accurate classification. Clearly, our approach achieves the best
trade-off on the masking ratio of 45% (or 40%), with the standard accuracy of 91.2% (or 91.3%)
and the robustness against PGD-50 of 55.9% (or 55.1%).

Similarly, Figure 6b depicts the robustness against the sparse attack (i.e., the pink line) under dif-
ferent masking ratios. We also include the standard accuracy (similar to Figure 6a) for a better
illustration of the trade-off. Obviously, when the masking ratio equals 45%, our approach achieves
the best trade-off, with the standard accuracy of 91.2% and the robustness of 54.8%. Based on
the above discussion, we can set our masking ratio to 45% to ensure the best trade-off between the
standard accuracy and the robustness against both dense and sparse attacks.

Fine-tuning: Adaptive Ensemble. Here, we conduct experiments to show the impact of our adap-
tive ensemble on the standard accuracy and the robustness. Table 6b lists the experimental results
with/without our adaptive ensemble. Note that we employ the naive average ensemble when con-
ducting experiments without our adaptive ensemble. From Table 6b, we observed that our adap-
tive ensemble significantly benefits the standard accuracy, with 11.5% performance improvement.
Meanwhile, it boosts adversarial robustness against PGD-50 by 6.6% and against C&W L0 by 5.4%.
This is because the adaptive factor p in Eq.(10) estimated by our detector can adaptively adjust the
proportion of visual representations from clean and adversarial encoders.

A.5 ABLATION STUDIES ON OUR DETECTOR

This section supports the main paper by conducting ablation studies on our detector. We present the
effects of Guided Backpropagation and our proposed loss, i.e., Eq.(5), on the detection accuracy and
visual representations for clean images and adversarial examples, respectively.

Guided Backpropagation on the Detection Accuracy. In this section, we empirically show how
Guided Backpropagation (GB)-based variant affects the detection accuracy under a dense attack (i.e.,
PGD-20) and a sparse attack (i.e., C&W L0). Table 6c lists the experimental results with/without
the GB-based input variant on CIFAR-10. We discovered that removing the GB-based input variant
from our design results in a small detection accuracy degradation of 3.4% under the dense attack.
In contrast, it incurs a significant detection accuracy drop of 13.8% under the sparse attack. This
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Figure 7: t-SNE visualization on CIFAR-10 by using our detector with/without SNN loss. For each
experiment, we perform t-SNE visualization on 200 clean images and 200 adversarial examples
generated either by PGD-20 attack, i.e., (a) and (b), or by C&W L0 attack, i.e., (c) and (d).

confirms that Guided Backpropagation can expose adversarial perturbations, making adversarial
examples, especially those generated by sparse attacks, easier to be detected.

SNN Loss on Visual Representations. This section reveals the effect of our proposed loss, i.e.,
Eq.(5), on detecting adversarial examples. We consider how our detector with or without the Soft-
Nearest Neighbors (SNN) loss affects the resulting representation space. In particular, we employ
t-SNE visualization van der Maaten & Hinton (2008) on 200 clean images randomly sampled from
CIFAR-10 and 200 adversarial examples generated either by the dense attack (i.e., PGD-20) or by
the sparse attack (C&W L0). Figures 7a and 7b depict the results by using PGD-20 attack, while
Figures 7c and 7d present the results by employing C&W L0 attack. We observed that without the
SNN loss, the representations for clean images and adversarial examples are highly entangled; see
Figures 7a and 7c. In sharp contrast, by minimizing the SNN loss, the representations for clean
images and adversarial examples are mutually isolated, as shown in Figures 7b and 7d, making
adversarial examples detectable.
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