
Published as a conference paper at ICLR 2022

A FAST AND ACCURATE SPLITTING METHOD FOR OP-
TIMAL TRANSPORT: ANALYSIS AND IMPLEMENTATION

Vien V. Mai ∗ Jacob Lindbäck † Mikael Johansson †

ABSTRACT

We develop a fast and reliable method for solving large-scale optimal transport
(OT) problems at an unprecedented combination of speed and accuracy. Built on
the celebrated Douglas-Rachford splitting technique, our method tackles the orig-
inal OT problem directly instead of solving an approximate regularized problem,
as many state-of-the-art techniques do. This allows us to provide sparse trans-
port plans and avoid numerical issues of methods that use entropic regularization.
The algorithm has the same cost per iteration as the popular Sinkhorn method,
and each iteration can be executed efficiently, in parallel. The proposed method
enjoys an iteration complexity O(1/ε) compared to the best-known O(1/ε2) of
the Sinkhorn method. In addition, we establish a linear convergence rate for our
formulation of the OT problem. We detail an efficient GPU implementation of
the proposed method that maintains a primal-dual stopping criterion at no extra
cost. Substantial experiments demonstrate the effectiveness of our method, both
in terms of computation times and robustness.

1 INTRODUCTION

We study the discrete optimal transport (OT) problem:
minimize

X≥0
〈C,X〉

subject to X1n = p and X>1m = q,
(1)

where X ∈ Rm×n+ is the transport plan, C ∈ Rm×n+ is the cost matrix, and p ∈ Rm+ and q ∈ Rn+
are two discrete probability measures. OT has a rich history in mathematics and operations research
dating back to at least the 18th century. By exploiting geometric properties of the underlying ground
space, OT provides a powerful and flexible way to compare probability measures. It has quickly
become a central topic in machine learning and has found applications in countless learning tasks,
including deep generative models (Arjovsky et al., 2017), domain adaptation (Courty et al., 2016),
and inference of high-dimensional cell trajectories in genomics (Schiebinger et al., 2019); we refer
to Peyré & Cuturi (2019) for a more comprehensive survey of OT theory and applications. However,
the power of OT comes at the price of an enormous computational cost for determining the optimal
transport plan. Standard methods for solving linear programs (LPs) suffer from a super-linear time
complexity in term of the problem size. Such methods are also very challenging to parallelize on
modern processing hardware. Therefore, there has been substantial research in developing new
efficient methods for OT. This paper advances the state of the art in this direction.

1.1 RELATED WORK

Below we review some of the topics most closely related to our work.

Sinkhorn method The Sinkhorn (SK) method (Cuturi, 2013) aims to solve an approximation of
(1) in which the objective is replaced by a regularized version of the form〈C,X〉 − ηH(X). Here,
H(X) = −

∑
ij Xij log(Xij) is an entropy function and η > 0 is a regularization parameter. The

Sinkhorn method defines the quantity K = exp(−C/η) and repeats the following steps

uk = p/(Kvk−1) and vk = q/(K>uk),

∗Ericsson AB, vien.mai@ericsson.com
†KTH Royal Institute of Technology, {jlindbac,mikaelj}@kth.se

1

Published as a conference paper at ICLR 2022

until ‖uk � (Kvk)− p‖+‖vk−1 � (K>uk)− q‖ becomes small, then returns diag(uk)K diag(vk).
The division (/) and multiplication (�) operators between two vectors are to be understood entry-
wise. Each SK iteration is built from matrix-vector multiplies and element-wise arithmetic opera-
tions, and is hence readily parallelized on multi-core CPUs and GPUs. However, due to the entropic
regularization, SK suffers from numerical issues and can struggle to find even moderately accurate
solutions. This problem is even more prevalent in GPU implementations as most modern GPUs are
built and optimized for single-precision arithmetic (Kirk & Wen-Mei, 2016; Cheng et al., 2014).
Substantial care is therefore needed to select an appropriate η that is small enough to provide a
meaningful approximation, and large enough to avoid numerical issues. In addition, the entropy
term enforces a dense solution, which can be undesirable when the optimal transportation plan itself
is of interest (Blondel et al., 2018). We mention that there has been substantial research in improving
the performance of SK (Alaya et al., 2019; Altschuler et al., 2017; Blondel et al., 2018; Lin et al.,
2019). Most of these contributions improve certain aspects of SK: some result in more stable but
much slower methods, while others allow to produce sparse solutions but at a much higher cost per
iteration. Some of these sophisticated changes make parallelization challenging due to the many
branching conditions that they introduce.

Operator splitting solvers for general LP With a relatively low per-iteration cost and the ability
to exploit sparsity in the problem data, operator splitting methods such as Douglas-Rachford split-
ting (Douglas & Rachford, 1956) and ADMM (Gabay & Mercier, 1976) have gained widespread
popularity in large-scale optimization. Such algorithms can quickly produce solutions of moder-
ate accuracy and are the engine of several successful first-order solvers (O’donoghue et al., 2016;
Stellato et al., 2020; Garstka et al., 2021). As OT can be cast as an LP, it can, in principle, be
solved by these splitting-based solvers. However, there has not been much success reported in this
context, probably due to the memory-bound nature of large-scale OTs. For OTs, the main bot-
tleneck is not floating-point computations, but rather time-consuming memory operations on large
two-dimensional arrays. Even an innocent update like X ← X − C is more expensive than the
two matrix-vector multiplies in SK. To design a high-performance splitting method, it is thus crucial
to minimize the memory operations associated with large arrays. In addition, since most existing
splitting solvers target general LPs, they often solve a linear system at each iteration, which is pro-
hibitively expensive for many OT applications.

Convergence rates of DR for LP Many splitting methods, including Douglas-Rachford, are
known to converge linearly under strong convexity (see e.g. Giselsson & Boyd (2016)). Recently,
it has been shown that algorithms based on DR/ADMM often enjoy similar convergence proper-
ties also in the absence of strong convexity. For example, Liang et al. (2017) derived local linear
convergence guarantees under mild assumptions; Applegate et al. (2021) established global linear
convergence for Primal-Dual methods for LPs using restart strategies; and Wang & Shroff (2017) es-
tablished linear convergence for an ADMM-based algorithm on general LPs. Yet, these frameworks
quickly become intractable on large OT problems, due to the many memory operations required.

1.2 CONTRIBUTIONS

We demonstrate that DR splitting, when properly designed and implemented, can solve large-scale
OT problems reliably and quickly, while retaining the excellent memory footprint and parallelization
properties of the Sinkhorn method. Specifically, we make the following contributions:

• We develop a DR splitting algorithm that solves the original OT directly, avoiding the numerical
issues of SK and forgoing the need for solving linear systems of general solvers. We perform
simplifications to eliminate variables so that the final algorithm can be executed with only one
matrix variable, while maintaining the same degree of parallelization. Our method implicitly
maintains a primal-dual pair, which facilitates a simple evaluation of stopping criteria.

• We derive an iteration complexity O(1/ε) for our method. This is a significant improvement
over the best-known estimate O(1/ε2) for the Sinkhorn method (cf. Lin et al. (2019)). We also
provide a global linear convergence rate that holds independently of the initialization, despite the
absence of strong convexity in the OT problem.

• We detail an efficient GPU implementation that fuses many immediate steps into one and per-
forms several on-the-fly reductions between a read and write of the matrix variable. We also show
how a primal-dual stopping criterion can be evaluated at no extra cost. The implementation is

2

Published as a conference paper at ICLR 2022

available as open source and gives practitioners a fast and robust OT solver also for applications
where regularized OT is not suitable.

As a by-product of solving the original OT problem, our approximate solution is guaranteed to be
sparse. Indeed, it is known that DR can identify an optimal support in a finite time, even before
reaching a solution Iutzeler & Malick (2020). To avoid cluttering the presentation, we focus on
the primal OT, but note that the approach applies equally well to the dual form. Moreover, our
implementation is readily extended to other splitting schemes (e.g. Chambolle & Pock (2011)).

2 BACKGROUND

Notation For any x, y ∈ Rn, 〈x, y〉 is the Euclidean inner product of x and y, and ‖·‖2 denotes
the `2-norm. For matrices X,Y ∈ Rm×n, 〈X,Y 〉 = tr(X>Y) denotes their inner product and
‖·‖F =

√
〈·, ·〉 is the the induced Frobenius norm. We use ‖·‖ to indicate either ‖·‖2 or ‖·‖F.

For a closed and convex set X , the distance and the projection map are given by dist(x,X) =
minz∈X ‖z − x‖ and PX (x) = argminz∈X ‖z − x‖, respectively. Further, we denote the proximal
operator of a closed convex function f by proxρf (x) = argminz f(z) + 1

2ρ‖z − x‖
2, ρ > 0. The

Euclidean projection of x ∈ Rn onto the nonnegative orthant is denoted by [x]+ = max(x, 0), and
∆n = {x ∈ Rn+ :

∑n
i=1 xi = 1} is the (n− 1) dimensional probability simplex.

OT and optimality conditions Let e = 1n and f = 1m, and consider the linear mapping

A : Rm×n → Rm+n : X 7→ (Xe,X>f),

and its adjoint A∗ : Rm+n → Rm×n : (y, x) 7→ ye> + fx>. The projection onto the range of A
is PranA((y, x)) = (y, x) − α(f,−e), where α = (f>y − e>x)/(m + n) (Bauschke et al., 2021).
With b = (p, q) ∈ Rm+n, Problem (1) can be written as a linear program on the form

minimize
X∈Rm×n

〈C,X〉 subject to A(X) = b, X ≥ 0. (2)

Let (µ, ν) ∈ Rm+n be the dual variable associated the affine constraint in (2). Then, using the
definition of A∗, the dual problem of (2), or equivalently of (1), reads

maximize
µ,ν

p>µ+ q>ν subject to µe> + fν> ≤ C. (3)

OT is a bounded program and always admits a feasible solution. It is thus guaranteed to have an
optimal solution, and the optimality conditions can be summarized as follows.

Proposition 1. A pairX and (µ, ν) are primal and dual optimal if and only if: (i)Xe = p, X>f =
q, X ≥ 0, (ii) µe> + fν> − C ≤ 0, (iii) 〈X,C − µe> − f>ν〉 = 0.

These conditions mean that: (i) X is primal feasible; (ii) µ, ν are dual feasible, and (iii) the duality
gap is zero 〈C,X〉 = p>µ + q>ν, or equivalently, complementary slackness holds. Thus, solving
the OT problem amounts to (approximately) finding such a primal-dual pair. To this end, we rely on
the celebrated Douglas-Rachford splitting method (Lions & Mercier, 1979; Eckstein & Bertsekas,
1992; Fukushima, 1996; Bauschke & Combettes, 2017).

Douglas-Rachford splitting Consider composite convex optimization problems on the form

minimize
x∈Rn

f(x) + g(x), (4)

where f and g are proper closed and convex functions. To solve Problem (4), the DR splitting
algorithm starts from y0 ∈ Rn and repeats the following steps:

xk+1 = proxρf (yk) , zk+1 = proxρg (2xk+1 − yk) , yk+1 = yk + zk+1 − xk+1, (5)

where ρ > 0 is a penalty parameter; proxρf (·) and proxρg (·) are the proximal operator of f and g,
respectively. Procedure (5) can be viewed as a fixed-point iteration yk+1 = T (yk) for the mapping

T (y) = y + proxρg
(
2proxρf (y)− y

)
− proxρf (y) . (6)

3

Published as a conference paper at ICLR 2022

The DR iterations (5) can also be derived from the ADMM method applied to an equivalent problem
to (4) (see, Appendix C). Indeed, they are both special instances of the classical proximal point
method in Rockafellar (1976). As for convergence, Lions & Mercier (1979) showed that T is a
firmly-nonexpansive mapping, from which they obtained convergence of yk. Moreover, the sequence
xk is guaranteed to converge to a minimizer of f + g (assuming a minimizer exists) for any choice
of ρ > 0. In particular, we have the following general convergence result, whose proof can be found
in Bauschke & Combettes (2017, Corollary 28.3).
Lemma 2.1. Consider the composite problem (4) and its Fenchel–Rockafellar dual defined as

maximize
u∈Rn

−f∗(−u)− g∗(u). (7)

Let P? and D? be the sets of solutions to the primal (4) and dual (7) problems, respectively. Let
xk, yk, and zk be generated by procedure (5) and let uk := (yk−1 − xk)/ρ. Then, there exists
y? ∈ Rn such that yk → y?. Setting x? = proxρf (y?) and u? = (y? − x?)/ρ, then it holds that (i)
x? ∈ P? and u? ∈ D?; (ii) xk − zk → 0, xk → x? and zk → x?; (iii) uk → u?.

3 DOUGLAS-RACHFORD SPLITTING FOR OPTIMAL TRANSPORT

To efficiently apply DR to OT, we need to specify the functions f and g as well as how to evaluate
their proximal operations. We begin by introducing a result for computing the projection onto the
set of real-valued matrices with prescribed row and column sums (Romero, 1990; Bauschke et al.,
2021).
Lemma 3.1. Let e = 1n and f = 1m. Let p ∈ ∆m and q ∈ ∆n. Then, the set X defined by:

X :=
{
X ∈ Rm×n

∣∣Xe = p and X>f = q
}

is non-empty, and for every given X ∈ Rm×n, we have

PX (X) = X − 1

n

(
(Xe− p) e> − γfe>

)
− 1

m

(
f(X>f − q)> − γfe>

)
,

where γ = f> (Xe− p) /(m+ n) = e>
(
X>f − q

)
/(m+ n).

The lemma follows immediately from Bauschke et al. (2021, Corollary 3.4) and the fact that (p, q) =
PranA((p, q)). It implies that PX (X) can be carried out by basic linear algebra operations, such as
matrix-vector multiplies and rank-one updates, that can be effectively parallelized.

3.1 ALGORITHM DERIVATION

Our algorithm is based on re-writing (2) on the standard form for DR-splitting (4) using a carefully
selected f and g that ensures a rapid convergence of the iterates and an efficient execution of the
iterations. In particular, we propose to select f and g as follows:

f(X) = 〈C,X〉+ IRm×n
+

(X) and g(X) = I{Y :A(Y)=b}(X). (8)

By Lemma 3.1, we readily have the explicit formula for the proximal operator of g, namely,
proxρg (·) = PX (·). The proximal operator of f can also be evaluated explicitly as:

proxρf (X) = PRm×n
+

(X − ρC) = [X − ρC]+.

The Douglas-Rachford splitting applied to this formulation of the OT problem then reads:

Xk+1 = [Yk − ρC]+, Zk+1 = PX (2Xk+1 − Yk), Yk+1 = Yk + Zk+1 −Xk+1. (9)

Despite their apparent simplicity, the updates in (9) are inefficient to execute in practice due to the
many memory operations needed to operate on the large arrays Xk, Yk, Zk and C. To reduce the
memory access, we will now perform several simplifications to eliminate variables from (9). The
resulting algorithm can be executed with only one matrix variable while maintaining the same degree
of parallelization.

We first note that the linearity of PX (·) allows us to eliminate Z, yielding the Y -update

Yk+1 = Xk+1 − n−1
(
2Xk+1e− Yke− p− γkf

)
e> −m−1f

(
2X>k+1f − Y >k f − q − γke

)>
,

4

Published as a conference paper at ICLR 2022

Algorithm 1 Douglas-Rachford Splitting for Optimal Transport (DROT)

Input: OT(C, p, q), initial point X0, penalty parameter ρ
1: φ0 = 0, ϕ0 = 0
2: a0 = X0e− p, b0 = X>0 f − q, α0 = f>a0/(m+ n)
3: for k = 0, 1, 2, . . . do
4: Xk+1 =

[
Xk + φke

> + fϕ>k − ρC
]
+

5: rk+1 = Xk+1e− p, sk+1 = X>k+1f − q, βk+1 = f>rk+1/(m+ n)
6: φk+1 = (ak − 2rk+1 + (2βk+1 − αk)f) /n
7: ϕk+1 = (bk − 2sk+1 + (2βk+1 − αk)e) /m
8: ak+1 = ak − rk+1, bk+1 = bk − sk+1, αk+1 = αk − βk+1

9: end for
Output: XK

where γk = f> (2Xk+1e− Yke− p) /(m + n) = e>
(
2X>k+1f − Y >k f − q

)
/(m + n). We also

define the following quantities that capture how Yk affects the update of Yk+1

ak = Yke− p, bk = Y >k f − q, αk = f>ak/(m+ n) = e>bk/(m+ n).

Similarly, for Xk, we let:

rk = Xke− p, sk = X>k f − q, βk = f>rk/(m+ n) = e>sk/(m+ n).

Recall that the pair (rk, sk) represents the primal residual at Xk. Now, the preceding update can be
written compactly as

Yk+1 = Xk+1 + φk+1e
> + fϕ>k+1, (10)

where

φk+1 = (ak − 2rk+1 + (2βk+1 − αk)f) /n

ϕk+1 = (bk − 2sk+1 + (2βk+1 − αk)e) /m.

We can see that the Y -update can be implemented using 4 matrix-vector multiples (for computing
ak, bk, rk+1, sk+1), followed by 2 rank-one updates. As a rank-one update requires a read from
an input matrix and a write to an output matrix, it is typically twice as costly as a matrix-vector
multiply (which only writes the output to a vector). Thus, it would involve 8 memory operations of
large arrays, which is still significant.

Next, we show that the Y -update can be removed too. Noticing that updating Yk+1 from Yk and
Xk+1 does not need the full matrix Yk, but only the ability to compute ak and bk. This allows us
to use a single physical memory array to represent both the sequences Xk and Yk. Suppose that we
overwrite the matrix Xk+1 as:

Xk+1 ← Xk+1 + φk+1e
> + fϕ>k+1,

then after the two rank-one updates, the X-array holds the value of Yk+1. We can access the actual
X-value again in the next update, which now reads: Xk+2 ←

[
Xk+1 − ρC

]
+

. It thus remains
to show that ak and bk can be computed efficiently. By multiplying both sides of (10) by e and
subtracting the result from p, we obtain

Yk+1e− p = Xk+1e− p+ φk+1e
>e+ (ϕ>k+1e)f.

Since e>e = n and (bk − 2sk+1)>e = (m + n)(αk − 2βk+1), it holds that (ϕ>k+1e)f = (αk −
2βk+1)f . We also have φk+1e

>e = ak − 2rk+1 + (2βk+1 − αk)f . Therefore, we end up with an
extremely simple recursive form for updating ak:

ak+1 = ak − rk+1.

Similarly, we have bk+1 = bk − sk+1 and αk+1 = αk − βk+1. In summary, the DROT method can
be implemented with a single matrix variable as summarized in Algorithm 1.

5

Published as a conference paper at ICLR 2022

Stopping criteria It is interesting to note that while DROT directly solves to the primal prob-
lem (1), it maintains a pair of vectors that implicitly plays the role of the dual variables µ and ν in
the dual problem (3). To get a feel for this, we note that the optimality conditions in Proposition 1
are equivalent to the existence of a pair X? and (µ?, ν?) such that

(X?e,X?>f) = (p, q) and X? =
[
X? + µ?e> + fν?> − C

]
+
.

Here, the later condition encodes the nonnegativity constraint, the dual feasibility, and the zero
duality gap. The result follows by invoking Deutsch (2001, Theorem 5.6(ii)) with the convex cone
C = Rm×n+ , y = X? ∈ C and z = µ?e>+ fν?>−C ∈ C◦. Now, compared to Step 4 in DROT, the
second condition above suggests that φk/ρ and ϕk/ρ are such implicit variables. To see why this is
indeed the case, let Uk = (Yk−1 −Xk)/ρ. Then it is easy to verify that

(Zk −Xk)/ρ = (Xk − Yk−1 + φke
> + fϕ>k)/ρ = −Uk + (φk/ρ)e> + f(ϕk/ρ)>.

By Lemma 2.1, we have Zk −Xk → 0 and Uk → U? ∈ Rm×n, by which it follows that

(φk/ρ)e> + f(ϕk/ρ)> → U?.

Finally, by evaluating the conjugate functions f∗ and g∗ in Lemma 2.1, it can be shown that U?

must have the form µ?e> + fν?>, where µ? ∈ Rm and ν? ∈ Rn satisfying µ?e> + fν?> ≤ C;
see Appendix D for details. With such primal-dual pairs at our disposal, we can now explicitly
evaluate their distance to the set of solutions laid out in Proposition 1 by considering: rprimal =

(‖rk‖2 + ‖sk‖2)1/2, rdual = ‖[(φk/ρ)e> + f(ϕk/ρ)> − C]+‖, and gap =
∣∣ 〈C,Xk〉 − (p>φk +

ϕ>k q)/ρ
∣∣. As problem (1) is feasible and bounded, Lemma 2.1 and strong duality guarantees that all

the three terms will converge to zero. Thus, we terminate DROT when these become smaller than
some user-specified tolerances.

3.2 CONVERGENCE RATES

In this section, we state the main convergence results of the paper, namely a sublinear and a linear
rate of convergence of the given splitting algorithm. In order to establish the sublinear rate, we need
the following function:

V (X,Z,U) = f(X) + g(Z) + 〈U,Z −X〉 ,

which is defined for X ∈ Rm×n+ , Z ∈ X and U ∈ Rm×n. We can now state the first result.

Theorem 1. Let Xk, Yk, Zk be the generated by procedure (9). Then, for any X ∈ Rm×n+ , Z ∈ X ,
and Y ∈ Rm×n, we have

V (Xk+1, Zk+1, (Y − Z)/ρ)− V (X,Z, (Yk −Xk+1)/ρ) ≤
(
‖Yk − Y ‖2 − ‖Yk+1 − Y ‖2

)
/(2ρ).

Furthermore, let Y ? be a fixed-point of T in (6) and let X? be a solution of (1) defined from Y ? in
the manner of Lemma 2.1. Then, it holds that〈

C, X̄k

〉
− 〈C,X?〉 ≤

(
‖Y0‖2 /(2ρ) + 2 ‖X?‖ ‖Y0 − Y ?‖ /ρ

)
/k∥∥Z̄k − X̄k

∥∥ = ‖Yk − Y0‖/k ≤ 2 ‖Y0 − Y ?‖/k,

where X̄k =
∑k
i=1Xi/k and Z̄k =

∑k
i=1 Zi/k.

The theorem implies that one can compute a solution satisfying 〈C,X〉 − 〈C,X?〉 ≤ ε in O(1/ε)
iterations. This is a significant improvement over the best-known iteration complexity O(1/ε2) of
the Sinkhorn method (cf. Lin et al. (2019)). Note that the linearity of 〈C, ·〉 allows to update the
scalar value

〈
C, X̄k

〉
recursively without ever needing to form the ergodic sequence X̄k. Yet, in

terms of rate, this result is still conservative, as the next theorem shows.
Theorem 2. Let Xk and Yk be generated by (9). Let G? be the set of fixed points of T in (6) and let
X ? be the set of primal solutions to (1). Then, {Yk} is bounded, ‖Yk‖ ≤M for all k, and

dist(Yk,G?) ≤ dist(Y0,G?)× rk and dist(Xk,X ?) ≤ dist(Y0,G?)× rk−1,

where r = c/
√
c2 + 1 < 1, c = γ(1 + ρ(‖e‖+ ‖f‖)) ≥ 1, and γ = θS?(1 + ρ−1(M + 1)). Here,

θS? > 0 is a problem-dependent constant characterized by the primal-dual solution sets only.

6

Published as a conference paper at ICLR 2022

atomicAdd Thread register (on-chip)

Shared memory (on-chip)

Global memory (off-chip)

warp-level reduction

atom
icAdd

Figure 1: Left: Logical view of the main kernel. To expose sufficient parallelism to GPU, we organize threads
into a 2D grid of blocks (3 × 2 in the figure), which allows several threads per row. The threads are then
grouped in 1D blocks (shown in red) along the columns of X . This ensures that global memory access is
aligned and coalesced to maximize bandwidth utilization. We use the parameter work-size ws to indicate how
many elements of a row each thread should handle. For simplicity, this parameter represents multiples of the
block size bs. Each arrow denotes the activity of a single thread in a thread block. Memory storage is assumed
to be column-major. Right: Activity of a normal working block, which handles a submatrix of size bs×(ws·bs).

This means that an ε-optimal solution can be computed in O(log 1/ε) iterations. However, it is, in
general, difficult to estimate the convergence factor r, and it may in the worst case be close to one. In
such settings, the sublinear rate will typically dominate for the first iterations. In either case, DROT
always satisfies the better of the two bounds at each k.

3.3 IMPLEMENTATION

In this section, we detail our implementation of DROT to exploit parallel processing on GPUs. We
review only the most basic concepts of GPU programming necessary to describe our kernel and refer
to Kirk & Wen-Mei (2016); Cheng et al. (2014) for comprehensive treatments.

Thread hierarchy When a kernel function is launched, a large number of threads are generated to
execute its statements. These threads are organized into a two-level hierarchy. A grid contains mul-
tiple blocks and a block contains multiple threads. Each block is scheduled to one of the streaming
multiprocessors (SMs) on the GPU concurrently or sequentially, depending on available hardware.
While all threads in a thread block run logically in parallel, not all of them can run physically at the
same time. As a result, different threads in a thread block may progress at a different pace. Once a
thread block is scheduled to an SM, its threads are further partitioned into warps. A warp consists of
32 consecutive threads that execute the same instruction at the same time. Each thread has its own
instruction address counter and register state, and carries out the current instruction on its own data.

Memory hierarchy Registers and shared memory (“on-chip”) are the fastest memory spaces on a
GPU. Registers are private to each thread, while shared memory is visible to all threads in the same
thread block. An automatic variable declared in a kernel is generally stored in a register. Shared
memory is programmable, and users have full control over when data is moved into or evicted
from the shared memory. It enables block-level communication, facilitates reuse of on-chip data,
and can greatly reduce the global memory access of a kernel. However, there are typically only
a couple dozen registers per thread and a couple of kBs shared memory per thread block. The
largest memory on a GPU card is global memory, physically separated from the compute chip (“off-
chip”). All threads can access global memory, but its latency is much higher, typically hundreds
of clock cycles.1 Therefore, minimizing global memory transactions is vital to a high-performance
kernel. When all threads of a warp execute a load (store) instruction that access consecutive memory
locations, these will be coalesced into as few transactions as possible. For example, if they access
consecutive 4-byte words such as float32 values, four coalesced 32-byte transactions will service
that memory access.

Before proceeding further, we state the main result of the section.

Claim 3.1. On average, an iteration of DROT, including all the stopping criteria, can be done using
2.5 memory operations of m× n arrays. In particular, this includes one read from and write to X ,
and one read from C in every other iteration.

1https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

7

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Published as a conference paper at ICLR 2022

Main kernel Steps 4–5 and the stopping criteria are the main computational components of DROT,
since they involve matrix operations. We will design an efficient kernel that: (i) updates Xk to
Xk+1, (ii) computes uk+1 := Xk+1e and vk+1 := X>k+1f , (iii) evaluates 〈C,Xk+1〉 in the duality
gap expression. The kernel fuses many immediate steps into one and performs several on-the-fly
reductions while updating Xk, thereby minimizing global memory access.

Our kernel is designed so that each thread block handles a submatrix x of size bs× (ws · bs), except
for the corner blocks which will have fewer rows and/or columns. Since all threads in a block need
the same values of ϕ, it is best to read these into shared memory once per block and then let threads
access them from there. We, therefore, divide ϕ into chunks of the block size and set up a loop to
let the threads collaborate in reading chunks in a coalesced fashion into shared memory. Since each
thread works on a single row, it accesses the same element of φ throughout, and we can thus load
and store that value directly in a register. These allow maximum reuse of ϕ and φ.

In the j-th step, the working block loads column j of x to the chip in a coalesced fashion. Each
thread i ∈ {0, 1, . . . , bs− 1} uses the loaded xij to compute and store x+ij in a register:

x+ij = max(xij + φi + ϕj − ρcij , 0),

where c is the corresponding submatrix of C. As sum reduction is order-independent, it can be done
locally at various levels, and local results can then be combined to produce the final value. We,
therefore, reuse x+ij and perform several such partial reductions. First, to compute the local value
for uk+1, at column j, thread i simply adds x+ij to a running sum kept in a register. The reduction
leading to 〈C,Xk+1〉 can be done in the same way. The vertical reduction to compute vk+1 is more
challenging as coordination between threads is needed. We rely on warp-level reduction in which
the data exchange is performed between registers. This way, we can also leverage efficient CUDA’s
built-in functions for collective communication at warp-level.2 When done, the first thread in a warp
holds the total reduced value and simply adds it atomically to a proper coordinate of vk+1. Finally,
all threads write x+ij to the global memory. The process is repeated by moving to the next column.

When the block finishes processing the last column of the submatrix x, each thread adds its running
sum atomically to a proper coordinate of uk+1. They then perform one vertical (warp-level) reduc-
tion to collect their private sums to obtain the partial cost value 〈c, x〉. When all the submatrices
have been processed, we are granted all the quantities described in (i)–(iii), as desired. It is essen-
tial to notice that each entry of x is only read and written once during this process. To conclude
Claim 3.1, we note that one can skip the load of C in every other iteration. Indeed, if in iteration
k, instead of writing Xk+1, one writes the value of Xk+1 − ρC, then the next update is simply
Xk+2 =

[
Xk+1 + φk+1e

> + fϕ>k+1

]
+

. Finally, all the remaining updates in DROT only involve
vector and scalar operations, and can thus be finished off with a simple auxiliary kernel.

4 EXPERIMENTAL RESULTS

In this section, we perform experiments to validate our method and to demonstrate its efficiency
both in terms of accuracy and speed. We focus on comparisons with the Sinkhorn method, as
implemented in the POT toolbox3, due to its minimal per-iteration cost and its publicly available
GPU implementation. All runtime tests were carried out on an NVIDIA Tesla T4 GPU with 16GB of
global memory. The CUDA C++ implementation of DROT is open source and available at https:
//github.com/vienmai/drot.

We consider six instances of SK and its log-domain variant, called SK1–SK6 and SK-Log-1–SK-
Log-6, corresponding to η = 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, in that order. Given
m and n, we generate source and target samples as xs and xt, whose entries are drawn from a 2D
Gaussian distribution with randomized means and covariances (µs,Σs) and (µt,Σt). Here, µs ∈ R2

has normal distributed entries, and Σs =AsA
>
s , whereAs ∈ R2×2 is a matrix with random entries in

[0, 1]; µt ∈ R2 has entries formed from N (5, σt) for σt > 0, and Σt∈R2×2 is generated similarly
to Σs. Given xs and xt, the cost matrix C represents pair-wise squared distance between samples:
Cij=‖xs[i]− xt[j]‖22 for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} and is normalized to have ‖C‖∞ = 1.
The marginals p and q are set to p = 1m/m and q = 1n/n. DROT always starts at X0 = pq>.

2https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
3https://pythonot.github.io

8

https://github.com/vienmai/drot
https://github.com/vienmai/drot
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://pythonot.github.io

Published as a conference paper at ICLR 2022

10−4 10−3 10−2 10−1
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK1
SK2
SK3
SK4
Sk5
SK6

(a) Float 32, σt = 5

10−4 10−3 10−2 10−1
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK1
SK2
SK3
SK4
Sk5
SK6

(b) Float 64, σt = 5

10−4 10−3 10−2 10−1
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK1
SK2
SK3
SK4
Sk5
SK6

(c) Float 64, σt = 10

Figure 2: The percentage of problems solved up to various accuracy levels for σt = 5, 10.

Performance profile For each method, we evaluate for each ε > 0 the percentage of experiments
for which |f(XK)− f(X?)| /f(X?) ≤ ε, where f(X?) is the optimal value and f(XK) is the
objective value at termination. An algorithm is terminated as soon as the constraint violation goes
below 10−4 or 1000 iterations have been executed. Figure 2 depicts the fraction of problems that
are successfully solved up to an accuracy level ε given on the x-axis. Each subplot shows the result
on 100 random problems with m = n = 512 and ρ = 2/(m + n). We can see that DROT is
consistently more accurate and robust. It reinforces that substantial care is needed to select the right
η for SK. The method is extremely vulnerable in single-precision and even in double-precision, an
SK instance that seems to work in one setting can run into numerical issues in another. For example,
by slightly changing a statistical properties of the underlying data, nearly 40% of the problems in
Fig. 2(c) cannot be solved by SK2 due to numerical errors, even though it works well in Fig. 2(b).

Runtime As we strive for the excellent per-iteration cost of SK, this work would be incomplete
if we do not compare these. Figure 3(a) shows the median of the per-iteration runtime and the
95% confidence interval, as a function of the dimensions. Here, m and n range from 100 to 20000
and each plot is obtained by performing 10 runs; in each run, the per-iteration runtime is averaged
over 100 iterations. Since evaluating the termination criterion in SK is very expensive, we follow
the POT default and only do so once every 10 iterations. The result confirms the efficiency of
our kernel, and for very large problems the per-iteration runtimes of the two methods are almost
identical. It is also clear that DROT and SK can execute an iteration much faster than the log-domain
SK implementation. Finally, Figs 3(b)-(c) show the median times required for the total error (the
sum of function gap and constraint violation) to reach different ε values. Since SK struggles to find
even moderately accurate solutions in single precision, we drop these from the remaining runtime
comparisons. Note also that by design, all methods start from different initial points.4 We can
see that DROT can quickly and consistently find good approximates, while SK-Log is significantly
slower for small η and may not attain the desired accuracy with higher η.

0 2500 5000 7500 10000 12500 15000 17500 20000
Dimension m = n

0

20

40

60

80

100

Ti
m

e
[m

s]

DROT
SK
SK-Log

(a) Runtime per iteration

103 104

Dimension m = n

10 3

10 2

10 1

100

101

Ti
m

e
[s

]

DROT
SK-Log-2
SK-Log-3
SK-Log-4
SK-Log-5

(b) Time to ε = 0.01

103 104

Dimension m = n

10 2

10 1

100

101

Ti
m

e
[s

]

DROT
SK-Log-2
SK-Log-3
SK-Log-4
SK-Log-5

(c) Time to ε = 0.005

Figure 3: Wall-clock runtime performance versus the dimensions m = n for σt = 5.

The experiments confirm the strength of DROT both in speed and robustness: (i) each DROT itera-
tion can be executed efficiently as in SK, and (ii) it can find high accuracy solutions as a well-tuned
log-domain SK does, but at a much faster speed.

4The SK methods have their own matrices K = exp(−C/η) and X0 = diag(u0)K diag(v0). For DROT,
since Xk+1 = [Xk + φke

>fϕ>k − ρC]+, where X0 = pq> = 1/(mn), ‖C‖∞ = 1, ρ = ρ0/(m + n),
φ0 = ϕ0 = 0, the term inside [·]+ is of the order O(1/(mn) − ρ0/(m + n)) � 0. This makes the first few
iterations of DROT identically zeros. To keep the canonicalX0, we just simply set ρ0 to 0.5/ log(m) to reduce
the warm-up period as m increases, which is certainly suboptimal for DROT performance.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT

This work was supported in part by the Knut and Alice Wallenberg Foundation, the Swedish Re-
search Council and the Swedish Foundation for Strategic Research, and the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP). The computations were enabled by resources
provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the
Swedish Research Council through grant agreement no. 2018-05973.

REFERENCES

Mokhtar Z. Alaya, Maxime Berar, Gilles Gasso, and Alain Rakotomamonjy. Screening Sinkhorn al-
gorithm for regularized optimal transport. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation algorithms
for optimal transport via Sinkhorn iteration. In Advances in Neural Information Processing Sys-
tems, pp. 1964–1974, 2017.

David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster first-order primal-dual methods
for linear programming using restarts and sharpness. arXiv preprint arXiv:2105.12715, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Heinz H Bauschke and Patrick L Combettes. Convex analysis and monotone operator theory in
Hilbert spaces. Springer, 2nd edition, 2017.

Heinz H Bauschke, Shambhavi Singh, and Xianfu Wang. Projecting onto rectangular matrices with
prescribed row and column sums. arXiv preprint arXiv:2105.12222, 2021.

Amir Beck. First-order methods in optimization, volume 25. SIAM, 2017.

Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth and sparse optimal transport. In Inter-
national Conference on Artificial Intelligence and Statistics, pp. 880–889. PMLR, 2018.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

John Cheng, Max Grossman, and Ty McKercher. Professional CUDA C programming. John Wiley
& Sons, 2014.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
main adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9):1853–
1865, 2016.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26:2292–2300, 2013.

Frank Deutsch. Best approximation in inner product spaces, volume 7. Springer, 2001.

Jim Douglas and Henry H Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Transactions of the American mathematical Society, 82(2):421–439,
1956.

Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas–Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Programming, 55(1):
293–318, 1992.

Masao Fukushima. The primal Douglas-Rachford splitting algorithm for a class of monotone map-
pings with application to the traffic equilibrium problem. Mathematical Programming, 72(1):
1–15, 1996.

10

Published as a conference paper at ICLR 2022

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & mathematics with applications, 2(1):
17–40, 1976.

Michael Garstka, Mark Cannon, and Paul Goulart. COSMO: A conic operator splitting method for
convex conic problems. Journal of Optimization Theory and Applications, pp. 1–32, 2021.

Pontus Giselsson and Stephen Boyd. Linear convergence and metric selection for Douglas–Rachford
splitting and admm. IEEE Transactions on Automatic Control, 62(2):532–544, 2016.

Bingsheng He and Xiaoming Yuan. On the O(1/n) convergence rate of the Douglas-Rachford
alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

Franck Iutzeler and Jérôme Malick. Nonsmoothness in machine learning: specific structure, proxi-
mal identification, and applications. Set-Valued and Variational Analysis, 28(4):661–678, 2020.

David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a hands-on
approach. Morgan kaufmann, 2016.

Wu Li. Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear
programs. SIAM journal on control and optimization, 32(1):140–153, 1994.

Jingwei Liang, Jalal Fadili, and Gabriel Peyré. Local convergence properties of Douglas–Rachford
and alternating direction method of multipliers. Journal of Optimization Theory and Applications,
172(3):874–913, 2017.

Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
and accelerated mirror descent algorithms. In International Conference on Machine Learning,
pp. 3982–3991. PMLR, 2019.

Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two nonlinear opera-
tors. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applica-
tions, 169(3):1042–1068, 2016.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2019.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

David Romero. Easy transportation-like problems onk-dimensional arrays. Journal of optimization
theory and applications, 66(1):137–147, 1990.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell
gene expression identifies developmental trajectories in reprogramming. Cell, 176(4):928–943,
2019.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An operator splitting solver for quadratic programs. Mathematical Programming Computation,
pp. 1–36, 2020.

Sinong Wang and Ness Shroff. A new alternating direction method for linear programming. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
1479–1487, 2017.

11

Published as a conference paper at ICLR 2022

A EXTRA EXPERIMENTS

This section complements the experimental results in the main paper with further experiments for
DROT, SK and SK-Log in various settings.

Performance profile for MNIST We follow the construction in Cuturi (2013) and generate the cost
matrix C ∈ R784×784 as the normalized matrix of squared Euclidean distances between 28×28 bins
in the grid. For each pair of source and target digits, we convert an image into a vector of intensity of
28× 28 and normalize it to form the probability vectors p and q, respectively. Similarly to Figure 2,
Figure 4 shows the fraction of problems that are successfully solved up to an accuracy level ε given
on the x-axis. Here, each subplot is obtained by comparing 300 random pairs of images.

10−3 10−2 10−1 100 101
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK1
SK2
SK3
SK4
Sk5
SK6

(a) Float 32

10−3 10−2 10−1 100 101
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK1
SK2
SK3
SK4
Sk5
SK6

(b) Float 64

Figure 4: The percentage of problems solved up to various accuracy levels for MNIST.

Performance profile for SK-Log Figure 5 shows the fraction of problems that are successfully
solved by DROT and the log-domain implementation of SK. We can see that even with a simple
stepsize rule, DROT achieves similar performance of a well-tuned log-domain SK method.

10 4 10 3 10 2 10 1

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK-Log-1
SK-Log-2
SK-Log-3
SK-Log-4
SK-Log-5
SK-Log-6

Figure 5: The percentage of problems solved up to various accuracy for σt = 5 and ρ = 2/(m+n).

Single runs performance Figure 6 depicts the actual performance of different algorithms for ran-

dom OT instances used to produce the performance profile in Figure 2. In addition, Figure 7 high-
lights the linear convergence phenomenon predicted by our theory.

Sparsity of transportation By design, DROT efficiently finds sparse transport plans. To illustrate

this, we apply DROT to a color transfer problem between two images (see Blondel et al. (2018)).
By doing so, we obtain a highly sparse plan (approximately 99% zeros), and in turn, a high-quality

12

Published as a conference paper at ICLR 2022

0 200 400 600 800 1000
Iteration

10−5

10−4

10−3

10−2

10−1

100

Fu
nc
tio

n
Ga

p

DROT
SK4
SK5
SK6

(a) Float 32, σt = 5

0 200 400 600 800 1000
Iteration

10−5

10−4

10−3

10−2

10−1

100

Fu
nc
tio

n
Ga

p

DROT
SK2
SK3
SK4
SK5
SK6

(b) Float 64, σt = 5

Figure 6: Objective suboptimality versus iteration for random OT instances with m = n = 512.

0 1000 2000 3000 4000 5000
Iteration

10−15

10−12

10−9

10−6

10−3

100

Fu
nc
tio

n
Ga

p

DROT

(a) m = n = 32, ρ = 1.25

0 2000 4000 6000 8000 10000 12000
Iteration

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Fu
nc
tio

n
Ga

p

DROT

(b) m = n = 64, ρ = 1.33

Figure 7: Objective suboptimality versus iteration for random OT instances with σt = 1.

artificial image, visualized in Figure 8. In the experiment, we quantize each image with KMeans
to reduce the number of distinct colors to 750. We subsequently use DROT to estimate an optimal
color transfer between color distributions of the two images.

Figure 8: Color transfer via DROT: The left-most image is a KMeans compressed source image (750
centroids), the right-most is a compressed target image (also obtained via 750 KMeans centroids).
The middle panel displays an artificial image generated by mapping the pixel values of each centroid
in the source to a weighted mean of the target centroid. The weights are determined by the sparse
transportation plan computed via DROT.

13

Published as a conference paper at ICLR 2022

B PROOFS OF CONVERGENCE RATES

In order to establish the convergence rates for DROT, we first collect some useful results associated
with the mapping that underpins the DR splitting:

T (y) = y + proxρg
(
2proxρf (y)− y

)
− proxρf (y) .

DR corresponds to finding a fixed point to T , i.e. a point y? : y? = T (y?), or equivalently finding a
point in the nullspace of G, where G(y) = y−T (y). The operator T , and thereby also G, are firmly
non-expansive (see e.g. Lions & Mercier (1979)). That is, for all y, y′ ∈ dom(T):

〈T (y)− T (y′), y − y′〉 ≥ ‖T (y)− T (y′)‖2

〈G(y)−G(y′), y − y′〉 ≥ ‖G(y)−G(y′)‖2. (11)

Let G? be the set of all fixed points to T , i.e. G? = {y ∈ dom(T)|G(y) = 0}. Then (11) implies
the following bound:
Lemma B.1. Let y? ∈ G? and yk+1 = T (yk), it holds that

‖yk+1 − y?‖2 ≤ ‖yk − y?‖2 − ‖yk+1 − yk‖2.

Proof. We have

‖yk+1 − y?‖2 = ‖yk+1 − yk + yk − y?‖2

= ‖yk − y?‖2 + 2 〈yk+1 − yk, yk − y?〉+ ‖yk − y?‖2

= ‖yk − y?‖2 − 2 〈G(yk)−G(y?), yk − y?〉+ ‖yk − y?‖2

≤ ‖yk − y?‖2 − 2‖G(yk)−G(y?)‖2 + ‖yk − y?‖2

= ‖yk − y?‖2 − ‖yk+1 − yk‖2.

Corollary B.1. Lemma B.1 implies that

‖yk+1 − yk‖ ≤ ‖yk − y?‖ (12a)

(dist(yk+1,G?))2 ≤ (dist(yk,G?))2 − ‖yk+1 − yk‖2. (12b)

Proof. The first inequality follows directly from the non-negativity of the left-hand side of
Lemma B.1. The latter inequality follows from:

(dist(yk+1,G?))2 = ‖yk+1 − PG?(yk+1)‖2 ≤ ‖yk+1 − PG?(yk)‖2.
Applying Lemma B.1 to the right-hand side with y? = PG?(yk) yields the desired result.

B.1 PROOF OF THEOREM 1

Since DR is equivalent to ADMM up to changes of variables and swapping of the iteration order, it
is expected that DR can attain the ergodic rate O(1/k) of ADMM, both for the objective gap and
the constraint violation (He & Yuan, 2012; Beck, 2017). However, mapping the convergence proof
of ADMM to a specific instance of DR is tedious and error-prone. We thus give a direct proof here
instead. We first recall the DROT method:

Xk+1 =
[
Yk − ρC

]
+

(13a)

Zk+1 = PX (2Xk+1 − Yk) (13b)
Yk+1 = Yk + Zk+1 −Xk+1. (13c)

Since Xk+1 is the projection of Yk − ρC onto Rm×n+ , it holds that

〈Xk+1 − Yk + ρC,X −Xk+1〉 ≥ 0 ∀X ∈ Rm×n+ . (14)

Also, since X is a closed affine subspace, we have

〈Zk+1 − 2Xk+1 + Yk, Z − Zk+1〉 = 0 ∀Z ∈ X . (15)

14

Published as a conference paper at ICLR 2022

Next, for X ∈ Rm×n+ , Z ∈ X and U ∈ Rm×n we define the function:

V (X,Z,U) = f(X) + g(Z) + 〈U,Z −X〉 .

Let Uk+1 = (Yk −Xk+1)/ρ, it holds that

V (Xk+1, Zk+1, Uk+1)− V (X,Z,Uk+1)

= f(Xk+1) + g(Zk+1) + 〈Uk+1, Zk+1 −Xk+1〉 − f(X)− g(Z)− 〈Uk+1, Z −X〉

= 〈C,Xk+1〉 − 〈C,X〉+
1

ρ
〈Yk −Xk+1, Zk+1 − Z +X −Xk+1〉 .

By (14), we have 〈Yk −Xk+1, X −Xk+1〉 /ρ ≤ 〈C,X〉 − 〈C,Xk+1〉 , we thus arrive at

V (Xk+1, Zk+1, Uk+1)− V (X,Z,Uk+1) ≤ 1

ρ
〈Yk −Xk+1, Zk+1 − Z〉

=
1

ρ
〈Xk+1 − Zk+1, Zk+1 − Z〉 = −1

ρ
‖Xk+1 − Zk+1‖2 +

1

ρ
〈Xk+1 − Zk+1, Xk+1 − Z〉 ,

(16)

where the second step follows from (15). Now, for any Y ∈ Rm×n, we also have

V (Xk+1, Zk+1,
Y − Z
ρ

)− V (Xk+1, Zk+1, Uk+1)

=
1

ρ
〈Y − Z,Zk+1 −Xk+1〉 −

1

ρ
〈Yk −Xk+1, Zk+1 −Xk+1〉

=
1

ρ
〈Y − Yk, Zk+1 −Xk+1〉+

1

ρ
〈Xk+1 − Z,Zk+1 −Xk+1〉 . (17)

Therefore, by adding both sides of (16) and (17), we obtain

V (Xk+1, Zk+1,
Y − Z
ρ

)− V (X,Z,Uk+1) ≤ 1

ρ
〈Y − Yk, Zk+1 −Xk+1〉 −

1

ρ
‖Xk+1 − Zk+1‖2 .

(18)

Since Zk+1 −Xk+1 = Yk+1 − Yk, it holds that

1

ρ
〈Y − Yk, Zk+1 −Xk+1〉 =

1

2ρ
‖Yk − Y ‖2 −

1

2ρ
‖Yk+1 − Y ‖2 +

1

2ρ
‖Yk+1 − Yk‖2 . (19)

Plugging (19) into (18) yields

V (Xk+1, Zk+1,
Y − Z
ρ

)− V (X,Z,Uk+1) ≤ 1

2ρ
‖Yk − Y ‖2 −

1

2ρ
‖Yk+1 − Y ‖2 −

1

2ρ
‖Yk+1 − Yk‖2 ,

(20)

which by dropping the last term on the right-hand side gives the first claim in the theorem.

Let Y ? be a fixed-point of the mapping T and let X? be a solution of (1) defined from Y ? in the
manner of Lemma 2.1. Invoking (20) with Z = X = X? ∈ Rm×n+ ∩ X and summing both sides of
(20) over the iterations 0, . . . , k − 1 gives〈

C, X̄k

〉
− 〈C,X?〉+

〈
Y −X?

ρ
, Z̄k − X̄k

〉
≤ 1

k

(
1

2ρ
‖Y0 − Y ‖2 −

1

2ρ
‖Yk − Y ‖2

)
, (21)

where X̄k =
∑k
i=1Xi/k and Z̄k =

∑k
i=1 Zi/k. Since

1

2ρ
‖Y0 − Y ‖2 −

1

2ρ
‖Yk − Y ‖2 =

1

2ρ
‖Y0‖2 −

1

2ρ
‖Yk‖2 +

1

ρ
〈Y, Yk − Y0〉 ,

it follows that〈
C, X̄k

〉
− 〈C,X?〉+

1

ρ

〈
Y, Z̄k − X̄k −

Yk − Y0
k

〉
≤ 1

2ρk
‖Y0‖2 −

1

2ρk
‖Yk‖2 +

1

ρ

〈
X?, Z̄k − X̄k

〉
.

15

Published as a conference paper at ICLR 2022

Since Y is arbitrary in the preceding inequality, we must have that

Z̄k − X̄k −
Yk − Y0

k
= 0, (22)

from which we deduce that〈
C, X̄k

〉
− 〈C,X?〉 ≤ 1

2ρk
‖Y0‖2 −

1

2ρk
‖Yk‖2 +

1

ρ

〈
X?, Z̄k − X̄k

〉
≤ 1

2ρk
‖Y0‖2 +

1

ρ
‖X?‖

∥∥Z̄k − X̄k

∥∥
=

1

2ρk
‖Y0‖2 +

1

ρk
‖X?‖ ‖Yk − Y0‖ . (23)

By Lemma B.1, we have

‖Yk − Y ?‖2 ≤ ‖Yk−1 − Y ?‖2 ≤ · · · ≤ ‖Y0 − Y ?‖2 ,

which implies that

‖Yk − Y0‖ ≤ ‖Yk − Y ?‖+ ‖Y0 − Y ?‖ ≤ 2 ‖Y0 − Y ?‖ . (24)

Finally, plugging (24) into (23) and (22) yields〈
C, X̄k

〉
− 〈C,X?〉 ≤ 1

k

(
1

2ρ
‖Y0‖2 +

2

ρ
‖X?‖ ‖Y0 − Y ?‖

)
∥∥Z̄k − X̄k

∥∥ =
‖Yk − Y0‖

k
≤ 2 ‖Y0 − Y ?‖

k
,

which concludes the proof.

B.2 PROOF OF THEOREM 2

We will employ a similar technique for proving linear convergence as Wang & Shroff (2017) used
for ADMM on LPs. Although they, in contrast to our approach, handled the linear constraints via
relaxation, we show that the linear convergence also holds for our OT-customized splitting algorithm
which relies on polytope projections. The main difference is that the dual variables are given implic-
itly, rather than explicitly via the multipliers defined in the ADMM framework. As a consequence,
their proof needs to be adjusted to apply to our proposed algorithm.

To facilitate the analysis of the given splitting algorithm, we let e = 1n and f = 1m and consider
the following equivalent LP:

minimize
X,Z∈Rm×n

〈C,X〉
subject to Ze = p

Z>f = q
X ≥ 0
Z = X.

(25)

The optimality conditions can be written on the form

Z?e = p (26a)

Z?>f = q (26b)
X? ≥ 0 (26c)
Z? = X? (26d)

µ?e> + fν?> ≤ C (26e)

〈C,X?〉 − p>µ? − q>ν? = 0. (26f)

This means that set of optimal solutions, S?, is a polyhedron

S? = {Z = (X,Z, µ, ν) |Meq(Z) = 0, Min(Z) ≤ 0}.

16

Published as a conference paper at ICLR 2022

where Meq and Min denote the equality and inequality constraints of (26), respectively. Li (1994)
proposed a uniform bound of the distance between a point such a polyhedron in terms of the con-
straint violation given by:

dist(Z,S?) ≤ θS?

∥∥∥∥ Meq(Z)[
Min(Z)

]
+

∥∥∥∥ . (27)

For the (X,Z)-variables generated by (9), (26a), (26b), and (26c) will always hold due to the projec-
tions carried out in the subproblems. As a consequence, only (26d), (26e), and (26f) will contribute
to the bound (27). In particular:

dist((Xk, Zk, µk, νk),S?) ≤ θS?

∥∥∥∥∥∥
Zk −Xk

〈C,Xk〉 − p>µk − q>νk[
µke
> + fν>k − C

]
+

∥∥∥∥∥∥ . (28)

The following Lemma allows us to express the right-hand side of (28) in terms of Yk+1 − Yk.
Lemma B.2. Let Xk, Zk and Yk be a sequence generated by (9). It then holds that

Zk+1 −Xk+1 = Yk+1 − Yk
µk+1e

> + fν>k+1 − C ≤ ρ−1(Yk+1 − Yk)

〈C,Xk+1〉 − p>µk+1 − q>νk+1 = −ρ−1 〈Yk+1, Yk+1 − Yk〉 .

Proof. The first equality follows directly from the Y -update in (9). Let

µk = φk/ρ, νk = ϕk/ρ (29)

the Y -update in (10) yields

Yk+1 = Yk + Zk+1 −Xk+1 = Xk+1 + ρµk+1e
> + ρfν>k+1. (30)

In addition, the X-update

Xk+1 = max(Yk − ρC, 0) (31)

can be combined with the first equality in (30) to obtain

Yk+1 = min(Yk + Zk+1, Zk+1 + ρC),

or equivalently

Yk+1 − Zk+1 − ρC = min(Yk − ρC, 0). (32)

By (30), the left-hand-side in (32) can be written as

Yk+1 − Zk+1 − ρC = Xk+1 − Zk+1 + ρµk+1e
> + ρfν>k+1 − ρC

= ρ(µk+1e
> + fν>k+1 − C − ρ−1(Yk+1 − Yk)).

Substituting this in (32) gives

µk+1e
> + fν>k+1 − C − ρ−1(Yk+1 − Yk)) = ρ−1 min(Yk − ρC, 0) ≤ 0, (33)

which gives the second relation in the lemma. Moreover, (31) and (33) implies that Xk+1 and
µk+1e

> + fν>k+1 − ρ−1(Yk+1 − Yk)− C cannot be nonzero simultaneously. As a consequence,〈
Xk+1, µk+1e

> + fν>k+1 − ρ−1(Yk+1 − Yk)− C
〉

= 0

or

〈C,Xk+1〉 =
〈
Xk+1, µk+1e

> + fν>k+1 − ρ−1(Yk+1 − Yk)
〉

=
〈
Zk+1 − (Yk+1 − Yk), µk+1e

> + fν>k+1 − ρ−1(Yk+1 − Yk)
〉

=
〈
Zk+1, µk+1e

> + fν>k+1

〉
−
〈
ρ−1Zk+1 + µk+1e

> + fν>k+1, Yk+1 − Yk
〉

+ ρ−1 ‖Yk+1 − Yk‖2 .

17

Published as a conference paper at ICLR 2022

By (30), ρ−1Zk+1 + µk+1e
> + fν>k+1 = ρ−1(Zk+1 + Yk+1 −Xk+1) = ρ−1(2Yk+1 − Yk), hence

〈C,Xk+1〉 =
〈
Zk+1, µk+1e

> + fν>k+1

〉
− ρ−1 〈2Yk+1 − Yk, Yk+1 − Yk〉+ ρ−1 ‖Yk+1 − Yk‖2

=
〈
Zk+1, µk+1e

> + fν>k+1

〉
− ρ−1 〈Yk+1, Yk+1 − Yk〉 . (34)

Note that 〈
Zk+1, µk+1e

> + fν>k+1

〉
= tr(Z>k+1µk+1e

>) + tr(Z>k+1fν
>
k+1)

= tr(e>Z>k+1µk+1) + tr(ν>k+1Z
>
k+1f)

= tr(p>µk+1) + tr(ν>k+1q)

= p>µk+1 + q>νk+1. (35)

Substituting (35) into (34), we get the third equality of the lemma:

〈C,Xk+1〉 − p>µk+1 + q>νk+1 = −ρ−1 〈Yk+1, Yk+1 − Yk〉 .

By combining Lemma B.2 and (28), we obtain the following result:
Lemma B.3. Let Xk, Zk and Yk be a sequence generated by (9) and µk, νk be defined by (29).
Then, there is a γ > 0 such that:

dist((Xk, Zk, µk, νk),S?) ≤ γ ‖Yk − Yk−1‖ .

Proof. Let Y ? ∈ G?, then Lemma B.1 asserts that

‖Yk − Y ?‖ ≤ ‖Yk−1 − Y ?‖ ≤ · · · ≤ ‖Y0 − Y ?‖ ,

which implies that ‖Yk‖ ≤M for some positive constantM . In fact, {Yk} belongs to a ball centered
at Y ? with the radius ‖Y0 − Y ?‖. From the bound of (28) and Lemma B.2, we have

dist((Xk, Zk, µk, νk),S?) ≤θS?

∥∥∥∥∥∥
Zk −Xk

〈C,Xk〉 − p>µk − q>νk[
µke
> + fν>k − C

]
+

∥∥∥∥∥∥
≤θS?(‖Zk −Xk‖+ | 〈C,Xk〉 − p>µk − q>νk|

+ ‖
[
µke
> + fν>k − C

]
+
‖)

≤θS?(‖Yk − Yk−1‖+ ρ−1| 〈Yk, Yk − Yk−1〉 |+ ρ−1 ‖[Yk − Yk−1]+‖)
≤θS?(1 + ρ−1 + ρ−1 ‖Yk‖) ‖Yk − Yk−1‖
≤θS?(1 + ρ−1(M + 1)) ‖Yk − Yk−1‖ .

By letting γ = θS?(1 + ρ−1(M + 1)) we obtain the desired result.

Recall that for DROT, proxρf (·) = PRm×n
+

(· − ρC) and proxρg (·) = PX (·). The following Lemma
bridges the optimality conditions stated in (26) with G?.

Lemma B.4. If Y ?=X? + ρ(µ?e> + fν?>), where X?, µ?, and ν? satisfy (26), then G(Y ?) = 0.

Proof. We need to prove that

G(Y ?) = PRm×n
+

(Y ? − ρC)− PX
(

2PRm×n
+

(Y ? − ρC)− Y ?
)

is equal to zero. Let us start with simplifying PRm×n
+

(Y ? − ρC). By complementary slackness,

〈X?, µ?e> + fν?> − C〉 = 0,

and by dual feasibility

µ?e> + fν?> − C ≤ 0.

18

Published as a conference paper at ICLR 2022

Consequentially, we have:

〈µ?e> + fν?> − C,X −X?〉 ≤ 0, ∀X ∈ Rm×n+ ,

which defines a normal cone of Rm×n+ , i.e. µ?e> + fν?> − C ∈ NRm×n
+

(X?). By using the
definition of Y ?, and that ρ > 0, this implies that

Y ? −X? − ρC ∈ NRm×n
+

(X?),

which corresponds to optimality condition of the projection

X? = PRm×n
+

(Y ? − ρC).

We thus have PX
(

2PRm×n
+

(Y ? − ρC)− Y ?
)

= PX (2X? − Y ?). But by the definition of Y ?,

0 = Y ? −X? − ρ(µ?e> + fν?>) = X? − (2X? − Y ?)− ρµ?e> − ρfν?>,
which means thatX? = PX (2X? − Y ?) (following from the optimality condition of the projection).
Substituting all these quantities into the formula for G(Y ?), we obtain G(Y ?) = 0.

Lemma B.5. There exists a constant c ≥ 1 such that

dist(Yk,G?) ≤ c ‖Yk − Yk−1‖.

Proof. Let Y ? = X? + ρµ?e> + ρfν?>, where (X?, X?, µ?, ν?) = PS?((Xk, Zk, µk, νk)). Ac-
cording to Lemma B.4, we have that Y ? ∈ G?. Then

dist(Yk,G?) ≤ ‖Yk − Y ?‖ = ‖Yk −X? − ρ(µ?e> + fν?>)‖.

Since Yk = Xk + ρµke
> + ρfν>k , it holds that

dist(Yk,G?) ≤ ‖Xk −X? + ρ(µk − µ?)e> + ρf(νk − ν?)>‖
≤ ‖Xk −X?‖+ ρ‖e‖‖µk − µ?‖+ ρ‖f‖‖νk − ν?‖

≤
√

1 + ρ2‖e‖2 + ρ2‖f‖2
√
‖Xk −X?‖2 + ‖µk − µ?‖2 + ‖νk − ν?‖2

≤
√

1 + ρ2‖e‖2 + ρ2‖f‖2
√
‖(Xk −X?, Zk −X?, µk − µ?, νk − ν?)‖2

=
√

1 + ρ2‖e‖2 + ρ2‖f‖2 dist((Xk, Zk, µk, νk),S?)
≤ γ(1 + ρ(‖e‖+ ‖f‖))‖Yk − Yk−1‖,

where the last inequality follows from Lemma B.3. The fact that

c = γ(1 + ρ(‖e‖+ ‖f‖)) ≥ 1 (36)

follows from (12a) in Corollary B.1.

B.3 PROOF OF LINEAR CONVERGENCE

By combining Lemma B.5 with (12b) in Corollary B.1, we obtain:

(dist(Yk+1,G?))2 ≤
c2

1 + c2
(dist(Yk,G?))2

or equivalently

dist(Yk+1,G?) ≤
c√

1 + c2
dist(Yk,G?).

Letting r = c/
√

1 + c2 < 1 and iterating the inequality k times gives

dist(Yk,G?) ≤ dist(Y0,G?)rk.
Let Y ? := PG?(Yk). Since proxρf (Y ?) ∈ X ? and Xk+1 = proxρf (Yk), we have

dist(Xk+1,X ?) ≤
∥∥proxρf (Yk)− proxρf (Y ?)

∥∥ ≤ ‖Yk − Y ?‖ = dist(Yk,G?) ≤ dist(Y0,G?)rk,

where the second inequality follows from the non-expansiveness of proxρf (·) This completes the
proof of Theorem 2.

19

Published as a conference paper at ICLR 2022

C DR AND ITS CONNECTION TO ADMM

The Douglas-Rachford updates given in (5) can equivalently be formulated as:
xk+1 = proxρf (yk)

zk+1 = proxρg (2xk+1 + yk)

yk+1 = yk + zk+1 − xk+1

⇔
zk+1 = proxρg (2xk+1 + yk)

yk+1 = yk + zk+1 − xk+1

xk+2 = proxρf (yk+1)

⇔
zk+1 = proxρg (2xk+1 + yk)

xk+2 = proxρf (yk + zk+1 − xk+1)

yk+1 = yk + zk+1 − xk+1.

If we let wk+1 = 1
ρ (yk − xk+1), we get.

zk+1 = proxρg (xk+1 + ρwk+1)

xk+2 = proxρf (zk+1 − ρwk+1)

wk+2 = wk+1 +
1

ρ
(zk+1 − xk+2).

By re-indexing the x and the w variables, we get:
zk+1 = proxρg (xk + ρwk)

xk+1 = proxρf (zk+1 − ρwk)

wk+1 = wk +
1

ρ
(zk+1 − xk+1).

This is exactly ADMM applied to the composite convex problem on the form (4).

D FENCHEL-ROCKAFELLAR DUALITY OF OT

Recall that
f(X) = 〈C,X〉+ IRm×n

+
(X) and g(X) = I{Y :A(Y)=b}(X) = IX (X).

Recall also that the conjugate of the indicator function IC of a closed and convex set C is the support
function σC of the same set (Beck, 2017, Chapter 4). For a non-empty affine set X = {Y : A(Y) =
b}, its support function can be computed as:

σX (U) = 〈U,X0〉+ IranA∗(U),

where X0 is a point in X (Beck, 2017, Example 2.30). By letting X0 = pq> ∈ X , it follows that

g∗(U) = 〈U, pq>〉+ IranA∗(U).

Since A∗ : Rm+n → Rm×n : (y, x) 7→ ye> + fx>, any matrix U ∈ ranA∗ must have the form
µe> + fν> for some µ ∈ Rm and ν ∈ Rn. The function g∗(U) can thus be evaluated as:

g∗(U) = p>µ+ q>ν.

We also have
f∗(−U) = max

X
{〈−U,X〉 − 〈C,X〉 − IRm×n

+
(X)}

= max
X
{〈−U − C,X〉 − IRm×n

+
(X)}

= σRm×n
+

(−U − C)

=

{
0 if − U − C ≤ 0,
+∞ otherwise.

20

Published as a conference paper at ICLR 2022

The Fenchel–Rockafellar dual of problem 4 in Lemma 2.1 thus becomes

maximize
µ∈Rm,ν∈Rn

−p>µ− q>ν

subject to −µe> − fν> − C ≤ 0,

which is identical to (3) upon replacing µ by −µ and ν by −ν.

21

	Introduction
	Related work
	Contributions

	Background
	Douglas-Rachford splitting for optimal transport
	Algorithm derivation
	Convergence rates
	Implementation

	Experimental results
	Extra experiments
	Proofs of convergence rates
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of linear convergence

	DR and its connection to ADMM
	Fenchel-Rockafellar duality of OT

