
Automated Knowledge Base Construction (2020) Conference paper

IterefinE: Iterative KG Refinement Embeddings using
Symbolic Knowledge

Siddhant Arora siddhantarora1806@gmail.com
Dept. of CSE, IIT Delhi

Srikanta Bedathur srikanta@cse.iitd.ac.in
Dept. of CSE, IIT Delhi

Maya Ramanath ramanath@cse.iitd.ac.in
Dept. of CSE, IIT Delhi

Deepak Sharma dsharma080@gmail.com∗

Abstract
Knowledge Graphs (KGs) extracted from text sources are often noisy and lead to poor per-

formance in downstream application tasks such as KG-based question answering. While much of
the recent activity is focused on addressing the sparsity of KGs by using embeddings for inferring
new facts, the issue of cleaning up of noise in KGs through KG refinement task is not as actively
studied. Most successful techniques for KG refinement make use of inference rules and reasoning
over ontologies. Barring a few exceptions, embeddings do not make use of ontological information,
and their performance in KG refinement task is not well understood. In this paper, we present a
KG refinement framework called IterefinE which iteratively combines the two techniques – one
which uses ontological information and inferences rules, viz.,PSL-KGI, and the KG embeddings
such as ComplEx and ConvE which do not. As a result, IterefinE is able to exploit not only the
ontological information to improve the quality of predictions, but also the power of KG embed-
dings which (implicitly) perform longer chains of reasoning. The IterefinE framework, operates
in a co-training mode and results in explicit type-supervised embeddings of the refined KG from
PSL-KGI which we call as TypeE-X. Our experiments over a range of KG benchmarks show that
the embeddings that we produce are able to reject noisy facts from KG and at the same time infer
higher quality new facts resulting in upto 9% improvement of overall weighted F1 score.

1. Introduction

Knowledge graphs (KGs) represent facts as a set of directed edges or triples 〈s,r,o〉 where r is
the relation between entities s and o. A critical issue in large-scale KGs is the presence of noise
from the automatic extraction methods used to populate them. For instance, NELL [Carlson et al.,
2010] is known to contain various kinds of errors including: different names for the same entity
(e.g., australia and austalia), incorrect relationships –both due to wrong relation label as well as
incorrect linkage altogether– between entities (e.g., 〈matt flynn, athleteplayssport, baseball〉
is false since Matt Flynn is an NFL player), incompatible entity types, and many more [Pujara et al.,
2013]. It has also been observed that such noise can significantly degrade the performance of KG
embeddings [Pujara et al., 2017].

The KG refinement task aims to reduce the noise in KG by not only predicting additional links
(relations) and types for entities (i.e., performing KG completion), but also eliminating incorrect
facts. Methods for noise reduction in KG include the use of association rule mining over the noisy
KG to induce rules which can help in eliminating incorrect facts [Ma et al., 2014]; reconciling diverse
evidence from multiple extractors [Dong et al., 2014]; the use of ontology reasoners [Nakashole et al.,
2011] and many more. A detailed survey of approaches for KG refinement is available in [Paulheim,
2017]. On the other hand, neural and tensor-based embeddings have seen significant success in

∗. Work done at IIT Delhi.

Arora et al.

entity type and new fact predictions [Nickel et al., 2012, Trouillon et al., 2016, Dettmers et al.,
2018]. It is worth noting that embeddings, with a few recent exceptions [Guo et al., 2016, Minervini
et al., 2017, 2018, Fatemi et al., 2019], do not make use of rich taxonomic/ontological rules when
available. Methods such as Probabilistic Soft Logic (PSL) and Markov Logic Network (MLN) have
been adapted for the KG refinement problem. They can address both the completion as well as noise
removal stages of the KG completion problem. They can also make use of ontological rules effectively,
and specifically, the PSL-KGI implementation uses rules defined on schema-level features [Pujara
et al., 2013].

1.1 Contributions

In this paper we investigate the combined use of ontologies and embeddings in the KG refinement
task. Ontologies are among the best methods to eliminate noisy facts in KGs, while embeddings
provide a means of implicitly reasoning over longer chains of facts. Specifically, we use Probabilistic
Soft Logic (PSL) that can incorporate inference rules and ontologies, along with state-of-the-art KG
embedding methods,viz., ConvE [Dettmers et al., 2018] and ComplEx [Trouillon et al., 2016], which
do not make use of any ontological rules.

The resulting framework called IterefinE is based on the observation that the mispredictions by
the embeddings based methods are often due to the lack of type compatibility between the entities
due to their type-agnostic nature [Xie et al., 2016, Jain et al., 2018]. Since PSL-KGI is able to predict
entity types by making use of ontological information along with many candidate facts derived
using its inference rules, IterefinE transfer these predictions from PSL-KGI to the embeddings.
This results in embeddings with explicit type supervision, which we call as TypeE-ComplEx
and TypeE-ConvE. Further, we feed the predictions back from TypeE-ComplEx (correspondingly,
TypeE-ConvE) over the training set to the PSL-KGI, resulting in additional evidence for inference.
This feedback cycle can be repeated for multiple iterations, although we have observed over various
benchmark datasets that the performance stabilizes within 2 to 3 iterations. Our key findings
reported in this paper are as follows:

(i) Explicit type supervision improves the weighted F1-score of embeddings by up to 9% over those
which do not have type supervision.

(ii) Explicit type supervised models also outperform the implicit type supervised models [Jain et al.,
2018]. The margin of improvement is large when the ontological information is sufficiently rich
to begin with.

(iii) Rich ontological information is a critical ingredient for the performance of TypeE-ConvE and
TypeE-ComplEx, particularly when we consider their ability to remove the noisy triples. We
observed that on datasets like YAGO3-10 and FB15K-237, we improved F1 scores on noisy
triples by 30% to 100%.

We note that, although we have experimented with ConvE and ComplEx, it easy to instantiate
IterefinE to work with other embeddings, which we plan to explore in our future work.

2. Related Work

In this section, we describe how KG refinement is accomplished by methods based on inference
rules and embeddings-based methods. There are other research directions for (partially) solving
the KG refinement problem such as rule induction [Ma et al., 2014], classification with diverse
extractors [Dong et al., 2014], crowdsourcing, etc., (see [Paulheim, 2017] for an overview). While
these works have their own strengths and weaknesses, our focus in this paper is on the use of
ontological rules (exemplified by PSL-KGI) and embeddings (we use ComplEx, ConvE and [Jain
et al., 2018]). Rule induction methods are orthogonal to our work, and may augment or replace the

Iterative Knowledge Graph Refinement with Symbolic and NeuralMethods

set of rules we use. Further, evidence from diverse extractors as in the case of [Dong et al., 2014]
can be incorporated into the PSL-KGI framework in a straightforward manner (see details about
confidence values of triples in the Background section).

2.1 KG Refinement with Ontological Rules

Methods based on Markov-Logic Networks or Probabilistic Soft Logic (PSL), model the KG refine-
ment task as a constrained optimization problem that scores facts in the KG with the help of various
symbolic (logical) rules. An important input to these formulations are the probabilistic sources of
information such as the confidence scores obtained during extraction [Pujara et al., 2013, Jiang et al.,
2012] from multiple sources.

Of these methods, PSL-KGI [Pujara et al., 2013, 2017] is shown not only to perform better with
KG noise and sparsity, but also to be quite scalable. It uses the following sources of information
in addition to the noisy input KG: confidence scores of extractions, a small seed set of manually
labeled correct facts and type labels and ontology information and inference rules.

2.2 Refinement task with KG embeddings

KG embedding methods define a scoring function f to score the plausibility of a triple1 and learn
embeddings in such a way as to maximise the plausibility of the triples that are already present in
the KG [Nickel et al., 2011, Socher et al., 2013, Trouillon et al., 2016].

An important step in learning is the generation of negative samples since the existing triples
are all labeled positive. The negative samples are typically generated by corrupting one or more
components of the triple. With this dataset containing both positive and negative samples, training
can be done for the refinement task with a negative log-likelihood loss function as follows [Trouillon
et al., 2016].

L(G) =
∑

(s,r,o,y)∈G

y log f(s, r, o) + (1− y) log (1− f(s, r, o)) (1)

where (s, r, o) is the relation triple, f is the scoring function, and y denotes whether the triple is given
positive label or negative. Similar to the setting for PSL-KGI, embedding-based methods can also be
used to predict type labels of entities (the typeOf relation). We work with ComplEx [Trouillon et al.,
2016] and ConvE [Dettmers et al., 2018] embeddings which have shown state of the art performance
in many KG prediction tasks.

2.3 Type and Taxonomy Enhanced Embeddings

There are some recent efforts to incorporate type hierarchy information in KG embeddings –e.g.,
TKRL [Xie et al., 2016] and TransC [Lv et al., 2018]. Recently, SimplE+ [Fatemi et al., 2019]
was introduced, which includes taxonomic information –i.e., subtype and subproperty information–
and the authors also show that state-of-the-art embeddings like ComplEx [Trouillon et al., 2016],
SimplE [Kazemi and Poole, 2018], ConvE [Dettmers et al., 2018] cannot enforce subsumption.

Taking a different approach [Jain et al., 2018] propose extending standard KG embeddings with-
out explicit type supervision by representing entities as a two-part vector with one part encoding
only the type information while the other one is a traditional vector embedding of the entity (and
corresponding change to the relation embeddings as well). Specifically it uses the following scoring
function :

f(s, r, o) = σ(st · rh) ∗Y(s, r, o) ∗ σ(ot · rt), (2)

1. See [Wang et al., 2017] for a survey of embedding methods and the many forms the scoring function f can take.

Arora et al.

where st and ot denote the embedding vectors for implicit type label of entities, and rh and rt
denote the implicit type embeddings for domain and range of relation r. Y is the scoring function
used by the underlying embeddings-based method – we experiment with ComplEx and ConvE.

These embeddings enforce type compatibilities during KG link prediction task, and [Jain et al.,
2018] showed nearly 5-8 point improvements in MRR and type F1 scores. In our work, we build
on this idea further by adding another layer of explicitly supervised type vector to learning en-
tity/relation embeddings.

Note, however, that our focus in this paper is not on embeddings that enforce ontological con-
straints, but on improving the KG refinement by combining the strengths of KG embeddings with
methods like PSL-KGI and MLNs which can work with arbitrary (first-order) constraints.

Recently, there has been some work in modeling structural as well as uncertainty information of
relations in the embedding space. [Chen et al., 2019] uses Probabilistic Soft Logic to come up with
plausibility scores for each fact which they train to match with the uncertainty score of seen relation
triplets as well as minimize the plausibility score for relation triplets. However, they do not focus on
the KG refinement task and they also do not investigate how existing Knowledge Graph Embedding
methods can be used in conjunction with this approach to effectively embed Uncertain graphs.
There has also been some research in using rule-based reasoning and KG embeddings together in
an iterative manner in [Zhang et al., 2019]. They achieve improvements in the performance of
link prediction tasks for sparse entities which cannot be effectively modelled by standard embedding
methods. However, at each iteration, they are adding more rules to their database, which makes their
approach less scalable than one proposed in the paper. Since we are continuously removing noise
from Knowledge Graph, thus making the size of the resultant Knowledge Graph stable. Also, the
feedback in their work was rules learned from embedding with a robust pruning strategy. In contrast,
we passed feedback as relation triples along with their predicted score as additional context for the
PSL-KGI model to generate high quality predictions. Finally, we test this feedback in Knowledge
Graph refinement manner where we couple the task of removing noise as well as inferring new rules
together in a coupled manner with both the tasks benefiting from each other.

3. Background

We use the PSL-KGI implementation generously provided by the authors2, that takes as input:

(i) the triples extracted from multiple input sources and confidence values for these triples,

(ii) ontology information, such as sub-class (SUB) and sub-property (RSUB) information; the do-
main and range of relations (DOM, RNG); ”same” entities (SAMEENT), entities and relations
that are mutually exclusive (MUT and RMUT); and inverse relations (INV). We reproduce
the list of information used in [Pujara et al., 2013] in tabular form in Table 1.

(iii) inference rules – specifically, there are 7 general constraints that were first introduced in the
earlier work on Markov Logic Networks (MLN) based work [Jiang et al., 2012]. These rules
are listed in Table 2.

Based on these PSL-KGI defines a PSL program that combines the ontological rules and con-
straints with atoms in the KG. The solution to the PSL program essentially provides most likely
interpretation of the KG, defining a probability distribution over the KG. By appropriately selecting
the threshold on the probability value, it is possible to reject noisy facts. It is also important to
note that PSL-KGI also generates a number of candidate facts that are not originally in the KG by
soft-inference over the ontology and inference rules. While the extraction confidence for a triple may
be high, it is possible for PSL-KGI to output a low score for that triple because of the inference rules.
As a result, PSL-KGI is able to determine correct type labels and expand the seed set iteratively.

2. https://github.com/linqs/psl-examples/tree/master/knowledge-graph-identification

https://github.com/linqs/psl-examples/tree/master/knowledge-graph-identification

Iterative Knowledge Graph Refinement with Symbolic and NeuralMethods

Ontological Information Description

Domain (DOM) Domain of a relation
Range (RNG) Range of a relation
Same Entity (SAMEENT) Helps perform entity resolution by specifying equivalence class of entities
MUT Specifies that 2 entities are mutually exclusive in their type labels
Subclass (SUB) Subsumption of labels
INV Inversely related relations
RMUT Mutually exclusive relations
SUBPROP (RSUB) Subsumption of relations

Table 1: Ontological Information used in PSL-KGI Implementation [Pujara et al., 2013]

Class Ontological Rule

Uncertain Extractions
wCR−T : CANDRELT (E1, E2, R) ⇒ REL(E1, E2, R)

wCL−T : CANDLBLT (E,L) ⇒ LBL(E,L)

Entity Resolution
SAMEENT (E1, E2) ∧ LBL(E1, L) ⇒ LBL(E2, L)

SAMEENT (E1, E2) ∧REL(E1, E,R) ⇒ REL(E2, E,R)
SAMEENT (E1, E2) ∧REL(E,E1, R) ⇒ REL(E,E2, R)

INV INV (R,S) ∧REL(E1, E2, R) ⇒ REL(E2, E1, S)

Selectional Preference
DOM(R,L) ∧REL(E1, E2, R) ⇒ LBL(E1, L)
RNG(R,L) ∧REL(E1, E2, R) ⇒ LBL(E2, L)

Subsumption
SUB(L,P) ∧ LBL(E,L) ⇒ LBL(E,P)

RSUB(R,S) ∧REL(E1, E2, R) ⇒ REL(E1, E2, S)

Mutual Exclusion
MUT (L1, L2) ∧ LBL(E,L1) ⇒ ¬LBL(E,L2)

RMUT (R,S) ∧REL(E1, E2, R) ⇒ ¬REL(E1, E2, S)

Table 2: Ontological Inference Rules used by PSL-KGI [Pujara et al., 2013]

4. Combining PSL-KGI with KG embeddings

Overview

We now present a simple mechanism, partially based on the concept of co-training [Blum and
Mitchell, 1998], to combine the strengths of PSL-KGI and KG embeddings. The mechanism consists
of two stages, as shown in Figure 1. In the first stage, PSL-KGI is used to generate high-quality
type predictions, and in the second stage, an enhanced KG embeddings method, which we term as
TypeE-X (where X is an embeddings method such as ComplEx), takes as input, the type predictions
and relation triples labeled true in the training set. At the end of the second stage, the embeddings
generated are expected to be of higher quality. The feedback to PSL-KGI is completed by passing
the predictions from the KG refinement of TypeE-X back to PSL-KGI which takes them, along with
the original extraction scores, as additional context for predicting relation triples. Note that this
process can be repeated iteratively, allowing the propagation of potentially more context at each
iteration3.

Our observations show that passing all newly predicted triples by TypeE-X back to PSL-KGI as
feedback would make our approach nonscalable for multiple iterations. Therefore, we only add some
of the top most positive and most negative relations so that the size of the KG remains stable without

3. For an algorithmic listing of IterefinE, please refer to Appendix A.3 [Arora et al., 2020]

Arora et al.

PSL-
KGI TypeE-X

IterefinE

TypeE-X
Predictions

Type Predictions

Classified Relation Triples
 

& Inferred New Triples

Predictions on Training Set

Original KG

Filter
(+ve

labelled)

Filter using
t2 and t3

Figure 1: IterefinE: Combining PSL-KGI and embedding model X resulting in TypeE-X model.

sacrificing accuracy. In order to ensure that an optimal number of positive and negative triples are
fed back to PSL-KGI, we calculate separate thresholds for each. First, the classifier threshold
t1 determines which triples are predicted as positive and which are negative. This threshold is
determined by optimizing over a validation set. Second, we divide the set of triples, using t1, into
positive triples, denoted by P1, and negative triples, denoted by N1. Now, we choose two new
thresholds t2 and t3:

t2 = t1 + Φ1 ∗mean(P1)

t3 = t1 − Φ2 ∗mean(N1)
(3)

where mean(X) is the mean score of triples in set X, Φ1 and Φ2 are parameters that can be
tuned. Then we add all relations with predicted probability greater than t2, along with their inferred
probabilities, as a form of positive feedback for our PSL-KGI model of the next iteration. Similarly,
the negative feedback would consist of all relations with predicted probabilities less than t3. We
discuss the impact of these thresholds on the size of the KG and the prediction accuracy in Section
6.4.

Scoring function for TypeE-X

To incorporate the type inferences for entities generated by PSL-KGI in KG embeddings (the second
stage), we modify the typed model [Jain et al., 2018] as follows:

Instead of just using the implicit type embeddings, we concatenate them with embeddings of
explicit types transferred from PSL-KGI. Note that the implicit type embeddings are learned for
each entity or relation, whereas the explicit type embeddings are the same for all entities with the
same type label. The scoring function for extended typed model, TypeE-X, with an underlying
embedding model X is

f(s, r, o) = σ((st‖sl) · (rh‖rdom)) ∗Y(s, r, o) ∗ σ((ot‖ol) · (rt‖rrange)), (4)

where sl denotes the explicit type label assigned to entity s, rdom and rrange provide the explicit
type labels for domain and range of a relation respectively. The type compatibility is enforced by
concatenating, denoted ‖, the two vectors and taking their dot product. In case an explicit type
label for an entity is unknown, we use the UNK embedding as per the convention.

5. Preparing Datasets for Evaluating the KG Refinement Task

Before we present the details of the datasets used in our study, we first present the methodology
followed to prepare them for use in the KG refinement task. As discussed earlier, apart from NELL,

Iterative Knowledge Graph Refinement with Symbolic and NeuralMethods

none of the KG benchmarks contain noise labels, making them unsuitable for evaluating the KG
refinement task. We prepare them as follows:

• We sample a random 25% of all facts (including the typeOf relations) and corrupt them by
randomly changing their subject, relation label or object. Note that this was the same model
followed in an earlier study [Pujara et al., 2017].

• We further refine the noise model by ensuring that half of the corrupted facts have entities that
are type compatible to the relation of the fact. This makes it harder for detecting corrupted
facts simply by using type compatibility checks.

To capture realistic KG refinement settings, we further add extraction scores generated by sam-
pling them from two different normal distributions: N(0.7, 0.2) for facts in the original KG and
N(0.3, 0.2) for added noisy facts [Pujara et al., 2013]. The SAMEENT facts between entities are
generated by calculating the average of the two Jaccard similarity score over sets of relationships
with these pair of entities as head and tail entity respectively – the average score acts as the confi-
dence score of the fact. Finally, for all datasets, the test and validation sets are created by randomly
partitioning the KG. Note that for all datasets the test set also includes the facts that were part of
the original benchmark test collection.

5.1 Datasets

NELL: The NELL subset taken from its 165th iteration [Carlson et al., 2010]) has been used
for the KG refinement task [Pujara et al., 2013, Jiang et al., 2012]. It comes with a rich ontology
from the NELL system, and contains multiple sources of information i.e., a single fact is present
with multiple extraction scores. Since the original dataset does not have validation set, we split the
test set into 2 equal halves preserving the same class balance, and use them as our validation and
test split.

YAGO3-10: YAGO3-10 [Dettmers et al., 2018] is a subset of the YAGO3 [Suchanek et al., 2007]
knowledge graph. It is often used for evaluating the KG completion task. We have augmented it
with ontological facts and entity types derived from YAGO3. Since YAGO3 has a large number of
types, we contract the type hierarchy to make it comparable to other datasets. We linked YAGO
facts directly with the YAGO taxonomy by skipping the rdf:type entities at leaves of taxonomy
(from YAGO simple types) and the first level of YAGO taxonomy. Then all facts upto length 3 in
the hierarchy of taxonomy were included.

FB15K-237: FB15K-237 [Dettmers et al., 2018], another popular benchmark does not have
ontological and type label information. Therefore, we use the type labels for entities from [Xie et al.,
2016] which also provides the domain and range information for relations. The subclass information
is populated by reconstructing the type hierarchy from type label facts. Mutually exclusive labels,
relations and inverse relations are automatically created by mining the KG – e.g. we can find inverse
relations by checking if all reverse edges exists in the KG for a relation.

WN18RR: WN18RR, similar to FB15K-237, does not contain ontological and type information.
We used the synset information obtained from [Villmow, 2018], to assign type labels for entities.
For example, for synset hello.n.01, the type is considered as noun(n). Using an older ontology4 we
derived the rest of ontological information for the dataset.

Table 3 summarizes the size of different KG datasets we use in our evaluation. Table 4 shows
the amount of ontological information for each dataset. NELL and FB15K-237 have reasonably rich
ontological information compared to YAGO3-10 and WN18RR.

4. https://www.w3.org/2006/03/wn/wn20/

Arora et al.

Dataset |E| |R| #triples in train / valid / test

NELL 820K 222 1.02M / 4K / 4K
FB15K-237 14K 238 246K / 27K / 30K
YAGO3-10 123K 38 1.13M / 10K / 10K
WN18RR 40K 12 116K / 6K / 6K

Table 3: Number of entities, relation types and triples in each dataset.

Dataset DOM RNG SUB RSUB MUT RMUT INV SAMEENT

NELL 418 418 288 461 17K 48K 418 8K
FB15K-237 237 237 44K 0 147K 53K 44 20K
YAGO3-10 37 37 828 2 30 870 8 20K
WN18RR 11 11 13 0 0 66 0 20K

Table 4: Number of instances of each ontological component in datasets considered.

6. Experimental Evaluation

We evaluate the performance of TypeE-X models in the KG refinement task, and compare them
with ComplEx [Trouillon et al., 2016] and ConvE [Dettmers et al., 2018], two state-of-the-art KG
embeddings methods, and PSL-KGI. We also use ComplEx and ConvE as base embedding models for
our TypeE-X method to get TypeE-ComplEx and TypeE-ConvE respectively. We use a single hyper-
parameter threshold as the cutoff for classifying a test triple based on the prediction score [Pujara
et al., 2013]. Our experiments were run on Intel(R) Xeon(R) x86-64 machine with 64 CPUs using
1 NVIDIA GTX 1080 Ti GPU. We observe the average running time with TypeE-ComplEx to be
between 25–100 minutes and with TypeE-ConvE to be between 120–420 minutes per iteration. The
increased time observed for TypeE-ConvE experiments is because of the fact that ConvE takes
longer time to train than ComplEx5. The hyper-parameter is tuned on the validation set and used
unchanged for the test set. We use φ1 = 0.5 and φ2 = 0.75 in Equation 3 as these hyperparameters
were found to work across a variety of datasets.
Evaluation Metric: Our main evaluation metric is the weighted F1 (wF1) measure. The reason
for this is that in the KG refinement task, there is an imbalance in the two classes – noisy facts and
correct facts6. Weighted F1 is defined as the individual class F1 score weighted by the number of
instances per class in the test set.

wF1 = w1 ∗ F1(l1) + w0 ∗ F1(l0) (5)

where wk is the fraction of samples with label k (k ∈ {0, 1} in our setting), F1(lk) is the F1 score
computed only for class k.

6.1 Baselines

In addition to the baselines ComplEx, ConvE and PSL-KGI, we compare our method with two other
ensemble methods, described below.

ConvE + ComplEx: In the first stage, instead of using PSL-KGI for predictions, we use ConvE.
These predictions (along with the original KG) are used as input to the second stage which
used ComplEx. Note that this baseline combines to similar methods.

5. Additional scalability experiments are reported in Appendix A.1 [Arora et al., 2020]
6. Noisy facts are much lower in number compared to correct facts.

Iterative Knowledge Graph Refinement with Symbolic and NeuralMethods

Method NELL YAGO3-10 FB15K-237 WN18RR

α - ComplEx 1.0 0.4 0.7 0.3
α - ConvE 1.0 0.4 0.6 0.9

Table 5: Optimal α values obtained based on performance on validation set

Method NELL YAGO3-10 FB15K-237 WN18RR

+ve F1 -ve F1 wF1 +ve F1 -ve F1 wF1 +ve F1 -ve F1 wF1 +ve F1 -ve F1 wF1

ComplEx 0.82 0.58 0.73 0.94 0.43 0.88 0.96 0.4 0.92 0.93 0.26 0.86
ConvE 0.74 0.55 0.67 0.94 0.37 0.87 0.95 0.37 0.90 0.93 0.07 0.84
PSL-KGI 0.85 0.68 0.79 0.91 0.39 0.85 0.92 0.39 0.88 0.91 0.37 0.85

ConvE +ComplEx 0.82 0.58 0.73 0.95 0.43 0.89 0.96 0.39 0.92 0.93 0.15 0.85
α - ComplEx 0.85 0.68 0.79 0.94 0.50 0.89 0.96 0.58 0.93 0.94 0.24 0.87
α - ConvE 0.85 0.68 0.79 0.94 0.41 0.88 0.95 0.47 0.92 0.92 0.34 0.85

TypeE-ComplEx 0.86 0.68 0.79 0.95 0.56 0.91 0.98 0.82 0.97 0.93 0.24 0.85
TypeE-ConvE 0.86 0.67 0.79 0.95 0.47 0.89 0.98 0.77 0.96 0.94 0.31 0.87

Table 6: Overall performance of all models in KG refinement task using the best wF1 measure
obtained in first 6 iterations. +ve F1 indicate the F1 score for correct facts and -ve F1
indicate F1 score for noisy facts.

α -model: This baseline is a simple score combination of two different methods (in contrast to
the two stages with iterations of our method). We use the setting introduced in R-GCN
(Schlichtkrull et al. [2018]) to combine scores of KG embeddings and PSL-KGI methods using
the equation given below:

f(h, r, t)α−model = α ∗ f(h, r, t)PSL−KGI + (1− α) ∗ f(h, r, t)model (6)

Here the hyperparameter α is chosen based on the validation set. The optimal alpha value
obtained are reported in table 5 and model could be either ComplEx or ConvE.

6.2 Accuracy of TypeE-X

Our main results are shown in Table 6. We include separate F1 measures for the two classes as well
as the weighted F1 measure. This helps us analyse how well each method performs in identifying the
correct (+ve) and noisy facts (-ve). From the table, we observe that our proposed combined methods
TypeE-X consistently outperform the KG embeddings methods as well as the baseline PSL-KGI.
Note that PSL-KGI is a formidable baseline over NELL since it contains a rich ontology.

For the positive class (correct facts), our method performs slightly better than the second best
competitor, while for the negative class (noisy facts), both our methods show substantial improve-
ments for YAGO3-10 and FB15K-237 datasets, while performing on par with PSL-KGI for NELL.
The only dataset on which our methods fail to beat the PSL-KGI baseline is WN18RR and this is
because of its very limited ontology (please refer to Table 4). Further, for all datasets our TypeE-X
methods have the best wF1 numbers. We have therefore validated our initial hypothesis that onto-
logical information of high quality is tremendously helpful in improving the quality of embeddings.

Comparison with Baseline Ensemble Models. From Table 6, we see that TypeE-X models
perform much better than ConvE +ComplEx. We hypothesize that this is because PSL-KGI and
embeddings methods are complementary in nature. That is, PSL-KGI is better at removing noisy
facts, while embeddings methods are better at inferring new facts. In contrast, when we combine

Arora et al.

Dataset [Jain et al., 2018] TypeE-ComplEx

NELL 0.60 0.71
YAGO3-10 0.88 0.92
FB15K-237 0.93 0.97
WN18RR 0.85 0.85

Table 7: Weighted F1 scores on relation triples in the test set by [Jain et al., 2018] and TypeE-
ComplEx.

ComplEx and ConvE, the resultant model cannot incorporate rich ontological information and,
hence, cannot effectively remove noise from the KG. This intuition is confirmed by looking at low
-ve F1 of these methods when compared to TypeE-X models in Table 67.

We also observe that α-models perform better than the corresponding individual methods, but
not better than our TypeE-X methods. This observation shows that our methodology of combining
the two approaches in a pipeline fashion is more powerful than a simple weighted combination of
these methods. The reason is that, in our method, each of the individual methods benefits from the
strength of the other method since the results of one are used as input for the other. As a result,
both these methods gain from each other’s performance. Further, we list the computed alpha values
that showed the best validation performance in Table 5. We observe that the alpha values are mostly
tilted towards the better-performing model.

Comparison with unsupervised type inference. In Table 7 we compare the performance
of TypeE-ComplEx which has explicit type supervision with the unsupervised type-compatible
embeddings-based method proposed by Jain et al. [Jain et al., 2018]. As these results indicate,
while explicitly ensuring type compatibility helps to improve performance, adding type inferences
from PSL-KGI to TypeE-ComplEx significantly improves the relation scores, improving weighted
F1 up to 18% (over NELL).

Anecdotes. Looking at the example predictions by both TypeE-ComplEx and ComplEx on YAGO3-
10, we observed that TypeE-ComplEx is able to correctly identify simple noisy facts like 〈Leinster Rugby,

hasGender, Republic of Ireland〉 , where there is a clear type incompatibility, which ComplEx is
unable to identify. Further TypeE-ComplEx is able to identify noisy facts such as 〈Richard Appleby,

playsFor, Sporting Kansas City〉, with type compatible entities, by finding the reasoning context
that connect Richard Appleby with football teams of UK and not US.

6.3 Analysis of Feedback Iterations

We have already shown in Table 6 that our TypeE-X methods output higher quality predictions
compared to the other baselines. In this section, we analyse the conditions under which multiple
iterations can improve the quality of predictions.

Figure 2 shows how the wF1 values of our TypeE-X methods change over six feedback iterations.
Recall from Figure 1 that each iteration involves adding high quality tuples from PSL-KGI inferences
to TypeE-X and feeding back high quality tuples from TypeE-X predictions back to PSL-KGI.

The main observation we make in Figure 2 is that the accuracy of predictions on datasets with
a rich and good quality ontology (NELL, FB15K-237 and YAGO3-10) do not do not vary much. In
fact, for NELL and YAGO3-10 the accuracy actually increases in multiple iterations (best accuracy
for NELL is in the 6th iteration, and for YAGO3-10 it is in the 3rd), while for FB15K-237, there is
only a small decrease over the first and last iterations.

7. For more observations regarding noise removal, please refer to Appendix A.2 [Arora et al., 2020]

Iterative Knowledge Graph Refinement with Symbolic and NeuralMethods

Figure 2: Graph showing the wF1 scores (y-axis) obtained at different feedback iterations (x-axis).

Figure 3: Variation of size (left) and variation in wF1 (right) with percentage of top positive and
negative triples for TypeE-ComplEx after the first feedback iteration on FB15K-237.

In contrast, for the WN18RR dataset, the accuracy degrades quite rapidly after the first iteration.
The reason is that this dataset does not have even a moderate number of ontological rules that are
of high quality8. This results in lower quality inference from PSL-KGI which feeds into the TypeE-X
method. This results in lower quality predictions from TypeE-X, which is then fed back into PSL-
KGI. Thus a cascading effect of low quality predictions from each method results in a rapid drop in
prediction quality.

6.4 Impact of Hyper-parameters (t1 and t2)

The threshold parameters t1 and t2 determine how many positive and negative triples are fed back
to PSL-KGI from TypeE-X. The number of such feedback triples has an impact on both, the size of
the KG as well as the accuracy of predictions (because PSL-KGI now performs inference using the
new triples that have been fed back). Figure 3 shows, for FB15K-237, two heatmaps which quantify
the impact of t1 and t2. In the left heatmap, the impact of adding the top-k percent of positive
and negative tuples on the size of the KG is shown9 and in the right heatmap, the impact on the
accuracy is shown. We observe that by adding very few positive and negative tuples, with slightly
more positive tuples than negative tuples as feedback is sufficient to obtain the best accuracy, while
ensuring that the KG size does not explode.

8. Recall from Section 5 that the ontology rules were obtained from [Villmow, 2018] and an older ontology.

9. The size is normalized:
(newsize−originalsize)

(originalsize)

Arora et al.

Method NELL FB15K-237

+ve F1 -ve F1 wf1 +ve F1 -ve F1 wF1

All rules 0.86 0.68 0.79 0.98 0.80 0.97
No rules 0.82 0.58 0.73 0.96 0.4 0.92

w/o DOM 0.85 (-0.01) 0.65 (-0.03) 0.78 (-0.01) 0.98 (0.00) 0.76 (-0.04) 0.96 (-0.01)
w/o SAMEENT 0.85 (-0.01) 0.67 (-0.01) 0.79 (0.00) 0.98 (0.00) 0.80 (0.00) 0.97 (0.00)
w/o MUT 0.85 (-0.01) 0.68 (0.00) 0.79 (0.00) 0.98 (0.00) 0.80 (0.00) 0.97 (0.00)
w/o RNG 0.82 (-0.04) 0.65 (-0.03) 0.76 (-0.03) 0.97 (-0.01) 0.72 (-0.08) 0.95 (-0.02)
w/o SUB 0.84 (-0.02) 0.63 (-0.05) 0.77 (-0.02) 0.98 (0.00) 0.81 (0.01) 0.97 (0.00)
w/o RMUT 0.86 (0.00) 0.67 (-0.01) 0.79 (0.00) 0.98 (0.00) 0.80 (0.00) 0.97 (0.00)
w/o INV 0.85 (-0.01) 0.66 (-0.02) 0.78 (-0.01) 0.98 (0.00) 0.81 (0.01) 0.97 (0.00)
w/o RSUB 0.86 (0.00) 0.67 (-0.01) 0.79 (0.00) 0.98 (0.00) 0.80 (0.00) 0.97 (0.00)

ONLY DOM+RNG 0.84 (-0.02) 0.65 (-0.03) 0.77 (-0.02) 0.98 (0.00) 0.80 (0.00) 0.97 (0.00)
ONLY DOM 0.84 (-0.02) 0.64 (-0.04) 0.77 (-0.02) 0.98 (0.00) 0.73 (-0.07) 0.96 (-0.01)
ONLY RNG 0.83 (-0.03) 0.63 (-0.05) 0.76 (-0.03) 0.98 (0.00) 0.76 (-0.04) 0.96 (-0.01)
ONLY SAMEENT 0.83 (-0.03) 0.63 (-0.05) 0.76 (-0.03) 0.98 (0.00) 0.73 (-0.07) 0.96 (-0.01)
ONLY MUT 0.83 (-0.03) 0.63 (-0.05) 0.76 (-0.03) 0.98 (0.00) 0.73 (-0.07) 0.96 (-0.01)
ONLY SUB 0.82 (-0.04) 0.60 (-0.08) 0.74 (-0.05) 0.98 (0.00) 0.74 (-0.06) 0.96 (-0.01)
ONLY RMUT 0.83 (-0.03) 0.62 (-0.06) 0.76 (-0.03) 0.98 (0.00) 0.76 (-0.04) 0.96 (-0.01)
ONLY INV 0.84 (-0.02) 0.63 (-0.05) 0.76 (-0.03) 0.98 (0.00) 0.73 (-0.07) 0.96 (-0.01)
ONLY RSUB 0.83 (-0.03) 0.62 (-0.06) 0.76 (-0.03) - - -

Table 8: Performance with/without different ontology components in KG refinement for TypeE-
ComplEx. Results are for FB15K-237 at 2nd epoch and NELL at 3rd epoch.

6.5 Ablation Study

We performed an ablation study to determine what kind of ontology rules were most useful in
increasing prediction accuracy. The results for two datasets, NELL and FB15K-237 are shown in
Figure 8. From the table, we observe that it is the Subclass, Domain and Range rules that are the
most important. Clearly these rules are most useful in correctly predicting types, which in turn are
crucial for the accuracy of the TypeE-X methods.

Further, as these results show, none of the individual ontological components alone show per-
formance comparable to using all the components (and thus all the rules) in the PSL-KGI phase
of IterefinE. Although positive class performance over FB15K-237 remains unchanged when using
any one ontological component, the performance over negative classes deteriorates significantly over
using all the components. Thus, we argue that our proposal of using as much ontological information
available in a KG is consistently superior for the KG refinement task.

7. Conclusion and Future work

We considered the KG refinement task and explored the crucial role played by ontology and inference
rules on the performance of probabilistic rule based methods like PSL-KGI [Pujara et al., 2013]. We
present an embedding framework called IterefinE that combines the PSL-KGI and type-supervised
KG embeddings through iterative feedback. As a result IterefinE shows an overall increase in KG
refinement performance over all datasets considered.

For future work, we plan to study approaches to train the entire pipeline end to end, thus
increasing efficacy of our approach. Further we also plan to incorporate the KG data augmentation
techniques to model richer context while training embeddings.

Iterative Knowledge Graph Refinement with Symbolic and NeuralMethods

References

Siddhant Arora, Srikanta Bedathur, Maya Ramanath, and Deepak Sharma. IterefinE: Iterative KG
refinement embeddings using symbolic knowledge. CoRR, abs/2006.04509, 2020.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Eleventh
COLT conference on Computational learning theory. ACM, 1998.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka, and Tom M
Mitchell. Toward an architecture for never-ending language learning. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

Xuelu Chen, Muhao Chen, Weijia Shi, Yizhou Sun, and Carlo Zaniolo. Embedding uncertain knowl-
edge graphs. In Thirty-Third AAAI conference on Artificial Intelligence, 2019.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to proba-
bilistic knowledge fusion. In Twentieth ACM SIGKDD conference on Knowledge discovery and
data mining, 2014.

Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved Knowledge Graph Embedding
Using Background Taxonomic Information. In Thirty-Third AAAI conference on Artificial Intel-
ligence, 2019.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge graphs
and logical rules. In 2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2016.

Prachi Jain, Pankaj Kumar, Soumen Chakrabarti, et al. Type-sensitive knowledge base inference
without explicit type supervision. In 56th Annual Meeting of the Association for Computational
Linguistics (ACL) (Volume 2: Short Papers), 2018.

Shangpu Jiang, Daniel Lowd, and Dejing Dou. Learning to refine an automatically extracted knowl-
edge base using markov logic. In 2012 IEEE 12th International Conference on Data Mining
(ICDE), 2012.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems (NIPS) 31. Curran Associates, Inc., 2018.

Xin Lv, Lei Hou, Juanzi Li, and Zhiyuan Liu. Differentiating concepts and instances for knowledge
graph embedding. In 2018 Conference on Empirical Methods in Natural Language Processing,
2018.

Yanfang Ma, Huan Gao, Tianxing Wu, and Guilin Qi. Learning disjointness axioms with association
rule mining and its application to inconsistency detection of linked data. In Chinese Semantic
Web and Web Science (CSWSC) Conference, 2014.

Pasquale Minervini, Luca Costabello, Emir Muñoz, Vı́t Novácek, and Pierre-Yves Vandenbussche.
Regularizing knowledge graph embeddings via equivalence and inversion axioms. In Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD, 2017.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, and Sebastian Riedel. Towards neural theo-
rem proving at scale. CoRR, abs/1807.08204, 2018.

Arora et al.

Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. Scalable knowledge harvesting
with high precision and high recall. In Forth International Conference on Web Search and Web
Data Mining, WSDM, 2011.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learn-
ing on multi-relational data. In 28th International Conference on Machine Learning,(ICML),
volume 11, 2011.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing YAGO: scalable machine
learning for linked data. In 21st World Wide Web Conference (WWW), 2012.

Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods.
Semantic web, 8(3):489–508, 2017.

Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph identification. In Inter-
national Semantic Web Conference (ISWC). Springer, 2013.

Jay Pujara, Eriq Augustine, and Lise Getoor. Sparsity and noise: Where knowledge graph em-
beddings fall short. In 2017 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2017.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European Semantic
Web Conference (ESWC), 2018.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In Advances in neural information processing
systems (NIPS), 2013.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge.
In 16th World Wide Web Conference (WWW). ACM, 2007.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In 33nd International Conference on Machine Learn-
ing,(ICML), 2016.

Johannes Villmow. Transforming wn18 / wn18rr back to text. https://github.com/villmow/datasets
knowledge embedding, 2018.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):
2724–2743, 2017.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Representation learning of knowledge graphs with
hierarchical types. In Twenty-Fifth IJCAI Conference on Artificial Intelligence, 2016.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein,
and Huajun Chen. Iteratively learning embeddings and rules for knowledge graph reasoning. In
28th World Wide Web Conference (WWW), 2019.

https://github.com/villmow/datasets_knowledge_embedding
https://github.com/villmow/datasets_knowledge_embedding

	Introduction
	Contributions

	Related Work
	KG Refinement with Ontological Rules
	Refinement task with KG embeddings
	Type and Taxonomy Enhanced Embeddings

	Background
	Combining PSL-KGI with KG embeddings
	Preparing Datasets for Evaluating the KG Refinement Task
	Datasets

	Experimental Evaluation
	Baselines
	Accuracy of TypeE-X
	Analysis of Feedback Iterations
	Impact of Hyper-parameters (t1 and t2)
	Ablation Study

	Conclusion and Future work

