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ABSTRACT

Gaussian Process Latent Variable Models (GPLVMs) have become increasingly
popular for unsupervised tasks such as dimensionality reduction and missing data
recovery due to their flexibility and non-linear nature. An importance-weighted
version Salimbeni et al. (2019) of the Bayesian GPLVMs has been proposed
to obtain a tighter variational bound. However, this version of the approach is
primarily limited to analyzing simple data structures, as the generation of an
effective proposal distribution can become quite challenging in high-dimensional
spaces or with complex data sets. In this work, we propose an Annealed Importance
Sampling (AIS) approach to address these issues. By transforming the posterior into
a sequence of intermediate distributions using annealing, we combine the strengths
of Sequential Monte Carlo samplers and VI to explore a wider range of posterior
distributions and gradually approach the target distribution. We further propose an
efficient algorithm by reparameterizing all variables in the evidence lower bound
(ELBO). Experimental results on both toy and image datasets demonstrate that our
method outperforms state-of-the-art methods in terms of tighter variational bounds,
higher log-likelihoods, and more robust convergence.

1 INTRODUCTION

Gaussian processes (GPs) Rasmussen (2003) have become a popular method for function estima-
tion due to their non-parametric nature, flexibility, and ability to incorporate prior knowledge of
the function. Gaussian Process Latent Variable Models (GPLVMs), introduced by Lawrence &
Hyvärinen (2005), have paved the way for GPs to be utilized for unsupervised learning tasks such as
dimensionality reduction and structure discovery for high-dimensional data. It provides a probabilistic
mapping from an unobserved latent space H to data-space X.

The work by Titsias & Lawrence (2010) proposed a Bayesian version of GPLVMs and introduced a
variational inference (VI) framework for training GPLVMs using sparse representations to reduce
model complexity. This method utilizes an approximate surrogate estimator g(X,H) to replace the
true probability term p(X), i.e. Eq(H) [g(X,H)] = p(X). VI typically defines an evidence lower
bound (ELBO) as the loss function for the model in place of log p(X). To describe the accuracy of
this lower bound, we discuss a Taylor expansion of log p(X),

Eq(H) [log g(X,H)] ≈ log p(X)− 1

2
varq(H)

[
g(X,H)

p(X)

]
(1)

The formula has been discussed in numerous works, including Thin et al. (2020); Maddison et al.
(2017); Domke & Sheldon (2018). Therefore, as the variance of the estimator decreases, the ELBO be-
comes tighter. Based on this formula and the basic principles of the central limit theorem, importance-
weighted (IW) VI Domke & Sheldon (2018) seeks to reduce the variance of the estimator by repeatedly
sampling from the proposal distribution q(H), i.e., g (X,H) = 1

K

∑K
k=1

[
p(X,Hk)
q(Hk)

]
,whereHk ∼

q (Hk). An importance-weighted version Salimbeni et al. (2019) of the Bayesian GPLVMs based
on this has been proposed to obtain a tighter variational bound. While this method can obtain a
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tighter lower bound than the classical VI, it is a common problem that the relative variance of this
importance-sampling based estimator tends to increase with the dimension of the latent variable.
Moreover, the generation of an effective proposal distribution can become quite challenging in
high-dimensional spaces or with complex data sets.

The problem of standard importance sampling techniques is that it can be challenging to construct
a proposal distribution q(H) that performs well in high-dimensional spaces. To address these
limitations, we propose a novel approach for variational learning of GPLVMs by leveraging Stochastic
Gradient Annealed Importance Sampling (SG-AIS). AIS is derived from early work by Jarzynski
(1997) and has been further developed by Crooks (1998); Neal (2001). This approach remains one
of the ’gold standard’ techniques to estimate the evidence unbiasedly because it explores a wider
range of posterior distributions and gradually approach the target distribution Del Moral et al. (2006);
Salimans et al. (2015); Grosse et al. (2013; 2015).

Specifically, our proposed approach leverages an annealing procedure to transform the posterior
distribution into a sequence of intermediate distributions, which can be approximated by using a
Langevin stochastic flow. This dynamic is a time-inhomogeneous unadjusted Langevin dynamic that
is easy to sample and optimize. We also propose an efficient algorithm designed by reparameterizing
all variables in the ELBO. Furthermore, we propose a stochastic variant of our algorithm that utilizes
gradients estimated from a subset of the dataset, which improves the speed and scalability of the
algorithm . Our experiments on both toy and image datasets show that our approach outperforms
state-of-the-art methods in GPLVMs, demonstrating lower variational bounds, higher log-likelihoods,
and more robust convergence.

Overall, our contributions are as follows:

• We propose a novel approach for variational learning of GPLVMs by leveraging Stochastic
Gradient Annealed Importance Sampling (SG-AIS), which addresses the limitations of
standard importance sampling techniques and allows for the estimation of the evidence
unbiasedly, resulting in a tighter lower bound and a better variational approximation in
complex data and high-dimensional space.

• We propose an efficient algorithm designed by reparameterizing all variables to further
improve the estimation of the variational lower bounds. We also leverage stochastic opti-
mization to maximize optimization efficiency.

• Our experiments on both toy and image datasets demonstrate that our approach outper-
forms state-of-the-art methods in GPLVMs, showing lower variational bounds, higher
log-likelihoods, and more robust convergence.

2 BACKGROUND

2.1 GPLVM VARIATIONAL INFERENCE

In GPLVMs, we have a training set comprising of N D-dimensional real valued observations
X = {xn}Nn=1 ∈ RN×D. These data are associated with N Q-dimensional latent variables, H =
{hn}Nn=1 ∈ RN×Q whereQ < D provides dimensionality reduction Titsias & Lawrence (2010). The
forward mapping H → X is described by multi-output GPs independently defined across dimensions
D. The work by Titsias & Lawrence (2010) proposed a Bayesian version of GPLVMs using sparse
representations to reduce model complexity. The formula is described as,

p(H) =

N∏
n=1

N (hn;0, IQ)

p(F | U,H) =

D∏
d=1

N (fd;µd, Qnn)

p(X | F,H) =

N∏
n=1

D∏
d=1

N
(
xn,d;fd (hn) , σ

2
)

(2)

where Qnn = Knn −KnmK
−1
mmKmn, µd = KnmK

−1
mmud, F = {fd}Dd=1,U = {ud}Dd=1 is the

inducing variable Titsias (2009), xd is the d-th column of X, and m is the number of inducing
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points. Knn is the covariance matrix corresponding to a user-chosen positive-definite kernel function
kθ(h,h

′) evaluated on latent points {hn}Nn=1 and parameterized by hyperparameters θ. The kernel
hyperparameters are shared across all dimensions D. It is assumed that the prior over U and H
factorizes into p(ud) and p(hn), where p(ud) = N (0,Kmm) and p(hn) = N (0, IQ). Since
hn ∈ RQ is unobservable, we need to do joint inference over f(·) and h. Under the typical mean-
field assumption of a factorized approximate posterior q(fd)q(hn). We denote ψ as all variational
parameters and γ as all GP hyperparameters. Thus, we arrive at the classical Mean-Field (MF) ELBO:

MF-ELBO(γ, ψ) =

N∑
n=1

D∑
d=1

∫
q(fd)q (hn) log p (xn,d | fd,hn) dhn dfd

−
N∑

n=1

KL (q (hn) ∥p (hn))−
D∑

d=1

KL (q(ud)∥p(ud)) ,

(3)

where we use the typical approximation to integrate out the inducing variable,

q (fd) =

∫
p (fd|ud)q (ud) dud. (4)

2.2 IMPORTANCE-WEIGHTED VARIATIONAL INFERENCE

A main contribution of Salimbeni et al. (2019) is to propose a variational scheme for (Latent variable)
LV-GP models based on importance-weighted VI Domke & Sheldon (2018) via amortizing the
optimization of the local variational parameters. IWVI provides a way of lower-bounding the
log marginal likelihood more tightly and with less estimation variance by Jensen’s inequality at
the expense of increased computational complexity. The IW-ELBO is obtained by replacing the
expectation likelihood term (first term) in Vanilla VI with a sample average of K terms:

IW-ELBO(γ, ψ) =

N∑
n=1

D∑
d=1

Bn,d −
D∑

d=1

KL (q(ud)∥p(ud)) , (5)

where Bn,d = E
fd,hn

log 1
K

∑
k p (xn,d | fd,hn,k)

p(hn,k)
q(hn,k)

. Although the IW objective outperforms

classical VI in terms of accuracy, its effectiveness is contingent on the variability of the importance
weights: p (xn,d | fd,hn,k)

p(hn,k)
q(hn,k)

. When these weights vary widely, the estimate will effectively
rely on only the few points with the largest weights. To ensure the effectiveness of importance
sampling, the proposal distribution defined by q (hn,k) must therefore be a fairly good approximation
to p (xn,d | fd,hn,k) p (hn,k), so that the importance weights do not vary wildly. Related theoretical
proofs can be seen in Domke & Sheldon (2018); Maddison et al. (2017).

When hn,k is high-dimensional, or the likelihood p (xn,d | fd,hn,k) is multi-modal, finding a good
importance sampling distribution can be very difficult, limiting the applicability of the method.
Unfortunately, original research by Salimbeni et al. (2019) only discusses the case when hn is a
one-dimensional latent variable, and they acknowledge that reliable inference for more complex cases
is not yet fully understood or documented. To circumvent this issue, we provide an alternative for
GPLVMs using Annealed Importance Sampling (AIS) Crooks (1998); Neal (2001); Wu et al. (2016),
which defines state-of-the-art estimators of the evidence and designs efficient proposal importance
distributions. Specially, we propose a novel ELBO, relying on unadjusted Langevin dynamics, which
is a simple implementation that combines the strengths of Sequential Monte Carlo samplers and
variational inference as detailed in Section 3. ,

3 VARIATIONAL AIS SCHEME IN GPLVMS

3.1 VARIATIONAL INFERENCE VIA AIS

Annealed Importance Sampling (AIS)Neal (2001); Del Moral et al. (2006); Salimans et al. (2015);
Zhang et al. (2021) is a technique for obtaining an unbiased estimate of the evidence p(X). To
achieve this, AIS uses a sequence of K bridging densities {qk(H)}Kk=1 that connect a simple base
distribution q0(H) to the posterior distribution p(H|X). By gradually interpolating between these
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distributions, AIS allows for an efficient computation of the evidence. This method is particularly
useful when the posterior is difficult to sample from directly, as it allows us to estimate the evidence
without evaluating the full posterior distribution directly. We can express this as follows:

p(X) =

∫
p(X,H)dH = Eqfwd(H0:K)

[
qbwd (H0:K)

qfwd (H0:K)

]
(6)

where the variational distribution qfwd and the target distribution qbwd can be written as:

qfwd (H0:K) = q0 (H0) T1 (H1 | H0) · · · TK (HK | HK−1)

qbwd (H0:K) = p (X,HK) T̃K (HK−1 | HK) · · · T̃1 (H0 | H1) .
(7)

Here, we assume Tk is a forward MCMC kernel that leaves qk(H) invariant, which ensures that
{Tk}Kk=1 are valid transition probabilities, i.e.,

∫
qk(Hk−1)Tk (Hk | Hk−1) dHk−1 = qk (Hk).

And T̃k is the “backward” Markov kernel moving each sample Hk into a sample Hk−1 starting from
a virtual sample HK . qfwd represents the chain of states generated by AIS, and qbwd is a fictitious
reverse chain which begins with a sample from p(X,H) and applies the transitions in reverse order.
In practice, the bridging densities have to be chosen carefully for a low variance estimate of the
evidence. A typically method is to use geometric averages of the initial and target distributions to
construct the sequence, i.e., qk(H) ∝ q0(H)1−βkp(X,H)βk for 0 = β0 < β1 < · · · < βK = 1.
AIS has been proven theoretically to be consistent as K → ∞ Neal (2001) and achieves accurate
estimate of log p(X) empirically with the asymptotic bias decreasing at a 1/K rate Grosse et al.
(2013; 2015).

With this, we can derive the AIS bound,

log p(X) ≥ Eqfwd(H0:K)

[
log

qbwd (H0:K)

qfwd (H0:K)

]
= Eqfwd(H0:K)

[
log p (X,HK)− log q0 (H0)−

K∑
k=1

log
Tk(Hk | Hk−1)

T̃k (Hk−1 | Hk)

]
.

(8)

This objective can be obtained by applying Jensen’s inequality. For the GPLVM, we can naturally
derive its AIS lower bound:

LAIS(ψ, γ) =

N∑
n=1

D∑
d=1

Eqfwd(h0:K)q(fd)
[log p (xn,d | fd,hn,K)]

+

N∑
n=1

Eqfwd(h0:K) [log p (hn,K)− log q0 (hn,0)]

−
K∑

k=1

Eqfwd(H0:K) log
Tk (Hk | Hk−1)

T̃k (Hk−1 | Hk)
−

D∑
d=1

KL (q(ud) ∥ p(ud))

(9)

where ψ and γ indicate the sets of all variational parameters and all GP hyperparameters, respectively.
Our purpose is to evaluate this bound. First we note that the last KL term is tractable if we assume
the variational posteriors of ud are mean-field Gaussian distributions. So we concentrate on the
terms in the expectation that we can evaluate relying on a Monte Carlo estimate. It is obvious that
log p (xn,d | fd,hn,K) is available in closed form as the conditional likelihood is Gaussian Titsias
(2009). Therefore, the first three term can be computed by the popular “reparameterization trick”
Rezende et al. (2014); Kingma & Welling (2013) to obtain an unbiased estimate of the expectation
over qfwd (H0:K) and q (fd) (detailed in Section 3.3). Afterwards, to evaluate expectation over qfwd,
we construct an MCMC transition operator Tk which leaves qk invariant via a time-inhomogeneous
unadjusted (overdamped) Langevin algorithm (ULA) as used in Welling & Teh (2011); Heng et al.
(2020); Wu et al. (2020); Marceau-Caron & Ollivier (2017) and jointly optimize ψ and γ by stochastic
gradient descent.

3.2 TIME-INHOMOGENEOUS UNADJUSTED LANGEVIN DIFFUSION

Tk can be constructed using a Markov kernel with an invariant density such as Metropolis-Hastings
(MH) or Hamiltonian Monte Carlo (HMC), which enables qfwd to converge to the posterior distri-
bution of H. For the sake of simplicity, we consider the transition density Tk associated to this
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discretization,

Tk (Hk | Hk−1) = N (Hk;Hk−1 + η∇ log qk (Hk−1) , 2ηI) (10)

where η > 0 is the step size and qk is bridging densities defined in Section 3.1. Since we have
qk(H) ∝ q0(H)1−βkp(X,H)βk in Section 3.1, the annealed potential energy is derived as:

∇ log qk (·) = βk∇ log p(X, ·) + (1− βk)∇ log q0(·). (11)

According to conditional probability formula log p(X, ·) = log p (X|·) + log p (·), the model log
likelihood simplifies to:

∇ log p(X|·) = −1

2

D∑
d=1

∇
(
log det

(
Qnn + σ2I

)
+ (xd − µd)

T (
Qnn + σ2I

)−1
(xd − µd)

)
.

(12)

Since Eq. (12) is analytical, the gradient can be computed through automatic differentiation Baydin
et al. (2018). The dynamical system propagates from a base variational distribution q0 to a final
distribution qK which approximates the posterior density. Let η := T/K, then the proposal qfwd

converges to the path measure of the following Langevin diffusion (ht)t∈[0,T ] defined by the stochastic
differential equation (SDE),

dHt = ∇ log qt(H)dt+
√
2 dBt, H0 ∼ q0 (13)

where (Bt)t∈[0,T ] is standard multivariate Brownian motion and qt corresponds to qk in discrete-time
for t = tk = kη. For long times, the solution of the Fokker-Planck equations Risken (1996) tends to
the stationary distribution q∞(H) ∝ exp(p(X,H)). Additional quantitative results measuring the
law of hT for such annealed diffusions have been showed in Andrieu et al. (2016); Tang & Zhou
(2021); Fournier & Tardif (2021). For ease of sampling, we define the corresponding Euler-Maruyama
discretization as,

Hk = Hk−1 + η∇ log qk (Hk−1) +
√
2ηϵk−1, (14)

where ϵk ∼ N (0, I), as done in Heng et al. (2020); Wu et al. (2020); Nilmeier et al. (2011). Since
such process is reversible w.r.t. qk, based on Nilmeier et al. (2011), the reversal T̃k is typically
realized by,

Hk−1 = Hk + η∇ log qk (Hk) +
√

2ηϵ̃k−1, (15)

where ϵ̃k−1 = −
√

η
2 [∇ log qk (Hk−1) +∇ log qk (Hk)] − ϵk−1. Based on Eq. (10), the term

related to Tk in Eq. (9) can be written explicitly as:

K∑
k=1

Rk−1 =

K∑
k=1

log
Tk (Hk | Hk−1)

T̃k (Hk−1 | Hk)
=

K∑
k=1

1

2

(
∥ϵ̃k−1∥2 − ∥ϵk−1∥2

)
. (16)

3.3 REPARAMETERIZATION TRICK AND STOCHASTIC GRADIENT DESCENT

For ease of sampling, we consider a reparameterization version of Eq. (9) based on the Langevin
mappings associated with qk given by

Tk(Hk−1) = Hk−1 + η∇ log qk (Hk−1) +
√

2ηϵk−1. (17)

Based on the identity Hk = Tk(Hk−1), we have a representation of Hk by a stochastic flow,

Hk = Tk (Hk−1) = Tk ◦ Tk−1 ◦ · · ·T1(H0) (18)

Moreover, for LVGP models, we also have a reparameterization version Salimbeni & Deisenroth
(2017) of the posteriors of H0 and fd in Eq. (9), that is,

hn,0 = an + Lnϵ

fd = KnmK
−1
mmmd +

√
Knn −KnmK

−1
mm

(
Kmm − Sd

TSd

)
K−1

mmKmnϵfd
(19)
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Algorithm 1: Stochastic Unadjusted Langevin Diffusion(ULA) AIS algorithm for GPLVMs
Input: training data X, mini-batch size B, sample number K, annealing schedule {βk}, stepsizes
η
Initialize all DGP hyperparameters γ, all variational parameters ψ
repeat

Sample mini-batch indices J ⊂ {1, . . . , N} with |J | = B
Draw ϵ from standard Gaussian distribution.
Set H0 = an + Lnϵ
Set L = − log q0(H0)
for k = 1 to K do

Draw ϵk from standard Gaussian distribution.
Set ∇ log qk (·) = βk(

N
B log p (XJ |·) + log p (·)) + (1− βk)∇ log q0(·)

Set Hk = Hk−1 + η∇ log qk (Hk−1) +
√
2ηϵk−1

Set ϵ̃k−1 =
√

η
2 [∇ log qk (Hk−1) +∇ log qk (Hk)]− ϵk−1

Set Rk−1 = 1
2

(
∥ϵ̃k−1∥2 − ∥ϵk−1∥2

)
Set L = L −Rk−1

end for
Sample mini-batch indices I ⊂ {1, . . . , N} with |I| = B
Draw ϵfd

from standard Gaussian distribution for d = 1, 2, ..., D .
Set L = L+ log p (HK) + N

B log p (XI | ϵfd , ϵ0:K−1, ϵ)−
∑D

d=1 KL (q(ud) ∥ p(ud))
Do gradient desent on L(ψ, γ)

until ψ, γ converge

where vectors an ∈ RQ, md ∈ RN and upper triangular matrixs Ln, Sd are the variational
parameters, ϵ ∈ RQ, ϵfd ∈ RN are standard Gaussian distribution. After this reparameterization, a
change of variable shows that AIS bound in Eq. (9) can be rewritten as:

LAIS(ψ, γ) =

N∑
n=1

D∑
d=1

Ep(ϵfd)p(ϵ0:K−1)p(ϵ)
[log p (xn,d | ϵfd , ϵ0:K−1, ϵ)]

+

N∑
n=1

Ep(ϵ0:K−1)p(ϵ) [log p (hn,K)− log q0 (hn,0)]

−
K∑

k=1

Ep(ϵ0:K−1)p(ϵ)Rk−1 −
D∑

d=1

KL (q(ud) ∥ p(ud)),

(20)

whereRk−1 is defined in Eq. (16) and hn,k is reparameterized as hn,k = Tk ◦Tk−1 ◦ · · ·T1 (hn,0) =
⃝k

i=1Ti(an + Lnϵ). In order to accelerate training and sampling in our inference scheme, we
propose a scalable variational bounds that are tractable in the large data regime based on stochastic
variational inference Hoffman et al. (2013); Salimbeni & Deisenroth (2017); Kingma & Welling
(2013); Hoffman & Blei (2015); Naesseth et al. (2020) and stochastic gradient descent Welling & Teh
(2011); Chen et al. (2014); Zou et al. (2019); Teh et al. (2016); Sato & Nakagawa (2014); Alexos et al.
(2022). Instead of computing the gradient of the full log likelihood, we suggest to use a stochastic
variant to subsampling datasets into a mini-batch DJ with |XJ | = B, where J ⊂ {1, 2, .., N} is the
indice of any mini-batch. In the meantime, we replace the p (X,HK) term in Eq. (7) with another
estimator computed using an independent mini-batch of indices I ⊂ {1, 2, .., N} with |XI | = B.
We finally derive a stochastic variant of the Stochastic Unadjusted Langevin Diffusion AIS algorithm
for the LVGP models, as describe in Algorithm 1.
4 EXPERIMENTS

4.1 METHODS AND PRACTICAL GUIDELINES

In the following section, we present two sets of experiments. In the first set of experiments, our aim
is to demonstrate the quality of our model in unsupervised learning tasks such as data dimensionality
reduction and clustering. This will allow us to evaluate the ability of our model to preserve the
original information in the data. In the second set of experiments, we evaluate the expressiveness and
efficiency of our model on the task of image data recovery.
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Figure 1: We lowered the data dimensionality using our proposed method in the multi-phase oilflow
dataset and visualized a two-dimensional slice of the latent space that corresponds to the most
dominant latent dimensions. The inverse lengthscales learnt with SE-ARD kernel for each dimension
are depicted in the middle plot, and the negative ELBO learning curves are shown in the right plot.
We set the same learning rate and compared the learning curves of two state-of-the-art models, MF
and Importance Weighted VI within 3000 iterations.

We compare three different approaches: (a) Classical Sparse VI based on mean-field (MF) approxi-
mation Titsias & Lawrence (2010); (b) Importance-weighted (IW) VI Salimbeni et al. (2019); (c)
ULA-AIS as given by the algorithm presented in this paper. We also provide guidelines on how to
tune the step sizes and annealing schedules in Algorithm 1 to optimize performance. We conducted
all our experiments on a Tesla A100 GPU. More details can be seen in Appendix C.

4.2 DIMENSIONALITY REDUCTION

Table 1: Comparison of MF, IW, and AIS under different number of iterations for two toy datasets

Dataset Data Dim Method Iterations Negative ELBO MSE Negative Expected Log Likelihood

Oilflow (1000,12)

MF
1000 3.44 (0.25) 6.83 (0.27) -1.42 (0.27)
2000 -1.67 (0.17) 3.59 (0.13) -8.38 (0.12)
3000 -3.07 (0.12) 2.79 (0.11) -11.24 (0.10)

IW
1000 0.01 (0.25) 4.52 (0.28) -6.26 (0.26)
2000 -3.19 (0.15) 2.77 (0.16) -9.46 (0.15)
3000 -4.13 (0.14) 2.60 (0.15) -12.20 (0.12)

AIS (ours)
1000 0.78 (0.24) 4.99 (0.23) -4.01 (0.26)
2000 -5.04 (0.15) 2.65 (0.15) -10.33 (0.16)
3000 -6.82 (0.12) 2.16 (0.12) -13.06 (0.11)

Wine Quality (1599,11)

MF
1000 32.69(0.13) 63.98(0.12) 31.71(0.15)
2000 13.46(0.03) 48.95(0.05) 6.51(0.06)
3000 11.59(0.03) 45.81(0.04) 4.07(0.05)

IW
1000 22.65(0.07) 50.77(0.06) 19.94(0.09)
2000 11.47(0.02) 40.86(0.03) 3.72(0.04)
3000 10.73(0.03) 35.23(0.04) 2.71(0.03)

AIS (ours)
1000 29.63(0.07) 57.49(0.05) 27.67(0.06)
2000 10.43(0.03) 34.60(0.03) 3.58(0.04)
3000 8.86(0.04) 32.23(0.04) 2.47(0.03)

The multi-phase Oilflow data Bishop & James (1993) consists of 1000, 12D data points belonging
to three classes which correspond to the different phases of oil flow in a pipeline. We reduced the
data dimensions to 10 while attempting to preserve as much information as possible. We report the
reconstruction error and MSE with ± 2 standard errors over three optimization runs. Since the training
is unsupervised, the inherent ground-truth labels were not a part of training. The 2D projections of
the latent space for oilflow data clearly shows that our model is able to discover the class structure.

To highlight the strength of our model, we set the same learning rate and other experimental hyper-
parameters and compare the learning curves of two state-of-the-art models. The results are shown
in Fig. 1. We also tested our model performance on another toy dataset, Wine Quality Cortez et al.
(2009), where we used the white variant of the Portuguese "Vinho Verde" wine. From table 1, we
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Figure 2: In the Brendan faces reconstruction task with 75% missing pixels, the top row represents
the ground truth data and the bottom row showcases the reconstructions from the 20-dimensional
latent distribution.

Figure 3: For the MNIST reconstruction task with 75% missing pixels, we chose digits 1 and 7. The
bottom row represents the ground truth data and the top row showcases the reconstructions from the
5-dimensional latent distribution.The left side shows the reconstruction task, while the right side
displays the 2-dimensional latent space corresponding to the smallest lengthscales.

observe that after sufficient training, our proposed method yields lower reconstruction loss and MSE
than IWVI and MF methods.

4.3 MAKE PREDICTIONS IN UNSEEN DATA

Table 2: Comparison of MF, IW, and AIS under different number of iterations for two image datasets

Dataset Data Dim Method Iterations Negative ELBO MSE Negative Expected Log Likelihood

Frey Faces (1965,560)

MF
1000 48274 (443) 468 (9) 46027 (356)
2000 6346 (20) 95 (1) 4771 (17)
3000 3782 (15) 69 (0.2) 2822 (3)

IW
1000 42396 (426) 394 (8) 39936 (312)
2000 5643 (15) 76 (1) 4292 (13)
3000 3596 (14) 63 (0.5) 2535 (4)

AIS (ours)
1000 12444 (451) 121 (9) 10543 (322)
2000 5031 (16) 66 (1) 3130 (15)
3000 3249 (12) 57(0.3) 2226 (3)

MNIST (2163,784)
MF 2000 -432.32(0.33) 0.27(0.004) -552.87(0.28)

IW 2000 -443.64(0.37) 0.25(0.003) -567.13(0.31)

AIS (ours) 2000 -453.18(0.27) 0.25(0.002) -569.93(0.26)
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Figure 4: The negative ELBO convergence curves of the three methods on the Frey Faces dataset. It
is noted that as the number of iterations increase, the y-axis scale gradually increases from left to
right.

We conducted a reconstruction experiment on the MNIST and Frey Faces Data, focusing on how
models capture uncertainty when training with missing data in structured inputs. For MNIST, we
selected digits 1 and 7 with a latent variable dimensionality of 5. Each image has 784 pixels yielding a
784d data space1. For Frey Faces Data, we used the entire dataset with a latent variable dimensionality
of 20. The image data set Roweis & Saul (2000) contains 1965 images of a face taken from sequential
frames of a short video. Each image is of size 20×28 yielding a 560d data space. In both cases,
we chose 5% of the training set as missing data samples and removed 75% of their pixels, seeking
to recover their original appearance. Fig. 2 and Fig. 3 summarize the samples generated from the
learned latent distribution. This reconstruction experiment is similar to the related work by Titsias &
Lawrence (2010) and Gal et al. (2014). More details can be seen in Appendix D.

To demonstrate the effectiveness of our method in producing more accurate likelihoods and tighter
variational bounds on image datasets, we present in Table 2 the negative ELBO, negative log-
likelihood, and mean squared error (MSE) for reconstructed images on the Frey Faces and MNIST
datasets, comparing with state-of-the-art methods. Our results show that our method achieves lower
variational bounds and converges to higher likelihoods, indicating superior performance in high-
dimensional and multi-modal image data. This suggests that adding Langevin transitions appears to
improve the convergence of the traditional VI methods.

We also present in Fig. 4 a comparison of the negative ELBO convergence curves for Frey Faces
datasets between our method and two other state-of-the-art methods. To better illustrate our lower
convergence values, we gradually increase the y-axis scale from left to right. An interesting observa-
tion is that, compared to the IW and MF methods, our proposed method sometimes exhibits sudden
drops in the loss curve, as shown in the leftmost plot of Fig. 4. This can be attributed to the fact
that, by adding Langevin transitions, the algorithm’s variational distribution gradually moves from
the current distribution towards the true posterior distribution, resulting in sudden drops in the loss
function when reaching the target distribution. Thus, such phenomena can be regarded as a common
feature of annealed importance sampling and it becomes even more obvious in high-dimensional
datasets.

5 CONCLUSION

In this paper, we introduce a novel method for GPLVM through Stochastic Gradient Annealed
Importance Sampling. Our approach leverages annealing to transform the posterior distribution into
a sequence of tractable intermediate distributions, and utilizes unadjusted Langevin dynamics to
estimate the Evidence Lower Bound (ELBO). We observe convincing evidence of the superiority
of our method, particularly in high-dimensional or complex structured datasets, including lower
variational bounds and more robust convergence. Furthermore, we also observe certain features in
the loss curve of our method, such as steep drops, which further support our claims.

Overall, our results show that the proposed method achieves superior performance in both accuracy
and robustness, indicating its potential as an effective tool for the variational learning of latent-variable
GP Models.

1Since the MNIST dataset converges within 2000 iterations, we report the performance of several methods at
convergence
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