

000 001 002 003 004 005 006 007 008 009 010 011 B-XAIC DATASET: BENCHMARKING EXPLAINABLE AI 012 FOR GRAPH NEURAL NETWORKS 013 USING CHEMICAL DATA 014 015 016 017 018 019 020 021 022 023

024 **Anonymous authors**
025
026 Paper under double-blind review
027
028
029
030
031
032
033
034

035 ABSTRACT 036

037 Understanding the reasoning behind deep learning model predictions is crucial
038 in cheminformatics and drug discovery, where molecular design determines their
039 properties. However, current evaluation frameworks for Explainable AI (XAI) in
040 this domain often rely on artificial datasets or simplified tasks, employing data-
041 derived metrics that fail to capture the complexity of real-world scenarios and lack
042 a direct link to explanation faithfulness. To address this, we introduce B-XAIC,
043 a novel benchmark constructed from real-world molecular data and diverse tasks
044 with known ground-truth rationales for assigned labels. Through a comprehen-
045 sive evaluation using B-XAIC, we reveal limitations of existing XAI methods
046 for Graph Neural Networks (GNNs) in the molecular domain. This benchmark
047 provides a valuable resource for gaining deeper insights into the faithfulness of
048 XAI, facilitating the development of more reliable and interpretable models.
049
050
051
052
053

1 INTRODUCTION

Graph Neural Networks (GNNs) have become the standard for predictive modeling of small molecules (Wieder et al., 2020), achieving exceptional performance across property prediction, virtual screening, and related pharmaceutical tasks. While their predictive capabilities are well-established, a growing emphasis is now placed on understanding their reasoning (Jiménez-Luna et al., 2020). In scientific applications of deep learning to small molecules, transparent explanation mechanisms are not merely desirable but crucial. They build researcher trust, ensure model reliability, and potentially uncover novel insights that can accelerate drug discovery (Wu et al., 2023).

To address this gap, a range of Explainable AI (XAI) techniques have been adapted or specifically designed for GNNs, aiming to reveal the mechanisms behind their predictions (Jiménez-Luna et al., 2020; Kakkad et al., 2023). These approaches generally fall into two categories: counterfactual methods(Chen et al., 2022; Lucic et al., 2022; Tan et al., 2022), which seek to identify minimal input changes that alter a model’s prediction, and factual methods (Luo et al., 2020; Schlichtkrull et al., 2021; Ying et al., 2019), which aim to highlight important substructures within the input graph. Factual methods further diverge into post-hoc explainers (Ying et al., 2019), that analyze a trained black-box model, and inherently interpretable architectures Feng et al. (2022); Velickovic et al. (2018); Zhang et al. (2022), which aim for transparency through their design. However, recent findings indicate a critical challenge: regardless of the specific XAI method used, the resulting explanations can be unreliable, or even misleading, potentially interfering with scientific understanding Faber et al. (2021). Despite the strong performance of these models on established benchmarks and metrics for GNNs and small molecules, this is still observable.

In response to the limitations of current XAI evaluation for GNNs, the community has developed synthetic datasets (Agarwal et al., 2023; Azzolin et al., 2023; Luo et al., 2020; Wu et al., 2022; Ying et al., 2019). However, these often lack real-world complexity, while creating real-world datasets with ground truth explanations is challenging or impossible. Existing real-world datasets like MUTAG are small and task-limited. Furthermore, many evaluation methods rely on thresholding importance maps or selecting top-k elements, which can be problematic for tasks dependent on the presence/absence of substructures, where no single element is inherently more important. This arbitrary selection can yield inaccurate explanations and misleading metrics. While AUROC (Bajaj et al., 2021; Zhang et al.,

054 2020) avoids thresholding, it becomes ineffective when no specific element is important, leading to
 055 empty ground truth explanations.
 056

057 To address these limitations, we introduce B-XAIC (Benchmark for eXplainable Artificial Intelligence
 058 in Chemistry), a novel benchmark comprising 50K small molecules and 7 diverse tasks, accompanied
 059 by both ground truth labels and corresponding explanations, making accuracy-based metrics a
 060 directly applicable and reliable evaluation method. B-XAIC tackles the challenges associated with
 061 thresholding explanations or selecting the top-k most important elements by considering two distinct
 062 scenarios: (1) cases where a specific part of the input graph constitutes the explanation, which can be
 063 effectively evaluated using AUROC or Average Precision (AP), and (2) cases where the entire graph
 064 is equally important for the prediction, in which the evaluation focuses on ensuring the explanation
 065 does not contain irrelevant outliers. Ultimately, B-XAIC enables a direct and fair comparison of
 066 various factual XAI approaches, both post-hoc explainers and inherently self-explainable models.
 067

068 2 RELATED WORK

069 **Explainability in GNNs.** Recent research in Graph Neural Networks (GNNs) has increasingly
 070 focused on developing methods to interpret and explain the decisions made by these models. Explainable
 071 AI (XAI) techniques for GNNs can be broadly categorized based on the type of explanation
 072 they provide (Kakkad et al., 2023). These methods may involve identifying key substructures within
 073 the input graph that influence the model’s predictions, offering factual explanations by highlighting
 074 relevant parts of the input (Dai & Wang, 2021; Luo et al., 2020; Ying et al., 2019; Yuan et al., 2021),
 075 or generating counterfactual examples where the input is perturbed in such a way that it leads to a
 076 different prediction outcome (Chen et al., 2022; Lucic et al., 2022; Tan et al., 2022).
 077

078 Furthermore, factual methods for explaining GNN predictions can be broadly classified into post-hoc
 079 and self-interpretable approaches. Post-hoc methods aim to explain the predictions of a pre-trained
 080 GNN by identifying important nodes, edges, or features that influence the model’s decision (Luo
 081 et al., 2020; Schlichtkrull et al., 2021; Ying et al., 2019). In contrast, self-interpretable methods
 082 design the GNN architecture to inherently incorporate explainability using information constraints,
 083 such as attention blocks (Miao et al., 2022; Velickovic et al., 2018) or bottlenecks (Wu et al., 2020),
 084 or integrating structural constraints like prototypes (Rymarczyk et al., 2023; Zhang et al., 2022) or
 085 graph kernels (Cosmo et al., 2025; Feng et al., 2022), to ensure that the model is more interpretable.
 086

087 **Explainability Benchmarks.** The need for appropriate datasets to evaluate GNN explainability
 088 techniques has led to the introduction of various benchmark datasets with ground-truth explanations.
 089 Several synthetic datasets have been developed for node classification and graph classification
 090 tasks, where specific motifs serve as the ground truth. For instance, datasets like BA-Shapes, BA-
 091 Community, Tree Cycle, and Tree Grids (Ying et al., 2019) are designed for node classification,
 092 with the task of predicting whether a node is part of a known motif (such as a cycle, house, or grid).
 093 Similarly, synthetic datasets like BA-2Motifs (Luo et al., 2020), BAMultiShapes (Azzolin et al.,
 094 2023) and Spurious Motifs (Wu et al., 2022) are designed for graph classification tasks, where the
 095 goal is to detect presence of given motifs in the entire graph.

096 ShapeGGen (Agarwal et al., 2023) is a more recent development in the field of graph benchmarks. It is
 097 a synthetic graph generator designed to create a variety of graph datasets with diverse characteristics.
 098 While ShapeGGen provides valuable synthetic data, it remains limited by its artificial nature, which
 099 may not fully capture the complexity and noise present in real-world datasets.

100 In addition to synthetic datasets, real-world datasets have been crucial for testing GNN explainability
 101 methods. Molecular datasets are particularly valuable in this context, as they can provide ground-truth
 102 explanations based on known chemical properties. Examples of such datasets include MUTAG
 103 (Debnath et al., 1991), Benzene, Fluoride-Carbonyl, and Alkane-Carbonyl (McCloskey et al., 2019;
 104 Sanchez-Lengeling et al., 2020), which are graph classification tasks where explanations are based
 105 on the presence or absence of simple chemical structures. These datasets contain 1.8K, 12K, 8.7K
 106 and 1.1K graphs, respectively. Although simple, these datasets serve as effective benchmarks and
 107 are commonly used in the field. However, experimental datasets like MUTAG, in addition to simple
 108 known patterns such as the nitro group, may include more subtle dependencies, making it impossible
 109 to assign the absolute ground truth to chemical structures.

Figure 1: Schematic of our B-XAIC dataset and benchmark; (a) the dataset preparation steps include compound labeling, filtering, and sampling to the training, validation, and testing subsets; (b) for each positive example, atom and bond labels are provided to assess model explanations; (c) the patterns for the halogen and indole tasks are presented, as well as four example PAINS patterns.

Furthermore, many XAI GNN methods are evaluated on more complex molecular datasets where ground-truth explanations are not available, such as NCI1 (Wale & Karypis, 2006), BBBP (Martins et al., 2012), Tox21 (Mayr et al., 2016), or Proteins (Borgwardt et al., 2005). In addition to these, several domain-specific GNN benchmarks are used to assess explainability and related metrics in fields such as visual recognition, natural language processing, or fairness. In the visual domain, datasets like MNIST-75sp (Knyazev et al., 2019) transform images into graphs, where each superpixel is treated as a graph node to test GNN systems. In the textual domain, datasets like Graph SST2, Graph SST5, and Graph Twitter (Yuan et al., 2020) convert sentiment analysis datasets into graph-structured data, allowing for the evaluation of GNN explainability in natural language processing tasks. In the fairness domain, social graph datasets like German Credit, Recidivism, and Credit Defaulter are used to evaluate fairness when dealing with sensitive data (Agarwal et al., 2021). These domain-specific benchmarks provide valuable insights into how GNNs can be interpreted across various applications, thereby expanding the scope and relevance of XAI research. However, since ground-truth explanations are often either unavailable or inherently impossible to define, the evaluation of explainability in these contexts shifts from accuracy-based measures to other aspects of XAI systems (Nauta et al., 2023), such as fidelity (Amara et al., 2022; Longa et al., 2025; Zheng et al., 2024), sparsity (Lucic et al., 2022; Yu et al., 2021), sufficiency, necessity (Chen et al., 2022; Tan et al., 2022), or robustness (Bajaj et al., 2021). These metrics typically evaluate how predicted explanations or predicted classes change in response to alterations in the input graph.

Recognizing the need for more robust evaluation, we developed the B-XAIC benchmark. This resource comprises 50,000 diverse examples with 7 tasks, each paired with ground truth explanations that reflect the intricacies of real-world applications. Our evaluation proceeds in two stages: initially, we determine if a method correctly identifies instances with no significant nodes; subsequently, we examine its accuracy in highlighting the relevant subgraph. Fully covering current challenges in benchmarking XAI methods for GNNs. Although our methodology can be easily extended to materials or proteins, we chose to focus on organic compounds because other domains might need different modeling techniques, which would make benchmarking more challenging.

3 BENCHMARK

In this section, firstly we will introduce the B-XAIC dataset that is the core of our benchmark, and then we will provide details on how to evaluate explanations using B-XAIC.

3.1 DATASET CONSTRUCTION

Our benchmark dataset was sourced from ChEMBL 35 (Gaulton et al., 2012), which is a public database of 2.5 M molecules with drug-like properties shared under the CC BY-SA 3.0 license.

162 The molecules were pre-filtered by removing invalid or duplicated SMILES strings. The solvent
 163 molecules and counterions were removed to keep only one molecular graph per example.
 164

165 The benchmark tasks are based on the presence of chemical substructures (see Figure 1), with
 166 increasing difficulty of chemical patterns:

- (1) Detection of organoboron and organophosphorus compounds. The goal of these two tasks is to predict if a compound contains a boron (B) or phosphorus (P) atom, respectively.
- (2) Detection of halogens (X). The prediction should be positive if any of the halogen atoms (bromine, chlorine, fluorine, and iodine) are present in the molecule. This task verifies whether GNNs can find one of multiple alternative patterns in the graph.
- (3) Detection of indoles, a bicyclic structure with a benzene ring fused to a pyrrole ring. Compounds containing this structure are widely distributed in nature. In this task, a GNN should effectively pass messages between nodes to detect a larger pattern in the graph.
- (4) Detection of pan-assay interference compounds (PAINS). Some chemical structures tend to produce false-positive results in high-throughput screens. We use the list of such patterns proposed by Baell and Holloway (Baell & Holloway, 2010). This task aims to test whether a GNN is able to learn multiple more complex patterns.
- (5) Counting rings. The model should predict if a molecule contains more than four rings. This task involves both detecting a pattern and counting its occurrences. Spiro, fused, and bridged rings are considered distinct rings. For example, spiro[5.2]octane will be identified as having two rings.
- (6) Detecting large rings with more than six atoms. This task involves counting nodes within a substructure. Spiro, fused, and bridged rings are considered distinct rings.

185 The final dataset is produced by sampling
 186 50 K molecules from the pre-filtered ChEMBL
 187 dataset. Weighted sampling is used to avoid
 188 huge class imbalance. The weights are defined
 189 as the product of the ratios between the majority
 190 and minority classes for all tasks. The average
 191 size of a graph in the resulting dataset is 34.56.
 192 The data is split randomly into training, vali-
 193 dation, and testing sets using the 8-1-1 ratio. The
 194 dataset contains a set of binary task labels for
 195 each compound and two sets of explanation la-
 196 bels, one for the atoms and one for the edges
 197 involved in each detected pattern. Figure 2 illus-
 198 trates the diversity of the graphs in the dataset.

200 3.2 EVALUATION METRICS

201 For each task and each graph, the ground truth explanation is defined as a subset of nodes and edges
 202 that are relevant to the task.

203 These explanations fall into two categories:

- **Null explanations (NE)** – where no nodes or edges are more important than others. For example, in task B, if atom B is not present in the graph, then no specific substructure is considered relevant.
- **Subgraph explanations (SE)** – where only a part of the graph is relevant to the task. For instance, in task B, if atom B is present, that node constitutes the explanation.

209 We evaluate these two groups separately:

- **Null explanations:** The predicted explanation should be uniform for all nodes and edges, without highlighting specific substructures as more important. This requirement can be formally restated as no outliers among the node and edge explanations. To measure this, we use the interquartile range (IQR) method. A prediction is assigned a score of 1 if no outliers are detected, and 0 otherwise.
- **Subgraph explanations:** Because it may be difficult to find the optimal threshold for explanation methods to extract all relevant nodes or edges, we rely on the AUROC metric to test if the most significant nodes and edges are prioritized over the remaining graph structure.

204 Figure 2: Histogram of Tanimoto similarities illus-
 205 trating the diversity of the dataset.

216 This evaluation is done separately for node-based and edge-based explanations. Table 1 contains
 217 relevant details.
 218

219 **Justification to use IQR.** Our benchmark’s NE samples are designed for molecules where no
 220 atoms or bonds are important for the task. Therefore, a reliable explanation method should assign
 221 uniformly low importance scores to all components. Any significant deviation (i.e., a high IQR)
 222 would incorrectly highlight unimportant subgraphs.
 223

224 We use IQR to quantify this expected uniformity; a low IQR confirms that importance scores are
 225 indeed uniformly distributed.
 226

227 Table 1: Summary of Task and Dataset Statistics. SE denotes relevant subgraphs in positive instances,
 228 while NE denotes negative instances without explanations.
 229

task	% of graphs with positive label	% of graphs with NE	% of nodes in SE	% of edges in SE
B	2.18	97.78	4.13 ± 2.16	–
P	12.78	86.71	4.35 ± 2.44	–
X	56.46	44.13	6.05 ± 4.07	–
indole	36.94	63.33	31.34 ± 12.15	31.49 ± 12.16
PAINS	32.88	67.08	34.07 ± 14.22	31.37 ± 14.63
rings-count	30.06	1.49	64.04 ± 16.03	61.85 ± 14.84
rings-max	5.54	1.35	50.22 ± 17.44	47.12 ± 16.39

4 RESULTS

4.1 EXPERIMENTAL SETUP

244 **Explainers.** We evaluate a range of explanation methods for graph neural networks, including
 245 both gradient-based and mask-based approaches. GNNExplainer (Ying et al., 2019) learns a soft
 246 mask over the input graph to identify important substructures, while PGExplainer (Luo et al., 2020)
 247 is a parametric version that generalizes across instances. PGExplainer (Vu & Thai, 2020) uses
 248 probabilistic graphical models to capture conditional dependencies in the graph for explanation, and
 249 FlowX (Gui et al., 2023) leverages gradients through the message-flow process to estimate feature
 250 importance. IntegratedGradients (Sundararajan et al., 2017), Saliency (Simonyan et al., 2014), and
 251 Input \times Gradient (Shrikumar et al., 2016) are gradient-based methods that attribute importance to
 252 input features based on their sensitivity. Deconvolution (Mahendran & Vedaldi, 2016; Shrikumar
 253 et al., 2016) and GuidedBackprop (Springenberg et al., 2015) refine backpropagation to highlight
 254 relevant features more clearly. GraphMask (Schlichtkrull et al., 2021) uses reinforcement learning to
 255 learn sparse binary masks, and ShapleyValueSampling (Štrumbelj & Kononenko, 2010) approximates
 256 feature importance via Shapley values. We assess both node- and edge-based explanations depending
 257 on the capabilities of each method.
 258

259 Table 2: F1 scores obtained by three GNN architectures and ProtGNN using these architectures as its
 260 backbone; the highest scores are highlighted in bold along with the numbers that are not significantly
 261 lower according to the one-sided Wilcoxon test
 262

	GCN	ProtGNN +GCN	GAT	ProtGNN +GAT	GIN	ProtGNN +GIN
B	99.94 ± 0.05	97.38 ± 1.42	99.11 ± 0.19	98.52 ± 1.69	99.96 ± 0.05	96.98 ± 0.69
P	99.98 ± 0.02	95.52 ± 7.98	99.97 ± 0.01	99.51 ± 0.22	99.98 ± 0.03	99.77 ± 0.14
X	99.84 ± 0.05	99.68 ± 0.05	99.18 ± 0.23	99.89 ± 0.05	99.94 ± 0.02	98.74 ± 0.56
indole	88.33 ± 1.74	73.80 ± 16.62	67.30 ± 2.21	76.17 ± 2.52	98.32 ± 0.36	95.76 ± 0.89
PAINS	79.89 ± 0.47	56.34 ± 5.57	65.02 ± 1.65	54.27 ± 0.64	92.90 ± 0.54	85.88 ± 4.26
rings-count	87.27 ± 1.61	68.74 ± 8.31	82.88 ± 0.59	71.04 ± 4.89	99.62 ± 0.21	83.48 ± 0.69
rings-max	91.25 ± 1.13	91.63 ± 0.19	91.03 ± 0.79	91.63 ± 0.18	92.98 ± 0.84	91.63 ± 0.19

270
 271 Table 3: Evaluation of the node and edge explanations for the GIN model; the explainers are grouped
 272 into three categories: gradient-based (GB), graph-specific (GS), and perturbation-based (PB); the
 273 best score and all scores not significantly lower according to the one-sided Wilcoxon test are bolded.

274 275 Class	276 Explainer	277 nodes			278 edges		
		279 NE	280 SE	281 avg	282 NE	283 SE	284 avg
281 GB	Saliency	0.51±0.12	0.85±0.12	0.68	0.31±0.15	0.67±0.06	0.49
	Deconvolution	0.79±0.10	0.81±0.09	0.80	0.38±0.20	0.69±0.04	0.53
	InputXGradient	0.54±0.14	0.83±0.14	0.68	0.37±0.14	0.65±0.05	0.51
	GuidedBackprop	0.41±0.12	0.87±0.09	0.64	0.30±0.08	0.70±0.10	0.50
	IntegratedGradients	0.39±0.26	0.85±0.13	0.62	0.32±0.18	0.70±0.06	0.51
285 GS	GNNEExplainer	0.68±0.12	0.67±0.08	0.68	0.56±0.12	0.59±0.03	0.58
	GraphMaskExplainer	0.66±0.03	0.66±0.07	0.66	0.35±0.04	0.54±0.01	0.45
	PGExplainer	—	—	—	0.02±0.02	0.72±0.07	0.37
	PGMExplainer	0.98±0.02	0.76±0.18	0.87	—	—	—
	FlowX	0.72±0.13	0.77±0.15	0.75	0.55±0.07	0.64±0.03	0.60
PB	ShapleyValueSampling	0.48±0.23	0.83±0.15	0.65	0.18±0.11	0.64±0.03	0.41

287
 288 **Models.** We apply explainers to popular graph neural network architectures: GCN (Kipf & Welling,
 289 2017), GAT (Velickovic et al., 2018), GIN (Xu et al., 2019), and ProtGNN (Zhang et al., 2022), a
 290 prototype-based, interpretable GNN, instantiated with GCN, GAT, and GIN backbones. Results for
 291 GIN are reported here; missing results for GCN, GAT, and ProtGNN variants are in the Appendix.

292 4.2 BENCHMARKING

293 Our benchmark evaluation incorporates multiple GNN architectures, with classification metrics for
 294 the designated tasks presented in Table 2. While all evaluated methods demonstrate strong F1 scores
 295 across most tasks, GIN consistently outperforms alternative architectures.

296 As anticipated, the detection of PAINS patterns emerges as the most challenging, requiring the identi-
 297 fication of various alert substructures. Several architectures also exhibit limitations in recognizing
 298 indole rings, suggesting insufficient capacity to capture extensive substructures within molecular
 299 graphs. The ring-counting task similarly presents difficulties for most models, particularly ProtGNN,
 300 which is not capable of highlighting disconnected molecular fragments Elhadri et al. (2025).

301 Given our benchmark’s primary focus on comparing XAI methods, subsequent analysis will empha-
 302 size results from the GIN architecture, which achieves near-perfect performance across our synthetic
 303 tasks. This exceptional performance suggests that GIN formulates predictions based on appropriate
 304 chemical principles, making it an ideal candidate for our explainability evaluations.

305
 306 **Node explanations.** First, we will focus on node explanations. Table 3 shows the results of various
 307 XAI methods applied to GIN, our best-performing model. The reported evaluation metrics are
 308 averaged across all tasks, and all best results that are not statistically significantly worse than the
 309 highest number (according to a one-sided Wilcoxon test) are highlighted in bold. Gradient-based
 310 methods are, on average, better at localizing important patterns than other methods. However, they
 311 tend to highlight molecular fragments even when the pattern is absent, resulting in low NE scores.

312
 313 Figure 3: Evaluation of node-level explanations for GIN. Null explanation results are shown in green,
 314 and subgraph explanation in orange. Average scores for each method are displayed in the center.

Figure 4: Evaluation of edge-level explanations for GIN. Null explanation results are shown in green, and subgraph explanation in orange. Average scores for each method are displayed in the center.

The detailed results for each task are shown in Figure 3 and further detailed in the Appendix. Two groups of explanation methods are formed. The first one achieves good NE scores and obtains lower SE scores, and the other group exhibits opposite behavior. This suggests that some methods provide more contrastive and precise explanations, while other methods return more uniform attributions. The tasks of finding boron, phosphorus, and halogen atoms are the easiest for all the methods. The most difficult patterns to find are those related to rings, either counting them or measuring their size.

Edge explanations. Similar analysis was conducted for edges, and the results are shown in Table 3. In this case, gradient-based methods do not always outperform the other methods in terms of the SE metric. The strong performance of the methods based on subgraph extraction may be caused by the fact that edges are included in the extracted subgraphs, while gradient methods often focus more on nodes. Interestingly, the GNNExplainer model significantly outperforms all other methods in the NE metric, while GuidedBackprop is best at detecting important edges (one-sided Wilcoxon test).

The results of all explainers are presented in Figure 4, and the exact numbers can be found in the Appendix. In these results, we focus on four tasks that involve edges, excluding all tasks aiming at detecting single atoms. Also in the case of edges, tasks related to counting rings or atoms in rings appear to be more challenging for the explainers.

Relationship between model performance and explanation quality. As illustrated in Figure 9, there exists a notable correlation between model performance and the quality of the explanations generated for prediction outcomes. This relationship is particularly evident in more complex tasks, such as PAINS detection, where SE scores are correlated with F1 scores. The data suggests that models achieving superior predictive accuracy also tend to produce more meaningful structural explanations. In contrast, the correlation between model performance and NE scores appears considerably weaker.

Explanation examples Figure 6 illustrates representative explanations for both positive and negative graph instances. We observe that some techniques tend to highlight atoms proximal to the relevant subgraph, potentially due to limited control over the message-passing mechanism in GNNs. Additionally, we observe that even methodologically similar explanation approaches can generate markedly divergent explanations for the same graph. For the negative instances, there is no universal threshold that can be used across all methods to separate important nodes because one method can attribute weights near zero uniformly for all the nodes, while another method predicts uniform values around 4.5. In both cases no subgraph can be highlighted as predicted to be more significant. All these observations lead to the conclusion that widely used explainers struggle to highlight even simple patterns for GNNs that achieve almost perfect accuracy. This emphasizes the immense need for benchmarks like B-XAIC to accelerate research on new XAI methods for graphs.

4.3 DISCUSSION

Our findings clearly demonstrate the critical need for new XAI benchmarks specifically tailored to molecular graphs. Current XAI techniques exhibit significant deficiencies in generating adequate explanations, even for the most elementary tasks proposed in our B-XAIC benchmark. Despite the GIN model achieving remarkably high performance metrics, with F1 scores exceeding 98% for all

413 Figure 5: Boxplots showing the distribution of explanation quality across different explainers for
414 each model. Results are aggregated per model, highlighting that some models are inherently more
415 difficult to explain than others.

416 proposed tasks, the explanations generated by the explainers consistently fail to properly identify and
417 highlight the relevant molecular structures.

418 While complex nonlinear interactions between atoms undoubtedly characterize real-world chemical
419 applications, our benchmark reveals that incorrect atom attribution persists even in comparatively
420 simple tasks. This systematic failure likely stems from the fundamental architectural principles un-
421 derlying GNNs. The iterative message-passing layers inherent to these networks result in information
422 diffusion among neighboring nodes, substantially impeding precise localization of salient features.
423 This phenomenon represents a significant challenge to the field and warrants focused investigation
424 into novel approaches that can maintain predictive power while enhancing interpretability.

425
426
427 **Limitations.** The primary limitation of this study lies in its exclusive focus on local explanations.
428 This design choice is justified by the current landscape of GNN explainability methods, where
429 support for global explanations remains limited, hindering a direct and fair comparison across diverse
430 techniques. Furthermore, the utilization of real-world molecular data, while providing real-world
431 data complexity, introduces a potential confound. Despite conducting lots of out-of-distribution
experiments (see Appendix), we cannot guarantee that the trained models base their predictions

Figure 6: Node-level explanation examples on graphs from different classes in the PAINS task, using the GIN model and different explanation methods.

on the intended underlying chemical principles. Consequently, suboptimal performance of an XAI method on B-XAIC could be attributed to either deficiencies in the explanation technique itself or from the model’s failure to learn the task based on the expected structural features. Therefore, a holistic evaluation of explainer performance, considering both explanation quality metrics and the model’s predictive accuracy on the test set, is crucial when utilizing this benchmark.

5 CONCLUSIONS

In conclusion, the B-XAIC dataset offers a valuable new resource for the GNN XAI community. By providing real-world molecular data with structure-derived ground truth explanations, our dataset enables rigorous benchmarking of both inherently interpretable graph models and post-hoc GNN explainers. The introduction of null and subgraph explanation concepts, along with the edge-based and node-based variations, offers a more nuanced evaluation of XAI capabilities across different explanation types and graph aspects. We believe B-XAIC will serve as a crucial baseline for future research, clearly highlighting the strengths and limitations of emerging XAI methods.

Our ongoing work aims to further enrich this dataset by incorporating activity-cliff scenarios, pushing the boundaries of XAI techniques to uncover subtle but critical distinctions within graph data.

486 **Ethics Statement.** This work contributes to the broader field of explainable AI (XAI), specifically
 487 within the context of graph neural networks applied to drug discovery and molecular modeling.
 488 The B-XAIC dataset offers the community a standardized benchmark for evaluating novel XAI
 489 techniques dedicated to small molecules. Beyond this specific domain, we anticipate its utility for
 490 assessing XAI methods on graphs of moderate size (up to 60 nodes), a common scale in various
 491 real-world applications. More generally, this research provides a valuable example for the broader
 492 XAI community, demonstrating how real-world data and carefully designed tasks of increasing
 493 complexity can be leveraged for effective and insightful XAI benchmarking. Ultimately, we envision
 494 that B-XAIC will facilitate the development of more robust and transparent XAI methods for graph
 495 data. This advancement holds a promise to enhance the interpretability and trustworthiness of GNNs,
 496 allowing for their wider adoption in critical production environments, especially in scientific discovery
 497 and the design of new therapeutics.
 498

499 **Reproducibility Statement.** To ensure accessibility and encourage community engagement, we
 500 have hosted the B-XAIC dataset on Hugging Face and provided open-source code for its execution.
 501 Furthermore, the careful design of our molecule selection process and data hosting infrastructure
 502 allows us to effectively mitigate the risk of data misuse. Importantly, the dataset is released under
 503 the CC-BY-SA license, empowering the community to leverage this resource while ensuring proper
 504 attribution and continued sharing. You can find the data and code under the following link: <https://anonymous.4open.science/r/B-XAIC-04DE>. We conduct our experiments using an
 505 NVIDIA H100 GPU with 80GB of HBM3 memory.
 506

507 REFERENCES

508 Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework for fair
 509 and stable graph representation learning. In Cassio P. de Campos, Marloes H. Maathuis, and Erik
 510 Quaeghebeur (eds.), *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
 511 Intelligence, UAI 2021, Virtual Event, 27-30 July 2021*, volume 161 of *Proceedings of Machine
 512 Learning Research*, pp. 2114–2124. AUAI Press, 2021. URL <https://proceedings.mlr.press/v161/agarwal21b.html>.
 513

514 Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
 515 for graph neural networks. *Scientific Data*, 10(144), 2023. URL <https://www.nature.com/articles/s41597-023-01974-x>.
 516

517 Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Brandes, Sebastian Schemm,
 518 and Ce Zhang. Graphframex: Towards systematic evaluation of explainability methods for graph
 519 neural networks, 2022. URL <https://arxiv.org/abs/2206.09677>.
 520

521 Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explainability
 522 of gnn via logic combination of learned concepts. In *The Eleventh International Conference
 523 on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 524 URL <https://openreview.net/pdf?id=OTbRTIY4YS>.
 525

526 Jonathan B Baell and Georgina A Holloway. New substructure filters for removal of pan assay
 527 interference compounds (pains) from screening libraries and for their exclusion in bioassays.
 528 *Journal of medicinal chemistry*, 53(7):2719–2740, 2010.
 529

530 Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam, and Yong
 531 Zhang. Robust counterfactual explanations on graph neural networks. In Marc’Aurelio Ran-
 532 zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
 533 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
 534 ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp.
 535 5644–5655, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/2c8c3a57383c63caef6724343eb62257-Abstract.html>.
 536

537 Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola,
 538 and Hans-Peter Kriegel. Protein function prediction via graph kernels. *Bioinformatics*, 21(1):
 539 47–56, 2005. ISSN 1367-4803. doi: 10.1093/bioinformatics/bti1007. URL <https://doi.org/10.1093/bioinformatics/bti1007>.

540 Ziheng Chen, Fabrizio Silvestri, Jia Wang, Yongfeng Zhang, Zhenhua Huang, Hongshik Ahn,
 541 and Gabriele Tolomei. Grease: Generate factual and counterfactual explanations for gnn-based
 542 recommendations, 2022. URL <https://arxiv.org/abs/2208.04222>.

543

544 Luca Cosmo, Giorgia Minello, Alessandro Bicciato, Michael M. Bronstein, Emanuele Rodolà, Luca
 545 Rossi, and Andrea Torsello. Graph kernel neural networks. *IEEE Transactions on Neural Networks
 546 and Learning Systems*, 36(4):6257–6270, April 2025. ISSN 2162-2388. doi: 10.1109/tnnls.2024.
 547 3400850. URL <http://dx.doi.org/10.1109/TNNLS.2024.3400850>.

548

549 Enyan Dai and Suhang Wang. Towards self-explainable graph neural network, 2021. URL <https://arxiv.org/abs/2108.12055>.

550

551 Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and
 552 Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
 553 compounds. correlation with molecular orbital energies and hydrophobicity. *Journal of Medicinal
 554 Chemistry*, 34(2):786–797, 1991. doi: 10.1021/jm00106a046. URL [https://doi.org/10.
 555 1021/jm00106a046](https://doi.org/10.1021/jm00106a046).

556

557 Khawla Elhadri, Tomasz Michalski, Adam Wróbel, Jörg Schlötterer, Bartosz Zieliński, and Christin
 558 Seifert. This looks like what? challenges and future research directions for part-prototype models.
 559 *ArXiv preprint*, abs/2502.09340, 2025. URL <https://arxiv.org/abs/2502.09340>.

560

561 Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. When comparing to ground truth is
 562 wrong: On evaluating GNN explanation methods. In Feida Zhu, Beng Chin Ooi, and Chunyan
 563 Miao (eds.), *KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data
 564 Mining, Virtual Event, Singapore, August 14-18, 2021*, pp. 332–341. ACM, 2021. doi: 10.1145/
 565 3447548.3467283. URL <https://doi.org/10.1145/3447548.3467283>.

566

567 Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. Kergnns: Interpretable graph
 568 neural networks with graph kernels. In *Thirty-Sixth AAAI Conference on Artificial Intelligence,
 569 AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
 570 2022, The Twelfth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
 571 Virtual Event, February 22 - March 1, 2022*, pp. 6614–6622. AAAI Press, 2022. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20615>.

572

573 Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
 574 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chemb: a large-scale
 575 bioactivity database for drug discovery. *Nucleic acids research*, 40(D1):D1100–D1107, 2012.

576

577 Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. Flowx: Towards
 578 explainable graph neural networks via message flows, 2023. URL <https://arxiv.org/abs/2206.12987>.

579

580 José Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. Drug discovery with explainable
 581 artificial intelligence. *Nature Machine Intelligence*, 2(10):573–584, 2020.

582

583 Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey
 584 on explainability of graph neural networks, 2023. URL <https://arxiv.org/abs/2306.01958>.

585

586 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 587 In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–
 588 26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

589

590 Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention and
 591 generalization in graph neural networks. In Hanna M. Wallach, Hugo Larochelle, Alina
 592 Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in
 593 Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
 594 cessing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada*, pp.
 595 4204–4214, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>.

594 Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Lio, Bruno Lepri, and
 595 Andrea Passerini. Explaining the explainers in graph neural networks: a comparative study. *ACM
 596 Computing Surveys*, 57(5):1–37, January 2025. ISSN 1557-7341. doi: 10.1145/3696444. URL
 597 <http://dx.doi.org/10.1145/3696444>.

598 Ana Lucic, Maartje A. ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio Silvestri. Cf-
 599 gnnexplainer: Counterfactual explanations for graph neural networks. In Gustau Camps-Valls,
 600 Francisco J. R. Ruiz, and Isabel Valera (eds.), *International Conference on Artificial Intelligence
 601 and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event*, volume 151 of *Proceedings of
 602 Machine Learning Research*, pp. 4499–4511. PMLR, 2022. URL <https://proceedings.mlr.press/v151/lucic22a.html>.

603 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
 604 Parameterized explainer for graph neural network. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
 605 Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Pro-
 606 cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
 607 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html>.

608 Aravindh Mahendran and Andrea Vedaldi. Salient deconvolutional networks. In Bastian Leibe, Jiri
 609 Matas, Nicu Sebe, and Max Welling (eds.), *Computer Vision – ECCV 2016*, pp. 120–135, Cham,
 610 Springer International Publishing.

611 Ines Filipa Martins, Ana L. Teixeira, Luis Pinheiro, and Andre O. Falcao. A bayesian approach
 612 to in silico blood-brain barrier penetration modeling. *Journal of Chemical Information and
 613 Modeling*, 52(6):1686–1697, 2012. doi: 10.1021/ci300124c. URL <https://doi.org/10.1021/ci300124c>. PMID: 22612593.

614 Andreas Mayr, Günter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. Deeptox: Toxicity
 615 prediction using deep learning. *Frontiers in Environmental Science*, Volume 3 - 2015, 2016. ISSN
 616 2296-665X. doi: 10.3389/fenvs.2015.00080. URL <https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2015.00080>.

617 Kevin McCloskey, Ankur Taly, Federico Monti, Michael P. Brenner, and Lucy J. Colwell. Using
 618 attribution to decode binding mechanism in neural network models for chemistry. *Proceedings of
 619 the National Academy of Sciences*, 116(24):11624–11629, 2019. doi: 10.1073/pnas.1820657116.
 620 URL <https://www.pnas.org/doi/abs/10.1073/pnas.1820657116>.

621 Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
 622 attention mechanism. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
 623 Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022,
 624 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning
 625 Research*, pp. 15524–15543. PMLR, 2022. URL <https://proceedings.mlr.press/v162/miao22a.html>.

626 Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
 627 Schlötterer, Maurice van Keulen, and Christin Seifert. From anecdotal evidence to quantitative
 628 evaluation methods: A systematic review on evaluating explainable ai. *ACM Computing Surveys*,
 629 55(13s):1–42, July 2023. ISSN 1557-7341. doi: 10.1145/3583558. URL <http://dx.doi.org/10.1145/3583558>.

630 Dawid Rymarczyk, Daniel Dobrowolski, and Tomasz Danel. Progrest: Prototypical graph regression
 631 soft trees for molecular property prediction. In *Proceedings of the 2023 SIAM International
 632 Conference on Data Mining (SDM)*, pp. 379–387. SIAM, 2023.

633 Benjamin Sanchez-Lengeling, Jennifer N. Wei, Brian K. Lee, Emily Reif, Peter Wang, Wesley Wei
 634 Qian, Kevin McCloskey, Lucy J. Colwell, and Alexander B. Wiltschko. Evaluating attribution
 635 for graph neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
 636 Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems
 637 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
 638 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/417fbbf2e9d5a28a855a11894b2e795a-Abstract.html>.

648 Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for NLP
 649 with differentiable edge masking. In *9th International Conference on Learning Representations*,
 650 *ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=WznmQa42ZAx>.

651

652 Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black
 653 box: Learning important features through propagating activation differences, 2016. URL <https://arxiv.org/abs/1605.01713>.

654

655 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 656 Visualising image classification models and saliency maps, 2014. URL <https://arxiv.org/abs/1312.6034>.

657

658 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
 659 simplicity: The all convolutional net, 2015. URL <https://arxiv.org/abs/1412.6806>.

660

661 Erik Štrumbelj and Igor Kononenko. An efficient explanation of individual classifications using
 662 game theory. *J. Mach. Learn. Res.*, 11:1–18, 2010. URL <https://api.semanticscholar.org/CorpusID:14451872>.

662

663 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Doina
 664 Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine*
 665 *Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*, volume 70 of *Proceedings*
 666 *of Machine Learning Research*, pp. 3319–3328. PMLR, 2017. URL <http://proceedings.mlr.press/v70/sundararajan17a.html>.

667

668 Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng Zhang.
 669 Learning and evaluating graph neural network explanations based on counterfactual and factual
 670 reasoning. In *Proceedings of the ACM Web Conference 2022, WWW ’22*. ACM, April 2022. doi:
 10.1145/3485447.3511948. URL <http://dx.doi.org/10.1145/3485447.3511948>.

671

672 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 673 Bengio. Graph attention networks. In *6th International Conference on Learning Representations*,
 674 *ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*.
 675 OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

676

677 Minh N. Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
 678 neural networks, 2020. URL <https://arxiv.org/abs/2010.05788>.

679

680 Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound retrieval
 681 and classification. In *Sixth International Conference on Data Mining (ICDM’06)*, pp. 678–689,
 682 2006. doi: 10.1109/ICDM.2006.39.

683

684 Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas
 685 Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural
 686 networks. *Drug Discovery Today: Technologies*, 37:1–12, 2020.

687

688 Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. In
 689 Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
 690 Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Con-
 691 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
 692 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/ebc2aa04e75e3caabda543a1317160c0-Abstract.html>.

693

694 Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invari-
 695 ant rationales for graph neural networks. In *The Tenth International Conference on Learning*
 696 *Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL
 697 <https://openreview.net/forum?id=hGXij5rfiHw>.

698

699 Zhenxing Wu, Jihong Chen, Yitong Li, Yafeng Deng, Haitao Zhao, Chang-Yu Hsieh, and Tingjun
 700 Hou. From black boxes to actionable insights: a perspective on explainable artificial intelligence
 701 for scientific discovery. *Journal of Chemical Information and Modeling*, 63(24):7617–7627, 2023.

702 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 703 networks? In *7th International Conference on Learning Representations, ICLR 2019, New Orleans,*
 704 *LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

705

706

707 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
 708 Generating explanations for graph neural networks. In Hanna M. Wallach, Hugo Larochelle,
 709 Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in*
 710 *Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-*
 711 *cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 712 9240–9251, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html>.

713

714 Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph information
 715 bottleneck, 2021. URL <https://arxiv.org/abs/2112.09899>.

716

717 Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
 718 taxonomic survey, 2020. URL <https://arxiv.org/abs/2012.15445>.

719

720 Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
 721 networks via subgraph explorations. In Marina Meila and Tong Zhang (eds.), *Proceedings of the*
 722 *38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*,
 723 *volume 139 of Proceedings of Machine Learning Research*, pp. 12241–12252. PMLR, 2021. URL
 724 <http://proceedings.mlr.press/v139/yuan21c.html>.

725

726 Yue Zhang, David Defazio, and Arti Ramesh. Relex: A model-agnostic relational model explainer,
 727 2020. URL <https://arxiv.org/abs/2006.00305>.

728

729 Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards self-
 730 explaining graph neural networks. In *Thirty-Sixth AAAI Conference on Artificial Intelligence,*
 731 *AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI*
 732 *2022, The Twelfth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022*
 733 *Virtual Event, February 22 - March 1, 2022*, pp. 9127–9135. AAAI Press, 2022. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20898>.

734

735 Xu Zheng, Farhad Shirani, Tianchun Wang, Wei Cheng, Zhuomin Chen, Haifeng Chen, Hua Wei, and
 736 Dongsheng Luo. Towards robust fidelity for evaluating explainability of graph neural networks. In
 737 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,*
 738 *May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=up6hr4hIQH>.

739

740

741

742 **A APPENDIX**

743

744 Here we provide the full set of results that were shown partially in the main paper. These results
 745 accompany the introduction of our benchmark and offer a detailed view of node and edge explanation
 746 performance across different explainer types.

747

748

749 **A.1 RANKING BY EVALUATION SCORES**

750 Table 4 and Table 5 report the evaluation metrics for all model-explainer combinations, averaged
 751 across tasks and sorted by the aggregated scores for node and edge explanations, respectively.

752

753 **A.2 VISUAL SUMMARY OF EVALUATION SCORES**

754

755 The radar plots in Figure 7 and Figure 8 illustrate the evaluation scores of each model-explainer
 combination across all 7 tasks, providing a visual comparison of their performance.

756 Table 4: Ranking of all model-explainer combinations based on the evaluation of **node explanations**,
 757 sorted by overall scores. The best score and all scores not significantly lower (according to a one-sided
 758 Wilcoxon test) are highlighted in bold. For NE and SE, we report the mean and standard deviation;
 759 for the overall score (avg), we additionally provide the standard error of the mean (SEM) to highlight
 760 the trade-off between NE and SE performance.

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Model	Explainer	NE	SE	avg
ProtGNN+GAT	PGMExplainer	0.98±0.01	0.79±0.20	0.89±0.10
GIN	PGMExplainer	0.98±0.02	0.76±0.18	0.87±0.10
ProtGNN+GCN	PGMExplainer	0.98±0.02	0.74±0.18	0.86±0.09
ProtGNN+GIN	PGMExplainer	0.98±0.02	0.73±0.18	0.86±0.09
GCN	PGMExplainer	0.98±0.02	0.73±0.14	0.86±0.07
GAT	PGMExplainer	0.97±0.01	0.73±0.18	0.85±0.09
ProtGNN+GIN	FlowX	0.84±0.14	0.83±0.11	0.84±0.09
ProtGNN+GAT	FlowX	0.82±0.14	0.80±0.08	0.81±0.08
GIN	Deconvolution	0.79±0.10	0.81±0.09	0.80±0.07
GAT	FlowX	0.79±0.13	0.80±0.12	0.79±0.09
ProtGNN+GCN	Deconvolution	0.80±0.11	0.77±0.16	0.79±0.10
ProtGNN+GIN	Deconvolution	0.78±0.13	0.79±0.11	0.79±0.10
GCN	FlowX	0.76±0.14	0.80±0.11	0.78±0.08
GAT	Deconvolution	0.78±0.11	0.77±0.16	0.78±0.10
ProtGNN+GCN	GuidedBackprop	0.90±0.16	0.64±0.11	0.77±0.11
ProtGNN+GCN	FlowX	0.76±0.16	0.75±0.07	0.75±0.09
GIN	FlowX	0.72±0.14	0.77±0.12	0.75±0.10
ProtGNN+GIN	Saliency	0.63±0.21	0.84±0.10	0.74±0.12
ProtGNN+GIN	GuidedBackprop	0.80±0.26	0.67±0.13	0.74±0.12
ProtGNN+GAT	GuidedBackprop	0.74±0.33	0.66±0.15	0.70±0.21
ProtGNN+GCN	GNNEExplainer	0.77±0.17	0.63±0.10	0.70±0.06
ProtGNN+GIN	GNNEExplainer	0.74±0.18	0.64±0.11	0.69±0.07
GIN	Saliency	0.51±0.12	0.85±0.12	0.68±0.10
GIN	InputXGradient	0.54±0.14	0.83±0.14	0.68±0.10
GIN	GNNEExplainer	0.68±0.12	0.67±0.08	0.68±0.06
GCN	GuidedBackprop	0.51±0.22	0.84±0.13	0.68±0.10
ProtGNN+GCN	Saliency	0.62±0.23	0.74±0.14	0.68±0.11
ProtGNN+GIN	InputXGradient	0.55±0.27	0.80±0.13	0.68±0.14
ProtGNN+GAT	GNNEExplainer	0.70±0.18	0.65±0.09	0.68±0.10
ProtGNN+GAT	Saliency	0.53±0.35	0.80±0.18	0.67±0.19
GIN	GraphMaskExplainer	0.66±0.03	0.66±0.07	0.66±0.03
ProtGNN+GIN	GraphMaskExplainer	0.66±0.03	0.66±0.07	0.66±0.03
GCN	GraphMaskExplainer	0.65±0.04	0.66±0.07	0.65±0.03
ProtGNN+GCN	GraphMaskExplainer	0.65±0.04	0.66±0.07	0.65±0.03
GAT	GraphMaskExplainer	0.65±0.04	0.66±0.07	0.65±0.03
ProtGNN+GAT	GraphMaskExplainer	0.65±0.04	0.66±0.07	0.65±0.03
GIN	ShapleyValueSampling	0.48±0.23	0.83±0.15	0.65±0.14
ProtGNN+GAT	InputXGradient	0.49±0.38	0.79±0.18	0.64±0.21
GIN	GuidedBackprop	0.41±0.12	0.87±0.09	0.64±0.09
GCN	Saliency	0.43±0.13	0.84±0.14	0.63±0.08
ProtGNN+GIN	IntegratedGradients	0.44±0.24	0.82±0.12	0.63±0.13
GIN	IntegratedGradients	0.39±0.26	0.85±0.13	0.62±0.16
ProtGNN+GAT	IntegratedGradients	0.41±0.36	0.79±0.18	0.60±0.20
GCN	GNNEExplainer	0.53±0.17	0.67±0.08	0.60±0.09
ProtGNN+GCN	InputXGradient	0.36±0.32	0.76±0.17	0.56±0.14
GAT	GNNEExplainer	0.37±0.17	0.76±0.16	0.56±0.13
GAT	InputXGradient	0.26±0.22	0.83±0.15	0.55±0.16
GAT	ShapleyValueSampling	0.27±0.20	0.82±0.15	0.54±0.15
ProtGNN+GCN	IntegratedGradients	0.29±0.27	0.80±0.15	0.54±0.14
GAT	IntegratedGradients	0.25±0.20	0.82±0.15	0.54±0.15
GCN	ShapleyValueSampling	0.26±0.15	0.80±0.17	0.53±0.10
GCN	InputXGradient	0.21±0.19	0.83±0.16	0.52±0.10
GAT	GuidedBackprop	0.26±0.23	0.78±0.18	0.52±0.17
GAT	Deconvolution	0.26±0.23	0.78±0.18	0.52±0.17
GAT	Saliency	0.24±0.22	0.79±0.18	0.51±0.17
ProtGNN+GAT	Deconvolution	0.26±0.20	0.74±0.14	0.50±0.10
ProtGNN+GIN	ShapleyValueSampling	0.24±0.24	0.74±0.14	0.49±0.14
ProtGNN+GCN	ShapleyValueSampling	0.25±0.27	0.73±0.15	0.49±0.14
GCN	IntegratedGradients	0.16±0.13	0.82±0.16	0.49±0.07
ProtGNN+GAT	ShapleyValueSampling	0.21±0.31	0.75±0.18	0.48±0.17

810
811 Table 5: Ranking of all model-explainer combinations based on the evaluation of **edge explanations**,
812 sorted by overall scores, following the format of Table 4.

813	Model	Explainer	NE	SE	avg
814	ProtGNN+GIN	GuidedBackprop	0.86±0.16	0.60±0.05	0.73±0.08
815	ProtGNN+GIN	FlowX	0.71±0.14	0.68±0.01	0.69±0.07
816	ProtGNN+GCN	GuidedBackprop	0.80±0.22	0.58±0.07	0.69±0.12
817	ProtGNN+GAT	GuidedBackprop	0.79±0.22	0.59±0.05	0.69±0.11
818	ProtGNN+GIN	GNNEExplainer	0.76±0.23	0.55±0.04	0.65±0.11
819	ProtGNN+GAT	FlowX	0.63±0.07	0.68±0.03	0.65±0.04
820	GAT	FlowX	0.63±0.08	0.66±0.02	0.65±0.05
821	ProtGNN+GIN	Saliency	0.53±0.28	0.76±0.11	0.64±0.16
822	ProtGNN+GCN	FlowX	0.59±0.07	0.68±0.04	0.64±0.04
823	GCN	FlowX	0.60±0.11	0.68±0.04	0.64±0.06
824	ProtGNN+GIN	InputXGradient	0.55±0.29	0.66±0.05	0.61±0.15
825	ProtGNN+GCN	GNNEExplainer	0.64±0.24	0.58±0.05	0.61±0.12
826	GIN	FlowX	0.55±0.07	0.64±0.03	0.60±0.04
827	ProtGNN+GAT	GNNEExplainer	0.61±0.23	0.57±0.04	0.59±0.11
828	GIN	GNNEExplainer	0.57±0.11	0.59±0.03	0.58±0.05
829	ProtGNN+GIN	IntegratedGradients	0.45±0.28	0.70±0.07	0.57±0.16
830	ProtGNN+GAT	PGExplainer	0.52±0.33	0.62±0.10	0.57±0.15
831	ProtGNN+GAT	Saliency	0.49±0.31	0.64±0.10	0.56±0.14
832	GAT	GNNEExplainer	0.55±0.05	0.56±0.01	0.56±0.02
833	ProtGNN+GCN	Deconvolution	0.43±0.21	0.68±0.03	0.55±0.10
834	ProtGNN+GAT	GraphMaskExplainer	0.53±0.05	0.55±0.00	0.54±0.03
835	ProtGNN+GCN	GraphMaskExplainer	0.54±0.05	0.53±0.01	0.54±0.03
836	GIN	Deconvolution	0.38±0.14	0.69±0.04	0.53±0.07
837	GCN	GraphMaskExplainer	0.51±0.07	0.54±0.00	0.53±0.03
838	ProtGNN+GAT	InputXGradient	0.45±0.34	0.59±0.06	0.52±0.16
839	ProtGNN+GCN	Saliency	0.38±0.32	0.65±0.10	0.52±0.16
840	GAT	Saliency	0.36±0.30	0.67±0.03	0.51±0.15
841	GIN	InputXGradient	0.37±0.16	0.65±0.05	0.51±0.08
842	GAT	GraphMaskExplainer	0.48±0.04	0.54±0.00	0.51±0.02
843	GIN	IntegratedGradients	0.32±0.18	0.69±0.06	0.51±0.10
844	GIN	GuidedBackprop	0.29±0.08	0.72±0.09	0.50±0.05
845	GAT	InputXGradient	0.30±0.25	0.68±0.03	0.49±0.12
846	GAT	Deconvolution	0.32±0.23	0.67±0.02	0.49±0.12
847	GAT	Deconvolution	0.34±0.28	0.65±0.04	0.49±0.14
848	GAT	ShapleyValueSampling	0.31±0.24	0.66±0.03	0.49±0.12
849	ProtGNN+GIN	Deconvolution	0.34±0.17	0.63±0.04	0.48±0.09
850	GCN	GuidedBackprop	0.30±0.26	0.66±0.03	0.48±0.13
851	ProtGNN+GCN	InputXGradient	0.35±0.29	0.61±0.07	0.48±0.14
852	GAT	Deconvolution	0.26±0.22	0.69±0.02	0.48±0.12
853	GAT	IntegratedGradients	0.26±0.22	0.69±0.02	0.47±0.12
854	GAT	GuidedBackprop	0.25±0.23	0.69±0.02	0.47±0.12
855	ProtGNN+GCN	PGExplainer	0.30±0.35	0.63±0.08	0.47±0.17
856	GIN	Saliency	0.26±0.15	0.66±0.06	0.46±0.07
857	GCN	GNNEExplainer	0.35±0.23	0.57±0.02	0.46±0.12
858	GAT	PGExplainer	0.18±0.21	0.72±0.03	0.45±0.11
859	GIN	GraphMaskExplainer	0.35±0.04	0.54±0.01	0.45±0.02
860	ProtGNN+GIN	GraphMaskExplainer	0.35±0.04	0.54±0.01	0.44±0.02
861	GCN	IntegratedGradients	0.20±0.16	0.66±0.03	0.43±0.08
862	GCN	InputXGradient	0.17±0.21	0.69±0.04	0.43±0.11
863	GIN	ShapleyValueSampling	0.20±0.09	0.63±0.03	0.42±0.04
864	ProtGNN+GCN	IntegratedGradients	0.19±0.23	0.64±0.06	0.42±0.12
865	GCN	PGExplainer	0.12±0.10	0.71±0.04	0.41±0.05
866	GCN	Saliency	0.16±0.14	0.65±0.03	0.40±0.07
867	GCN	ShapleyValueSampling	0.15±0.17	0.65±0.03	0.40±0.08
868	ProtGNN+GIN	ShapleyValueSampling	0.17±0.28	0.58±0.02	0.38±0.14
869	ProtGNN+GIN	PGExplainer	0.13±0.18	0.62±0.06	0.38±0.08
870	ProtGNN+GAT	ShapleyValueSampling	0.16±0.28	0.59±0.04	0.38±0.13
871	ProtGNN+GAT	IntegratedGradients	0.13±0.28	0.61±0.05	0.37±0.13
872	GIN	PGExplainer	0.02±0.02	0.71±0.06	0.36±0.03
873	ProtGNN+GCN	ShapleyValueSampling	0.13±0.24	0.59±0.04	0.36±0.12

Figure 7: Evaluation of **node explanations** for all model-explainer combinations. Null explanation results are shown in green, and subgraph explanation results in orange. Overall average scores for each method are displayed in the center.

A.3 VISUALIZATION OF CORRELATION BETWEEN EVALUATION METRICS AND MODEL PERFORMANCE

Figure 9 compare NE and SE metrics for each evaluated model and illustrate the correlation between evaluation scores and model performance for each task.

960 Figure 8: Evaluation of **edge explanations** for all model-explainer combinations. Null explanation
961 results are shown in green, and subgraph explanation results in orange. Overall average scores for
962 each method are displayed in the center.

963 964 A.4 DISENTANGLING MODEL CAPACITY FROM EXPLAINER EXPRESSIVENESS

965
966 We conducted experiments evaluating XAI methods in both SE and NE regimes, but only on instances
967 where the GNN model made correct predictions. This approach rigorously separates the XAI method's
968 performance from the backbone model's predictive capabilities.

969
970 As illustrated in our Node and Edge explanation tables (Table 7 and Table 6, XAI method perform-
971 ance showed remarkable consistency whether evaluated on all predictions or solely on correct ones
(pred=target).

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Figure 9: Boxplots showing the distribution of explanation quality across different explainers for each model. Results are aggregated per model, highlighting that some models are inherently more difficult to explain than others.

1026 Additionally, our GNN models consistently achieved high accuracy across all tasks. This high
 1027 baseline performance confirms that the models possess sufficient capacity to learn the underlying
 1028 chemical principles. Therefore, observed variations in XAI effectiveness can be attributed to the XAI
 1029 technique itself, rather than limitations in the GNN’s ability to learn the task.
 1030

1031 Table 6: Node explanation performance only for correct prediction from GIN.
 1032

Task	Type	Subset	Salience	Deconv.	InputXGrad	GuidedBP	IntegGrad	GNNExp.	GMEsp.	PGMEsp.	FlowX	ShapleyVS
PAINS	NE	all	0.39	0.81	0.44	0.32	0.07	0.68	0.64	0.99	0.7	0.21
		pred=target	0.42	0.81	0.44	0.32	0.07	0.68	0.64	0.99	0.72	0.21
	SE	all	0.79	0.44	0.72	0.79	0.69	0.63	0.60	0.62	0.64	0.64
		pred=target	0.80	0.70	0.72	0.80	0.69	0.63	0.60	0.62	0.64	0.64
	rings-max	all	0.48	0.83	0.55	0.40	0.38	0.67	0.65	0.98	0.64	0.60
		pred=target	0.48	0.83	0.54	0.42	0.44	0.67	0.65	0.98	0.64	0.59
	SE	all	0.70	0.77	0.67	0.75	0.67	0.61	0.58	0.59	0.65	0.63
		pred=target	0.70	0.79	0.66	0.75	0.67	0.62	0.57	0.57	0.65	0.65

1045 Table 7: Edge explanation performance only for correct prediction from GIN.
 1046

Task	Type	Subset	Salience	Deconv.	InputXGrad	GuidedBP	IntegGrad	GNNExp.	GMEsp.	PGMEsp.	FlowX	ShapleyVS
PAINS	NE	all	0.17	0.39	0.23	0.28	0.19	0.56	0.31	0.00	0.54	0.08
		pred=target	0.18	0.44	0.23	0.28	0.19	0.50	0.31	0.00	0.55	0.08
	SE	all	0.67	0.68	0.64	0.74	0.71	0.62	0.54	0.77	0.66	0.67
		pred=target	0.68	0.69	0.64	0.75	0.72	0.62	0.54	0.78	0.67	0.67
	rings-max	all	0.28	0.26	0.34	0.23	0.19	0.55	0.35	0.00	0.52	0.18
		pred=target	0.28	0.27	0.37	0.23	0.22	0.55	0.35	0.00	0.50	0.17
	SE	all	0.61	0.63	0.62	0.63	0.59	0.60	0.54	0.66	0.62	0.59
		pred=target	0.60	0.64	0.61	0.64	0.59	0.60	0.54	0.66	0.58	0.59

1060 A.5 SHOWCASING THAT MODELS DO NOT OVERFIT TO THE CHEMICAL SPACE
 1061

1062 To test if our models learned to identify chemical patterns defining the data class, we conducted
 1063 probing experiments by changing important ground-truth atoms to carbons (excluding ring tasks).
 1064 The results in Table 8 show a dramatic drop in F1 scores (calculated with the same labels but with
 1065 probed structure), confirming that the model learned to identify underlying ground truth patterns as
 1066 alternating the molecule with carbon removed information required to perform correct prediction.

1067 To further validate this, we conducted an additional OOD evaluation using molecules from the ZINC
 1068 database, which represents a different distribution of commercially available compounds compared
 1069 to our ChEMBL-based training data. The strong performance on this external dataset demonstrates
 1070 genuine cross-dataset generalization (see Table 9).

1071 We take it a step further by generating synthetic OOD datasets with randomly created atom
 1072 combinations, which provide the most rigorous generalization test. These molecules follow
 1073 entirely different distributional properties while maintaining the target pattern recognition
 1074 task structure. The first dataset, called “OOD_f,” includes random atom combinations based
 1075 on the empirical distribution of atom frequencies in organic molecules (e.g., carbon atoms
 1076 make up 75% of heavy atoms). The last dataset, called “OOD,” samples atoms with equal
 1077 probability, resulting in completely invalid molecules, of which 50% contain the pattern of
 1078 interest. In both cases, our GNN recognizes these patterns almost perfectly despite the extremely
 1079 OOD samples. An example of a generated molecule with one halogen atom is provided here:
CC1C(SOONOCS)OSC2(SOOOS)SOOSSC3(SSOOSNOC(S)(CN)N(OC)N3N(SO)C1(C)N)C2(Cl)OSN

1080
1081
1082 Table 8: Model F1 Scores for Original and Substituted Molecules
1083
1084
1085
1086
1087
1088

Task	Original F1	Substituted to Carbon F1
Benzene (B)	99.80±0.24	0.00±0.00
Pyridine (P)	99.91±0.11	0.86±1.57
Xanthine (X)	99.97±0.02	0.18±0.20
Indole (indole)	99.33±0.13	8.55±2.18
PAINS (PAINS)	94.02±1.00	39.63±3.91

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099 Table 9: Out-of-Distribution Performance
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

Task	ZINC	OOD _f	OOD
X	100%	99%	99%
B	100%	100%	100%
P	99%	100%	99%
indole	98%	98%	100%
PAINS	84%	-	-
rings-count	99%	-	-
rings-max	93%	-	-

1101
1102 A.6 JUSTIFICATION OF THE DATASET SIZE
1103
1104

Our design philosophy for this benchmark, intentionally balances the simplicity-complexity trade-off. Our aim was to create a dataset that is:

- **Sufficiently Compact for Rapid Iteration:** A smaller dataset allows researchers to quickly develop, test, and iterate on new models and XAI methods without extensive computational resources or long training times. This accelerates the research cycle.
- **Complex Enough to Reflect Real-World Challenges:** While not encompassing the entirety of chemical space, the seven carefully selected tasks represent a diverse set of common challenges in AI for small molecules. These tasks, ranging from classification to regression-like predictions (e.g., ring count), cover fundamental chemical principles and allow for a robust evaluation of XAI methods’ ability to identify relevant features.

1114
1115 To further justify our chosen dataset size, we conducted an analysis evaluating model performance
1116 across different dataset scales, ranging from 5,000 to 100,000 samples. The results (see Table 10),
1117 presented in the table below, demonstrate that for most tasks, performance largely stabilizes with
1118 50,000 samples.

1119
1120
1121 Table 10: Model Performance across Different Dataset Scales
1122
1123
1124
1125
1126
1127
1128

Task	5K Samples	10K Samples	25K Samples	50K Samples	100K Samples
B	99.92	99.92	99.96	99.96	99.94
P	99.97	99.99	99.98	99.98	100.00
X	99.77	99.85	99.94	99.94	99.96
indole	94.11	95.54	97.65	98.32	98.24
PAINS	82.79	85.81	91.91	92.90	93.20
rings-count	86.86	93.14	99.64	99.62	99.94
Rings-max	92.12	91.96	92.54	92.98	92.89

1129
1130 The core assumption when creating our dataset was to include simple and moderately complex patterns
1131 to achieve two key objectives: (1) to ensure that any GNN can easily learn these patterns, putting
1132 focus on the evaluation of XAI methods, and (2) to provide high-quality ground-truth annotations for
1133 substructures that directly relate to the instance label. Although simple, these tasks remain relevant
for real-world scenarios. For example, the same set of PAINS rules is used in drug discovery to

1134 determine if a molecule may interfere with the assay, helping reduce screening costs by filtering out
 1135 questionable candidates. In practice, evaluating XAI methods with experimental data is challenging
 1136 due to significant noise and complex interactions between chemical groups, such as intramolecular
 1137 interactions or steric effects. Therefore, initial evaluation on simple, well-defined tasks is essential for
 1138 developing effective explainers, especially since many popular methods fail on our straightforward
 1139 benchmarks.

1140

1141 A.7 CHOICE OF F1 FOR CLASSIFICATION EVALUATION

1142

1143 We use weighted F1 as our primary metric because it accounts for class imbalance by aggregating
 1144 per-class performance proportionally to class frequency. For completeness, in Table 11 report micro-
 1145 and macro-F1 to capture overall performance and equal-per-class performance, respectively.

1146

1147 Table 11: Comparison of F1 metric variants for GIN classification performance.

1148

Task	weighted-F1	micro-F1	macro-F1
B	99.96 \pm 0.05	99.95 \pm 0.04	99.50 \pm 0.04
P	99.98 \pm 0.03	99.97 \pm 0.03	99.94 \pm 0.07
X	99.94 \pm 0.02	99.94 \pm 0.02	99.94 \pm 0.02
indole	98.32 \pm 0.36	98.31 \pm 0.36	98.19 \pm 0.38
PAINS	92.90 \pm 0.54	92.91 \pm 0.51	91.94 \pm 0.63
rings-count	99.62 \pm 0.21	99.62 \pm 0.21	99.54 \pm 0.25
rings-max	92.98 \pm 0.84	92.36 \pm 1.46	70.01 \pm 2.22

1156

1157

1158 A.8 EXAMPLES OF EXPLANATIONS

1159

1160 Figures 10–16 present examples of node explanations for the GIN classifier for each task using the
 1161 evaluated explainers. The colors in the null explanations are scaled to highlight outlier scores based
 1162 on the IQR method applied in our evaluation. Specifically, scores below $Q1 - 1.5 \times IQR$ or above
 1163 $Q3 + 1.5 \times IQR$ are considered outliers, where $Q1$ and $Q3$ represent the 25th and 75th percentiles,
 1164 respectively, and $IQR = Q3 - Q1$.

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 10: Node-level explanation examples on graphs from different classes in the **B** task, using the GIN model and different explanation methods.

Figure 11: Node-level explanation examples on graphs from different classes in the **P** task, using the GIN model and different explanation methods.

Figure 12: Node-level explanation examples on graphs from different classes in the **X** task, using the GIN model and different explanation methods.

Figure 14: Node-level explanation examples on graphs from different classes in the **PAINS** task, using the GIN model and different explanation methods.

1558
 1559 Figure 16: Node-level explanation examples on graphs from different classes in the **rings-max** task,
 1560 using the GIN model and different explanation methods.
 1561
 1562
 1563
 1564
 1565