
AutoGFM: Automated Graph Foundation Model
with Adaptive Architecture Customization

Haibo Chen 1 Xin Wang 1 Zeyang Zhang 1 Haoyang Li 1 Ling Feng 1 Wenwu Zhu 1

Abstract
Graph foundation models (GFMs) aim to share
graph knowledge across diverse domains and
tasks to boost graph machine learning. However,
existing GFMs rely on hand-designed and fixed
graph neural network (GNN) architectures, failing
to utilize optimal architectures w.r.t. specific do-
mains and tasks, inevitably leading to suboptimal
performance in diverse graph domains and tasks.
In this paper, we explore graph neural architecture
search (GNAS) for GFMs for the first time, which
suffers from the problem of architecture inconsis-
tency, i.e., the optimal architectures for different
tasks and domains vary. We tackle this problem by
discovering an invariant graph-architecture rela-
tionship across domains and tasks, which imposes
three challenges: i) how to capture invariant and
variant patterns; ii) how to customize architec-
tures to adapt to diverse domains and tasks; iii)
how to mitigate the data domination phenomenon
during the architecture search process. To ad-
dress these challenges, we propose Automated
Graph Foundation Model with Adaptive Archi-
tecture Customization (AutoGFM), providing a
theoretical analysis to demonstrate the limitations
of existing GNAS. Specifically, we first propose
a disentangled contrastive graph encoder to learn
invariant and variant patterns. Then, we design an
invariant-guided architecture customization strat-
egy to customize architectures for data from di-
verse domains and tasks. Finally, we propose a
curriculum architecture customization mechanism
to mitigate the phenomenon of particular data
dominating the search process. Extensive experi-
ments demonstrate that AutoGFM outperforms
baselines, achieving state-of-the-art performance.

1Department of Computer Science and Technology, BN-
RIST, Tsinghua University, Beijing, China. Correspondence
to: Xin Wang <xin wang@tsinghua.edu.cn>, Wenwu Zhu
<wwzhu@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Graph foundation models (GFMs) (Liu et al., 2023b; Xu
et al., 2024; Kong et al., 2024) aim to share graph knowl-
edge across diverse graph domains and tasks. GNN-based
GFMs (Liu et al., 2023a; Wang et al., 2024b) represent a
promising direction, as they enable the transfer of shared
knowledge across various domains and tasks, allowing a
single graph neural network (GNN) to handle node-level,
edge-level, and graph-level tasks across various domains.
Specifically, GNN-based GFMs leverage large language
models (LLMs) as enhancers, transform the textual fea-
tures of graphs into unified representations, and unify graph-
related tasks through subgraph classification for GNNs.

However, data from different tasks and domains may require
different graph neural architectures. For instance, the vanilla
GCN (Kipf & Welling, 2017) outperforms GraphSAGE
(Hamilton et al., 2017) in the citation network OGBN-arxiv,
while failing to demonstrate satisfactory performance in
OGBN-proteins (Hu et al., 2020). Since existing GNN-
based GFMs rely on hand-designed and fixed GNN architec-
tures, they inevitably fail to adapt to the specific architecture
requirements for diverse domains and tasks.

In this paper, we explore the problem of graph neural ar-
chitecture search (GNAS) for GNN-based graph foundation
models, which suffers from the problem of architecture
inconsistency, i.e., the optimal architecture for different
tasks and domains varies. We further leverage a representa-
tive group of differentiable graph neural architecture search
methods (Liu et al., 2018) as an example and provide theo-
retical analysis demonstrating their inability to effectively
search for graph neural architectures for GFMs under archi-
tecture inconsistency, resulting in suboptimal architectures.
We tackle this problem by discovering an invariant graph-
architecture relationship across domains and tasks, which
imposes three challenges: i) how to capture invariant and
variant patterns, which are entangled in graph data; ii) how
to customize graph neural architectures based on the dis-
covered patterns to adapt to data with diverse domains and
tasks; iii) how to mitigate the phenomenon of data domina-
tion during the architecture search process.

To address these challenges, we propose a novel Automated

1

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Graph Foundation Model with Adaptive Architecture Cus-
tomization (AutoGFM), which customizes graph neural ar-
chitectures for graph data across diverse tasks and domains.
The core idea is to train an architecture mapping function π,
which maps G (graph data)→A (architecture), enabling the
customization of architectures for each dataset to address
architecture inconsistency, while simultaneously facilitating
mutual knowledge sharing across diverse domains and tasks
within a weight-sharing super-network. Specifically, we first
propose a disentangled contrastive graph encoder to learn
invariant and variant patterns from graph data. To achieve
this, we design a subgraph-level discriminative contrastive
learning that captures the invariant and variant patterns from
diverse graph data. Second, we propose an invariant-guided
architecture customization to tailor graph neural architec-
tures for diverse data. We encourage invariant patterns to
retain their ability to customize architectures despite the
interference from variant patterns, aiming to eliminate the
spurious effects brought by variant patterns. Finally, we pro-
pose a curriculum architecture customization mechanism to
mitigate the phenomenon of some particular data dominat-
ing the search process. We design a curriculum constraint to
promote the diversity of customized architectures across dif-
ferent datasets. Extensive experiments demonstrate that our
AutoGFM model outperforms existing baselines, achieving
state-of-the-art performance. The contributions of this paper
are summarized as follows:

• We propose to explore the problem of graph neural
architecture search for GNN-based graph foundation
model, to the best of our knowledge, for the first time.

• We propose Automated Graph Foundation Model with
Adaptive Architecture Customization (AutoGFM), an-
alyzing the problem of architecture inconsistency for
GFM and providing a theoretical analysis to demon-
strate the limitations of existing mainstream differen-
tiable GNAS methods under such conditions.

• We propose three novel modules to tackle the prob-
lem of architecture inconsistency, i) disentangled con-
trastive graph encoder, ii) invariant-guided architecture
customization, and iii) curriculum architecture cus-
tomization mechanism.

• We conduct extensive experiments on eight datasets to
demonstrate the superiority of our method over state-
of-the-art baselines.

2. Problem Formulation
In this section, we introduce the fundamental concepts and
notations used in this paper, including graph data defini-
tion, node of interest (NOI) graph, graph neural architecture
search, and GNAS for GNN-based GFMs.

2.1. Graph Data Definition

Text-attributed Graphs (TAGs) A text-attributed graph
(TAG) is a graph where each node and edge is associated
with a text sentence (Liu et al., 2023a). We denote a TAG
is denoted as G = (V, E ,R), where V = v1, . . . , v|V| repre-
sents the set of nodes, E = e1, . . . , e|E| represents the set of
edges, andR = r1, . . . , r|R| represents the set of relations.

Node of Interest (NOI) Subgraph Given a graph G =
(V, E ,R). Following the previous work (Liu et al., 2023a;
Wang et al., 2024b), we define the subgraph to unify graph
tasks as node of interest subgraph (NOI-graph). An NOI-
graph Gh is defined as the subgraph around the NOI. De-
note Sh(v) = {Vhv , Ehv ,Rhv} as the h-hop ego-subgraph
around v, consisting of h-hop neighbor nodes of v and
all interconnecting edges. For node-level tasks on a node
v, the NOI is the node itself, such that T = {v} and
Gh(T) = Sh(v). For link-level tasks involving a node
pair (vi, vj), we define T = {vi, vj}, and the NOI-graph is
Gh({vi, vj}) = Sh(vi)∪Sh(vj). For graph-level tasks, the
NOI includes all nodes in the graph, making the NOI-graph
Gh(V) = (V, E ,R). We define an NOI-graph Gh(T) as:

Gh(T) = ∪v∈T Sh(v)

=
(
∪v∈T Vhv ,∪v∈T Ehv ,∪v∈TRhv

)
. (1)

2.2. Graph Neural Architecture Search

Given a data D = (G,Y) for a graph neural architecture
search (GNAS), we aim to search for a function Fα,w :
G → Y , with architecture parameters α ∈ A and learnable
weights w ∈ W , where A is the architecture space andW
is the weight space:

α∗ = argmin
α∈A
L(Fα,w∗(α)(G),Y), (2)

s.t. w∗(α) = arg min
w∈W(α)

L(Fα,w(G),Y), (3)

where L represents the loss of predictions made by the
architecture Fα,w(·) on the graph, and α∗ and w∗ denote
the optimal architecture and weights for the given data D =
(G,Y). Specifically, α typically represents the selection
of GNN operations (e.g., GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al.,
2017), GIN (Xu et al., 2018), etc.), which are referred to
as operation choices for brevity. GNAS addresses this as a
bi-level optimization problem (Elsken et al., 2019).

2.3. GNAS for GNN-based GFMs

We define diverse data as D = {D1,D2, . . . ,DN}, where
Di = {Gi,Yi} represents the i-th dataset with graph Gi and
label Yi. Following previous work for GNN-based GFMs
(Liu et al., 2023a; Wang et al., 2024b), which leverage

2

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

LLMs to unify the node feature space across different graphs
and leverage subgraphs to unify graph tasks, enabling a
single GNN to be applied to diverse data D across domains
and tasks. Graph neural architecture search for GFM aims
to search a graph neural architecture Fα,w that achieves
performance in diverse data D.

3. Preliminaries
In this section, we first introduce the problem of architec-
ture inconsistency in GFM. Then we provide an invariant
view of architecture customization and formulate the overall
objective for our proposed method.

3.1. Architecture Inconsistency in GFM

Cora
node

Pubmed
node

Wikics
node

Arxiv
node

WN
link

FB
link

PCBA
graph

HIV
graph

Dataset_and_Task

GCN

GAT

GraphSAGE

GIN

GraphConv

A
rc

hi
te

ct
ur

e

Rank 5

Rank 4

Rank 3

Rank 2

Rank 1

Figure 1. A heatmap visualization illustrating that the optimal
architecture can vary across datasets with different domains and
tasks. The darker the color of a block, the better the performance
on the corresponding dataset. Additionally, red indicates the best-
performing architectures for each dataset.

According to our observation, the optimal architecture for
graph data across different tasks and domains may exhibit
architecture inconsistency, meaning that the optimal archi-
tectures vary for data with diverse tasks and domains. To
validate this, we test various GNN architectures built upon
a GNN-based GFM, GFT (Wang et al., 2024b), on datasets
with different domains and tasks. We present the perfor-
mance of each architecture on each dataset using a heatmap
in Figure 1. As shown in Figure 1, datasets from different do-
mains and tasks require distinct optimal architectures, high-
lighting the presence of architecture inconsistency. Based
on this observation, we introduce the following assumption:

Assumption 3.1. There exist two datasets Di,Dj ∈ D, the
optimal operation required Di is different from Dj .

Assumption 3.1 assumes that the optimal architectures re-
quired by two different datasets may differ. Then we further
provide theoretical analyses showing that architecture in-
consistency leads to operations optimization conflicts in
existing differentiated GNAS methods. We have the follow-

ing proposition with proof in Appendix A.1.

Proposition 3.2. If there exist two datasetsDi,Dj ∈ D, the
optimal operation forDi is different fromDj , the operations
will render optimization conflicts.

Assumption 3.1 serves as a prerequisite condition for Propo-
sition 3.2. Proposition 3.2 demonstrates that when two
datasets require different optimal architectures, current
mainstream GNAS methods encounter optimization con-
flicts for GFM. For instance, as illustrated in Figure 1, the
optimal architectures for PubMed and Wikics differ. When
existing GNAS methods search simultaneously for an ar-
chitecture optimal for both datasets, they fail to identify a
single architecture that performs best for both and are forced
to compromise.

To tackle architecture inconsistency, our key idea is to train
a mapping function π: G → A, which customizes archi-
tectures for each data to prevent architecture inconsistency,
while simultaneously facilitating knowledge sharing across
domains and tasks via the weight-sharing supernetwork.

3.2. Invariant View of Architecture Customization

We customize graph neural architectures for graph data
across diverse tasks and domains from an invariant perspec-
tive. Unlike conventional invariant inference approaches
that aim to discover invariant relationships between data and
labels (Wu et al., 2022b; Li et al., 2022a; Wu et al., 2022a),
our goal is to identify invariant relationships between the
graph data and the corresponding architecture, addressing
the issue of architecture inconsistency by tailoring graph
neural architectures for each data individually.

We formalize the four key variables: input graph data G,
architecture A, invariant pattern ZI , and variant pattern ZV .
We divide the architecture mapping function π into two
components: encoder θ : G→ ZI and predictor ψ : ZI →
A. We make the following assumptions:

Assumption 3.3. (1) ZI = G \ ZV . There are two disjoint
parts in the graph data G: invariant part ZI and variant part
ZV . (2) ZV ̸⊥ A. The variant part ZV is correlated with
the architecture A. (3) A ⊥ ZV |ZI and A = ψ(ZI). ZI
shields A from the influence of ZV .

Assumption 3.3 defines what constitutes an invariant pattern
for architecture prediction: i) Condition 1 indicates that
the data contains two types of patterns: an invariant pattern
ZI , which reliably predicts the architecture, and a variant
pattern ZV , which cannot stably predict the architecture; ii)
Condition 2 highlights that the variant pattern ZV is not
independent of the architecture A; iii) Condition 3 states
that, given the invariant pattern ZI , the architecture A is
independent of the variant pattern ZV , and ZI is sufficient
for predicting A.

3

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Disentangled Contrastive
Graph Encoder

Invariant-guided Architecture Customization

Weight-share SuperNet

... ...

GCN

GAT

GIN

SAGE

GCN

GAT

GIN

SAGE

Disen
GNN

Encoder

Invariant

Variant

zi, I

zi, V

zi, I
zj,V

zi, I

Invariant
Predictor

𝜓I

Auxiliary
Predictor

A𝐼

A𝐸

z’i, I
z’i, V

Same
data

Different
data

Curriculum Architecture Customization Mechanism

...

minimize the distance different data maxmize the distance

𝜃
𝜓E

Different
NOI-graph

zi. I

zi, V

z’j, I
z’j, V

zi, I

zi, V

... ...

Progressive search processEncourages diversity in early

... ...

... ...

... ...

Customized
Architecture𝑝! z",$ ∣ G"

𝑝! 𝑠 z",$ ∣ G" , z",$

Figure 2. The framework of Automated Graph Foundation Model with Adaptive Architecture Customization(AutoGFM). The model
consists of three modules: i) Disentangled contrastive graph encoder that discovers invariant and variant patterns from graph data , ii)
invariant-guided architecture customization enabling customization of graph neural architectures based on the discovered invariant and
variant patterns to adapt to data with diverse domains and tasks, and iii) Curriculum architecture customization mechanism to mitigate the
influence of any single data dominating the search process.

3.3. Overall Objective

To satisfy the constraints outlined in Assumption 3.3, we
formulate a learning objective that adheres to the specified
conditions. Specifically, we minimize the mutual informa-
tion between ZI and ZV to ensure that the two parts remain
disjoint. Simultaneously, we maximize the mutual informa-
tion between ZI and A , ensuring that ZI is sufficient for
predicting the architecture A. Furthermore, we minimize
the mutual information between A and ZV , conditioned on
ZI , to guarantee that ZI shields A from the influence of
ZV . The resulting overall learning objective is defined as
follows:

max
θ,ψ

I(ZI ,A)− λI(ZI ,ZV)− βI(A,ZV | ZI), (4)

where I denotes the mutual information function, θ rep-
resents the encoder that extracts ZI and ZV from G, ψ
represents the predictor that maps ZI to A, and λ and β are
hyperparameters controlling the trade-off.

4. The Proposed Method: AutoGFM
In this section, we introduce an Automated Graph Foun-
dation Model with Adaptive Architecture Customization
(AutoGFM) to search for graph neural architectures for
each graph data with diverse tasks and domains individually.
We first introduce two modules: a disentangled contrastive
graph encoder and invariant-guided architecture customiza-
tion. Besides, we introduce our optimization objective with
a curriculum architecture customization mechanism. The
overall framework of AutoGFM is illustrated in Figure 2.

4.1. Disentangled Contrastive Graph Encoder

In this section, we focus on learning disentangled repre-
sentations to capture two distinct aspects of graph data.
Specifically, we aim to learn two architecture-aware disen-
tangled representations, ZI and ZV , we temporarily treat
them jointly and denote the two-channel representations
as Zk (k = 1, 2) in this section. The main insight of our
proposed method is intuitively based on the following ob-
servations: (1) Data from the same sources (i.e., the same
domain and task) require similar architectures, so they share
a similar ZI that reflects the architectural requirements. Con-
versely, graphs from different data sources will have distinct
ZI . (2) To satisfy the Assumption 3.3, the mutual informa-
tion between ZI and ZV should be minimized.

Disentangled NOI-graph Encoder Initially, we adopt
GNNs with individual parameters to learn two-channel
graph representations of NOI-graphs.

H
(l)
k = GNNk

(
H

(l−1)
k ,A

)
, k = 1, 2, (5)

where H
(l)
k is the k-th channel of the node representation at

the l-th layer, A is the adjacency matrix of the graph. We
employ two distinct Readout functions (i.e., pooling func-
tions) and MLPs to derive a NOI-graph-level representation
for each channel:

zk = MLPk
(
hk

)
, (6)

hk = Readoutk
(
H

(L)
k

)
, k = 1, 2. (7)

NOI-graph Disentangled Contrastive Learning In-
spired by self-supervised contrastive learning that captures

4

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

discriminative features by pulling similar samples together
and pushing dissimilar samples apart in latent space (Jaiswal
et al., 2020; Le-Khac et al., 2020; You et al., 2020), we
propose an NOI-graph-level contrastive learning method
to encourage disentangled representations to reflect the ar-
chitectural requirements of the graph data. Initially, we
encourage the representations ZI and ZV to be disentan-
gled:

pθ (zi,k | Gi) =
expϕ (zi,k,pk)∑2
j=1 expϕ (zi,k,pj)

, (8)

where ϕ is a similarity function, Gi is a NOI-graph from
i-th graph, zi,k is the k-th chunk of the representation of
a NOI-graph from i-th graph, and pk is the propotype of
the k-th chunk of the representation. Then, we propose
a NOI-graph-level instance discriminative task to encour-
age the representations ZI to capture different architectural
requirements of different data. The task is defined as:

pθ (s(zi,k) | Gi, zi,k) =
expϕ

(
zi,k, z

′
i,k

)
∑N
j=1 expϕ

(
zi,k, z′j,k

) , (9)

where s(zi,k) represents a unique surrogate label assigned
to zi,k, and z′i,k is sampled from the same graph data Gi as
zi,k. Then we learn the model parameters θ by calculating
the loss function as:

Ldis =
∑
i

− logEpθ(zi,k|Gi)pθ (s(zi,k) | Gi, zi,k) . (10)

In this way, we encourage the representations ZI to capture
the architectural requirements of the graph data, while en-
suring that the representations ZI and ZV are disentangled.

4.2. Invariant-guided Architecture Customization

To customize graph neural architectures based on the dis-
covered patterns and enable adaptation to data from diverse
domains and tasks, we propose an invariant-guided architec-
ture customization approach. Specifically, we first establish
a weight-sharing super-network with a set of prototypes,
then utilize an invariant predictor, ψI , and an auxiliary pre-
dictor, ψE , to guide the customization process, ensuring the
minimization of I(A,ZV | ZI) in Assumption 3.3.

Weight-sharing Super-network To facilitate differen-
tiable optimization, we employ continuous parameterization
and a weight-sharing mechanism (Liu et al., 2018) to imple-
ment the mixed operations. The super-network layer with
|O| mixed operations is defined as:

H(l) ←
|O|∑
i=1

αl,iGNN(l−1)
i (H(l−1),A), (11)

where A is the adjacency matrix of the graph, H(l) repre-
sents the node representations at the l-th layer, GNN(l−1)

i

denotes the mixed GNN operations, |O| is the number of
GNN operation choices, and αl,i indicates the probability
of selecting the i-th operation for the l-th layer. Different
from previous super-networks (Liu et al., 2018) that use
learnable parameters α, we employ a set of prototypes to
guide the routing between data and the operations.

Architecture Predictor Given a graph representation z ∈
Z , we design an invariant mapping predictor, ψI : z →
{αl,i}. The probability αl,i of selecting the i-th operation
for the l-th layer is calculated as follows:

αl,i =
exp(α̂l,i)∑|O|
j=1 exp(α̂l,j)

, α̂l,i = z · pl,i
∥pl,i∥2

, (12)

where pl,i is a learnable prototype of the i-th operation for
the l-th layer, and z is the graph representation. Following
(Qin et al., 2022a), we adopt the l2-normalization on p
to ensure numerical stability and fair competition among
different operations. We utilize the learnable prototypes p
as the parameters of the predictor ψI to map architecture,
i.e., if the graph representation z is similar to the prototype
pl,i, the operation i will be selected for the l-th layer.

Invariant-guided Customization The objective of min-
imizing the conditional mutual information I(A,ZV | ZI)
in Equation (4) is not tractable, as the mutual information of
high-dimensional vectors is difficult to estimate. Therefore,
we utilize an equivalent transformation in Proposition 4.1 to
achieve it, with a detailed proof provided in Appendix A.2.

Proposition 4.1. if P (A | ZI ,ZV) = P (A | ZI), the
conditional mutual information I(A,ZV | ZI) achieves its
minimum value of 0.

Proposition 4.1 indicates that we can minimize the con-
ditional mutual information I(A,ZV | ZI) by enforcing
P (A | ZI ,ZV) = P (A | ZI). To this end, we utilize
an auxiliary predictor ψE with an invariant predictor ψI
to guide the customization process. Specifically, we first
predict the architecture AI based on the invariant patterns
ZI using the invariant predictor ψI . Then, we predict the
architecture AE based on the patterns fused from ZI and
ZV using the auxiliary predictor ψE :

AI = ψI(ZV), AE = ψE(ZI ,ZV). (13)

We guide P (A | ZI ,ZV) = P (A | ZI) by minimizing the
difference between the two predictions AI ,AE . Besides,
to boost the architecture predictor to fit more data with
different variant patterns, we fuse ZI with ZV from other

5

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

data to predict AE . We define the loss as:

Linv =

∥D∥∑
i

∥D∥∑
j

∥AI,i −AE,(i,j)∥, (14)

s.t. AI,i = ψI(zI,j),AE,i,j = ψE(zI,i, zV,j), (15)

where AI,i is the predicted architecture for the i-th graph
based on the invariant patterns zI , AE,i,j are the predicted
architectures based on the patterns fused from zI,i and zV,j .

4.3. Optimization with Curriculum Customization
Mechanism

We calculate the task loss of GFM using only the architec-
ture predicted by the invariant predictor ψI :

Ltask = ℓ(Fψ(ZI)(G), y). (16)

Ltask aim to maximize I(ZI ,A) in Equation (4). Notably,
the computation method of Ltask depends on the GFM for
which we aim to search for architectures. e.g., GFT (Wang
et al., 2024b) utilizes Computation Tree Reconstruction to
calculate loss during the pretraining stage.

GFMs need to be simultaneously optimized using multiple
datasets with diverse domains and tasks. However, different
data have different influences on architectures (Zhou et al.,
2022d), mainly on the learnable weights of operations in
our study, e.g., some datasets are easier to fit with certain
operations but more challenging with others. As a result,
operations that fit well in the early stages of training are
more likely to be selected, causing other operations to be
overlooked.

To mitigate the dominance of data in the search process, we
design a curriculum architecture customization constraint
that encourages diversity in the customized architectures
during the early stages of training. We first calculate the
average α for each operation in the l-th layer as:

αl =

[∑|D|
i=1 αl,1(zi),

∑|D|
i=1 αl,2(zi), . . . ,

∑|D|
i=1 αl,J(zi)

]
|D|

,

(17)

where αl is the average α for each operation in the l-th layer,
αl,j(zi) is the probability of selecting the j-th operation for
the l-th layer predicted by the invariant predictor ψI for the
i-th graph, and J is the number of operations. We define the
curriculum architecture customization loss as follows:

Lcur = γ

L∑
l=1

CV(αl), (18)

where CV(αl) is the coefficient of variation of the average α
for each operation in the l-th layer across different data and

Algorithm 1 Training pipeline for AutoGFM
Input: data D = {G1,G2, . . . ,GN}, hyperparameters
λ, β.
for t = 1, ..., T do

Sample NOI-graphs Gi from Gi.
Extract ZI and ZV from NOI-graphs Gi.
Calculate Ldis using Equation (10).
Obtain architectures AI and AE predicted by ψI and
ψE in Equation (15).
Calculate Linv using Equation (14).
Calculate Lcur and Ltask using Equation (18) and
Equation (16), respectively.
Update θ, ψI , ψE by minimizing Equation (19).

end for

γ is controlled by a pacing function: γ = 1− t
te

, where t is
the current training step and te is the step to stop the curricu-
lum customization mechanism. This constraint encourages
diversity in early architecture customization, thereby miti-
gating the influence of any single data dominating the search
process. The final training objective is:

min
θ,ψI ,ψE

Ltask + λ Ldis + β Linv + Lcur, (19)

max I(ZI ,A)

min I(ZI ,ZV)

min I(A,ZV | ZI)

where Ltask aims to exploit invariant patterns to customize
architectures, Ldis encourages the disentanglement of the
invariant and variant patterns, Linv discovers the invariant
patterns and variant patterns, and Lcur mitigates the influ-
ence of any single data dominating the search process. The
overall algorithm is summarized in Algorithm 1.

During the inference stage, given an input graph, we first
utilize the disentangled contrastive graph encoder to obtain
its invariant pattern representation, denoted as ZI . Then,
ZI is fed into the invariant predictor ψI to generate a cus-
tomized architecture. This architecture is then used as the
GNN component within the GFM to perform prediction.

5. Experiments
In this section, we conduct experiments on real-world
datasets with diverse domains and tasks to show the ef-
fectiveness of the proposed AutoGFM for GFM.

5.1. Experimental Setup

Datasets We employ datasets with diverse domains and
tasks. For node-level tasks, we utilize citation networks
(Cora, Pubmed, and Arxiv) and the web link network (Wi-
kiCS). For edge-level tasks, we utilize Knowledge Graphs
(WN18RR, FB15K237). For graph-level tasks, we utilize
molecular datasets (HIV, PCBA, and ChEMBL). Following

6

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Table 1. Accuracy (%) with std of different methods in pre-training and fine-tuning setting. The highest result is bold. The subscript
v represents Vanilla GNNs. We do not explicitly report the performance of GFT separately, as GFT (Wang et al., 2024b) employs
GraphSAGE as its GNN architecture, which overlaps with our baselines.

Node Classification Link Classification Graph Classification

Method Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

Linear 58.03±2.33 68.66±2.24 70.36±0.58 66.50±0.14 78.50±0.59 87.39±0.07 66.37±1.11 72.30±0.34 71.01
GCNv 75.65±1.37 75.61±2.10 75.28±1.34 71.40±0.08 73.79±0.39 82.22±0.28 64.84±4.78 71.32±0.49 73.76
GATv 76.24±1.62 74.86±1.87 76.78±0.78 70.87±0.24 80.16±0.27 88.93±0.15 65.54±6.93 70.12±0.89 75.44
GINv 73.59±2.10 69.51±6.87 49.77±4.72 65.05±0.50 74.02±0.55 83.21±0.53 66.86±3.48 72.69±0.22 69.34

DGI 72.10±0.34 73.13±0.64 75.32±0.95 69.15±0.20 75.75±0.59 81.34±0.15 59.62±1.21 63.31±0.89 71.22
BGRL 71.20±0.30 75.29±1.33 76.53±0.69 71.19±0.18 75.44±0.30 80.66±0.29 63.95±1.06 67.09±1.00 72.67
GraphMAE 73.10±0.40 74.32±0.33 77.61±0.39 70.90±0.31 78.99±0.48 85.30±0.16 61.04±0.55 63.30±0.78 73.07
GIANT 75.13±0.49 72.31±0.53 76.56±0.88 70.10±0.32 84.36±0.30 87.45±0.54 65.44±1.39 61.49±0.99 74.11

GCN 77.97±1.46 77.68±1.43 76.35±0.50 67.22±0.80 92.20±0.40 77.35±3.62 70.89±4.52 74.94±1.69 76.83
GAT 78.96±0.91 77.24±2.04 78.00±0.67 72.82±0.33 75.91±1.29 86.15±2.17 69.07±1.22 76.23±0.61 76.80
GraphSAGE 78.24±1.46 76.28±2.19 79.29±0.53 72.28±0.24 91.57±0.42 89.92±0.27 72.85±2.47 78.32±0.24 79.84
GIN 79.85±1.30 77.57±2.04 78.61±0.55 67.80±0.52 77.87±1.12 71.37±3.06 69.32±2.84 74.27±1.70 74.58
GraphConv 80.12±1.27 76.52±1.39 78.85±0.66 65.75±0.60 91.52±0.33 80.72±2.05 71.81±2.59 76.06±0.46 77.67

Darts 76.97±1.34 77.77±1.59 73.60±2.20 72.10±1.64 78.02±1.52 81.64±3.00 68.85±3.25 75.16±2.21 75.51
Graphnas 76.34±2.25 77.49±2.02 70.98±2.22 68.64±2.04 82.63±0.44 80.72±3.65 67.70±4.50 73.49±2.82 74.75
GASSO 78.24±1.50 77.82±1.68 71.90±2.00 70.85±1.90 81.96±0.58 80.66±2.21 68.37±6.28 76.76±1.64 75.82
Graces 78.30±1.92 76.98±2.57 70.05±3.06 70.23±1.22 84.05±0.49 83.91±3.99 70.93±2.24 75.89±1.54 76.29

Ours 80.32±1.12 78.28±1.40 79.45±0.69 73.39±1.56 93.17±0.88 90.27±1.64 73.17±2.21 78.83±1.54 80.86

(Liu et al., 2023a), we use the textual encoder to unify the
node features from different domains.

Baselines We compare our proposed AutoGFM with the
five categories of baselines: (1) Vanilla GNNs: GCN (Kipf
& Welling, 2017), GAT (Velickovic et al., 2017), GIN (Xu
et al., 2018); (2) Self-supervised methods: BGRL (Thakoor
et al., 2021), GraphMAE (Hou et al., 2022), GIANT (Chien
et al., 2022). (3) GFMs: OFA (Liu et al., 2023a) and GFT
(Wang et al., 2024b). (4) Manually designed GNNs: GCN
(Kipf & Welling, 2017), GAT (Velickovic et al., 2017),
GIN (Xu et al., 2018), GraphSAGE (Hamilton et al., 2017),
and GraphConv (Morris et al., 2019). (5) GNAS methods:
DARTS (Liu et al., 2018), GraphNAS (Gao et al., 2021),
GASSO (Qin et al., 2021b), Graces (Qin et al., 2022a).

For manually designed GNNs, GNAS baselines, and Au-
toGFM , we utilize GFT (Wang et al., 2024b) as the base
model to ensure a fair comparison. Additionally, we adopt
the same search space (operations in manually designed
GNNs baselines and super-network layers is 2) for both
GNAS baselines and AutoGFM. We replicate each experi-
ment ten times and report the average results. Further details
about experimental setups are provided in Appendix D.

5.2. Main Results

Pre-training and Fine-tuning From the results in Table 1,
we observe the following: (1) None of manually designed

GNN performs well across all datasets, indicating that fixed
architectures struggle to generalize across diverse domains
and tasks. (2) Existing GNAS methods fail to discover better
architectures for each dataset, highlighting their limitations
in adapting to diverse domains and tasks. (3) AutoGFM
outperforms all baselines across datasets, demonstrating
its effectiveness in customizing architectures for different
domains and tasks.

Few-shot Learning Few-shot learning is a challenging
task that requires models to generalize well with limited
labeled samples. We randomly sample a few labeled sam-
ples per way from the training set for fine-tuning. From
the results in Table 2, despite the limited labeled samples,
AutoGFM achieves the best performance across all datasets,
demonstrating the fast adaptability of its architectures. We
provide more experimental results in Appendix B.3.

5.3. Ablation Study

To verify the effectiveness of the key modules in our method,
we compare different ablated versions on five datasets: i)
w/o D removes and replaces the disentangled contrastive
graph encoder with standard GNNs; ii) w/o I removes the
invariant-guided architecture customization module by re-
moving the Linv; iii) w/o C removes the curriculum archi-
tecture customization mechanism. The results are shown
in Figure 3. We observe that the full model achieves the
best performance across all datasets, demonstrating the ef-

7

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Table 2. Accuracy (%) with std of different methods in Few-shot learning. The highest result is bold.
Cora-7 way WN18RR-10 way CHEMHIV-2 way

Method 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 10-shot

OFA 30.38±2.39 36.03±2.11 32.10±1.79 25.82±1.07 30.56±1.02 32.64±1.56 57.17±1.82 59.30±3.04 57.56±3.66 54.36±4.90

GFT 41.40±8.04 43.31±8.11 43.55±7.43 35.33±4.20 35.50±5.02 35.50±4.59 59.94±7.09 58.44±7.28 58.78±6.92 58.67±7.54

GCN 43.07±7.37 42.38±7.42 42.57±7.50 29.85±4.14 29.78±3.64 30.40±3.02 59.58±6.15 59.53±8.21 59.28±6.79 59.64±7.82

GAT 46.12±7.10 47.31±7.78 47.71±8.02 34.50±2.98 34.37±3.43 34.70±3.15 56.39±9.80 59.17±9.43 59.33±7.57 59.22±7.20

GraphSAGE 40.50±6.11 42.07±6.12 42.40±6.12 38.03±2.03 38.17±2.34 38.30±2.16 58.33±4.28 58.64±6.22 59.28±6.96 58.17±9.16

GIN 45.29±6.26 47.02±7.32 47.24±7.33 36.62±4.17 36.92±4.03 37.47±3.10 58.72±4.45 57.97±3.73 59.06±4.17 57.22±4.89

GraphConv 38.67±8.50 40.93±8.80 41.60±9.20 38.93±3.77 39.28±2.27 39.62±3.44 53.00±7.75 55.50±8.45 54.67±8.17 53.06±7.47

DARTS 43.29±7.65 42.10±7.45 42.81±7.92 37.22±2.68 38.57±3.22 38.65±3.55 58.31±6.73 58.68±6.72 58.07±6.17 59.05±8.83

GraphNAS 38.64±8.31 40.60±9.23 41.62±9.20 36.79±3.17 37.03±3.32 36.98±5.23 57.62±5.70 58.52±7.05 58.91±6.14 59.32±7.75

GASSO 40.31±6.10 42.07±5.85 42.95±5.75 37.13±3.52 37.42±1.91 37.37±3.31 59.46±5.35 59.38±7.10 59.26±6.45 59.72±5.42

GRACES 45.43±6.73 46.31±7.42 47.57±7.22 38.76±2.63 38.24±3.60 39.13±2.29 59.39±4.01 58.62±9.30 59.45±5.79 59.71±7.18

Ours 46.29±7.24 47.33±7.80 47.76±8.06 39.34±3.03 39.55±2.46 40.02±2.26 59.73±4.46 59.68±7.74 60.08±4.22 59.92±4.08

fectiveness of each module. We further observe the follow-
ing: i) The disentangled contrastive graph encoder module
is designed to extract discriminative invariant and variant
patterns from the data by pulling similar samples closer
and pushing dissimilar samples apart in the latent space.
Removing this module impairs the extraction of invariant
patterns and reduces the distinguishability between patterns
extracted from different datasets, ultimately harming the
effectiveness of architecture prediction; ii) The invariant-
guided architecture customization module serves to shield
architecture A from the influence of variant patterns ZV
given the invariant pattern ZI . The substantial performance
decrease observed upon removing this module highlights
the importance of effectively isolating architecture predic-
tions from ZV influences, reinforcing the critical role of this
module in ensuring the invariance conditions of captured
patterns; iii) This curriculum architecture customization
mechanism aims to reduce data dominance in the architec-
ture search process. Removing this module causes certain
operations, which perform well on specific datasets during
early training stages, to dominate the search process. Con-
sequently, other datasets may neglect potentially beneficial
operations.

5.4. Time Complexity Analysis

Let |V | and |E| denote the number of nodes and edges,
and d as the dimensionality. We use de and da to denote
the dimensionality of the disentangled graph encoder and
the customized super-network. The time complexity of the
GNN layers in both the graph encoder and the super-network
is O(|E|d+ |V |d2). Therefore, the time complexity of our
disentangled graph encoder is O(|E|de + |V |d2e). The time
complexity of the architecture customization with proto-
types is O(|O|2de). The time complexity of the customized
super-network is O(|O|(|E|da + |V |d2a)). Thus, the over-

Cora Pubmed WikiCS FB15K237 PCBA
70

80

90
A

cc
ur

ac
y(

%
)

Full w/o D w/o I w/o C

Figure 3. Comparisons of different ablated versions of AutoGFM
on real-world datasets. ”Full” denotes the full version of the
method.

all computational complexity of our method is given by:
O(|E|de + |V |d2e + |O|2de + |O|(|E|da + |V |d2a)).

6. Related Work
In this section, we review the related work on GNN-
based Graph Foundation Models, graph neural architecture
search, graph invariant presentation learning, and graph
self-supervised learning. We provide more related work in
Appendix C.

6.1. GNN-based Graph Foundation Models

GNN-based GFMs, which leverage LLMs as enhancers,
are a promising direction for GFM (He & Hooi, 2024; Mao
et al., 2024a; Zhao et al., 2024b; Xia & Huang, 2024; Huang

8

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

et al., 2024c). Specifically, it involves using LLMs to trans-
form the textual features of graphs into unified representa-
tions and unify graph-related tasks through subgraph clas-
sification for GNNs (Sun et al., 2023; Zhao et al., 2024c;
Fan et al., 2024; Ren et al., 2024; Pan et al., 2024b; Mao
et al., 2024b). This enables the transfer of shared knowledge
across various domains. Two key challenges in developing
GNN-based Graph Foundation Models (GFMs) are the uni-
fication of diverse tasks and domain spaces (Yu et al., 2024;
Li et al., 2024b; Zhao et al., 2024a; Xia et al., 2024; Zhu
et al., 2024b; Guo et al., 2023). For instance, OFA (Liu
et al., 2023a) employs an LLM to unify input features from
diverse datasets, converting multiple graph classification
tasks into a unified binary classification format. GFT (Wang
et al., 2024b) extends OFA by incorporating computation
trees to discover transferable patterns across graphs. Nev-
ertheless, these models face challenges in their reliance on
manually designed architectures, which can constrain their
performance on diverse domains and tasks. More related
work about GFMs is included in Appendix C.

6.2. Graph Neural Architecture Search

Neural architecture search (NAS) has gained growing at-
tention for its capability to automate the design of neural
architectures tailored to specific tasks (Pham et al., 2018;
Qin et al., 2021a; Wang et al., 2025). In particular, graph
neural architecture search (GNAS) methods address the
distinct challenge of modeling the intricate relationships
between architectures and complex graph structures (Gao
et al., 2021; Qin et al., 2022b; Guan et al., 2022; Zhang et al.,
2023e; Xie et al., 2023). These methods can be broadly clas-
sified into three categories: reinforcement-learning-based
approaches (Zhou et al., 2022b; Gao et al., 2022; 2023);
evolutionary-based strategies (Nunes & Pappa, 2020; Li &
King, 2020; Shi et al., 2022; Zhang et al., 2022a;b); and
differentiable methods (Ding et al., 2021; Zheng et al., 2023;
Huan et al., 2021; Zhang et al., 2023b;d; Qin et al., 2023;
Yao et al., 2024; Ge et al., 2025), which enable continuous
optimization of architectures within a differentiable search
space. However, existing GNAS methods are limited in their
ability to search for architectures for GNN-based GFMs.

6.3. Graph Invariant Representation Learning

Graph invariant presentation learning has emerged as a pow-
erful approach for graph representation learning, focusing
on capturing the stable relationships between graph data and
tasks. Recent works have explored various applications of
graph invariant learning in out-of-distribution generaliza-
tion (Ma et al., 2019; Wu et al., 2022b; Li et al., 2022b;c;
Zhang et al., 2022c; 2023c; 2024b; Li et al., 2024a). For
instance, DIR (Wu et al., 2022b) discovers causal rationales
that remain invariant across different distributions while fil-
tering out spurious patterns that are unstable. DIDA (Zhang

et al., 2022c) leverages invariant structures and features
with stable predictive performance across distribution shifts.
However, these methods focus on capturing stable relation-
ships for accurate label prediction. We apply this concept
to architecture search, aiming to define invariant patterns
that support stable architecture prediction, and design our
method based on this concept.

6.4. Graph Self-supervised Learning

Graph self-supervised learning (SSL) has attracted signifi-
cant attention in recent years, with numerous methods pro-
posed to learn effective representations from graph data
without relying on labeled information. These methods
can be broadly classified into two categories: contrastive
learning and generative learning. Contrastive learning ap-
proaches (You et al., 2020; Hassani & Khasahmadi, 2020;
Li et al., 2021; Zhang et al., 2024a; Li et al., 2022d) aim
to maximize the agreement between positive pairs of graph
samples while minimizing it between negative pairs. In
contrast, generative learning approaches (Tan et al., 2023;
Xia et al., 2023; Hou et al., 2023) learn representations by
reconstructing graph structures or attributes from partially
observed data. These SSL techniques have demonstrated
strong performance across a variety of graph-related tasks,
including node classification, link prediction, and graph
classification. In our work, we adopt a contrastive learning
strategy to extract distinct patterns from diverse datasets,
enabling the model to capture richer information and better
identify architecture-specific requirements.

7. Conclusion
Existing graph neural architecture search methods fail to
search for architectures for GNN-based GFMs. In this pa-
per, we analyze the problem of architecture inconsistency,
demonstrate that existing GNAS methods cannot effectively
search for architectures for GNN-based GFMs, and tackle it
by discovering an invariant graph-architecture relationship.
We propose a novel Automated Graph Foundation Model
with Adaptive Architecture Customization (AutoGFM) to
search for graph neural architectures for each graph data
with diverse tasks and domains individually. We introduce a
disentangled contrastive graph encoder to discover invariant
and variant patterns from graph data and an invariant-guided
architecture customization module to customize graph neu-
ral architectures based on the discovered patterns. We also
propose a curriculum architecture customization mechanism
to mitigate the phenomenon of some particular data domi-
nating the search process. Experimental results demonstrate
that AutoGFM outperforms existing methods. One limita-
tion of our work is that we mainly focus on graph neural
architecture search on the GNN-based GFMs, and we leave
the exploration of other types of GFMs for future work.

9

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Acknowledgements
This work is supported by National Natural Science Foun-
dation of China No.62222209, Beijing National Research
Center for Information Science and Technology under Grant
No.BNR2023TD03006.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48,
2009.

Chen, H., Wang, X., Lan, X., Chen, H., Duan, X., Jia,
J., and Zhu, W. Curriculum-listener: Consistency-and
complementarity-aware audio-enhanced temporal sen-
tence grounding. In Proceedings of the 31st ACM In-
ternational Conference on Multimedia, pp. 3117–3128,
2023.

Chen, R., Zhao, T., Jaiswal, A., Shah, N., and Wang, Z.
Llaga: Large language and graph assistant. arXiv preprint
arXiv:2402.08170, 2024.

Chen, Y., Wang, X., Fan, M., Huang, J., Yang, S., and
Zhu, W. Curriculum meta-learning for next poi recom-
mendation. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp.
2692–2702, 2021.

Chien, E., Chang, W.-C., Hsieh, C.-J., Yu, H.-F., Zhang, J.,
Milenkovic, O., and Dhillon, I. S. Node feature extraction
by self-supervised multi-scale neighborhood prediction.
In International Conference on Learning Representations,
2022.

Ding, Y., Yao, Q., Zhao, H., and Zhang, T. Diffmg: Differen-
tiable meta graph search for heterogeneous graph neural
networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp.
279–288, 2021.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. Journal of Machine Learning Research,
20(55):1–21, 2019.

Fan, W., Wang, S., Huang, J., Chen, Z., Song, Y., Tang, W.,
Mao, H., Liu, H., Liu, X., Yin, D., et al. Graph machine
learning in the era of large language models (llms). arXiv
preprint arXiv:2404.14928, 2024.

Fang, Y., Fan, D., Zha, D., and Tan, Q. Gaugllm: Improving
graph contrastive learning for text-attributed graphs with
large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 747–758, 2024.

Fatemi, B., Halcrow, J., and Perozzi, B. Talk like a
graph: Encoding graphs for large language models. arXiv
preprint arXiv:2310.04560, 2023.

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. Graph
neural architecture search. In International joint confer-
ence on artificial intelligence. International Joint Confer-
ence on Artificial Intelligence, 2021.

Gao, Y., Zhang, P., Yang, H., Zhou, C., Hu, Y., Tian, Z., Li,
Z., and Zhou, J. Graphnas++: Distributed architecture
search for graph neural networks. IEEE Transactions
on Knowledge and Data Engineering, 35(7):6973–6987,
2022.

Gao, Y., Zhang, P., Zhou, C., Yang, H., Li, Z., Hu, Y., and
Philip, S. Y. Hgnas++: efficient architecture search for
heterogeneous graph neural networks. IEEE Transactions
on Knowledge and Data Engineering, 35(9):9448–9461,
2023.

Ge, C., Wang, X., Zhang, Z., Qin, Y., Chen, H., Wu, H.,
Zhang, Y., Yang, Y., and Zhu, W. Behavior importance-
aware graph neural architecture search for cross-domain
recommendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 11708–11716,
2025.

Gong, C., Yang, J., and Tao, D. Multi-modal curriculum
learning over graphs. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(4):1–25, 2019.

Gong, T., Zhao, Q., Meng, D., and Xu, Z. Why curricu-
lum learning & self-paced learning work in big/noisy
data: A theoretical perspective. Big Data & Information
Analytics, 1(1):111–127, 2015.

Guan, C., Wang, X., Chen, H., Zhang, Z., and Zhu, W.
Large-scale graph neural architecture search. In Interna-
tional Conference on Machine Learning, pp. 7968–7981.
PMLR, 2022.

Guo, Y., Yang, C., Chen, Y., Liu, J., Shi, C., and Du, J. A
data-centric framework to endow graph neural networks
with out-of-distribution detection ability. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 638–648, 2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

10

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Hassani, K. and Khasahmadi, A. H. Contrastive multi-
view representation learning on graphs. In International
conference on machine learning, pp. 4116–4126. PMLR,
2020.

He, Y. and Hooi, B. Unigraph: Learning a cross-domain
graph foundation model from natural language. arXiv
preprint arXiv:2402.13630, 2024.

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C.,
and Tang, J. Graphmae: Self-supervised masked graph
autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 594–604, 2022.

Hou, Z., He, Y., Cen, Y., Liu, X., Dong, Y., Kharlamov, E.,
and Tang, J. Graphmae2: A decoding-enhanced masked
self-supervised graph learner. In Proceedings of the ACM
web conference 2023, pp. 737–746, 2023.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Huan, Z., Quanming, Y., and Weiwei, T. Search to aggre-
gate neighborhood for graph neural network. In 2021
IEEE 37th International Conference on Data Engineer-
ing (ICDE), pp. 552–563. IEEE, 2021.

Huang, B., He, F., Wang, Q., Chen, H., Li, G., Feng, Z.,
Wang, X., and Zhu, W. Neighbor does matter: Curriculum
global positive-negative sampling for vision-language pre-
training. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 8005–8014, 2024a.

Huang, C., Ren, X., Tang, J., Yin, D., and Chawla, N. Large
language models for graphs: Progresses and directions. In
Companion Proceedings of the ACM on Web Conference
2024, pp. 1284–1287, 2024b.

Huang, J., Zhang, X., Mei, Q., and Ma, J. Can llms effec-
tively leverage graph structural information: when and
why. arXiv preprint arXiv:2309.16595, 2023.

Huang, Q., Ren, H., Chen, P., Kržmanc, G., Zeng, D., Liang,
P. S., and Leskovec, J. Prodigy: Enabling in-context
learning over graphs. Advances in Neural Information
Processing Systems, 36, 2024c.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and
Makedon, F. A survey on contrastive self-supervised
learning. Technologies, 9(1):2, 2020.

Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu,
Q., and Han, J. Patton: Language model pretraining
on text-rich networks. arXiv preprint arXiv:2305.12268,
2023.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kong, L., Feng, J., Liu, H., Huang, C., Huang, J., Chen,
Y., and Zhang, M. Gofa: A generative one-for-all
model for joint graph language modeling. arXiv preprint
arXiv:2407.09709, 2024.

Le-Khac, P. H., Healy, G., and Smeaton, A. F. Contrastive
representation learning: A framework and review. Ieee
Access, 8:193907–193934, 2020.

Li, B., Shen, Y., Wang, Y., Zhu, W., Li, D., Keutzer, K., and
Zhao, H. Invariant information bottleneck for domain
generalization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 7399–7407, 2022a.

Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., and Zhu, W.
Disentangled contrastive learning on graphs. Advances
in Neural Information Processing Systems, 34:21872–
21884, 2021.

Li, H., Wang, X., Zhang, Z., and Zhu, W. Ood-gnn: Out-
of-distribution generalized graph neural network. IEEE
Transactions on Knowledge and Data Engineering, 35
(7):7328–7340, 2022b.

Li, H., Zhang, Z., Wang, X., and Zhu, W. Learning invariant
graph representations for out-of-distribution generaliza-
tion. Advances in Neural Information Processing Systems,
35:11828–11841, 2022c.

Li, H., Wang, X., and Zhu, W. Curriculum graph machine
learning: A survey. arXiv preprint arXiv:2302.02926,
2023.

Li, H., Wang, X., Zhang, Z., Chen, H., Zhang, Z., and Zhu,
W. Disentangled graph self-supervised learning for out-
of-distribution generalization. In Forty-first International
Conference on Machine Learning, 2024a.

Li, S., Wang, X., Zhang, A., Wu, Y., He, X., and Chua,
T.-S. Let invariant rationale discovery inspire graph con-
trastive learning. In International conference on machine
learning, pp. 13052–13065. PMLR, 2022d.

Li, Y. and King, I. Autograph: Automated graph neural
network. In Neural Information Processing: 27th Inter-
national Conference, ICONIP 2020, Bangkok, Thailand,
November 23–27, 2020, Proceedings, Part II 27, pp. 189–
201. Springer, 2020.

Li, Y., Wang, P., Li, Z., Yu, J. X., and Li, J. Zerog: Inves-
tigating cross-dataset zero-shot transferability in graphs.
In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1725–1735,
2024b.

11

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable ar-
chitecture search. In International Conference on Learn-
ing Representations, 2018.

Liu, H., Feng, J., Kong, L., Liang, N., Tao, D., Chen, Y., and
Zhang, M. One for all: Towards training one graph model
for all classification tasks. In The Twelfth International
Conference on Learning Representations, 2023a.

Liu, J., Yang, C., Lu, Z., Chen, J., Li, Y., Zhang, M., Bai,
T., Fang, Y., Sun, L., Yu, P. S., et al. Towards graph
foundation models: A survey and beyond. arXiv preprint
arXiv:2310.11829, 2023b.

Liu, Z., Yu, X., Fang, Y., and Zhang, X. Graphprompt: Uni-
fying pre-training and downstream tasks for graph neural
networks. In Proceedings of the ACM Web Conference
2023, pp. 417–428, 2023c.

Ma, J., Cui, P., Kuang, K., Wang, X., and Zhu, W. Disen-
tangled graph convolutional networks. In International
conference on machine learning, pp. 4212–4221. PMLR,
2019.

Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T.,
Shah, N., Galkin, M., and Tang, J. Graph foundation
models. arXiv preprint arXiv:2402.02216, 2024a.

Mao, Q., Liu, Z., Liu, C., Li, Z., and Sun, J. Advancing
graph representation learning with large language models:
A comprehensive survey of techniques. arXiv preprint
arXiv:2402.05952, 2024b.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 4602–4609, 2019.

Nunes, M. and Pappa, G. L. Neural architecture search
in graph neural networks. In Intelligent Systems: 9th
Brazilian Conference, BRACIS 2020, Rio Grande, Brazil,
October 20–23, 2020, Proceedings, Part I 9, pp. 302–317.
Springer, 2020.

Pan, B., Zhang, Z., Zhang, Y., Hu, Y., and Zhao, L. Distilling
large language models for text-attributed graph learning.
arXiv preprint arXiv:2402.12022, 2024a.

Pan, S., Zheng, Y., and Liu, Y. Integrating graphs with
large language models: Methods and prospects. IEEE
Intelligent Systems, 39(1):64–68, 2024b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient
neural architecture search via parameters sharing. In
International conference on machine learning, pp. 4095–
4104. PMLR, 2018.

Qin, Y., Wang, X., Cui, P., and Zhu, W. Gqnas: Graph q
network for neural architecture search. In 2021 IEEE
International Conference on Data Mining (ICDM), pp.
1288–1293. IEEE, 2021a.

Qin, Y., Wang, X., Zhang, Z., and Zhu, W. Graph dif-
ferentiable architecture search with structure learning.
Advances in neural information processing systems, 34:
16860–16872, 2021b.

Qin, Y., Wang, X., Zhang, Z., Xie, P., and Zhu, W. Graph
neural architecture search under distribution shifts. In In-
ternational Conference on Machine Learning, pp. 18083–
18095. PMLR, 2022a.

Qin, Y., Zhang, Z., Wang, X., Zhang, Z., and Zhu, W. Nas-
bench-graph: Benchmarking graph neural architecture
search. Advances in neural information processing sys-
tems, 35:54–69, 2022b.

Qin, Y., Wang, X., Zhang, Z., Chen, H., and Zhu, W. Multi-
task graph neural architecture search with task-aware
collaboration and curriculum. Advances in neural infor-
mation processing systems, 36:24879–24891, 2023.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019.

Ren, X., Tang, J., Yin, D., Chawla, N., and Huang, C. A
survey of large language models for graphs. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6616–6626, 2024.

Shi, M., Tang, Y., Zhu, X., Huang, Y., Wilson, D., Zhuang,
Y., and Liu, J. Genetic-gnn: Evolutionary architecture
search for graph neural networks. Knowledge-based sys-
tems, 247:108752, 2022.

Sun, X., Cheng, H., Li, J., Liu, B., and Guan, J. All in
one: Multi-task prompting for graph neural networks. In
Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2120–2131,
2023.

Tan, Q., Liu, N., Huang, X., Choi, S.-H., Li, L., Chen, R.,
and Hu, X. S2gae: Self-supervised graph autoencoders
are generalizable learners with graph masking. In Pro-
ceedings of the sixteenth ACM international conference
on web search and data mining, pp. 787–795, 2023.

12

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Tang, J., Yang, Y., Wei, W., Shi, L., Su, L., Cheng, S.,
Yin, D., and Huang, C. Graphgpt: Graph instruction
tuning for large language models. In Proceedings of the
47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 491–500,
2024a.

Tang, J., Yang, Y., Wei, W., Shi, L., Su, L., Cheng, S.,
Yin, D., and Huang, C. Graphgpt: Graph instruction
tuning for large language models. In Proceedings of the
47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 491–500,
2024b.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer,
E. L., Munos, R., Veličković, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
arXiv preprint arXiv:2102.06514, 2021.

Tian, Y., Song, H., Wang, Z., Wang, H., Hu, Z., Wang,
F., Chawla, N. V., and Xu, P. Graph neural prompt-
ing with large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 19080–19088, 2024.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017.

Wang, H., Zhou, K., Zhao, X., Wang, J., and Wen, J.-R.
Curriculum pre-training heterogeneous subgraph trans-
former for top-n recommendation. ACM Transactions on
Information Systems, 41(1):1–28, 2023.

Wang, H., Feng, S., He, T., Tan, Z., Han, X., and Tsvetkov,
Y. Can language models solve graph problems in natural
language? Advances in Neural Information Processing
Systems, 36, 2024a.

Wang, X., Li, H., Zhang, Z., Chen, H., and Zhu, W. Mod-
ular machine learning: An indispensable path towards
new-generation large language models. arXiv preprint
arXiv:2504.20020, 2025.

Wang, Z., Zhang, Z., Chawla, N. V., Zhang, C., and Ye,
Y. Gft: Graph foundation model with transferable tree
vocabulary. arXiv preprint arXiv:2411.06070, 2024b.

Wei, X., Gong, X., Zhan, Y., Du, B., Luo, Y., and Hu, W.
Clnode: Curriculum learning for node classification. In
WSDM, pp. 670–678, 2023.

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distribu-
tion shifts on graphs: An invariance perspective. arXiv
preprint arXiv:2202.02466, 2022a.

Wu, Y., Yao, J., Xia, X., Yu, J., Wang, R., Han, B., and Liu,
T. Mitigating label noise on graph via topological sample
selection. arXiv preprint arXiv:2403.01942, 2024.

Wu, Y.-X., Wang, X., Zhang, A., He, X., and Chua, T.-
S. Discovering invariant rationales for graph neural net-
works. arXiv preprint arXiv:2201.12872, 2022b.

Xia, L. and Huang, C. Anygraph: Graph foundation model
in the wild. 2024.

Xia, L., Huang, C., Huang, C., Lin, K., Yu, T., and Kao, B.
Automated self-supervised learning for recommendation.
In Proceedings of the ACM web conference 2023, pp.
992–1002, 2023.

Xia, L., Kao, B., and Huang, C. Opengraph: To-
wards open graph foundation models. arXiv preprint
arXiv:2403.01121, 2024.

Xie, B., Chang, H., Zhang, Z., Wang, X., Wang, D., Zhang,
Z., Ying, R., and Zhu, W. Adversarially robust neural
architecture search for graph neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8143–8152, 2023.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Xu, Y., Liu, X., Duan, K., Fang, Y., Chuang, Y.-N.,
Zha, D., and Tan, Q. Graphfm: A comprehensive
benchmark for graph foundation model. arXiv preprint
arXiv:2406.08310, 2024.

Yao, Y., Wang, X., Qin, Y., Zhang, Z., Zhu, W., and Mei,
H. Data-augmented curriculum graph neural architecture
search under distribution shifts. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 16433–16441, 2024.

Ye, R., Zhang, C., Wang, R., Xu, S., Zhang, Y., et al.
Natural language is all a graph needs. arXiv preprint
arXiv:2308.07134, 4(5):7, 2023.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. Advances
in neural information processing systems, 33:5812–5823,
2020.

Yu, X., Qu, M., Feng, X., and Qin, B. Graphagent: Exploit-
ing large language models for interpretable learning on
text-attributed graphs.

Yu, X., Zhou, C., Fang, Y., and Zhang, X. Multigprompt
for multi-task pre-training and prompting on graphs. In
Proceedings of the ACM on Web Conference 2024, pp.
515–526, 2024.

Zhang, S., Hu, Z., Subramonian, A., and Sun, Y. Motif-
driven contrastive learning of graph representations. IEEE
Transactions on Knowledge and Data Engineering, 36
(8):4063–4075, 2024a.

13

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Zhang, W., Lin, Z., Shen, Y., Li, Y., Yang, Z., and Cui,
B. Deep and flexible graph neural architecture search.
In International Conference on Machine Learning, pp.
26362–26374. PMLR, 2022a.

Zhang, W., Shen, Y., Lin, Z., Li, Y., Li, X., Ouyang, W.,
Tao, Y., Yang, Z., and Cui, B. Pasca: A graph neural
architecture search system under the scalable paradigm.
In Proceedings of the ACM Web Conference 2022, pp.
1817–1828, 2022b.

Zhang, Z., Wang, X., Zhang, Z., Li, H., Qin, Z., and Zhu, W.
Dynamic graph neural networks under spatio-temporal
distribution shift. Advances in neural information pro-
cessing systems, 35:6074–6089, 2022c.

Zhang, Z., Zhang, Z., Wang, X., and Zhu, W. Learning to
solve travelling salesman problem with hardness-adaptive
curriculum. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 9136–9144, 2022d.

Zhang, Z., Wang, J., and Zhao, L. Relational curriculum
learning for graph neural networks, 2023a. URL https:
//openreview.net/forum?id=1bLT3dGNS0.

Zhang, Z., Wang, X., Guan, C., Zhang, Z., Li, H., and Zhu,
W. Autogt: Automated graph transformer architecture
search. In The Eleventh International Conference on
Learning Representations, 2023b.

Zhang, Z., Wang, X., Zhang, Z., Qin, Z., Wen, W., Xue,
H., Li, H., and Zhu, W. Spectral invariant learning for
dynamic graphs under distribution shifts. Advances in
Neural Information Processing Systems, 36:6619–6633,
2023c.

Zhang, Z., Wang, X., Zhang, Z., Shen, G., Shen, S., and
Zhu, W. Unsupervised graph neural architecture search
with disentangled self-supervision. Advances in Neu-
ral Information Processing Systems, 36:73175–73190,
2023d.

Zhang, Z., Zhang, Z., Wang, X., Qin, Y., Qin, Z., and Zhu,
W. Dynamic heterogeneous graph attention neural archi-
tecture search. In Proceedings of the AAAI conference
on artificial intelligence, volume 37, pp. 11307–11315,
2023e.

Zhang, Z., Wang, X., Chen, H., Li, H., and Zhu, W. Dis-
entangled dynamic graph attention network for out-of-
distribution sequential recommendation. ACM Transac-
tions on Information Systems, 43(1):1–42, 2024b.

Zhao, H., Chen, A., Sun, X., Cheng, H., and Li, J. All in one
and one for all: A simple yet effective method towards
cross-domain graph pretraining. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 4443–4454, 2024a.

Zhao, J., Zhuo, L., Shen, Y., Qu, M., Liu, K., Bronstein, M.,
Zhu, Z., and Tang, J. Graphtext: Graph reasoning in text
space. arXiv preprint arXiv:2310.01089, 2023.

Zhao, J., Mostafa, H., Galkin, M., Bronstein, M., Zhu, Z.,
and Tang, J. Graphany: A foundation model for node clas-
sification on any graph. arXiv preprint arXiv:2405.20445,
2024b.

Zhao, Z., Li, Y., Zou, Y., Li, R., and Zhang, R. A sur-
vey on self-supervised pre-training of graph foundation
models: A knowledge-based perspective. arXiv preprint
arXiv:2403.16137, 2024c.

Zheng, X., Zhang, M., Chen, C., Zhang, Q., Zhou, C., and
Pan, S. Auto-heg: Automated graph neural network on
heterophilic graphs. In Proceedings of the ACM Web
Conference 2023, pp. 611–620, 2023.

Zhou, D., Zheng, L., Fu, D., Han, J., and He, J. Mentorgnn:
Deriving curriculum for pre-training gnns. In CIKM, pp.
2721–2731, 2022a.

Zhou, K., Huang, X., Song, Q., Chen, R., and Hu, X. Auto-
gnn: Neural architecture search of graph neural networks.
Frontiers in big Data, 5:1029307, 2022b.

Zhou, Y., Chen, H., Pan, Z., Yan, C., Lin, F., Wang, X., and
Zhu, W. Curml: A curriculum machine learning library.
In Proceedings of the 30th ACM International Conference
on Multimedia, pp. 7359–7363, 2022c.

Zhou, Y., Wang, X., Chen, H., Duan, X., Guan, C., and Zhu,
W. Curriculum-nas: Curriculum weight-sharing neural
architecture search. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 6792–6801,
2022d.

Zhou, Y., Wang, X., Chen, H., Duan, X., and Zhu, W. Intra-
and inter-modal curriculum for multimodal learning. In
Proceedings of the 31st ACM International Conference
on Multimedia, pp. 3724–3735, 2023.

Zhou, Y., Pan, Z., Wang, X., Chen, H., Li, H., Huang, Y.,
Xiong, Z., Xiong, F., Xu, P., Zhu, W., et al. Curbench: cur-
riculum learning benchmark. In Forty-first International
Conference on Machine Learning, 2024.

Zhu, Y., Wang, Y., Shi, H., and Tang, S. Efficient tuning and
inference for large language models on textual graphs.
arXiv preprint arXiv:2401.15569, 2024a.

Zhu, Y., Wang, Y., Shi, H., Zhang, Z., Jiao, D., and Tang,
S. Graphcontrol: Adding conditional control to univer-
sal graph pre-trained models for graph domain transfer
learning. In Proceedings of the ACM on Web Conference
2024, pp. 539–550, 2024b.

14

https://openreview.net/forum?id=1bLT3dGNS0
https://openreview.net/forum?id=1bLT3dGNS0

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

A. Proof
A.1. Proof of Proposition 3.2

Proposition 3.2: If there exist two datasets Di,Dj ∈ D, the optimal operation for Di is different from Dj , the operations
will render optimization conflicts.

Proof. Assume the optimal operation for Di is o1 and the optimal operation for Dj is o2. The overall architecture function is
defined as: F (G) = o1f1(G) + o2f2(G). The MSE loss function Lall(F) is given by:

Lall(F) = Li(F) + Lj(F) + Lk(F), k ̸= i, j, (20)

where Li(F) =
∑
k (F (Gi,k)− yi,k)

2, Lj(F) =
∑
k (F (Gj,k)− yj,k)

2.

We examine the effects of changes in o1 and o2 on the two terms Li(F) and Lj(F) by calculating the partial derivatives of
the two terms with respect to o1 and o2: ∂Li

∂o1
, ∂Li

∂o2
, ∂Lj

∂o1
, and ∂Lj

∂o2
.

We first simplify Li(F) as follows:

Li(F) =
∑
k

(F (Gi,k)− yi,k)2 (21)

=
∑
k

(o1f1(Gi,k) + o2f2(Gi,k)− yi,k)2 (22)

=
∑
k

(o1f1(Gi,k) + o2f2(Gi,k)− f1(Gi,k))2 (23)

=
∑
k

((1− o2)f1(Gi,k) + o2f2(Gi,k)− f1(Gi,k))2 (24)

= o22
∑
k

(f2(Gi,k)− f1(Gi,k))2 (25)

= (1− o1)2
∑
k

(f2(Gi,k)− f1(Gi,k))2 . (26)

Equation (22) expands F (Gi,k) as F (Gi,k) = o1f1(Gi,k) + o2f2(Gi,k). In Equation (23), yi,k is replaced with f1(Gi,k)
because the optimal operation for Di is o1, i.e., yi,k = f1(Gi,k). In Equation (24), o1 is replaced with 1 − o2 due to the
constraint o1 + o2 = 1. Equation (25) simplifies the equation.

Similarly, for Lj(F):

Lj(F) = o21
∑
k

(f2(Gj,k)− f1(Gj,k))2

= (1− o2)2
∑
k

(f2(Gj,k)− f1(Gj,k))2 . (27)

Then we examine the effects of changes in o1 on the two terms Li(F) and Lj(F) by calculating the partial derivatives of
the two terms with respect to o1: ∂Li

∂o1
, ∂Lj

∂o1
.

Li = (1− o1)2
∑
k

(f2(Gi,k)− f1(Gi,k))2 . (28)

Lj = o21
∑
k

(f2(Gj,k)− f1(Gj,k))2 . (29)

We calculate ∂Li

∂o1
, ∂Lj

∂o1
as follows:

15

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

∂Li
∂o1

= (2o1 − 2)
∑
k

(f2(Gi,k)− f1(Gi,k))2 < 0 (30)

∂Lj
∂o1

= 2o1
∑
k

(f2(Gj,k)− f1(Gj,k))2 > 0 (31)

o1, o2 ∈ (0, 1), and f1 ̸= f2 so that
∑
k (f2(Gi,k)− f1(Gi,k))

2 and
∑
k (f2(Gj,k)− f1(Gj,k))

2 are both positive. There-
fore, ∂Li

∂o1
< 0 and ∂Lj

∂o1
> 0. To minimize the loss function Li, o1 must be increased, whereas minimizing the loss function

Lj requires decreasing o1. Similar results about o2 can be obtained for ∂Li

∂o2
, ∂Lj

∂o2
. Therefore, the operation optimization

objective for Di is different from Dj ,i.e., the operations will render optimization conflicts.

A.2. Proof of Proposition 4.1

Proposition 4.1: if P (A | ZI ,ZV) = P (A | ZI), the conditional mutual information I(A,ZV | ZI) achieves its minimum
value of 0: I(A,ZV | ZI) = 0

Proof. The conditional mutual information I(A,ZV | ZI) is defined as:

I(A,ZV | ZI) = EZI

[
EA,ZV |ZI

[
log

P (A,ZV | ZI)
P (A | ZI)P (ZV | ZI)

]]
. (32)

Based on P (A | ZI ,ZV) = P (A | ZI), we can obtain P (A,ZV | ZI) = P (A | ZI)P (ZV | ZI) as follows:

P (A | ZI ,ZV) = P (A | ZI), (33)
P (A | ZI ,ZV)P (ZV | ZI) = P (A | ZI)P (ZV | ZI), (34)

P (A,ZV | ZI) = P (A | ZI)P (ZV | ZI). (35)

Substituting the conditional independence into the definition of conditional mutual information, we obtain:

I(A,ZV | ZI) = EZI

[
EA,ZV |ZI

[
log

P (A | ZI)P (ZV | ZI)
P (A | ZI)P (ZV | ZI)

]]
= EZI

[
EA,ZV |ZI

[log 1]
]

= 0. (36)

Therefore, when P (A | ZI ,ZV) = P (A | ZI), the conditional mutual information I(A,ZV | ZI) achieves its minimum
value of 0. This implies that, given ZI , there is no additional dependence between A and ZV .

B. More Experiments
B.1. Architecture Visualizations

To clearly visualize the customized architectures tailored to different datasets, we presented a heatmap in Figure 4,
illustrating the choice weights of each operation at each layer. Firstly, we observe that different graph datasets prefer
distinct architectures; for example, Cora mainly prefers GraphConv and GraphSAGE, whereas these two operations are
rarely selected for PubMed. This observation further supports our earlier assumption that different datasets require different
architectures, and some datasets exhibit inconsistent architectural preferences. Moreover, we find that many datasets prefer
varying operations across different layers. For instance, the Arxiv dataset prefers GCN in the first layer and GAT in the
second layer. Such fine-grained architectural preferences are challenging to meet through manual design, highlighting the
advantage of automated, customized architectures.

B.2. Hyperparameters Analysis

We analyze the sensitivity of the important hyperparameters λ and β in our method on the WikiCS dataset. We adjust
λ, β ∈ {1e − 1, 1e − 2, 1e − 3, 1e − 4}, while maintaining the default value of the other hyperparameters unchanged.

16

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Cora-1 Cora-2 Pubmed-1Pubmed-2 Wikics-1 Wikics-2 Arxiv-1 Arxiv-2 WN-1 WN-2 FB-1 FB-2 PCBA-1 PCBA-2 HIV-1 HIV-2
Dataset_and_Layer

GraphSAGE

GCN

GIN

GAT

GraphConv

O
pe

ra
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. A showcase heatmap displays customized architectures for different datasets, where the number following the dataset name
represents the architecture’s layer.

0.1 0.01 0.001 0.000177

78

79

80

81

A
cc

ur
ac

y(
%

)

0.1 0.01 0.001 0.000178

79

80

81
A

cc
ur

ac
y(

%
)

Figure 5. Hyperparameter sensitivity analysis on WikiCS dataset. The blue lines denote the results of our method and the red dashed lines
are the results of the best baseline.

The results are shown in Figure 5. The hyperparameter λ in Equation (19) controls the trade-off between Ltask and
Ldis. Specifically, Ltask aims to maximize the mutual information between the invariant pattern ZI and the architecture
A, ensuring that ZI is sufficient to predict A. In contrast, Ldis aims to minimize the mutual information between the
invariant pattern ZI and the variant pattern ZV , thereby enabling the extraction of two disjoint patterns from the data.
We adjust its value within the set {1e − 1, 1e − 2, 1e − 3, 1e − 4}. As shown in Figure 5, when λ is set too low, the
model’s performance deteriorates, confirming that proper disentanglement of ZI and ZV is essential for effective architecture
prediction. Conversely, when λ is set too high, performance also declines, indicating that while ensuring the separation
between the two patterns, it is equally important that the ZI retains sufficient information to predict the architecture. Overall,
λ is an important hyperparameter for balancing the sufficiency and disentanglement. The hyperparameter β in Equation (19)
controls the trade-off between Ltask and Linv. Specifically, Linv aims to shield architecture A from the influence of ZV
given the invariant pattern ZI . As demonstrated in Figure 5, setting β too low results in degraded model performance,
underscoring the importance of effectively shielding A from the influence of ZV given ZI . Thus, β is also a critical
hyperparameter for balancing the sufficiency and invariance conditions of the patterns captured by the model.

B.3. More Few-shot Learning results

We conduct more N-way K-shot experiments on the few-shot learning task. The results are shown in Table 3 and Table 4.
Our method outperforms the baselines mostly across various N-way K-shot settings, further verifying the effectiveness of
the customized architectures.

17

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

Table 3. Accuracy (%) with std of different methods on Cora under N-way K-shot settings. The highest result is bold.

7-way 5-way 2-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

OFA 32.10±1.79 36.03±2.11 30.38±2.39 42.28±2.35 31.28±2.63 23.68±1.67 72.20±3.82 62.22±1.17 51.85±4.35

GFT 43.55±7.43 43.31±8.11 41.40±8.04 52.30±6.57 51.47±6.33 49.80±6.79 75.00±4.08 76.33±3.56 72.92±4.64

GCN 42.57±7.50 42.38±7.42 43.07±7.37 45.00±7.40 44.53±7.93 44.80±8.94 71.58±5.20 71.42±4.03 70.58±4.01

GAT 47.71±8.02 47.31±7.78 46.12±7.10 52.30±6.05 51.73±7.32 50.17±7.41 75.92±3.89 75.17±5.36 72.83±5.48

GraphSAGE 42.40±6.12 42.07±6.12 40.50±6.11 51.17±5.13 50.80±5.34 49.50±5.55 74.20±2.95 74.33±2.47 72.08±5.89

GIN 47.24±7.33 47.02±7.32 45.29±6.26 49.83±7.79 49.17±8.10 48.97±6.73 75.25±8.60 76.83±8.36 71.50±7.44

GraphConv 41.60±9.20 40.93±8.80 38.67±8.50 46.13±9.73 44.90±10.41 42.57±8.63 67.75±9.84 67.00±11.48 63.42±8.37

Darts 42.81±7.92 42.10±7.45 43.29±7.65 49.23±7.69 49.50±7.18 46.97±6.00 71.67±4.35 71.42±5.54 69.58±6.01

GraphNAS 41.62±9.20 40.60±9.23 38.64±8.31 50.07±6.66 50.13±7.29 47.30±5.92 71.83±4.21 73.17±5.33 68.00±5.69

GASSO 42.95±5.75 42.07±5.85 40.31±6.10 49.53±6.60 50.87±6.10 47.53±7.40 71.08±6.42 70.92±5.26 68.00±4.41

GRACES 47.57±7.22 46.31±7.42 45.43±6.73 50.17±7.74 49.30±6.12 49.40±6.20 74.81±5.82 74.42±5.47 72.58±4.90

Ours 47.76±8.06 47.33±7.80 46.29±7.24 53.93±6.95 52.50±6.84 50.87±5.55 76.43±5.45 76.55±4.48 73.92±6.64

Table 4. Accuracy (%) with std of different methods on WN18RR under N-way K-shot settings. The highest result is bold.

10-way 5-way 3-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

OFA 32.64±1.56 30.56±1.02 25.82±1.07 48.32±3.19 45.04±2.39 34.40±1.47 60.72±3.82 61.29±2.56 51.77±2.65

GFT 35.50±4.59 35.50±5.02 35.33±4.20 48.80±3.61 48.53±3.68 48.13±4.37 62.56±2.71 60.67±3.93 58.44±3.84

GCN 30.40±3.02 29.78±3.64 29.85±4.14 44.70±2.99 44.97±3.95 44.77±3.45 54.06±5.36 53.33±5.64 53.28±4.77

GAT 34.70±3.15 34.37±3.43 34.50±2.98 46.23±4.44 46.33±4.50 46.30±4.43 59.56±3.85 59.39±3.45 58.06±4.34

GraphSAGE 38.30±2.16 38.17±2.34 38.03±2.03 48.10±3.78 47.83±3.88 47.90±3.66 62.39±3.48 61.44±3.48 59.39±3.50

GIN 37.47±3.10 36.92±4.03 36.62±4.17 47.57±5.56 47.80±5.29 47.60±3.81 61.33±5.98 61.83±6.35 58.22±4.93

GraphConv 39.62±3.44 39.28±2.27 38.93±3.77 48.40±3.38 47.63±2.51 46.07±3.23 61.39±4.11 60.06±3.60 59.33±3.43

Darts 38.65±3.55 38.57±3.22 37.22±2.68 47.40±4.36 46.03±3.61 46.43±3.20 60.17±2.32 58.78±4.63 57.89±3.62

GraphNAS 36.98±5.23 37.03±3.32 36.79±3.17 46.07±3.64 47.07±4.21 45.87±3.87 58.56±5.40 60.50±3.89 57.11±1.36

GASSO 37.37±3.31 37.42±1.91 37.13±3.52 47.90±4.14 47.77±3.63 46.20±3.24 59.61±4.94 59.83±5.20 57.83±4.06

GRACES 39.13±2.29 38.24±3.60 38.76±2.63 48.37±3.76 47.67±4.04 47.00±3.15 61.50±3.31 60.00±4.01 59.17±6.35

Ours 40.02±2.26 39.55±2.46 39.34±3.03 49.93±3.63 49.10±3.31 48.47±4.38 63.11±5.80 61.94±2.61 59.72±4.26

C. More Related Works
C.1. LLM-based Graph Foundation Models.

LLM-based Graph Foundation Models employ LLMs as predictors within a unified generative framework for graph tasks
(Liu et al., 2023c; Pan et al., 2024a; Fang et al., 2024; Jin et al., 2023; Zhu et al., 2024a; Yu et al.; Huang et al., 2023;
2024b). For instance, InstructGLM (Ye et al., 2023) employs a generative framework in which LLMs predict node labels by
generating them based on the nodes’ textual attributes. GraphGPT (Tang et al., 2024b) adapts LLMs for downstream graph
tasks through instruction tuning, integrating natural language with a graph-text aligner to capture and convey structural
graph information. These approaches present a promising direction for the development of GFMs, as LLMs can seamlessly
unify the output of various graph tasks. Unlike GNNs, which require task-specific adjustments for model training, LLMs can
accept a wide range of queries and generate appropriate responses. However, a key challenge lies in effectively translating
graph structures into a format that LLMs can interpret. Current research tackles this problem with two primary approaches.
The first involves describing the graph structure using natural language (graph to text) (Zhao et al., 2023; Fatemi et al., 2023;
Zhao et al., 2023; Wang et al., 2024a). The second approach draws inspiration from Visual Language Models (VLMs),
where the graph is first processed into embeddings using GNNs or projectors (graph to token), and an LLM then decodes the
graph embeddings (Chen et al., 2024; Tian et al., 2024; Tang et al., 2024a). These methods demonstrate competence in
fundamental reasoning tasks such as connectivity checks and cycle detection, but struggle with more complex graph tasks

18

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

that require capturing intricate graph patterns, such as graph classification.

C.2. Graph Curriculum Learning

Curriculum learning is a training strategy that involves presenting training data in a meaningful order, typically starting
with simpler examples and gradually progressing to more complex ones. This approach has been shown to improve the
performance of various machine learning models (Bengio et al., 2009; Gong et al., 2015; Li et al., 2023; Chen et al., 2021;?;
Zhang et al., 2022d; Zhou et al., 2022c;d; Chen et al., 2023; Zhou et al., 2023; Huang et al., 2024a; Zhou et al., 2024).
Graph curriculum learning (GCL) is different from traditional curriculum learning due to the inherent dependencies of graph
data(Gong et al., 2019; Zhou et al., 2022a; Wang et al., 2023; Wu et al., 2024). Researchers leverage graph structures to
measure difficulty through predefined or automated strategies. For instance, CLNode(Wei et al., 2023) is a Curriculum
Graph Learning method that measures local difficulty by considering the class diversity among a node’s neighbors and uses
global features to identify mislabeled nodes. RCL(Zhang et al., 2023a) gradually integrates node relationships into the
training process, based on the complexity of those relationships. We utilize the concept of curriculum learning to enhance
the architecture search process, mitigating the dominance of specific data on the search process.

D. Experimental Setup
D.1. Dataset

Table 5. Dataset statistics (Liu et al., 2023a).

Dataset Domain Task # Graphs Avg. #Nodes Avg. #Edges # Classes

Cora Citation Node 1 2,708 10,556 7
PubMed Citation Node 1 19,717 44,338 3
Arxiv Citation Node 1 169,343 1,166,243 40
WikiCS Web link Node 1 11,701 216,123 10
FB15K237 Knowledge Link 1 14,541 310,116 237
WN18RR Knowledge Link 1 40,943 93,003 11
PCBA Molecule Graph 437,929 26.0 28.1 128
HIV Molecule Graph 41,127 25.5 27.5 2
ChEMBL Molecule Graph 365,065 25.9 55.9 1,048

Dataset Statistics. We follow the preprocessing method described in (Liu et al., 2023a; Wang et al., 2024b), employing
the Sentence Transformer (Reimers & Gurevych, 2019) to convert raw textual descriptions of nodes and edges into 768-
dimensional features. For knowledge graphs (KGs), we do not transform edge textual information into edge features, as the
existing textual information already provides sufficient knowledge for KG completion (Wang et al., 2024b). The statistics of
the datasets are detailed in Table 5.

Dataset Splitting. We adopt the same splitting strategy as (Liu et al., 2023a; Wang et al., 2024b). For Cora and PubMed
select 20 labeled nodes per class for training. We utilize a predefined set of 10 splits with different random seeds to compute
the average performance. For WikiCS, we report the average accuracy over 20 distinct training splits, each generated with
20 different random seeds. In each split, 5% of the nodes from each class are used for training. For Arxiv, HIV, and PCBA,
we employ the official dataset splits and conduct experiments 10 times using different random seeds to determine the average
accuracy. The FB15K237 dataset consists of 272,115 edges in the training set, 17,535 edges in the validation set, and 20,466
edges in the test set. Meanwhile, for WN18RR, the corresponding numbers are 86,835, 3,034, and 3,134, respectively. Each
experiment is repeated 10 times with different random seeds, and the final results are reported as the average accuracy.

D.2. Baseline

We compare our proposed AutoGFM with the following baselines and provide a brief description of each method:

• Vanilla GNNs

– GCN (Kipf & Welling, 2017): Graph Convolutional Networks (GCN) utilizes graph convolutional layers to learn
node representations by aggregating information from neighboring nodes.

19

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

– GAT (Velickovic et al., 2017): Graph Attention Networks (GAT) uses attention mechanisms to weigh the
importance of neighboring nodes when updating node representations.

– GIN (Xu et al., 2018): Graph Isomorphism Network (GIN) employs a sum aggregation function and a learnable
MLP to update node representations, aiming to achieve maximum discriminative power among graph structures.

• Self-supervised GNNs

– BGRL (Thakoor et al., 2021): BGRL leverages a bootstrap-style contrastive learning approach without negative
samples, maximizing agreement between online and target networks over augmented graph views.

– GraphMAE (Hou et al., 2022): GraphMAE employs masked autoencoders to learn node representations by
reconstructing masked node features from the input graph.

– GIANT (Chien et al., 2022): GIANT is a self-supervised GNN framework that performs multi-granularity
contrastive learning across multiple graphs to learn generalizable node representations.

• GFMs

– OFA (Liu et al., 2023a): OFA is a GNN-based foundation model that integrates LLMs to process textual features
across different domains and unifies graph-related tasks through subgraph classification.

– GFT (Wang et al., 2024b): GFT is a GNN-based foundation model that incorporates computation trees to identify
transferable patterns across graph structures, enabling the learning of generalizable representations for various
graph domains and tasks.

• Manually designed GNNs

– GraphSAGE (Hamilton et al., 2017): GraphSAGE learns node representations in an inductive manner by sampling
and aggregating features from a node’s local neighborhood using various aggregation functions such as mean or
LSTM.

– GraphConv (Morris et al., 2019): GraphConv is a generalized graph convolutional operator that combines node
features with their neighbors’ features using a trainable transformation, capturing local structure in the graph.

• GNAS methods

– DARTS (Liu et al., 2018): DARTS is a differentiable architecture search framework that relaxes the search space
into a continuous domain, enabling efficient gradient-based optimization of neural architectures.

– GraphNAS (Gao et al., 2021): GraphNAS applies reinforcement learning to search for optimal GNN architectures
by modeling the architecture design process as a sequential decision-making problem.

– GASSO (Qin et al., 2021b): GASSO enables differentiable architecture search via gradient descent and discovers
more effective graph neural architectures by incorporating graph structure learning as a denoising process during
the search procedure.

– Graces (Qin et al., 2022a): Graces achieves generalization under distribution shifts by designing instance-specific
GNN architectures tailored to the unknown distribution of each graph.

For Vanilla GNNs, self-supervised methods, and GFMs, we reproduce the results based on their original papers and
publicly available code. To ensure a fair comparison between manually designed GNNs and GNAS baselines, we employ
GFT (Wang et al., 2024b) as the base model. Specifically, for manually designed GNNs, we replace the GNN in GFT with
various manually designed GNNs and follow identical pretraining and finetuning procedures as GFT. For GNAS methods,
we substitute the GNN component in GFT with different GNAS methods. Architecture search is performed during the
pretraining stage, whereas in the finetuning stage, we further optimize only the parameters of the searched architectures
without additional architecture searches.

D.3. Hyperparameters

We evaluate different GNN architectures and GNAS methods based on GFT (Wang et al., 2024b), following the default
hyperparameters of GFT to maintain consistency. To ensure a fair comparison, we set the dimensionality of all methods to
768, use the same search space and operations (GCN, GIN, GAT, GraphSAGE, GraphConv), and fix the number of layers to
2. For our method, we explore hyperparameter λ, β ∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4} and empirically select λ and β. The

20

AutoGFM: Automated Graph Foundation Model with Adaptive Architecture Customization

learning rate of the disentangled contrastive graph encoder is set to 5e− 3, and the learning rate of the architecture predictor
is set to 3e− 2. The dimensionality of both the graph encoder and the supernet is 768. Each experiment is conducted 10
times, and we report the average performance along with standard deviations.

D.4. Configurations

We conduct all experiments on the following configurations:

• Operating System: Ubuntu 20.04.5 LTS

• CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz

• GPU: NVIDIA A100-SXM4-40GB and NVIDIA A100-SXM4-80GB

• Software: Python 3.9, CUDA 12.2, PyTorch (Paszke et al., 2019) 1.13.1.

21

