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ABSTRACT

Understanding the reasoning behind deep learning model predictions is crucial
in cheminformatics and drug discovery, where molecular design determines their
properties. However, current evaluation frameworks for Explainable Al (XAI) in
this domain often rely on artificial datasets or simplified tasks, employing data-
derived metrics that fail to capture the complexity of real-world scenarios and lack
a direct link to explanation faithfulness. To address this, we introduce B-XAIC,
a novel benchmark constructed from real-world molecular data and diverse tasks
with known ground-truth rationales for assigned labels. Through a comprehen-
sive evaluation using B-XAIC, we reveal limitations of existing XAI methods
for Graph Neural Networks (GNNs) in the molecular domain. This benchmark
provides a valuable resource for gaining deeper insights into the faithfulness of
XA facilitating the development of more reliable and interpretable models.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become the standard for predictive modeling of small
molecules (Wieder et al., [2020), achieving exceptional performance across property prediction,
virtual screening, and related pharmaceutical tasks. While their predictive capabilities are well-
established, a growing emphasis is now placed on understanding their reasoning (Jiménez-Luna
et al.l 2020). In scientific applications of deep learning to small molecules, transparent explanation
mechanisms are not merely desirable but crucial. They build researcher trust, ensure model reliability,
and potentially uncover novel insights that can accelerate drug discovery (Wu et al., 2023).

To address this gap, a range of Explainable Al (XAI) techniques have been adapted or specifically
designed for GNNs, aiming to reveal the mechanisms behind their predictions (Jiménez-Luna et al.|
2020; [Kakkad et al.l 2023). These approaches generally fall into two categories: counterfactual
methods(Chen et al., [2022; Lucic et al., 2022} Tan et al., |2022), which seek to identify minimal
input changes that alter a model’s prediction, and factual methods (Luo et al., [2020; |Schlichtkrull
et al.l 2021} |Ying et al.}2019), which aim to highlight important substructures within the input graph.
Factual methods further diverge into post-hoc explainers (Ying et al.| 2019), that analyze a trained
black-box model, and inherently interpretable architectures|Feng et al.|(2022); Velickovic et al.|(2018);
Zhang et al.| (2022)), which aim for transparency through their design. However, recent findings
indicate a critical challenge: regardless of the specific XAI method used, the resulting explanations
can be unreliable, or even misleading, potentially interfering with scientific understanding [Faber et al.
(2021)). Despite the strong performance of these models on established benchmarks and metrics for
GNNs and small molecules, this is still observable.

In response to the limitations of current XAl evaluation for GNNs, the community has developed
synthetic datasets (Agarwal et al.| 2023;|Azzolin et al., 2023 [Luo et al., 2020; Wu et al.} 2022;|Ying
et al.,2019). However, these often lack real-world complexity, while creating real-world datasets with
ground truth explanations is challenging or impossible. Existing real-world datasets like MUTAG are
small and task-limited. Furthermore, many evaluation methods rely on thresholding importance maps
or selecting top-k elements, which can be problematic for tasks dependent on the presence/absence
of substructures, where no single element is inherently more important. This arbitrary selection can
yield inaccurate explanations and misleading metrics. While AUROC (Bajaj et al.| [2021; Zhang et al.|
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2020) avoids thresholding, it becomes ineffective when no specific element is important, leading to
empty ground truth explanations.

To address these limitations, we introduce B-XAIC (Benchmark for eXplainable Artificial Intelligence
in Chemistry), a novel benchmark comprising SOK small molecules and 7 diverse tasks, accompanied
by both ground truth labels and corresponding explanations, making accuracy-based metrics a
directly applicable and reliable evaluation method. B-XAIC tackles the challenges associated with
thresholding explanations or selecting the top-k most important elements by considering two distinct
scenarios: (1) cases where a specific part of the input graph constitutes the explanation, which can be
effectively evaluated using AUROC or Average Precision (AP), and (2) cases where the entire graph
is equally important for the prediction, in which the evaluation focuses on ensuring the explanation
does not contain irrelevant outliers. Ultimately, B-XAIC enables a direct and fair comparison of
various factual XAl approaches, both post-hoc explainers and inherently self-explainable models.

2 RELATED WORK

Explanability in GNNs. Recent research in Graph Neural Networks (GNNs) has increasingly
focused on developing methods to interpret and explain the decisions made by these models. Explain-
able AI (XAI) techniques for GNNs can be broadly categorized based on the type of explanation
they provide (Kakkad et al.| [2023)). These methods may involve identifying key substructures within
the input graph that influence the model’s predictions, offering factual explanations by highlighting
relevant parts of the input (Dai & Wang| |2021; [Luo et al., 20205 |Ying et al., 2019} |Yuan et al., 2021,
or generating counterfactual examples where the input is perturbed in such a way that it leads to a
different prediction outcome (Chen et al., 2022} |Lucic et al., [2022; |Tan et al., 2022]).

Furthermore, factual methods for explaining GNN predictions can be broadly classified into post-hoc
and self-interpretable approaches. Post-hoc methods aim to explain the predictions of a pre-trained
GNN by identifying important nodes, edges, or features that influence the model’s decision (Luo
et al., 20205 [Schlichtkrull et al.l 20215 |Ying et al., 2019). In contrast, self-interpretable methods
design the GNN architecture to inherently incorporate explainability using information constraints,
such as attention blocks (Miao et al., 2022; |Velickovic et al.,|2018) or bottlenecks (Wu et al.| [2020),
or integrating structural constraints like prototypes (Rymarczyk et al.,[2023; Zhang et al.| | 2022)) or
graph kernels (Cosmo et al.,|2025; |[Feng et al., [2022), to ensure that the model is more interpretable.

Explainability Benchmarks. The need for appropriate datasets to evaluate GNN explainability
techniques has led to the introduction of various benchmark datasets with ground-truth explanations.
Several synthetic datasets have been developed for node classification and graph classification
tasks, where specific motifs serve as the ground truth. For instance, datasets like BA-Shapes, BA-
Community, Tree Cycle, and Tree Grids (Ying et al., 2019)) are designed for node classification,
with the task of predicting whether a node is part of a known motif (such as a cycle, house, or grid).
Similarly, synthetic datasets like BA-2Motifs (Luo et al.| [2020), BAMultiShapes (Azzolin et al.,
2023)) and Spurious Motifs (Wu et al., [2022) are designed for graph classification tasks, where the
goal is to detect presence of given motifs in the entire graph.

ShapeGGen (Agarwal et al., 2023) is a more recent development in the field of graph benchmarks. It is
a synthetic graph generator designed to create a variety of graph datasets with diverse characteristics.
While ShapeGGen provides valuable synthetic data, it remains limited by its artificial nature, which
may not fully capture the complexity and noise present in real-world datasets.

In addition to synthetic datasets, real-world datasets have been crucial for testing GNN explainability
methods. Molecular datasets are particularly valuable in this context, as they can provide ground-truth
explanations based on known chemical properties. Examples of such datasets include MUTAG
(Debnath et al.,[1991)), Benzene, Fluoride-Carbonyl, and Alkane-Carbonyl (McCloskey et al.,[2019;
Sanchez-Lengeling et al.l 2020), which are graph classification tasks where explanations are based
on the presence or absence of simple chemical structures. These datasets contain 1.8K, 12K, 8.7K
and 1.1K graphs, respectively. Although simple, these datasets serve as effective benchmarks and
are commonly used in the field. However, experimental datasets like MUTAG, in addition to simple
known patterns such as the nitro group, may include more subtle dependencies, making it impossible
to assign the absolute ground truth to chemical structures.
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Figure 1: Schematic of our B-XAIC dataset and benchmark; (a) the dataset preparation steps include
compound labeling, filtering, and sampling to the training, validation, and testing subsets; (b) for each
positive example, atom and bond labels are provided to assess model explanations; (c) the patterns
for the halogen and indole tasks are presented, as well as four example PAINS patterns.

Furthermore, many XAI GNN methods are evaluated on more complex molecular datasets where
ground-truth explanations are not available, such as NCI1 (Wale & Karypis, 2006), BBBP (Martins
et al.,[2012)), Tox21 (Mayr et al., 2016), or Proteins (Borgwardt et al., [2005)). In addition to these,
several domain-specific GNN benchmarks are used to assess explainability and related metrics in
fields such as visual recognition, natural language processing, or fairness. In the visual domain,
datasets like MNIST-75sp (Knyazev et al.,2019) transform images into graphs, where each superpixel
is treated as a graph node to test GNN systems. In the textual domain, datasets like Graph SST2,
Graph SSTS, and Graph Twitter (Yuan et al., 2020)convert sentiment analysis datasets into graph-
structured data, allowing for the evaluation of GNN explainability in natural language processing
tasks. In the fairness domain, social graph datasets like German Credit, Recidivism, and Credit
Defaulter are used to evaluate fairness when dealing with sensitive data (Agarwal et al. 2021).
These domain-specific benchmarks provide valuable insights into how GNNs can be interpreted
across various applications, thereby expanding the scope and relevance of XAl research. However,
since ground-truth explanations are often either unavailable or inherently impossible to define, the
evaluation of explainability in these contexts shifts from accuracy-based measures to other aspects
of XAl systems (Nauta et al., 2023), such as fidelity (Amara et al.| [2022;|Longa et al., 2025; Zheng
et al.}2024), sparsity (Lucic et al.,|[2022; |Yu et al., 2021)), sufficiency, necessity (Chen et al.| 2022}
Tan et al.}2022), or robustness (Bajaj et al.| 2021). These metrics typically evaluate how predicted
explanations or predicted classes change in response to alterations in the input graph.

Recognizing the need for more robust evaluation, we developed the B-XAIC benchmark. This
resource comprises 50,000 diverse examples with 7 tasks, each paired with ground truth explanations
that reflect the intricacies of real-world applications. Our evaluation proceeds in two stages: initially,
we determine if a method correctly identifies instances with no significant nodes; subsequently,
we examine its accuracy in highlighting the relevant subgraph. Fully covering current challenges
in benchmarking XAI methods for GNNs. Although our methodology can be easily extended to
materials or proteins, we chose to focus on organic compounds because other domains might need
different modeling techniques, which would make benchmarking more challenging.

3 BENCHMARK

In this section, firstly we will introduce the B-XAIC dataset that is the core of our benchmark, and
then we will provide details on how to evaluate explanations using B-XAIC.

3.1 DATASET CONSTRUCTION

Our benchmark dataset was sourced from ChEMBL 35 (Gaulton et al., 2012)), which is a public
database of 2.5 M molecules with drug-like properties shared under the CC BY-SA 3.0 license.



Under review as a conference paper at ICLR 2026

The molecules were pre-filtered by removing invalid or duplicated SMILES strings. The solvent
molecules and counterions were removed to keep only one molecular graph per example.

The benchmark tasks are based on the presence of chemical substructures (see Figure [I)), with
increasing difficulty of chemical patterns:

(1) Detection of organoboron and organophosphorus compounds. The goal of these two tasks is to
predict if a compound contains a boron (B) or phosphorus (P) atom, respectively.

(2) Detection of halogens (X). The prediction should be positive if any of the halogen atoms (bromine,
chlorine, fluorine, and iodine) are present in the molecule. This task verifies whether GNNs can
find one of multiple alternative patterns in the graph.

(3) Detection of indoles, a bicyclic structure with a benzene ring fused to a pyrrole ring. Compounds
containing this structure are widely distributed in nature. In this task, a GNN should effectively
pass messages between nodes to detect a larger pattern in the graph.

(4) Detection of pan-assay interference compounds (PAINS). Some chemical structures tend to
produce false-positive results in high-throughput screens. We use the list of such patterns
proposed by Baell and Holloway (Baell & Holloway, |2010). This task aims to test whether a
GNN is able to learn multiple more complex patterns.

(5) Counting rings. The model should predict if a molecule contains more than four rings. This task
involves both detecting a pattern and counting its occurrences. Spiro, fused, and bridged rings are
considered distinct rings. For example, spiro[5.2]octane will be identified as having two rings.

(6) Detecting large rings with more than six atoms. This task involves counting nodes within a
substructure. Spiro, fused, and bridged rings are considered distinct rings.
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3.2 EVALUATION METRICS

For each task and each graph, the ground truth explanation is defined as a subset of nodes and edges
that are relevant to the task.

These explanations fall into two categories:

* Null explanations (NE) — where no nodes or edges are more important than others. For example,
in task B, if atom B is not present in the graph, then no specific substructure is considered relevant.

* Subgraph explanations (SE) — where only a part of the graph is relevant to the task. For instance,
in task B, if atom B is present, that node constitutes the explanation.

We evaluate these two groups separately:

* Null explanations: The predicted explanation should be uniform for all nodes and edges, without
highlighting specific substructures as more important. This requirement can be formally restated as
no outliers among the node and edge explanations. To measure this, we use the interquartile range
(IQR) method. A prediction is assigned a score of 1 if no outliers are detected, and 0 otherwise.

* Subgraph explanations: Because it may be difficult to find the optimal threshold for explanation
methods to extract all relevant nodes or edges, we rely on the AUROC metric to test if the most
significant nodes and edges are prioritized over the remaining graph structure.
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This evaluation is done separately for node-based and edge-based explanations. Table [T] contains
relevant details.

Justification to use IQR. Our benchmark’s NE samples are designed for molecules where no
atoms or bonds are important for the task. Therefore, a reliable explanation method should assign
uniformly low importance scores to all components. Any significant deviation (i.e., a high IQR)
would incorrectly highlight unimportant subgraphs.

We use IQR to quantify this expected uniformity; a low IQR confirms that importance scores are
indeed uniformly distributed.

Table 1: Summary of Task and Dataset Statistics. SE denotes relevant subgraphs in positive instances,
while NE denotes negative instances without explanations.

K % of graphs % of graphs % of nodes % of edges
tas with positive label  with NE in SE in SE

B 2.18 97.78 4.13+2.16 -

P 12.78 86.71 435+2.44 -

X 56.46 44.13 6.05 £4.07 -
indole 36.94 63.33 3134+ 12.15 3149+ 12.16
PAINS 32.88 67.08 3407 £14.22 31.37+£14.63
rings-count 30.06 1.49 64.04 £16.03 61.85+14.84
rings-max 5.54 1.35 5022 +17.44 47.12+16.39

4 RESULTS

4.1 EXPERIMENTAL SETUP

Explainers. We evaluate a range of explanation methods for graph neural networks, including
both gradient-based and mask-based approaches. GNNExplainer (Ying et al., |2019) learns a soft
mask over the input graph to identify important substructures, while PGExplainer (Luo et al., [2020)
is a parametric version that generalizes across instances. PGMExplainer (Vu & Thail, [2020) uses
probabilistic graphical models to capture conditional dependencies in the graph for explanation, and
FlowX (Gui et al., [2023) leverages gradients through the message-flow process to estimate feature
importance. IntegratedGradients (Sundararajan et al.,|2017)), Saliency (Simonyan et al., 2014}, and
Inputx Gradient (Shrikumar et al.| [2016) are gradient-based methods that attribute importance to
input features based on their sensitivity. Deconvolution (Mahendran & Vedaldi, 2016} |Shrikumar
et al.,[2016)) and GuidedBackprop (Springenberg et al., [ 2015) refine backpropagation to highlight
relevant features more clearly. GraphMask (Schlichtkrull et al.,|2021)) uses reinforcement learning to
learn sparse binary masks, and Shapley ValueSampling (Strumbelj & Kononenko, [2010) approximates
feature importance via Shapley values. We assess both node- and edge-based explanations depending
on the capabilities of each method.

Table 2: F1 scores obtained by three GNN architectures and ProtGNN using these architectures as its
backbone; the highest scores are highlighted in bold along with the numbers that are not significantly
lower according to the one-sided Wilcoxon test

ProtGNN ProtGNN ProtGNN
GCN +GCN GAT +GAT GIN +GIN
B 99.94+0.05 9738+142 99.11+0.19 9852+1.69 99.96+0.05 9698 +0.69
P 99.98+0.02 9552+7.98 99.97+0.01 9951+022 99.98+0.03 99.77 +0.14
X 99.84+0.05 99.68+0.05 99.18+0.23 99.89+0.05 99.94%0.02 98.74+0.56

indole 88.33+1.74 73.80+16.62 6730+2.21 76.17+£252 9832+0.36 95.76+0.89
PAINS 79.89 +0.47 5634 +557 65.02+1.65 5427+0.64 92.90+0.54 85.88+4.26
rings-count 87.27+1.61 68.74+831 82.88+059 71.04+489 99.62+0.21 83.48+0.69
rings-max  91.25+1.13 91.63+0.19 91.03+0.79 91.63+£0.18 9298+0.84 91.63+0.19
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Table 3: Evaluation of the node and edge explanations for the GIN model; the explainers are grouped
into three categories: gradient-based (GB), graph-specific (GS), and perturbation-based (PB); the
best score and all scores not significantly lower according to the one-sided Wilcoxon test are bolded.

nodes edges

Class  Explainer NE SE avg NE SE avg

GB Saliency 0.51+0.12 0.85+£0.12 0.68 0.31+0.15 0.67£0.06 0.49
Deconvolution 0.79£0.10 0.81+£0.09 0.80 0.38+0.20 0.694+0.04 0.53
InputXGradient 0.544+0.14 0.83£0.14 0.68 0.37+0.14 0.65+£0.05 0.51
GuidedBackprop 0.41£0.12  0.87+0.09 0.64 0.30+0.08 0.70£0.10 0.50
IntegratedGradients 0.39+0.26  0.85+0.13 0.62 0.32+0.18 0.70£0.06 0.51

GS GNNExplainer 0.68+£0.12  0.67+0.08 0.68 0.56+0.12 0.594+0.03 0.58
GraphMaskExplainer 0.66£0.03 0.66+0.07 0.66 0.35+0.04 0.544+0.01 045
PGExplainer - - - 0.02£0.02  0.72+0.07 0.37
PGMExplainer 0.98+0.02 0.76+0.18 0.87 - - -
FlowX 0.72+£0.13  0.77+0.15 0.75 0.55+0.07 0.64+0.03 0.60

PB ShapleyValueSampling  0.48+0.23  0.83+0.15 0.65 0.18+0.11 0.64+0.03 0.41

Models. We apply explainers to popular graph neural network architectures: GCN (Kipf & Welling|
2017), GAT (Velickovic et al.,2018), GIN (Xu et al., 2019), and ProtGNN (Zhang et al., [2022), a
prototype-based, interpretable GNN, instantiated with GCN, GAT, and GIN backbones. Results for
GIN are reported here; missing results for GCN, GAT, and ProtGNN variants are in the Appendix.

4.2 BENCHMARKING

Our benchmark evaluation incorporates multiple GNN architectures, with classification metrics for
the designated tasks presented in Table 2} While all evaluated methods demonstrate strong F1 scores
across most tasks, GIN consistently outperforms alternative architectures.

As anticipated, the detection of PAINS patterns emerges as the most challenging, requiring the identi-
fication of various alert substructures. Several architectures also exhibit limitations in recognizing
indole rings, suggesting insufficient capacity to capture extensive substructures within molecular
graphs. The ring-counting task similarly presents difficulties for most models, particularly ProtGNN,
which is not capable of highlighting disconnected molecular fragments |[Elhadri et al.| (2025)).

Given our benchmark’s primary focus on comparing XAI methods, subsequent analysis will empha-
size results from the GIN architecture, which achieves near-perfect performance across our synthetic
tasks. This exceptional performance suggests that GIN formulates predictions based on appropriate
chemical principles, making it an ideal candidate for our explainability evaluations.

Node explanations. First, we will focus on node explanations. Table [3|shows the results of various
XAI methods applied to GIN, our best-performing model. The reported evaluation metrics are
averaged across all tasks, and all best results that are not statistically significantly worse than the
highest number (according to a one-sided Wilcoxon test) are highlighted in bold. Gradient-based
methods are, on average, better at localizing important patterns than other methods. However, they
tend to highlight molecular fragments even when the pattern is absent, resulting in low NE scores.

1 l(‘n(\ Dcmn\ Inpm\( rad G 111( ledBP Intr‘g( rad G I\I\F\[) Fxp PG I\ Fxp 0\\\ She 1])](\\ S

HT T” T” T” HI HI HI HI HI N
X X X X X X X X X X
P P P P P P P P P P
indol indol indol indol indol indol indol indol indol indol
B B B B B B B B B B
PAINg PAINg PAINg PAINY PAINg PAING PAINg PAINg PAINg PAINg
reomt reomt reomt reomt reomt reomnt reomnt reomt rcount rcount

Figure 3: Evaluation of node-level explanations for GIN. Null explanation results are shown in green,
and subgraph explanation in orange. Average scores for each method are displayed in the center.
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Figure 4: Evaluation of edge-level explanations for GIN. Null explanation results are shown in green,
and subgraph explanation in orange. Average scores for each method are displayed in the center.

The detailed results for each task are shown in Figure 3| and further detailed in the Appendix. Two
groups of explanation methods are formed. The first one achieves good NE scores and obtains lower
SE scores, and the other group exhibits opposite behavior. This suggests that some methods provide
more contrastive and precise explanations, while other methods return more uniform attributions.
The tasks of finding boron, phosphorus, and halogen atoms are the easiest for all the methods. The
most difficult patterns to find are those related to rings, either counting them or measuring their size.

Edge explanations. Similar analysis was conducted for edges, and the results are shown in Table
In this case, gradient-based methods do not always outperform the other methods in terms of the SE
metric. The strong performance of the methods based on subgraph extraction may be caused by the
fact that edges are included in the extracted subgraphs, while gradient methods often focus more on
nodes. Interestingly, the GNNExplainer model significantly outperforms all other methods in the NE
metric, while GuidedBackprop is best at detecting important edges (one-sided Wilcoxon test).

The results of all explainers are presented in Figure 4} and the exact numbers can be found in the
Appendix. In these results, we focus on four tasks that involve edges, excluding all tasks aiming at
detecting single atoms. Also in the case of edges, tasks related to counting rings or atoms in rings
appear to be more challenging for the explainers.

Relationship between model performance and explanation quality. As illustrated in Figure[9]
there exists a notable correlation between model performance and the quality of the explanations
generated for prediction outcomes. This relationship is particularly evident in more complex tasks,
such as PAINS detection, where SE scores are correlated with F1 scores. The data suggests that models
achieving superior predictive accuracy also tend to produce more meaningful structural explanations.
In contrast, the correlation between model performance and NE scores appears considerably weaker.

Explanation examples Figure[6|illustrates representative explanations for both positive and neg-
ative graph instances. We observe that some techniques tend to highlight atoms proximal to the
relevant subgraph, potentially due to limited control over the message-passing mechanism in GNNS.
Additionally, we observe that even methodologically similar explanation approaches can generate
markedly divergent explanations for the same graph. For the negative instances, there is no universal
threshold that can be used across all methods to separate important nodes because one method can
attribute weights near zero uniformly for all the nodes, while another method predicts uniform values
around 4.5. In both cases no subgraph can be highlighted as predicted to be more significant. All
these observations lead to the conclusion that widely used explainers struggle to highlight even simple
patterns for GNNs that achieve almost perfect accuracy. This emphasizes the immense need for
benchmarks like B-XAIC to accelerate research on new XAI methods for graphs.

4.3 DISCUSSION

Our findings clearly demonstrate the critical need for new XAI benchmarks specifically tailored to
molecular graphs. Current XAl techniques exhibit significant deficiencies in generating adequate
explanations, even for the most elementary tasks proposed in our B-XAIC benchmark. Despite the
GIN model achieving remarkably high performance metrics, with F1 scores exceeding 98% for all
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Figure 5: Boxplots showing the distribution of explanation quality across different explainers for
each model. Results are aggregated per model, highlighting that some models are inherently more
difficult to explain than others.

proposed tasks, the explanations generated by the explainers consistently fail to properly identify and
highlight the relevant molecular structures.

While complex nonlinear interactions between atoms undoubtedly characterize real-world chemical
applications, our benchmark reveals that incorrect atom attribution persists even in comparatively
simple tasks. This systematic failure likely stems from the fundamental architectural principles un-
derlying GNNGs. The iterative message-passing layers inherent to these networks result in information
diffusion among neighboring nodes, substantially impeding precise localization of salient features.
This phenomenon represents a significant challenge to the field and warrants focused investigation
into novel approaches that can maintain predictive power while enhancing interpretability.

Limitations. The primary limitation of this study lies in its exclusive focus on local explanations.
This design choice is justified by the current landscape of GNN explainability methods, where
support for global explanations remains limited, hindering a direct and fair comparison across diverse
techniques. Furthermore, the utilization of real-world molecular data, while providing real-world
data complexity, introduces a potential confound. Despite conducting lots of out-of-distribution
experiments (see Appendix), we cannot guarantee that the trained models base their predictions
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Figure 6: Node-level explanation examples on graphs from different classes in the PAINS task, using
the GIN model and different explanation methods.

on the intended underlying chemical principles. Consequently, suboptimal performance of an XAl
method on B-XAIC could be attributed to either deficiencies in the explanation technique itself or
from the model’s failure to learn the task based on the expected structural features. Therefore, a
holistic evaluation of explainer performance, considering both explanation quality metrics and the
model’s predictive accuracy on the test set, is crucial when utilizing this benchmark.

5 CONCLUSIONS

In conclusion, the B-XAIC dataset offers a valuable new resource for the GNN XAI community. By
providing real-world molecular data with structure-derived ground truth explanations, our dataset
enables rigorous benchmarking of both inherently interpretable graph models and post-hoc GNN
explainers. The introduction of null and subgraph explanation concepts, along with the edge-based
and node-based variations, offers a more nuanced evaluation of XAl capabilities across different
explanation types and graph aspects. We believe B-XAIC will serve as a crucial baseline for future
research, clearly highlighting the strengths and limitations of emerging XAI methods.

Our ongoing work aims to further enrich this dataset by incorporating activity-cliff scenarios, pushing
the boundaries of XAl techniques to uncover subtle but critical distinctions within graph data.
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Ethics Statement. This work contributes to the broader field of explainable Al (XAI), specifically
within the context of graph neural networks applied to drug discovery and molecular modeling.
The B-XAIC dataset offers the community a standardized benchmark for evaluating novel XAI
techniques dedicated to small molecules. Beyond this specific domain, we anticipate its utility for
assessing XAl methods on graphs of moderate size (up to 60 nodes), a common scale in various
real-world applications. More generally, this research provides a valuable example for the broader
XAI community, demonstrating how real-world data and carefully designed tasks of increasing
complexity can be leveraged for effective and insightful XAI benchmarking. Ultimately, we envision
that B-XAIC will facilitate the development of more robust and transparent XAI methods for graph
data. This advancement holds a promise to enhance the interpretability and trustworthiness of GNNs,
allowing for their wider adoption in critical production environments, especially in scientific discovery
and the design of new therapeutics.

Reproducibility Statement. To ensure accessibility and encourage community engagement, we
have hosted the B-XAIC dataset on Hugging Face and provided open-source code for its execution.
Furthermore, the careful design of our molecule selection process and data hosting infrastructure
allows us to effectively mitigate the risk of data misuse. Importantly, the dataset is released under
the CC-BY-SA license, empowering the community to leverage this resource while ensuring proper
attribution and continued sharing. You can find the data and code under the following link: https:
//anonymous.4open.science/r/B-XAIC-04DE, We conduct our experiments using an
NVIDIA H100 GPU with 80GB of HBM3 memory.
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A APPENDIX

Here we provide the full set of results that were shown partially in the main paper. These results
accompany the introduction of our benchmark and offer a detailed view of node and edge explanation
performance across different explainer types.

A.1 RANKING BY EVALUATION SCORES

Table 4] and Table [5]report the evaluation metrics for all model-explainer combinations, averaged
across tasks and sorted by the aggregated scores for node and edge explanations, respectively.

A.2  VISUAL SUMMARY OF EVALUATION SCORES

The radar plots in Figure [7] and Figure [§]illustrate the evaluation scores of each model-explainer
combination across all 7 tasks, providing a visual comparison of their performance.
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Table 4: Ranking of all model-explainer combinations based on the evaluation of node explanations,
sorted by overall scores. The best score and all scores not significantly lower (according to a one-sided
Wilcoxon test) are highlighted in bold. For NE and SE, we report the mean and standard deviation;
for the overall score (avg), we additionally provide the standard error of the mean (SEM) to highlight
the trade-off between NE and SE performance.

Model Explainer NE SE avg

ProtGNN+GAT  PGMExplainer 0.98+0.01 0.79+0.20  0.89+0.10
GIN PGMExplainer 0.98+0.02 0.76+£0.18  0.87+0.10
ProtGNN+GCN  PGMExplainer 0.98+0.02 0.74+0.18  0.86+0.09
ProtGNN+GIN  PGMExplainer 0.98+0.02 0.73+0.18  0.86+0.09
GCN PGMExplainer 0.98+0.02 0.73+0.14  0.86+0.07
GAT PGMExplainer 0.97+0.01 0.73£0.18  0.85+0.09
ProtGNN+GIN  FlowX 0.84+0.14  0.83x0.11  0.84+0.09
ProtGNN+GAT  FlowX 0.82+0.14  0.80+0.08  0.81x+0.08
GIN Deconvolution 0.79+0.10  0.81+x0.09  0.80+0.07
GAT FlowX 0.79+0.13  0.80+0.12  0.79+0.09
ProtGNN+GCN  Deconvolution 0.80£0.11  0.77£0.16  0.79+0.10
ProtGNN+GIN  Deconvolution 0.78+0.13  0.79+0.11  0.79+0.10
GCN FlowX 0.76+£0.14  0.80+£0.11  0.78+0.08
GCN Deconvolution 0.78+0.11  0.77+0.16  0.78+0.10
ProtGNN+GCN  GuidedBackprop 0.90+0.16  0.64+0.11  0.77+0.11
ProtGNN+GCN  FlowX 0.76+0.16  0.75+0.07  0.75+0.09
GIN FlowX 0.72+0.14  0.77£0.12  0.75+0.10
ProtGNN+GIN  Saliency 0.63+0.21  0.84+0.10  0.74+0.12
ProtGNN+GIN  GuidedBackprop 0.80£0.26  0.67£0.13  0.74+0.12
ProtGNN+GAT  GuidedBackprop 0.74+0.33  0.66x£0.15  0.70£0.21
ProtGNN+GCN  GNNExplainer 0.77+£0.17  0.63x0.10  0.70+0.06
ProtGNN+GIN  GNNExplainer 0.74+0.18  0.64+0.11  0.69+0.07
GIN Saliency 0.51+0.12  0.85+0.12  0.68+0.10
GIN InputXGradient 0.54+0.14 0.83£0.14  0.68+0.10
GIN GNNExplainer 0.68+0.12  0.67+£0.08  0.68+0.06
GCN GuidedBackprop 0.51+0.22  0.84+0.13  0.68+0.10
ProtGNN+GCN  Saliency 0.62+0.23  0.74+0.14  0.68+0.11
ProtGNN+GIN  InputXGradient 0.55+0.27 0.80+0.13  0.68+0.14
ProtGNN+GAT  GNNExplainer 0.70+0.18  0.65+0.09  0.68+0.10
ProtGNN+GAT  Saliency 0.53+0.35 0.80+0.18  0.67+0.19
GIN GraphMaskExplainer 0.66+£0.03  0.66+£0.07  0.66+0.03
ProtGNN+GIN  GraphMaskExplainer 0.66+0.03  0.66+£0.07  0.66+0.03
GCN GraphMaskExplainer 0.65+0.04  0.66+£0.07  0.65+0.03
ProtGNN+GCN  GraphMaskExplainer 0.65+0.04 0.66+£0.07  0.65+0.03
GAT GraphMaskExplainer 0.65+0.04 0.66£0.07  0.65+0.03
ProtGNN+GAT  GraphMaskExplainer 0.65£0.04 0.66+£0.07  0.65+0.03
GIN ShapleyValueSampling  0.48+0.23  0.83+0.15  0.65+0.14
ProtGNN+GAT  InputXGradient 0.49+0.38  0.79+0.18  0.64+0.21
GIN GuidedBackprop 0.41+0.12  0.87+£0.09  0.64+0.09
GCN Saliency 0.43+0.13  0.84+0.14  0.63+0.08
ProtGNN+GIN  IntegratedGradients 0.44+0.24 0.82+0.12  0.63+0.13
GIN IntegratedGradients 0.39£0.26  0.85+0.13  0.62+0.16
ProtGNN+GAT  IntegratedGradients 0.41+0.36  0.79+0.18  0.60+0.20
GCN GNNExplainer 0.53+0.17  0.67+£0.08  0.60+0.09
ProtGNN+GCN  InputXGradient 0.36+0.32  0.76+0.17  0.56+0.14
GAT GNNExplainer 0.37+0.17 0.76+£0.16  0.56+0.13
GAT InputXGradient 0.26+0.22  0.83%£0.15  0.55+0.16
GAT ShapleyValueSampling  0.27+0.20  0.82+0.15  0.54+0.15
ProtGNN+GCN  IntegratedGradients 0.29+0.27  0.80+0.15  0.54+0.14
GAT IntegratedGradients 0.25+£0.20 0.82+0.15  0.54+0.15
GCN ShapleyValueSampling  0.26£0.15 0.80+0.17  0.53+0.10
GCN InputXGradient 0.21+0.19 0.83x0.16  0.52+0.10
GAT GuidedBackprop 0.26+0.23  0.78+0.18  0.52+0.17
GAT Deconvolution 0.26+0.23  0.78+0.18  0.52+0.17
GAT Saliency 0.24+0.22  0.79£0.18  0.51+0.17
ProtGNN+GAT  Deconvolution 0.26£0.20 0.74+£0.14  0.50+0.10
ProtGNN+GIN  ShapleyValueSampling  0.24+0.24  0.74+0.14  0.49+0.14
ProtGNN+GCN  ShapleyValueSampling  0.25+£0.27  0.73£0.15  0.49+0.14
GCN IntegratedGradients 0.16+£0.13  0.82+0.16  0.49+0.07
ProtGNN+GAT  ShapleyValueSamplid® 0.21+0.31  0.75£0.18  0.48+0.17




Under review as a conference paper at ICLR 2026

Table 5: Ranking of all model-explainer combinations based on the evaluation of edge explanations,
sorted by overall scores, following the format of Table E}

Model Explainer NE SE avg

ProtGNN+GIN  GuidedBackprop 0.86+0.16 0.60+0.05  0.73+0.08
ProtGNN+GIN  FlowX 0.71+0.14  0.68+0.01  0.69+0.07
ProtGNN+GCN  GuidedBackprop 0.80+0.22 0.58+0.07  0.69+0.12
ProtGNN+GAT  GuidedBackprop 0.79+0.22 0.59+0.05 0.69+0.11
ProtGNN+GIN  GNNExplainer 0.76+£0.23  0.55+£0.04 0.65+0.11
ProtGNN+GAT  FlowX 0.63+0.07 0.68+0.03  0.65+0.04
GAT FlowX 0.63+0.08  0.66+0.02  0.65+0.05
ProtGNN+GIN  Saliency 0.53+0.28 0.76+£0.11 0.64+0.16
ProtGNN+GCN  FlowX 0.59+0.07 0.68+0.04  0.64+0.04
GCN FlowX 0.60+0.11  0.68+0.04  0.64+0.06
ProtGNN+GIN  InputXGradient 0.55+0.29  0.66+£0.05 0.61+0.15
ProtGNN+GCN  GNNExplainer 0.64+0.24  0.58+0.05 0.61+0.12
GIN FlowX 0.55+0.07  0.64+0.03  0.60+0.04
ProtGNN+GAT  GNNExplainer 0.61+£0.23  0.57+£0.04 0.59+0.11
GIN GNNExplainer 0.57+0.11  0.59+0.03  0.58+0.05
ProtGNN+GIN  IntegratedGradients 0.45+0.28 0.70+0.07 0.57+0.16
ProtGNN+GAT  PGExplainer 0.52+0.33  0.62+0.10 0.57+0.15
ProtGNN+GAT  Saliency 0.49+0.31  0.64+0.10 0.56+0.14
GAT GNNExplainer 0.55+0.05 0.56+0.01 0.56+0.02
ProtGNN+GCN  Deconvolution 0.43+0.21  0.68+0.03  0.55+0.10
ProtGNN+GAT  GraphMaskExplainer 0.53£0.05 0.55+£0.00 0.54+0.03
ProtGNN+GCN  GraphMaskExplainer 0.54+0.05 0.53x0.01 0.54+0.03
GIN Deconvolution 0.38+0.14  0.69+0.04  0.53+0.07
GCN GraphMaskExplainer 0.51£0.07 0.54+0.00 0.53+0.03
ProtGNN+GAT  InputXGradient 0.45+0.34  0.59+0.06 0.52+0.16
ProtGNN+GCN  Saliency 0.38+0.32  0.65+0.10  0.52+0.16
GAT Saliency 0.36+£0.30 0.67+£0.03 0.51+0.15
GIN InputXGradient 0.37+0.16  0.65+0.05 0.51+0.08
GAT GraphMaskExplainer 0.48+0.04 0.54+0.00 0.51%0.02
GIN IntegratedGradients 0.32+0.18  0.69+£0.06 0.51+0.10
GIN GuidedBackprop 0.29+£0.08 0.72+0.09  0.50+0.05
GAT InputXGradient 0.30+0.25 0.68+0.03  0.49+0.12
GCN Deconvolution 0.32+0.23  0.67+£0.02  0.49+0.12
ProtGNN+GAT  Deconvolution 0.34+0.28  0.65+0.04 0.49+0.14
GAT ShapleyValueSampling  0.31+0.24  0.66+0.03  0.49+0.12
ProtGNN+GIN  Deconvolution 0.34+0.17  0.63+x0.04  0.48+0.09
GCN GuidedBackprop 0.30+£0.26  0.66+x0.03  0.48+0.13
ProtGNN+GCN  InputXGradient 0.35+0.29 0.61+0.07 0.48+0.14
GAT Deconvolution 0.26+£0.22  0.69+0.02  0.48+0.12
GAT IntegratedGradients 0.26£0.22  0.69+0.02  0.47+0.12
GAT GuidedBackprop 0.25+0.23  0.69+0.02 0.47+0.12
ProtGNN+GCN  PGExplainer 0.30+0.35  0.63x0.08 0.47+0.17
GIN Saliency 0.26+0.15  0.66£0.06  0.46+0.07
GCN GNNExplainer 0.35+0.23  0.57+£0.02  0.46+0.12
GAT PGExplainer 0.18+0.21  0.72+0.03  0.45+0.11
GIN GraphMaskExplainer 0.35£0.04 0.54+0.01 0.45%0.02
ProtGNN+GIN  GraphMaskExplainer 0.35+0.04 0.54+0.01 0.44+0.02
GCN IntegratedGradients 0.20£0.16  0.66+0.03  0.43+0.08
GCN InputXGradient 0.17+0.21  0.69+0.04 0.43£0.11
GIN ShapleyValueSampling  0.20+0.09  0.63+0.03  0.42+0.04
ProtGNN+GCN  IntegratedGradients 0.19+£0.23  0.64+£0.06  0.42+0.12
GCN PGExplainer 0.12+0.10  0.71+£0.04  0.41+0.05
GCN Saliency 0.16+0.14  0.65+£0.03  0.40+0.07
GCN ShapleyValueSampling  0.15+£0.17  0.65+0.03  0.40+0.08
ProtGNN+GIN  ShapleyValueSampling 0.17+0.28  0.58+0.02  0.38+0.14
ProtGNN+GIN  PGExplainer 0.13+0.18  0.62+0.06  0.38+0.08
ProtGNN+GAT  ShapleyValueSampling 0.16+0.28  0.59+0.04 0.38+0.13
ProtGNN+GAT  IntegratedGradients 0.13£0.28  0.61+£0.05 0.37+0.13
GIN PGExplainer 0.02+0.02  0.71+0.06  0.36+0.03
ProtGNN+GCN  ShapleyValueSampling  0.13+0.24  0.59+0.04 0.36+0.12
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Figure 7: Evaluation of node explanations for all model-explainer combinations. Null explanation
results are shown in green, and subgraph explanation results in orange. Overall average scores for
each method are displayed in the center.

A.3 VISUALIZATION OF CORRELATION BETWEEN EVALUATION METRICS AND MODEL
PERFORMANCE

Figure [0 compare NE and SE metrics for each evaluated model and illustrate the correlation between
evaluation scores and model performance for each task.
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Figure 8: Evaluation of edge explanations for all model-explainer combinations. Null explanation
results are shown in green, and subgraph explanation results in orange. Overall average scores for
each method are displayed in the center.

A.4 DISENTANGLING MODEL CAPACITY FROM EXPLAINER EXPRESSIVENESS

We conducted experiments evaluating XAl methods in both SE and NE regimes, but only on instances
where the GNN model made correct predictions. This approach rigorously separates the XAI method’s
performance from the backbone model’s predictive capabilities.

As illustrated in our Node and Edge explanation tables (Table [7]and Table [6} XAI method perfor-
mance showed remarkable consistency whether evaluated on all predictions or solely on correct ones
(pred=target).
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Figure 9: Boxplots showing the distribution of explanation quality across different explainers for
each model. Results are aggregated per model, highlighting that some models are inherently more
difficult to explain than others.
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Additionally, our GNN models consistently achieved high accuracy across all tasks. This high
baseline performance confirms that the models possess sufficient capacity to learn the underlying
chemical principles. Therefore, observed variations in XAl effectiveness can be attributed to the XAl
technique itself, rather than limitations in the GNN’s ability to learn the task.

Table 6: Node explanation performance only for correct prediction from GIN.

? % ] a & 2
. ] =) 8

g Z % 3 5 i & i x z

2 8 - = Ed Z =) = z =

3 2 & L £ = O g E

Task Type Subset 7 a = O S O O & [ 7]
NE all 0.39 0.81 0.44 0.32 0.07 0.68 0.64 0.99 0.7 0.21

PAINS pred=target 0.42 0.81 0.44 0.32 0.07 0.68 0.64 0.99 0.72 0.21
SE all 0.79 0.44 0.72 0.79 0.69 0.63 0.60 0.62 0.64 0.64

pred=target 0.80 0.70 0.72 0.80 0.69 0.63 0.60 0.62 0.64 0.64

NE all 0.48 0.83 0.55 0.40 0.38 0.67 0.65 0.98 0.64 0.60

. pred=target 0.48 0.83 0.54 0.42 0.44 0.67 0.65 0.98 0.64 0.59
rings-max

SE all 0.70 0.77 0.67 0.75 0.67 0.61 0.58 0.59 0.65 0.63
pred=target 0.70 0.79 0.66 0.75 0.67 0.62 0.57 0.57 0.65 0.65

Table 7: Edge explanation performance only for correct prediction from GIN.
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Task Type Subset 2] a = 6} 5 &) &) -4 [ 7]
NE all 0.17 0.39 0.23 0.28 0.19 0.56 0.31 0.00 0.54 0.08
PAINS pred=target 0.18 0.44 0.23 0.28 0.19 0.50 0.31 0.00 0.55 0.08
SE all 0.67 0.68 0.64 0.74 0.71 0.62 0.54 0.77 0.66 0.67

pred=target 0.68 0.69 0.64 0.75 0.72 0.62 0.54 0.78 0.67 0.67

NE all 0.28 0.26 0.34 0.23 0.19 0.55 0.35 0.00 0.52 0.18

. pred=target 0.28 0.27 0.37 0.23 0.22 0.55 0.35 0.00 0.50 0.17
rings-max

SE all 0.61 0.63 0.62 0.63 0.59 0.60 0.54 0.66 0.62 0.59
pred=target 0.60 0.64 0.61 0.64 0.59 0.60 0.54 0.66 0.58 0.59

A.5 SHOWCASING THAT MODELS DO NOT OVERFIT TO THE CHEMICAL SPACE

To test if our models learned to identify chemical patterns defining the data class, we conducted
probing experiments by changing important ground-truth atoms to carbons (excluding ring tasks).
The results in Table [§]show a dramatic drop in F1 scores (calculated with the same labels but with
probed structure), confirming that the model learned to identify underlying ground truth patterns as
alternating the molecule with carbon removed information required to perform correct prediction.

To further validate this, we conducted an additional OOD evaluation using molecules from the ZINC
database, which represents a different distribution of commercially available compounds compared
to our ChEMBL-based training data. The strong performance on this external dataset demonstrates
genuine cross-dataset generalization (see Table[J).

We take it a step further by generating synthetic OOD datasets with randomly created atom
combinations, which provide the most rigorous generalization test. These molecules follow
entirely different distributional properties while maintaining the target pattern recognition
task structure. The first dataset, called “OODy;,” includes random atom combinations based
on the empirical distribution of atom frequencies in organic molecules (e.g., carbon atoms
make up 75% of heavy atoms). The last dataset, called “OOD,” samples atoms with equal
probability, resulting in completely invalid molecules, of which 50% contain the pattern of
interest. In both cases, our GNN recognizes these patterns almost perfectly despite the extremely
OOD samples. An example of a generated molecule with one halogen atom is provided here:
CC1C(SOONOCS)OSC2(SO00S)SOOSSC3(SSOOSNOC(S)(CN)N(OO)N3N(SO)C1(C)N)C2(C1)OSN
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Table 8: Model F1 Scores for Original and Substituted Molecules

Task Original F1 ~ Substituted to Carbon F1
Benzene (B) 99.80+0.24 0.00£0.00
Pyridine (P) 99.91+0.11 0.86£1.57
Xanthine (X) 99.97+0.02 0.18+0.20
Indole (indole) 99.33+0.13 8.55+2.18
PAINS (PAINS) 94.02+1.00 39.63+£3.91

Table 9: Out-of-Distribution Performance

Task ZINC OOD; OOD
X 100%  99% 99%

B 100% 100%  100%
P 9%  100%  99%

indole 98% 98%  100%
PAINS 84% - -

rings-count  99% - -
rings-max 93% - -

A.6 JUSTIFICATION OF THE DATASET SIZE

Our design philosophy for this benchmark, intentionally balances the simplicity-complexity trade-off.
Our aim was to create a dataset that is:

* Sufficiently Compact for Rapid Iteration: A smaller dataset allows researchers to quickly
develop, test, and iterate on new models and XAI methods without extensive computational
resources or long training times. This accelerates the research cycle.

* Complex Enough to Reflect Real-World Challenges: While not encompassing the entirety
of chemical space, the seven carefully selected tasks represent a diverse set of common
challenges in Al for small molecules. These tasks, ranging from classification to regression-
like predictions (e.g., ring count), cover fundamental chemical principles and allow for a
robust evaluation of XAI methods’ ability to identify relevant features.

To further justify our chosen dataset size, we conducted an analysis evaluating model performance
across different dataset scales, ranging from 5,000 to 100,000 samples. The results (see Table ['115]),
presented in the table below, demonstrate that for most tasks, performance largely stabilizes with
50,000 samples.

Table 10: Model Performance across Different Dataset Scales

Task 5K Samples 10K Samples 25K Samples 50K Samples 100K Samples
B 99.92 99.92 99.96 99.96 99.94
P 99.97 99.99 99.98 99.98 100.00
X 99.77 99.85 99.94 99.94 99.96
indole 94.11 95.54 97.65 98.32 98.24
PAINS 82.79 85.81 91.91 92.90 93.20
rings-count 86.86 93.14 99.64 99.62 99.94
Rings-max 92.12 91.96 92.54 92.98 92.89

The core assumption when creating our dataset was to include simple and moderately complex patterns
to achieve two key objectives: (1) to ensure that any GNN can easily learn these patterns, putting
focus on the evaluation of XAI methods, and (2) to provide high-quality ground-truth annotations for
substructures that directly relate to the instance label. Although simple, these tasks remain relevant
for real-world scenarios. For example, the same set of PAINS rules is used in drug discovery to
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determine if a molecule may interfere with the assay, helping reduce screening costs by filtering out
questionable candidates. In practice, evaluating XAI methods with experimental data is challenging
due to significant noise and complex interactions between chemical groups, such as intramolecular
interactions or steric effects. Therefore, initial evaluation on simple, well-defined tasks is essential for
developing effective explainers, especially since many popular methods fail on our straightforward
benchmarks.

A.7 CHOICE OF F1 FOR CLASSIFICATION EVALUATION

We use weighted F1 as our primary metric because it accounts for class imbalance by aggregating
per-class performance proportionally to class frequency. For completeness, in Table[IT]report micro-
and macro-F1 to capture overall performance and equal-per-class performance, respectively.

Table 11: Comparison of F1 metric variants for GIN classification performance.

Task weighted-F1 micro-F1 macro-F1
B 99.96+£0.05 99.95+0.04 99.50+0.04
P 99.984+0.03  99.97+0.03  99.94+0.07
X 99.94+0.02 99.94+0.02 99.9440.02
indole 98.32+£0.36  98.31+£0.36  98.194+0.38
PAINS 92.904+0.54 92.91+0.51 91.94+0.63

rings-count  99.62+0.21 99.62+£0.21 99.54+0.25
rings-max 92.984+0.84 92.36+1.46 70.01£2.22

A.8 EXAMPLES OF EXPLANATIONS

Figures present examples of node explanations for the GIN classifier for each task using the
evaluated explainers. The colors in the null explanations are scaled to highlight outlier scores based
on the IQR method applied in our evaluation. Specifically, scores below Q1 — 1.5 x IQR or above
Q3 + 1.5 x IQR are considered outliers, where Q1 and Q3 represent the 25th and 75th percentiles,
respectively, and IQR = Q3 - QI.
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